

1 The Largest Crop Production Shocks: Magnitude, Causes and Frequency

2 Florian Ulrich Jehn^{1,2,3}, James Mulhall¹, Simon Blouin¹, Łukasz G. Gajewski¹, Nico
3 Wunderling^{3,4,5}

4 ¹Alliance to Feed the Earth in Disasters (ALLFED), Lafayette, CO, USA

5 ²Societal Dynamics (SoDy), Remote

6 ³Center for Critical Computational Studies (C³S), Goethe University Frankfurt, Frankfurt am Main, Germany

7 ⁴Earth Resilience Science Unit, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association,
8 Potsdam, Germany

9 ⁵High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA

10 *Correspondence to:* Florian Ulrich Jehn (florian@allfed.info) or Nico Wunderling (wunderling@c3s.uni-frankfurt.de)

11 **Abstract** Food is the foundation of our society. We often take it for granted, but stocks are rarely available for longer than a
12 year, and food production can be disrupted by catastrophic events, both locally and globally. To highlight such major risks to
13 the food system, we analyzed FAO crop production data from 1961 to 2023 to find the largest crop production shock for every
14 country and identify its causes. We show that large crop production shocks regularly happen in all countries. This is most often
15 driven by climate (especially droughts), but disruptions by other causes like economic disruptions, environmental hazards
16 (especially storms) and conflict also occur regularly. The global mean of largest country-level shocks averaged -29%, with
17 African countries experiencing the most extreme collapses (-80% in Botswana), while Asian and Central European nations
18 faced more moderate largest shocks (-5 to -15%). While global shocks above 5% are rare (occurring once in 63 years),
19 continent-level shocks of this magnitude happen every 1.8 years on average. These results show that large disruptions to our
20 food system frequently happen on a local to regional scale and can plausibly happen on a global scale as well. We therefore
21 argue that more preparation and planning are needed to avoid such global disruptions to food production.

22 1 Introduction

23 Having enough food available is essential for every society. However, no food is storable forever, and storage is expensive.
24 As a result, there is always only a very finite amount of food in stock. If production were to stop tomorrow, stocks globally
25 would only last just under a year, with Africa and parts of Asia having only around six months of food stored (Laio et al.,
26 2016). Some important staple crops like wheat would even be depleted in two to three months if production ceased in the
27 months of low stocks and consumption stayed constant (Do et al., 2010). Over the last few decades, however, there has been
28 a trend towards maintaining somewhat larger food stocks, increasing resilience (Laio et al., 2016; Marchand et al., 2016).

30 One safeguard against the depletion of stocks is the global and interconnected food production and trade system that has
31 developed since the mid-20th century (Ji et al., 2024). In the last few decades, this system has been quite successful in ensuring
32 food security for a majority of the world (Herre et al., 2017). However, in such complex and connected systems, there is always
33 the potential for cascading failures, starting from one local shock and rippling outwards (Bernard de Raymond et al., 2021).
34 Also, the system is highly concentrated among a few key players, like Russia for wheat, the United States for maize, or Brazil
35 for soy. This concentration of food production has historical roots. As Clapp (2023) demonstrates, capitalism and colonialism
36 drove specialization in single crops for efficiency and profitability, while also promoting the distribution of the production
37 system globally, whereby certain regions or countries specialize in producing certain types of goods — grains, fruits, textiles,
38 etc. This required these countries to then become bulk importers of the goods they did not produce themselves. Post-colonial
39 countries inherited economies dependent on food imports rather than local production. This has created a system where
40 disruptions to a few key crops or exporting nations can have cascading global effects, with recent research by Jain (2024)
41 showing that this concentration also happens on a country level, with certain regions in a given country being responsible for
42 most of the production and trade.

43

44 There have been a variety of studies to understand the events that might cause such an abrupt loss in food production. One of
45 the more comprehensive examples is Cottrell et al. (2019), who looked at food production shocks across crops, livestock,
46 fisheries, and aquaculture and found that the frequency of shocks increases over time, and that the shocks are mainly caused
47 by climate and geopolitical disruptions. Another way to analyze these global shocks is the concept of Multiple Breadbasket
48 Failure (MBBF). This term describes the dangers that arise in the food system when several of the main food-producing regions
49 globally experience a yield shock in parallel (Gaupp et al., 2020; Jahn, 2021).

50

51 More recently, a new term has been introduced for another kind of risk to the food system: Global Catastrophic Food Failure
52 (GCFF) (Wescombe et al., 2025). This term is meant to describe the gravest risks our food system could face, disruptions so
53 large that food production would exhaust stocks and lead to widespread famine if not managed well, due to e.g. climate change,
54 war, volcanoes, or pandemics. A shock of this magnitude entails a significant risk of creating famine on a large scale.

55

56 Such grave shocks have not happened since data collection by the FAO started in 1961. For the time before this, data only exist
57 for a small subset of countries (Anderson et al., 2023), so it is considerably more uncertain to what extent food production
58 shocks occurred before that. The most plausible events that might have caused such a global shock in the last century were the
59 two world wars, but data from that period are patchy. Another historical candidate for a GCFF is the eruption of Mount
60 Tambora in 1815 and its climatic consequences, but the records of yields from that time are too sparse to be certain
61 (Brönnimann and Krämer, 2016). Unfortunately, our modern food system is vulnerable to disruptions on global scales by
62 events like nuclear war (Xia et al., 2022), geomagnetic storms or extreme pandemics (Moersdorf et al., 2024) and large volcanic

63 eruptions (Cassidy and Mani, 2022). Also, as we further move towards polycrisis, it becomes more likely that several shocks
64 coincide at the same time (Delannoy et al., 2025).

65
66 Such extreme risks often seem abstract and distant, making them seem implausible. To address this perception gap, this paper
67 aims to ground future catastrophic food security risks in historical data. To do so, we aggregate all major crops based on their
68 caloric value to have an overall measure of food production. We focus on crops because they make up the majority of calories
69 consumed by humans (>85%), and there is very reliable data available. We aggregate the crops by calories because, without
70 enough calories, you cannot prevent famine. This provides us with a time series (1961 to 2023) of calories produced for all
71 countries, from which we can calculate how much the actual yield differs from the expected yield based on long-term trends
72 in food production.

73
74 Our approach builds on previous work, such as Cottrell et al. (2019) and Anderson et al. (2023). However, rather than analyzing
75 climate patterns that might cause shocks like Anderson et al. (2023) or identifying shocks across multiple food sectors like
76 Cottrell et al. (2019), this paper systematically describes the worst crop production shock that each country experienced and
77 why it happened. We believe this unique focus on the largest magnitude shocks highlights the greatest dangers that crop
78 production faces, providing a comprehensive map of actual worst-case vulnerabilities rather than merely describing risk factors
79 in general. [This study here complements Cottrell et al. \(2019\). While the earlier study focussed on how often the food system](#)
80 [shows shocks in general, this study here explicitly focuses on how bad these shocks can get and why these most extreme shocks](#)
81 [happen.](#)

82
83 Our comprehensive shock dataset enables investigation of three key research objectives. First, we aim to quantify the
84 magnitude of the most severe crop production shocks to establish baseline thresholds for extreme events. Second, we aim to
85 analyze temporal trends in [the frequency of largest shocks](#)~~shock frequency~~ to identify whether extreme events are becoming
86 more or less common over time. Third, we aim to identify and categorize the primary drivers of these production shocks to
87 understand their underlying mechanisms.

88 **2 Data and Methods**

89 **2.1 Data**

90 To conduct our analysis, we used food production data provided by the Food and Agriculture Organization of the United
91 Nations (FAO). This dataset covers all major crops and contains data from 1961 to 2023. We used the main crops in each of
92 the main crop types as described by FAO (2024):

93

- Cereals: Maize, rice, wheat, barley, sorghum
- Sugar crops: Sugar cane, sugar beet

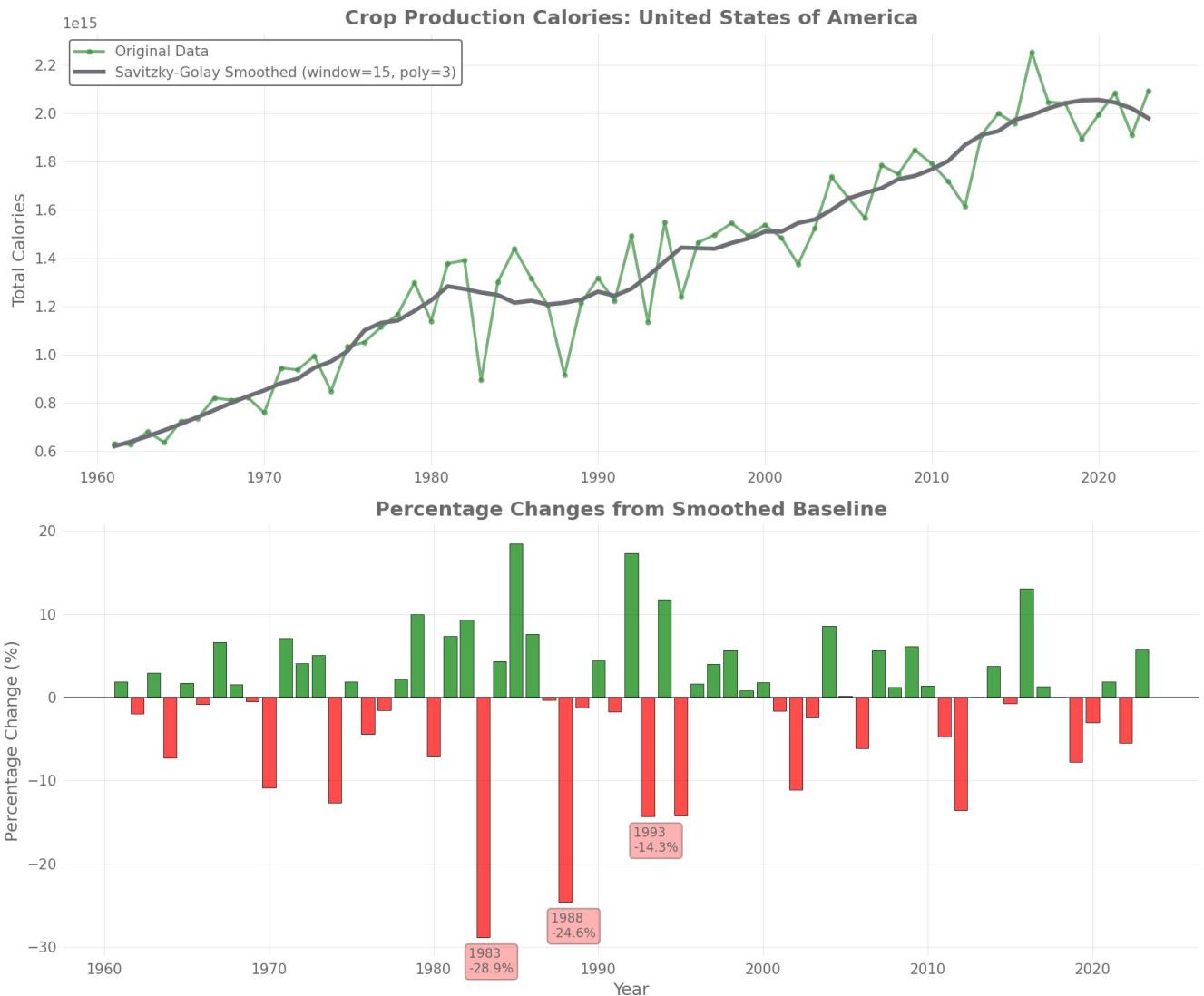
95 • Vegetables: Tomatoes, onions (including shallots), cucumbers and gherkins, cabbages, eggplants
96 • Oilcrops: Oil palm fruit, soya beans, rapeseed, seed cotton, coconuts
97 • Fruit: Bananas, watermelons, apples, grapes, oranges
98 • Roots and tubers: Potatoes, cassava, sweet potatoes, yams, taro
99

100 Using all these crops means we are considering the vast majority of crops produced globally. We aggregate all of these crops
101 based on their caloric value. To stay consistent with FAO data, we also use FAO caloric density estimates (FAO, 2001a). To
102 get the overall caloric production, we multiply the production values of the foods by their calories and sum all calories produced
103 in a given year and country.

104
105 We do not differentiate between which of these crops are intended for feed or food, because in a famine situation, we assume
106 that most, if not all, of it would be used for human consumption. We recognize that this does not reflect current food
107 consumption patterns, because several of the crops (like maize or soya beans) are mostly used for feed and only 55% of global
108 crop calories reach humans directly (Cassidy et al., 2013). However, our aim is to quantify crop production shocks, rather
109 than current consumption patterns. During severe food crises, feed is often redirected towards human consumption. For
110 example, there are documented cases of this phenomenon for both World Wars (Collingham, 2012; Offer, 1991) and during
111 the Great Chinese Famine (Meng et al., 2015). Depending on the crop, this might take some time and infrastructure, but it
112 represents a sensible crisis response. Most of the crops we consider here are directly edible by humans. The crops used here,
113 which are likely the most difficult for humans to consume, are seed cotton, rapeseed, and soya beans. To assess whether this
114 changes our findings, we redid the analysis excluding seed cotton, rapeseed and soya beans. The results stay almost exactly
115 the same, and for most countries, the results only change by a percentage point or less. This can also be seen in Figure S1,
116 which is a version of Figure 2 but without those crops. The changes are so small that they are almost not detectable visually.
117 We therefore conduct the analysis with the whole set of crops.

118 **2.2 Calculating food shocks**

119 For this analysis, we consider it a food shock if the amount of crops produced in a given year is considerably lower than the
120 amount of crops we would expect for that year. However, to calculate this shock, we must first estimate the expected yield for
121 that year. To do so, we are using a Savitzky-Golay filter (Savitzky and Golay, 1964) as implemented in `scipy v1.15.2` (Virtanen
122 et al., 2020).


123 The Savitzky-Golay filter is a smoothing technique that reduces noise in data while preserving important features like peaks
124 and trends. It works by fitting a polynomial to small subsets (a window) of neighboring data points, then using the polynomial
125 to estimate a smoothed value at the center of each subset. At each position, the filter fits the best polynomial curve through the

126 data points within that window, then takes the value of that curve at the center point as the smoothed result. This process
127 continues across the entire dataset.

128 This process is similar to the food shock calculation in Anderson et al. (2023), who used a Gaussian filter. We chose the
129 Savitzky-Golay filter because it performs better at the edges of the dataset. We use a window length of 15. This means the 7
130 years before and after a given year are used to calculate the expected value for that year. We used this window length to make
131 our approach comparable to Cottrell et al. (2019). Cottrell et al. (2019) considered in their shock calculation the previous 7
132 years. We used a 3rd order polynomial, as this resulted in an overall smoother estimation. Though ultimately, a Gaussian filter
133 and the Savitzky-Golay filter deliver very similar results for our dataset and identify similar magnitudes of shocks, as well as
134 the same years with the largest shocks (Figure S2).

135 For the detection of the largest shocks, we also introduced a conditional constraint. We only count a relative drop in crop
136 production as a shock if the crop production in the shock year is lower than the previous year. This is to avoid detecting a year
137 as having a shock, even though the amount of food produced has increased, which can happen if there is a sudden increase in
138 production in the following years. The additional constraint was added because the initial analysis incorrectly flagged years as
139 shocks when yields had actually increased from the previous year. However, having more crops than the year before can hardly
140 be considered a shock.

141 However, our overall analysis is relatively robust against changes in the window size and polyorder, as the overall trend follows
142 a relatively smooth curve to begin with (see Figure 1 for an example). Smaller windows decrease shock sizes because the
143 smoothed trend follows the yearly data more closely. Larger window sizes lead to larger shock sizes accordingly. The overall
144 trends remain very similar because the positions for potential large derivations do not change, even if the individual shock
145 sizes do. See Figure S3 and S4 for a re-calculation of Figure 1, but with 7 and 21 years for the calculation of the trend line.
146 This shows that the values slightly change, but in all three cases it highlights the same three years, in the same order, as the
147 largest shocks in the time series.

148

149 **Figure 1: Example of crop calorie production in the United States (1961-2023).** Upper plot shows original calorie data in green and
 150 smoothed trendline calculated with Savitzky-Golay filter in grey. The lower plot shows the size of the crop production shock
 151 calculated with our method. Green represents more calories produced than expected, red represents less calories produced than
 152 expected. The three largest shocks are labelled with the year and size of the shock.

153 We used both historical and contemporary countries, which slightly inflates shock counts when borders changed—a shock
 154 affecting one territory before partition now registers across multiple successor states (e.g. the Soviet Union and its successor
 155 states). However, this effect is negligible, and the number of countries stabilized around 1990.

156 For this analysis, we considered a total of 197 countries. We did not exclude countries with small crop production, as there is
157 no clear cut-off point, and exclusion would have been arbitrary. However, for these small countries, it is more difficult to
158 explore reasons for their crop production shocks, as there is less documentation available, and smaller production numbers are
159 more easily skewed.

160 **2.3 Checking the origins of the largest food shocks**

161 To verify if our approach reliably finds the largest food shocks in a country's history, we used Claude 4 Sonnet to search for
162 potential crises in these countries that might have caused the food shocks we had detected (full prompt can be found in the
163 repository of this paper). This provided us with several official sources (e.g. journal articles, FAO reports) that described a
164 crisis in a given year and country. Each search result was verified manually reading through the sources suggested by Claude
165 and confirming whether they described a crisis in the specified country and year specified that could have influenced
166 agriculture on such a scale. While this might produce some false positive results, it is also an approach used by Cottrell et al.
167 (2019) and the magnitude of the events identified fits with the size of the shocks.

168

169 The way this search was conducted means Claude was only used to find sources to verify with, but the actual verification was
170 done by humans with independent sources, avoiding the danger of hallucinations and related problems in large language
171 models. If no reasonable source was provided by Claude, we searched for the reason with a normal internet search. If this also
172 did not bring up anything plausible, we sorted this shock into the "Unknown" category. The reason for the shock had to occur
173 in the year of the shock or the year before to be counted. If reliable sources were found, we used those to classify the shock
174 into one of the following categories:

- 175 • **Conflict** - wars, civil unrest, territorial disputes
- 176 • **Economic** - financial crises, currency devaluation, market collapse
- 177 • **Climate** - droughts, extreme temperatures, late cold spells
- 178 • **Pest/Disease** - crop diseases, locust invasions, livestock epidemics
- 179 • **Policy** - agricultural policy changes, land reforms, trade restrictions
- 180 • **Mismanagement** - soil degradation, overexploitation, poor planning
- 181 • **Environmental Hazard** - storms, tsunamis, earthquakes, volcanoes
- 182 • **Unknown** - insufficient information found

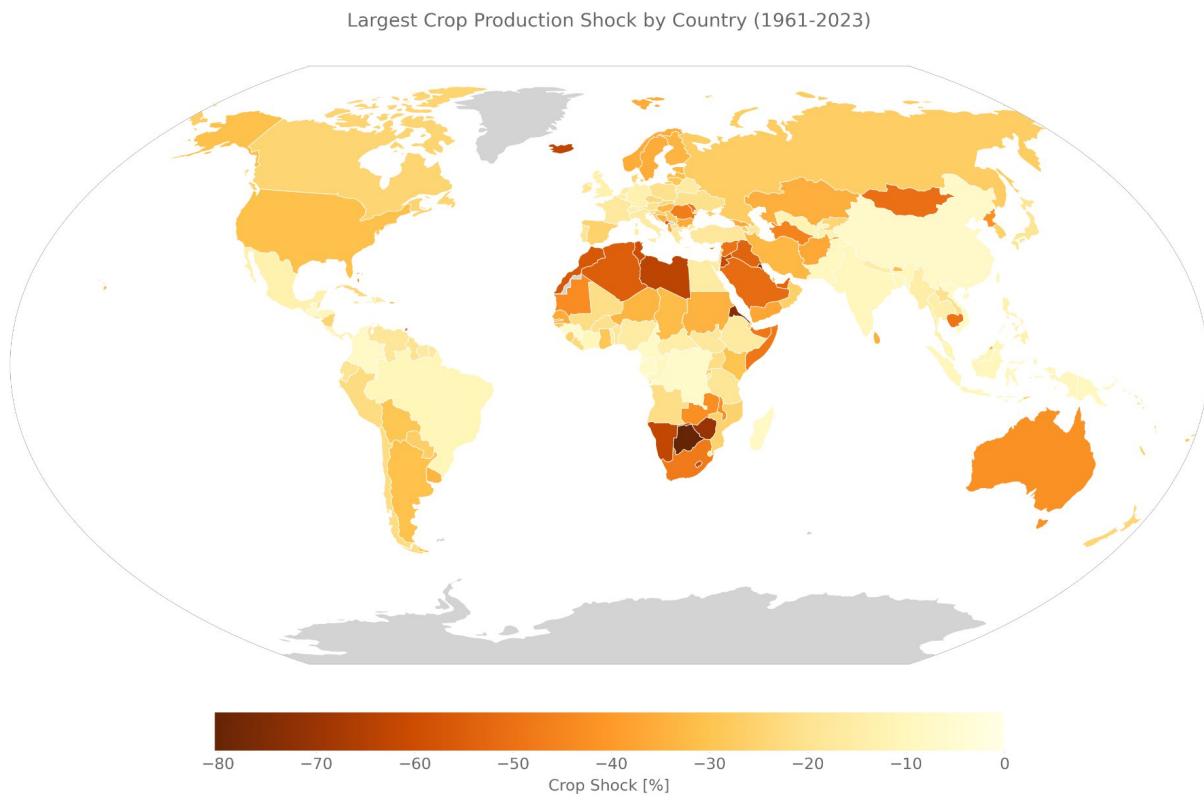
183 We used these categories, following the approach in Cottrell et al. (2019), but disaggregated some of them to get more fine-
184 grained results. This process allowed us to assign a crisis to almost all of the shocks we detected. Also, many of the sources
185 we used to verify the shocks used phrases like "worst drought year... since the mid-15th century"; Tunisia in 2002 (Ghoneim
186 et al., 2017), "most violent and bloody period of the entire armed confrontation"; Guatemala in 1984 (HRDAG, 1999) or

187 “driest hydrological year on record”; Greece in 1977 (Vasiliades and Tzabiras, 2007). This suggests that our method is able to
188 detect the worst shock to have occurred in these countries.

189 We categorized shocks by their primary driver while recognizing that most agricultural crises involve multiple interacting
190 factors. Our classification captures the dominant cause that initiated or most directly drove the production decline. For example,
191 while economic factors often compound climate shocks, we classified droughts as 'climate' when reduced rainfall was the
192 primary trigger, even if currency devaluation worsened the impact. This approach provides clarity about initial drivers while
193 necessarily simplifying complex causal chains. The 'shock' timeframe in our analysis is annual, based on year-to-year
194 production changes. Multi-year cascading effects—where one year's climate shock leads to mismanagement that causes
195 another shock—are captured as separate events in our dataset.

196 For some countries where we could not identify a clear cause, the food shocks were either minor or occurred in nations with
197 low crop production. In these cases, even small absolute declines appeared as major shocks (e.g. Puerto Rico). Additionally,
198 some countries showed data patterns like maintaining low production for decades, then experiencing sudden jumps that
199 increased food production by an order of magnitude from one year to the next, with production remaining at this higher level
200 afterwards (e.g. Oman). These patterns suggest problems with the country-level data rather than flaws in our methodology.

201 The list of the largest food shocks for each country can be found in the repository and in the supplementary materials as a
202 comma-separated values (CSV) file, complete with yield change, year, category, reason, and source.

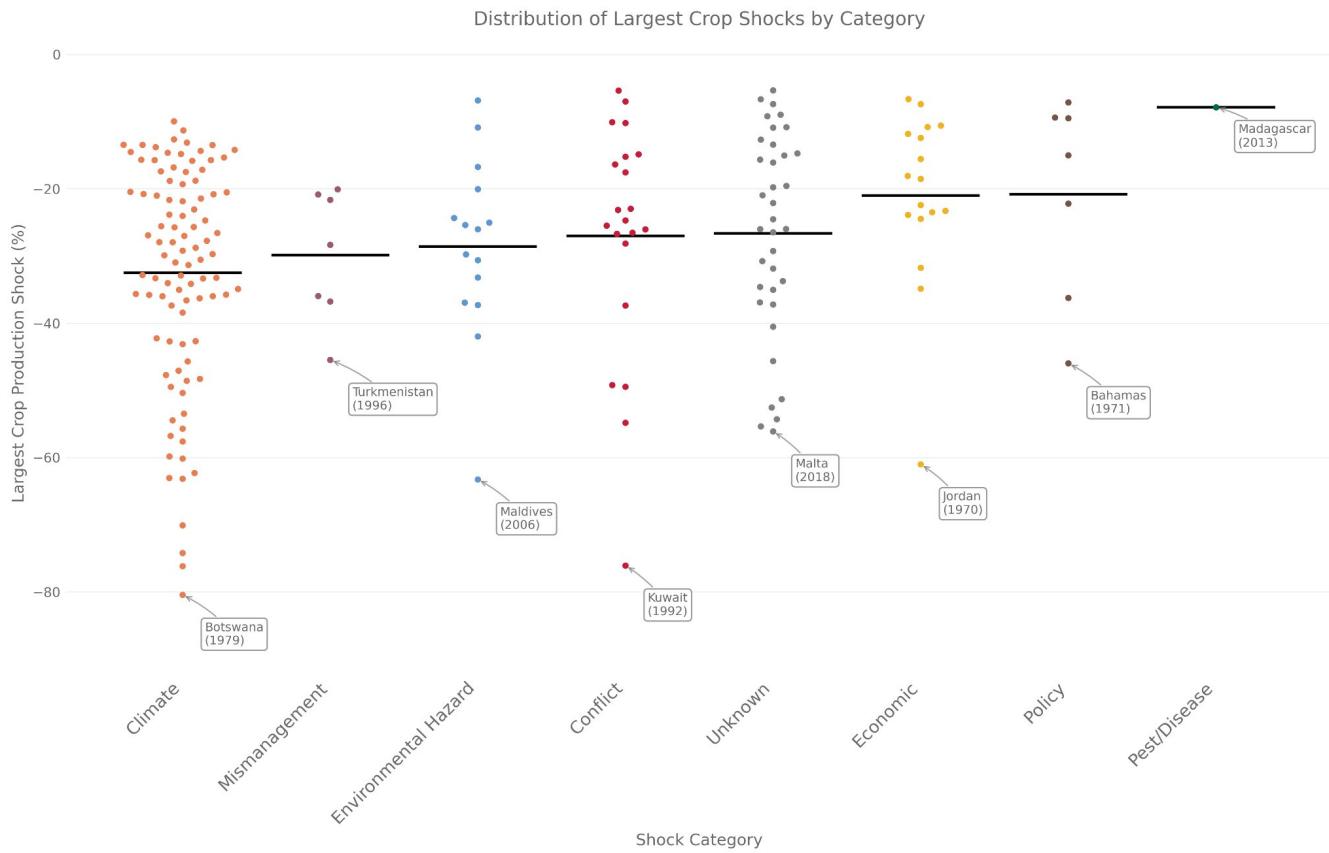

203 **2.4 Calculating global correlations**

204 In order to investigate the relationships between country-level shocks and global shocks, we calculated the Spearman
205 correlation coefficient between each country and the rest of the world. This was done to see which countries experience changes
206 in food production similar to global patterns, and which countries deviate. We chose Spearman over other correlation
207 coefficients, such as Pearson, because we are interested in whether there is a monotonic relationship between countries (e.g.,
208 whether countries experience shocks or surpluses at the same time), but not whether this relationship is linear. The rank-based
209 nature of Spearman correlation also makes it robust to outliers and prevents countries with large production magnitudes from
210 disproportionately influencing the correlation. The spearman correlation also accounts for different production magnitudes of
211 countries. The process calculation score is was whereas done for each country by subtracting the annual crop production of that
212 country from the world crop production, applying the Savitzky-Golay filter as described in Section 2.2 to calculate the yield
213 changes for the world minus that country, and then calculating the correlation. This was done to avoid spurious correlations,
214 since each country's production would otherwise be part of the global numbers.

215 **3. Results**216 **3.1 Magnitude of crop production shocks**

217 The magnitude of the largest crop production shocks varies considerably across countries (Figure 2). Africa stands out with
218 several nations experiencing extreme production collapses—Zimbabwe reached -70% in 1992, while other Southern African
219 countries show similarly severe declines exceeding -70%. This geographic concentration of extreme shocks in Southern Africa
220 suggests regional vulnerability to shared climatic or economic disruptions. North Africa and parts of the Middle East also
221 display substantial shocks ranging from -40% to -60%, indicating widespread agricultural vulnerability across the continent.
222 By contrast, countries in Asia and Central Europe typically face more moderate shocks (-5 to -15%), with this being seen in
223 Southeast Asian nations in particular. This pattern partly reflects the temporal scope of our analysis—China, for instance,
224 experienced major crop failures shortly before the FAO dataset began in 1961 (Meng et al., 2015).

225 The majority of countries fall between these extremes, with the global mean of the largest shocks averaging approximately -
226 29%. South America presents an interesting case of relatively mild maximum shocks across most of the continent.

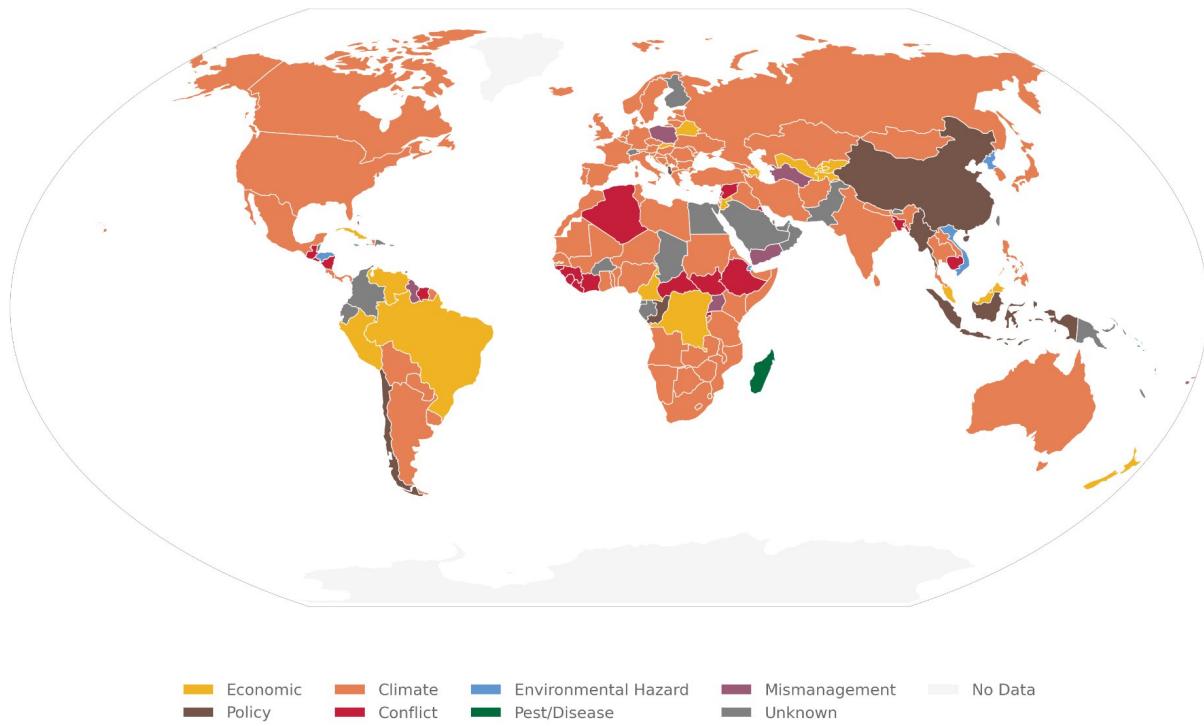

228 **Figure 2: Largest crop production shock in all present-day countries. Darker colors indicate larger shocks. Grey indicates no data.**
229 The shocks are calculated as deviations from expected yield in a given year and are based on the combined calories from all assessed
230 crops.

231 However, the largest crop production shocks differ not only in their geographic distribution, but their magnitude also varies
232 substantially depending on the underlying cause (Figure 3). Climate-related shocks demonstrate the most severe impacts, with
233 a mean around -32% but extreme cases reaching -80%—predominantly driven by droughts. This category shows the widest
234 distribution of impact severity, reflecting the diverse nature of climate hazards, from moderate seasonal variations to
235 catastrophic multi-year droughts.

236 Human-caused shocks generally result in smaller production declines and show more constrained distributions. Policy
237 interventions produce the least severe impacts (mean -21%), while economic disruptions show similar severity (mean -21%).
238 Mismanagement displays a mean of -30% with a relatively tight distribution. Conflict presents moderate average impacts
239 (mean -27%) but high variability, from minor disruptions to catastrophic losses exceeding -70%.

240 Environmental hazards occupy a middle position with a mean of -29%, though their distribution is more concentrated between
241 -10% and -40%, primarily caused by tropical storms. The "Unknown" category shows substantial variability (mean -27%),
242 likely reflecting the diverse mix of unidentified shock types.

243 The distinction between natural and human causes becomes increasingly blurred as anthropogenic climate change intensifies
244 both drought frequency and tropical storm severity. Having only one data point for pests and diseases makes it difficult to
245 compare to the other categories, as it could just be a random occurrence. However, as it is smaller than almost any other data
246 point implies that pests and diseases are not a major factor for the largest shocks. This is likely due to pests and diseases often
247 being specific to a single crop, while we looked at a large aggregation of crops. [Pests and diseases are often one of the largest](#)
248 [sources of crop losses](#) (Savary et al., 2019). However, given that we do not find them here as one of the main causes of the
249 largest shocks, this implies that they cause damage on a high magnitude but without large fluctuations.



251 **Figure 3: Swarm plots showing the magnitude of crop production shocks across different cause categories. The black line indicates**
 252 **the mean. Single points show all individual country-level shocks. For each category the largest shock is labelled with year and**
 253 **country it occurred in.**

254 **3.2 Geographic patterns of shock types**

255 Crop production shocks show clear spatial patterns across continents, with distinct regional concentrations of different shock
 256 types (Figures 4, 5). While most shock causes appear on all continents, certain drivers cluster more heavily in specific regions.

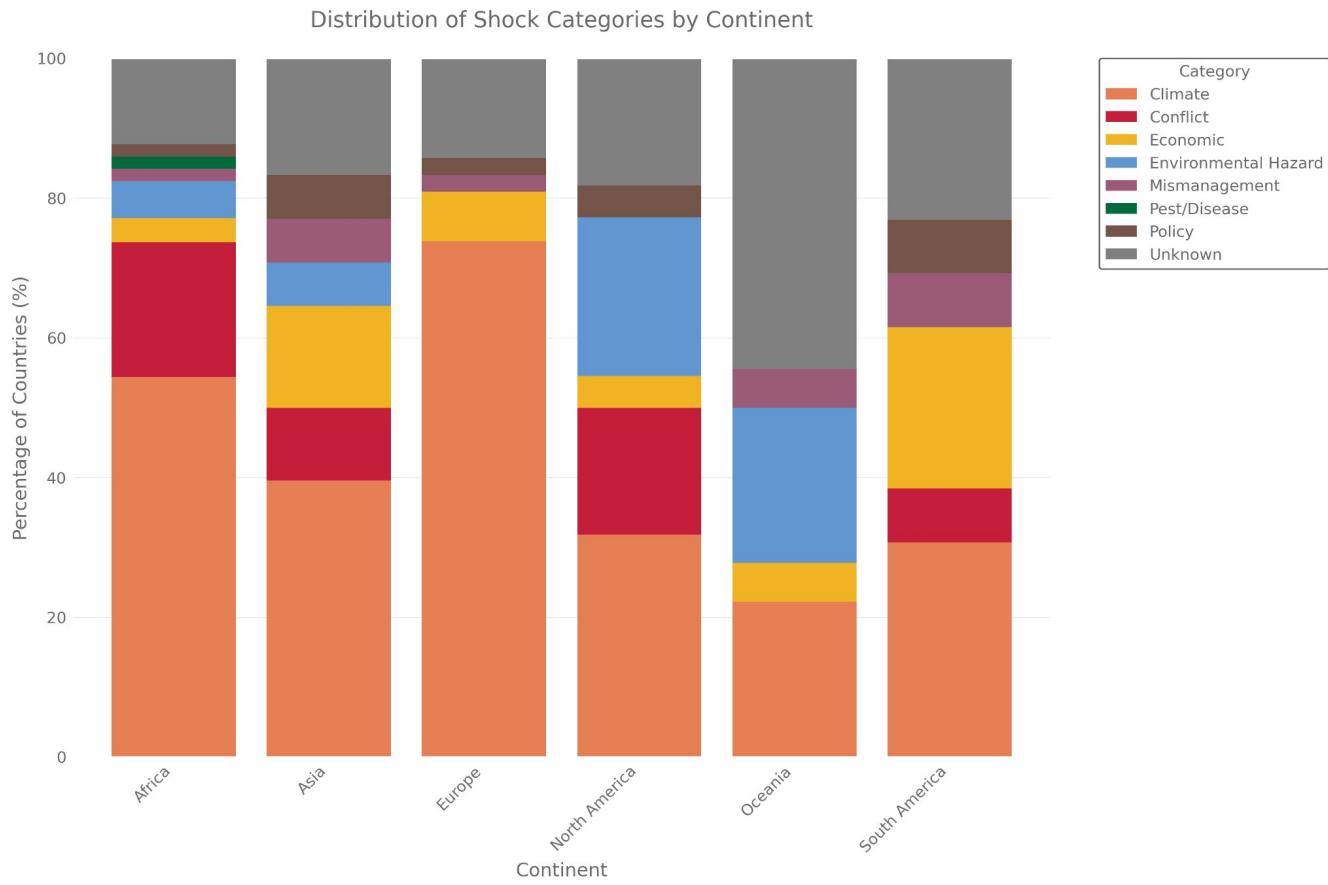
Reason for Largest Crop Production Shock by Country (1961-2023)

257

258 **Figure 4: Global map showing the main reason the largest crop production shock in a given country happened.**

259 Europe is quite homogenous; climate shocks dominate almost entirely, comprising roughly 70% of all major production
260 disruptions. Most trace back to the devastating 2003 heat wave that brought extreme temperatures across nearly the entire
261 continent (IPCC, 2007). The few exceptions reveal Europe's otherwise stable agricultural systems: Poland's failed agricultural
262 reform in 1980 (Mandel, 1982), or Belarus facing spillover from Russia's 1999 financial crisis (FAO, 1999).

263 In North America all the continent's major economies experienced their largest shocks from droughts—Canada in 2002
264 (Wheaton et al., 2008), the United States in 1983 (Zipper et al., 2016), and Mexico in 1979 (Simons, 1980) (Figure 4). In
265 Central America small Caribbean nations are mostly affected by substantial environmental hazard impacts like tropical storms
266 (Figure 5).


267 South America shows the highest proportion of economic disruptions among all continents. Brazil faced severe disruption in
268 1978 from high debt and inflation following oil shocks (Vellutini, 1987), Peru suffered hyperinflation in 1992 due to failed
269 policies and debt burdens (Velazco, 1999), and Venezuela's 1976 focus on oil production came at agriculture's expense (Smith,
270 2019). Policy-driven shocks are also present, for example Chile's 1973 land reform disrupted production systems (U.S. Central
271 Intelligence Agency, 1972). Conflict appeared in Suriname's 1990 civil war (Reuters, 1991), while climate shocks hit Argentina

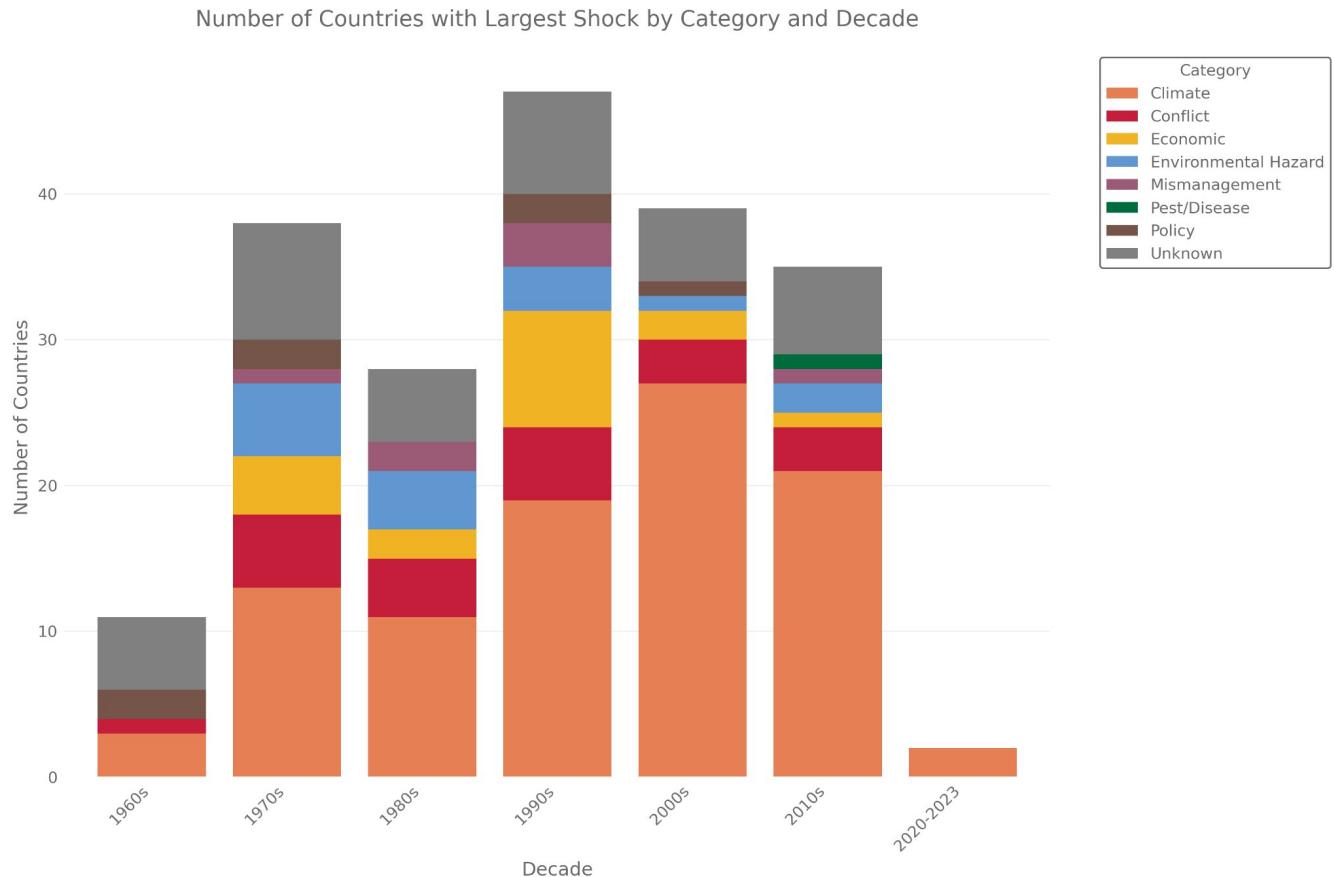
272 in 2009 (Sgroi et al., 2021), Bolivia in 1983 (UN Department of Humanitarian Affairs, 1983), Uruguay in 2018 (Weather
273 Underground, 2018), and Paraguay in 2012 (USDA Foreign Agricultural Service, 2012), all due to drought.

274 Africa also shows a diverse shock distribution, with conflict driving more production disruptions than any other continent.
275 Civil wars devastated agriculture in Algeria in 1994 (Martinez, 2000), military coups and violence disrupted Guinea in 2009
276 (UNDP, 2023), and Rwanda's 1994 genocide destroyed agricultural systems as well (FAO, 1996). Despite this conflict
277 prevalence, Africa also experiences all other shock types. Madagascar's 2013 locust swarms destroyed crops across vast areas
278 (FAO, 2013), Cameroon's 1987 economic crisis rippled through agriculture (Tambi, 2015), Djibouti was hit by massive floods
279 in 1989 (UN Department of Humanitarian Affairs, 1989), Congo's 1991 democratization and switch from a more socialist
280 system likely led to disruption in agriculture (IFES - The International Foundation for Electoral Systems, 1992), and Uganda
281 faced the agricultural consequences of nearly a decade of mismanagement under Idi Amin, ending in 1979 (Honey and
282 Ottaway, 1979). Nevertheless, climate—especially drought—remains the primary shock driver, as across all continents.

283 Asia's shock distribution resembles Africa's, but with fewer conflicts and more economic crises. Conflicts that did disrupt
284 production include Cambodia's 1974 civil war (Defalco, 2014), worsened by US bombing campaigns, and Bangladesh's 1972
285 post-independence aftermath (Dowlah, 2006). Policy changes created major disruptions when China shifted agricultural
286 support policies in 2003 (Yu et al., 2018) and Myanmar nationalized rice production in 1966 (Steinberg, 2019). Environmental
287 hazards struck repeatedly—North Korea faced devastating floods in 1996 for the second consecutive year (FAO, 1997), while
288 Vietnam endured severe storms in 1978 (Cima and Library of Congress, 1989). As elsewhere, drought-driven climate shocks
289 dominated, exemplified by India's massive 1987 drought (FAO, 2001b).

290 Oceania's shock patterns prove difficult to assess due to high proportions of unknown causes, likely reflecting both the region's
291 many small island states and limited data availability. Small agricultural sectors trigger shock detection more frequently, while
292 these nations' limited resources and global attention make information gathering challenging. Where causes are known, climate
293 events and environmental hazards—particularly storms—dominate the region's agricultural disruptions.

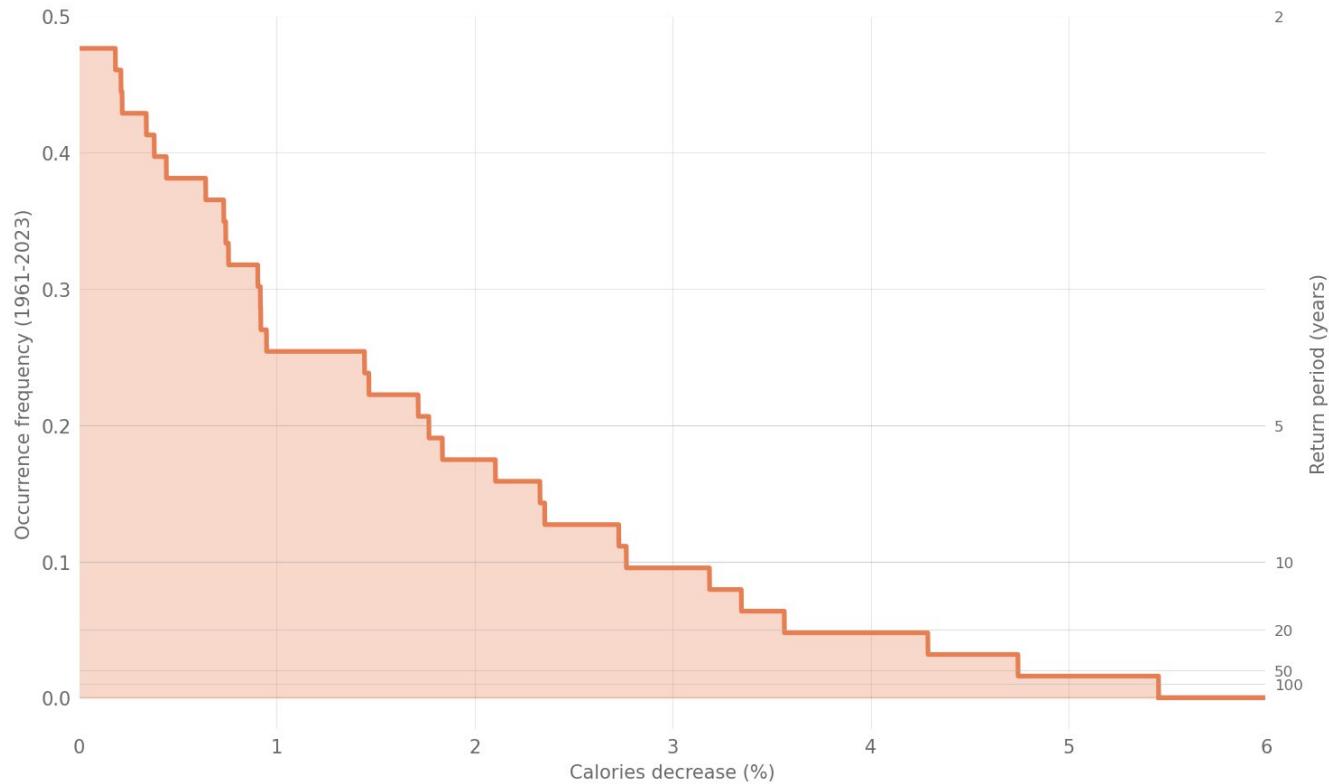
294


295 **Figure 5: Relative distribution of the main reasons why the largest crop production shocks happened in a country separated by**
296 **continent.**

297 **3.3 Temporal evolution and frequency distribution**

298 When it comes to the temporal evolution of the largest food shock, we can see some clear patterns (Figure 6). All decades
299 except the 1960s and 2020s have a roughly similar number of shocks. This number is also shaped by how many countries
300 existed at a given point in time, but even when we correct for the number of countries that existed in that decade, the 1970s to
301 2010s all have 15-25% of the countries that existed experiencing their largest shock in that decade (Figure S5). This means the
302 pattern here remains roughly the same, independent of the number of countries which existed.

303 The pattern that the first and last decades show a small number of shocks seems to imply that our method is less able to detect
304 shocks at the edges of the time series. However, this effect does not happen if we only use the 1970s to 2010s in our analysis
305 (Figure S6), indicating that this is an actual trend in the data and that, especially the 2020s, have had a surprisingly small
306 number of very large crop shocks. Given the base rate over the other decades, this implies that we can expect many more large
307 crop production shocks in the rest of the decade.


308 The reasons for those largest shocks show that climate-caused crop shocks make up a much larger percentage of cases in the
309 more recent decades. Climate-related shocks grew from about 25% in the 1960s to 50-60% by the 2000s-2010s. This increase
310 corresponds with decreases in other categories, including mismanagement and policy failures. Conflict and unknown causes
311 stay on a similar level throughout, while all other categories tend to become less common over time. The levels of shocks
312 which could not be attributed to a specific cause are at a similar level as in Cottrell et al. (2019).

313
314 **Figure 6: Absolute distribution of the main reasons why the largest crop production shocks happened in a country, separated by the**
315 **decade they occurred in. The overall size of a bar indicates the total amount of the largest shocks for a given country in a given**
316 **decade. Note that the last bar only consists of the four years 2020-2023 and not the whole decade like the other bars.**

317 We can also look at how the general frequency of the crop shocks varies over the whole time series (Figure 7). This is for
318 shocks on a global level. We can see that crop production shocks happen on a variety of levels, but on a global scale, the largest
319 was just over 5.5%. This was in 1988, mainly caused by a severe and widespread drought in the USA. In this year, the
320 production in the USA declined by 29%, while the USA produced around 20% of all crop calories globally. This highlights
321 how the whole food system can be affected by shocks in even a single country. The distribution shows a sharp decline in

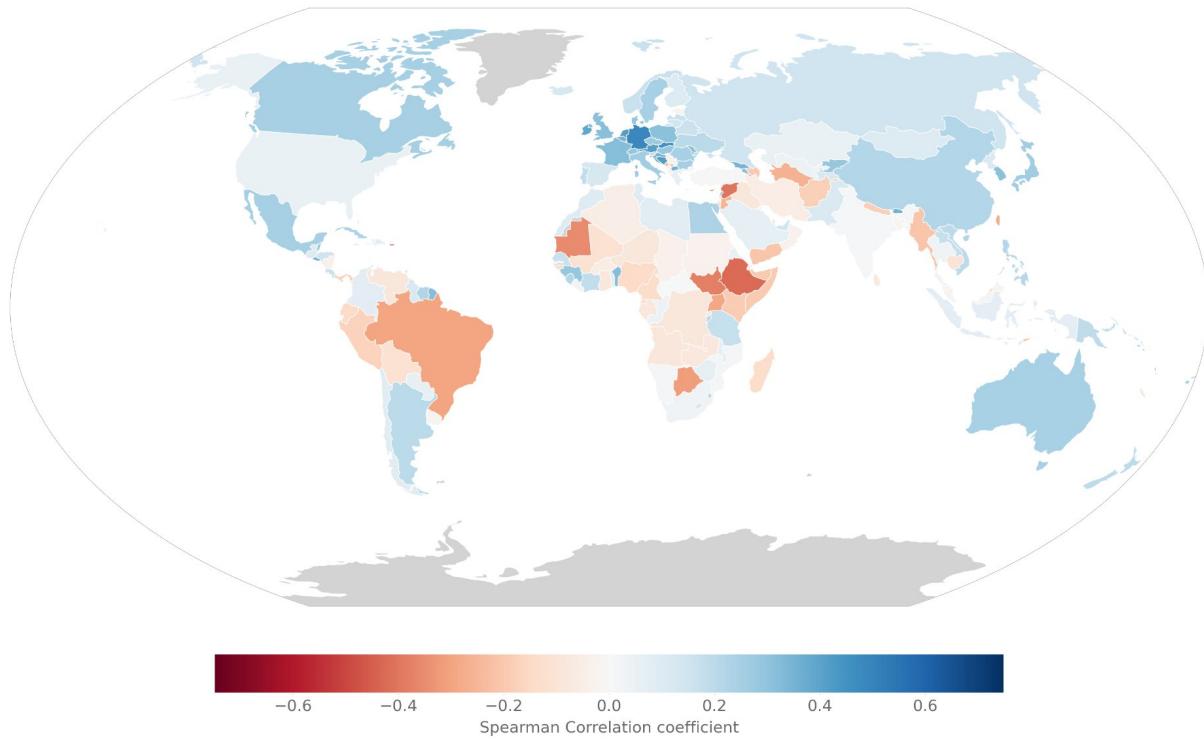
322 frequency as shock size increases - small shocks of 0-1% happen about 48% of the time, while shocks over 3% occur only
323 10% of the time, and those exceeding 5% are rare at less than 2%.

324
325 **Figure 7: Frequency of global-level shocks to overall caloric production. The plot shows how often values of losses are exceeded. For**
326 **example, shocks of 3% or more have been happening 10% of the time. The second y-axis shows the return period of shocks for a**
327 **given size.**

328 While shocks exceeding 5% are rare at the global level, occurring only once in our 63-year dataset, they are much more
329 common at the continent and country level. There were 51 continent-level shocks of 5% or more between 1961 and 2023, with
330 at least one happening every 1.8 years on average. At the country level, shocks over 5% occurred every single year, amounting
331 to a total of 2800 shocks.

332

333 **3.4 Global synchronization**


334 From the previous sections, we know that large shocks regularly happen, but also that they usually cancel each other out on a
335 global level. To understand how this manifests, we also looked at how country-level crop production correlates with global

336 crop production (Figure 8). This shows that there are two groups of countries with opposing production patterns. One group
337 tends to have high crop production when global production is high and low production when global production is low. The
338 other group shows the reverse pattern—low production when global production is high and high production when global
339 production is low. The globally asynchronous countries are most of Africa, parts of the Middle East, Central Asia and the
340 northern part of South America. The synchronous countries are everyone else. European countries are especially synchronous
341 with global production. This is likely due to Europe being a major contributor to global crop production, but not having a large
342 spatial extent. Due to this, if there is a drought in Europe (as for example in 2003), most European countries are affected and
343 thus also global production to a large extent. The asynchronous countries also all share tropical and subtropical climate zones.

344 The high synchrony observed across North America, Europe, and major Asian producers like China and India suggests these
345 regions respond similarly to large-scale climate phenomena such as El Niño/La Niña events. This synchrony, while
346 contributing to global production stability under normal conditions, also implies that extreme events affecting these regions
347 simultaneously could pose significant risks to global food security. The asynchronous regions, despite often having less stable
348 individual production, therefore play an important buffering role in the global food system by providing production when
349 major producing regions experience shortfalls.

350 In addition, many of the most asynchronous countries (like Brazil, Ethiopia, or Syria) have conflict and economic reasons for
351 their largest crop production shock. This suggests that the asynchronicity might also be due to those countries being disrupted
352 by internal problems, while the rest of the world did not have these problems on such a scale.

Correlation of crop production changes between each country and the rest of the world

353

354 **Figure 8: Correlation of crop production changes between each country and the rest of the world. A positive correlation (blue)**
355 **means a country's crop production tends to move in the same direction as global production. A negative correlation (red) means the**
356 **country's production tends to move opposite to global trends.**[¶]

357 These patterns of synchronization mostly stay consistent over time, but there are changes. For example, if we only look at the data from 2003
358 to 2023 (Figure S7), we can see that Brazil's relatively strong negative correlation becomes positive, while Europe's generally positive
359 correlation and Africa's generally negative correlation persist. This likely reflects changes in agricultural practices and the dominance of
360 certain regions when it comes to crop production. [¶]

361 Much of the synchronicity in global crop production is driven by wheat, which makes up a substantial share of total output (Figure S8). This
362 means wheat's year-to-year variation can overshadow more localized patterns in other crops. For our purposes, this is not a limitation—we
363 aim to understand global crop production as a whole and identify which regions might serve as buffers when others fail. The wheat-driven
364 pattern shifts dominance toward major wheat exporters like Russia and Ukraine, whose production swings carry outsized weight in global
365 totals. The United States, despite being a major wheat producer, shows weaker correlation with global trends. Possibly because its production
366 variability operates independently of the factors driving Eurasian wheat yields, as both continents experience different climate impacts.

367 **4. Discussion and conclusion**

368 **4.1 Climate is the main reason for the worst crop production shocks**

369 Our results clearly show that climate is most often the reason for the largest crop production shock in a given country. This is
370 mostly due to drought, but there are also instances of early frosts and torrential rain. This is concerning, as climate is not only
371 the most common reason for the largest crop production shocks, but it also seems to be increasing over time, likely due to
372 climate change making extreme weather, especially droughts and heatwaves, more likely (Fanzo et al., 2025; Grant et al.,
373 2025). Potentially, climate might also be increasing as a cause as other reasons are getting managed better. For example,
374 conflicts have been decreasing from a peak in the 1980s until around 2010 (Szayna et al., 2017), but have seen a steep uptick
375 since then (Davies et al., 2023). Similarly, since the 1990s, after the fall of the Soviet Union, it might be the case that there are
376 fewer policy and economic-caused crop failures, because most of the world is organized under neoliberal capitalism and no
377 new approaches to organizing society and economics have been tried on a major scale. These two things are not mutually
378 exclusive. It could also be that crises are managed better now, but climate change still makes everything worse.

379 Another hint that climate overall is the dominant shaping factor can be found in our results around synchronization. For
380 example, East African countries show the strongest negative correlations. This asynchrony likely reflects distinct regional
381 climate drivers, particularly the Indian Ocean Dipole, which can produce rainfall patterns opposite to those affecting other
382 major agricultural regions (Ummenhofer et al., 2009; Zheng et al., 2025).

383 The earlier food production shock study by Cottrell et al. (2019) also identified climate (and to a lesser extent conflict) as the
384 main driver of disruption in food production. These two drivers may be causally linked. Zhang et al. (2011) showed how
385 climate shocks reduce food production, which in turn triggers famine, conflict, and disease, ultimately leading to population
386 decline. This means climate-driven crop failures can create the conditions for conflict. The prominence of both climate and
387 conflict in our results fits with this pattern of cascading effects in food system disruptions.

388 All of this seems to apply especially to Europe, where many of the largest food shocks were caused by the 2003 heatwave
389 alone. This, and the generally very high rate of climate-related shocks in Europe, highlight these regions as especially
390 vulnerable to these kinds of shocks. However, European shocks are also often relatively small; this could be due to a more
391 benign European climate or potentially because the agricultural systems there are better equipped to handle shocks.

392 The geographic patterns in shock magnitude we observe likely reflect not only differences in climate exposure and governance,
393 but also regional crop composition. Southern Africa's extreme shocks occur in maize-dominated systems, where drought
394 sensitivity is approximately twice that of wheat (Daryanto et al., 2016). Europe's wheat-based systems and Asia's flooded
395 paddy rice systems show greater resilience to moderate water stress, though all crops remain vulnerable to severe drought.
396 These crop-specific vulnerabilities interact with regional climate patterns to shape overall shock magnitudes.

397 **4.2 Large shocks can and do happen**

398 The results here confirm that very large crop production shocks happen quite regularly, with the median of the largest shocks
399 being around 27%. However, this dramatically varies by region, with African countries experiencing the most extreme
400 collapses (up to -80% in Southern Africa), while Asian and Central European nations typically face more moderate largest
401 shocks (-5 to -15%). [This is in contrast to shock frequency patterns — Cottrell et al. \(2019\) found that crop production losses](#)
402 [occur most often in South Asian countries, for example.](#) Global shocks are typically much smaller than this. This does not
403 mean that they cannot reach similar magnitudes. Both the shape of the global shock distribution and our knowledge of history
404 imply that such large shocks can also happen globally. For example, between the start and end of World War 2, global food
405 availability per capita fell by something between 5% (FAO, 1955) to 12% (Collingham, 2012), though exact numbers are hard
406 to come by and the effects were much worse in some locations. This global reduction consisted mostly of countries in Europe
407 losing significant amounts of their production. Their losses often were around 20–40% (FAO, 1955), well within the range of
408 the country-level shocks studied here. Data for World War 1 is much more scarce, but many European countries lost 40% and
409 more of their food production and cut food rations by similar amounts (Offer, 1991). This implies that global shock to the food
410 systems was likely in a similar range as World War 2.

411

412 All this means that future global shocks of 5% or more are both possible and plausible. Given the asynchronous nature of
413 global food production, we seem to have some buffer against this. However, this buffer only works as long as the reason for
414 the shock is not global. If there were an event that could hit all countries globally, or multiple distinct causes hitting different
415 regions at the same time, there would be no buffer left. Also, the largest global shocks (e.g. a geomagnetic storm or high altitude
416 electromagnetic pulses disrupting industry and thus agriculture (Moersdorf et al., 2024)) would likely be on top of the natural
417 variability, meaning that if humanity got unlucky and a global shock hit in a year that already had a big share of large shocks,
418 things would be even worse.

419

420 Our analysis also shows that climate causes both the most shocks and the most severe shocks. The cause here is mostly
421 droughts, but there are also instances of significant disruptions due to cold spells. Several of the worst shocks that could affect
422 agriculture globally also work via the climate. For example, nuclear winter could potentially decrease global land temperature
423 by around 10°C (Coupe et al., 2019), leading to widespread disruption of food production (Xia et al., 2022). Another climate
424 pathway, likely similar in its effects to nuclear winter, would be a large volcanic eruption (Cassidy and Mani, 2022). Finally,
425 there is preliminary research that indicates that AMOC collapse could also lead to massive disruption of European climate and
426 thus agriculture (Lenton et al., 2023).

427 **4.3 The role of trade**

428 Global food production is highly connected and very reliant on trade, with around a quarter of all food being traded
429 internationally (Ji et al., 2024). While trade is generally helpful for food security, it also makes countries vulnerable to
430 disruptions elsewhere (Wang et al., 2023). This is especially a problem in Europe, as it is mainly trading internally, while
431 everybody shares the same climate (Keys et al., 2025). For the largest catastrophes (like large geomagnetic storms or a nuclear
432 war), this could result in many countries losing most of their food imports (Jehn et al., 2024a). Recent modeling by Verschuur
433 et al. (2024) demonstrates how compound 'polycrises' combining multiple shocks can overwhelm the food system's normal
434 adaptive capacity, resulting in consumer price increases of 23–52% across all crops and affecting virtually all countries
435 simultaneously. This shows how the buffering effect of trade becomes less effective during compound, global-scale
436 disruptions.

437 This can become a problem for all those countries that are not able to produce enough food within their own borders. For
438 example, Stehl et al. (2025) show that many countries are not able to produce the staples of their diet. Especially for starchy
439 staples, those countries that are not able to produce enough on their own show a high overlap with those countries experiencing
440 the largest crop production shocks shown in this study.

441 However, successful adaptation is possible with international cooperation. Kuhla et al. (2023) showed how the international
442 community managed to limit wheat price spikes after Russia's invasion of Ukraine through brokered agreements allowing
443 Black Sea exports and alternative European river routes, combined with fortunately high global harvests in 2022. However, it
444 cannot be taken for granted that the global stocks will always be full or coordination will always be possible, as the Ukraine
445 war only influenced a small fraction of global food production.

446 That being said, having sufficient production and trade alone does not necessarily mean that people have enough food to eat.
447 At first glance, South Sudan's largest annual shock of 8.3% in 2017 appears relatively manageable in terms of food production.
448 However, the withholding of food aid as a weapon of war led to a significant famine, with 100,000 facing starvation and over
449 40% of the country in urgent need of food aid (United Nations World Food Programme, 2017). Recent analysis by Bajaj et al.
450 (2025) demonstrates that trade's stabilizing role varies systematically by income level, mitigating future climate impacts for
451 60% of low-income countries while aggravating impacts for 53% of high-income countries. Import-dependent lower-income
452 countries often source from regions where climate change may increase production, whereas wealthier nations face amplified
453 risks from climate impacts in their trading partners.

454 Even in the absence of direct conflict or trade complications, poor management can make food access much worse than any
455 given yield shock. The Great Chinese Famine killed 16.5–45 million people between 1959 and 1961 despite average rural food
456 availability being high enough to prevent severe famine (Meng et al., 2015). Excessive government procurement from rural
457 farmers to urban areas, redirection of labour away from agriculture, and a plethora of other unfortunate policies led to a vast

458 number of unnecessary deaths (Kung and Lin, 2003). The key takeaway from these historical examples is that a future GCFF
459 could lead to disastrous levels of famine if managed poorly, especially considering how difficult cooperation may be during
460 a global crisis.

461 **4.4 Preparation is needed**

462 All this aims to highlight that our food system regularly experiences major shocks that can plausibly happen on a global scale
463 as well. Governments should therefore take such major threats seriously and prepare accordingly. While we have global stocks
464 of food, these usually only last for 0.5 to 1 year (Laio et al., 2016), meaning that they would not be enough for several-year
465 shocks like large volcanic eruptions. Therefore, contingency plans are needed:

- 466 • Currently, very few national risk registers even grapple with global disruptions to the food system. For future risk
467 assessments, such events should be included and planned for.
- 468 • Many of the shocks presented here also have the potential to influence each other through time, like a mismanagement
469 in one year making a drought more difficult to cope with in the next. Future research could explore these interferences
470 by tracking not only the reasons for the biggest shocks, but all detectable shocks.
- 471 • Trade partners should be diversified throughout different climate zones to enhance resilience (Keys et al., 2025). This
472 is especially important, as in the current geopolitical climate, countries are reducing trade in general, while also
473 preferentially trading with their closest allies (Piñeiro and Piñeiro, 2024). This diversification should also include
474 countries that are both synchronous and asynchronous to global food production, e.g. trading with both Brazil and
475 Germany. Similarly, a diversification of crops would also help, as different crops react differently to the same
476 stressors. As Hertel et al. (2021) emphasize, diversification across crops, landscapes, income sources, and trade
477 partners represents a fundamental strategy for building food system resilience at multiple scales. However, increased
478 market integration can encourage production specialization even as it reduces overall risk exposure. Therefore,
479 policies promoting resilience should consider how production, trade, and household diversification interact to avoid
480 creating new vulnerabilities.
- 481 • Even after smaller, local food production shocks, countries quickly resort to export bans to ensure enough food for
482 their citizens. These are often done much earlier than actually needed, leading to food insecurity, even if enough food
483 is available globally (Puma et al., 2015). This means trade agreements between countries should explicitly plan out
484 under what circumstances export bans would be considered.
- 485 • For some of the catastrophes that could affect the global food system, there is a need to build up alternative food
486 sources to our present-day agriculture, which would be better suited to lower light/temperature or lower tech available.
487 García Martínez et al. (2025) provide a systematic framework for resilient foods that could function under different
488 catastrophic scenarios. This could include seaweed (Jehn et al., 2024b), mass-produced low-tech greenhouses
489 (Alvarado et al., 2020), sugar from fiber (Throup et al., 2022), or protein from natural gas (García Martínez et al.,
490 2022).¹¹

491 • The dataset produced by this study opens several avenues for future research. First, tracking not only the largest shock
492 but all detectable shocks for each country would reveal how sequential or compound events interact—for instance, whether
493 mismanagement in one year amplifies vulnerability to drought the next. Second, and perhaps most policy-relevant, would be
494 systematic case studies tracing each major shock from production loss through to human welfare outcomes. Key questions
495 include: How did prices respond? Did trade partners maintain exports or impose bans? Which population groups bore the
496 burden? What interventions (if any) mitigated impacts? Answering these questions would substantially improve our
497 understanding of food system resilience and the conditions under which production shocks become humanitarian crises.

498
499 Ultimately, all of this (and likely more) is needed to make this world secure against large disruptions of food production. We
500 should start now with preparation, as we still have time.

501 **Author contributions**

502 Conceptualization: FUJ, JM, NW

503 Data curation: FUJ

504 Formal analysis: FUJ, JM, LGG, SB

505 Funding acquisition: FUJ

506 Investigation: FUJ, JM

507 Methodology: FUJ, JM, LGG, SB

508 Project administration: FUJ

509 Software: FUJ, JM, LGG, SB

510 Supervision: FUJ

511 Validation: FUJ, SB

512 Visualization: FUJ, JM, LGG, SB

513 Writing—original draft: FUJ, JM

514 Writing—review & editing: FUJ, JM, LGG, SB, NW

515 **Data and Code Availability**

516 All code and data used for this study are available in the repository: <https://github.com/allfed/Historical-Food-Shocks> (Jehn
517 and Mulhall, 2025)

518 **Acknowledgements**

519 We thank the Research Hub community and Zu-Grama for providing the funding that allowed us to conduct this research
520 project, and Yeshodhara Baskaran for facilitating the connection.

521

522 We are grateful to Daniel Hoyer, David Denkenberger, Michael Hinge and Juan B. García Martínez for helpful comments on
523 an earlier version of this manuscript.

524

525 We acknowledge the use of artificial intelligence (Claude 4 Sonnet) to assist with sentence-level text revision, coding support,
526 and accelerating literature searches to identify documented causes of the detected crop production shocks.

527 **Competing interests**

528 All authors declare that they do not have any competing interests.

529 **References**

530 Alvarado, K. A., Mill, A., Pearce, J. M., Vocaet, A., and Denkenberger, D.: Scaling of greenhouse crop production in low
531 sunlight scenarios, *Science of The Total Environment*, 707, 136012, <https://doi.org/10.1016/j.scitotenv.2019.136012>, 2020.

532 Anderson, W., Baethgen, W., Capitanio, F., Ciais, P., Cook, B. I., Cunha, C. G. R. da, Goddard, L., Schuberger, B., Sonder,
533 K., Podestá, G., van der Velde, M., and You, L.: Climate variability and simultaneous breadbasket yield shocks as observed
534 in long-term yield records, *Agricultural and Forest Meteorology*, 331, 109321,
535 <https://doi.org/10.1016/j.agrformet.2023.109321>, 2023.

536 Bajaj, K., Mehrabi, Z., Kastner, T., Jägermeyr, J., Müller, C., Schwarzmüller, F., Hertel, T. W., and Ramankutty, N.: Current
537 food trade helps mitigate future climate change impacts in lower-income nations, *PLOS ONE*, 20, e0314722,
538 <https://doi.org/10.1371/journal.pone.0314722>, 2025.

539 Bernard de Raymond, A., Alpha, A., Ben-Ari, T., Daviron, B., Nesme, T., and Tétart, G.: Systemic risk and food security.
540 Emerging trends and future avenues for research, *Global Food Security*, 29, 100547,
541 <https://doi.org/10.1016/j.gfs.2021.100547>, 2021.

542 Brönnimann, S. and Krämer, D.: Tambora and the “Year Without a Summer” of 1816. A Perspective on Earth and Human
543 Systems Science, CH, <https://doi.org/10.4480/GB2016.G90.01>, 2016.

544 Cassidy, E. S., West, P. C., Gerber, J. S., and Foley, J. A.: Redefining agricultural yields: from tonnes to people nourished
545 per hectare, *Environ. Res. Lett.*, 8, 034015, <https://doi.org/10.1088/1748-9326/8/3/034015>, 2013.

546 Cassidy, M. and Mani, L.: Huge volcanic eruptions: time to prepare, *Nature*, 608, 469–471, <https://doi.org/10.1038/d41586-022-02177-x>, 2022.

548 Cima, R. J. and Library of Congress (Eds.): *Vietnam: a country study*, 1st ed., Federal Research Division, Library of
549 Congress, Washington, D.C, 386 pp., 1989.

550 Clapp, J.: Concentration and crises: exploring the deep roots of vulnerability in the global industrial food system, The
551 Journal of Peasant Studies, 50, 1–25, <https://doi.org/10.1080/03066150.2022.2129013>, 2023.

552 Collingham, L.: The Taste of War: World War Two and the Battle for Food, Penguin, London, 672 pp., 2012.

553 Cottrell, R. S., Nash, K. L., Halpern, B. S., Remenyi, T. A., Corney, S. P., Fleming, A., Fulton, E. A., Hornborg, S., John, A.,
554 Watson, R. A., and Blanchard, J. L.: Food production shocks across land and sea, Nat Sustain, 2, 130–137,
555 <https://doi.org/10.1038/s41893-018-0210-1>, 2019.

556 Coupe, J., Bardeen, C. G., Robock, A., and Toon, O. B.: Nuclear Winter Responses to Nuclear War Between the United
557 States and Russia in the Whole Atmosphere Community Climate Model Version 4 and the Goddard Institute for Space
558 Studies ModelE, Journal of Geophysical Research: Atmospheres, 124, 8522–8543, <https://doi.org/10.1029/2019JD030509>,
559 2019.

560 Daryanto, S., Wang, L., and Jacinthe, P.-A.: Global Synthesis of Drought Effects on Maize and Wheat Production, PLoS
561 One, 11, e0156362, <https://doi.org/10.1371/journal.pone.0156362>, 2016.

562 Davies, S., Pettersson, T., and Öberg, M.: Organized violence 1989–2022, and the return of conflict between states, Journal
563 of Peace Research, 60, 691–708, <https://doi.org/10.1177/00223433231185169>, 2023.

564 Defalco, R. C.: Justice and Starvation in Cambodia: The Khmer Rouge Famine – Cambodia Law & Policy Journal, The
565 Cambodia Law and Policy Journal, 3, 2014.

566 Delannoy, L., Verzier, A., Bastien-Olvera, B. A., Benra, F., Nyström, M., and Jørgensen, P. S.: Dynamics of the polycrisis:
567 temporal trends, spatial distribution, and co-occurrences of national shocks (1970–2019), Global Sustainability, 8, e24,
568 <https://doi.org/10.1017/sus.2025.10008>, 2025.

569 Do, T., Anderson, K., and Brorsen, B. W.: The World's wheat supply, Oklahoma Cooperative Extension Service, 2010.

570 Dowlah, C.: The politics and economics of food and famine in Bangladesh in the early 1970s – with special reference to
571 Amartya Sen's interpretation of the 1974 famine, International Journal of Social Welfare, 15, 344–356,
572 <https://doi.org/10.1111/j.1468-2397.2006.00448.x>, 2006.

573 Fanzo, J., Carducci, B., Louis-Jean, J., Herrero, M., Karl, K., and Rosenzweig, C.: Climate Change, Extreme Weather
574 Events, Food Security, and Nutrition: Evolving Relationships and Critical Challenges, Annual Review of Nutrition,
575 <https://doi.org/10.1146/annurev-nutr-111324-111252>, 2025.

576 FAO: The State of Food and Agriculture 1955, Food And Agriculture Organization of the United Nations, Rome, Italy,
577 1955.

578 FAO: Special Report: FAO/WFP Crop and Food Supply Assessment Mission to Rwanda, Food and Agriculture
579 Organization of the United Nations and World Food Programme, Rome, 1996.

580 FAO: Crop and Food Supply Assessment Mission to Democratic People's Republic of Korea - Democratic People's
581 Republic of Korea | ReliefWeb, 1997.

582 FAO: Food Outlook: Europe, Food and Agriculture Organization of the United Nations, 1999.

583 FAO: Food balance sheets: A handbook, Food and Agriculture Organization of the United Nations, Rome, Italy, 2001a.

584 FAO: Report of the FAO Asia-Pacific Conference on Early Warning, Prevention, Preparedness and Management of
585 Disasters in Food and Agriculture, 2001b.

586 FAO: Assessment of the impact of locust damage on crops and pastures in Madagascar - Madagascar | ReliefWeb, 2013.

587 FAO: Agricultural production statistics 2010–2023, 2024.

588 García Martínez, J. B., Pearce, J. M., Throup, J., Cates, J., Lackner, M., and Denkenberger, D. C.: Methane Single Cell
589 Protein: Potential to Secure a Global Protein Supply Against Catastrophic Food Shocks, *Frontiers in Bioengineering and*
590 *Biotechnology*, 10, 2022.

591 García Martínez, J. B., Behr, J., Pearce, J., and Denkenberger, D.: Resilient foods for preventing global famine: a review of
592 food supply interventions for global catastrophic food shocks including nuclear winter and infrastructure collapse, *Critical*
593 *Reviews in Food Science and Nutrition*, 0, 1–27, <https://doi.org/10.1080/10408398.2024.2431207>, 2025.

594 Gaupp, F., Hall, J., Hochrainer-Stigler, S., and Dadson, S.: Changing risks of simultaneous global breadbasket failure, *Nat.*
595 *Clim. Chang.*, 10, 54–57, <https://doi.org/10.1038/s41558-019-0600-z>, 2020.

596 Ghoneim, E., Dorofeeva, A., Benedetti, M., Gamble, D., Leonard, L., and AbuBakr, M.: Vegetation Drought Analysis In
597 Tunisia: A Geospatial Investigation, *HAES*, 1, 1–9, <https://doi.org/10.24966/aes-8780/100002>, 2017.

598 Grant, L., Vanderkelen, I., Gudmundsson, L., Fischer, E., Seneviratne, S. I., and Thiery, W.: Global emergence of
599 unprecedented lifetime exposure to climate extremes, *Nature*, 641, 374–379, <https://doi.org/10.1038/s41586-025-08907-1>,
600 2025.

601 Herre, B., Samborska, V., Hasell, J., and Roser, M.: Famines, *Our World in Data*, 2017.

602 Hertel, T., Elouafi, I., Tantcharoen, M., and Ewert, F.: Diversification for enhanced food systems resilience, *Nat Food*, 2,
603 832–834, <https://doi.org/10.1038/s43016-021-00403-9>, 2021.

604 Honey, M. and Ottaway, D. B.: Idi Amin Squandered the Wealth of Uganda, *The Washington Post*, 29th May, 1979.

605 HRDAG: Guatemala Memory of Silence: Report of the Commission for Historical Clarification Conclusions and
606 Recommendations, HRDAG - Human Rights Data Analysis Group, 1999.

607 IFES - The International Foundation for Electoral Systems: Elections in Congo: The Winding Road to Democracy, IFES -
608 The International Foundation for Electoral Systems, 1992.

609 IPCC (Ed.): Climate change 2007: impacts, adaptation and vulnerability : contribution of Working Group II to the fourth
610 assessment report of the Intergovernmental Panel on Climate Change, Cambridge university press, Cambridge, U.K. New
611 York, 2007.

612 Jahn, M.: How “Multiple Breadbasket Failure” Became a Policy Issue, *Issues in Science and Technology*, 2021.

613 Jain, S.: Mapping Global Cereal Flow at Subnational Scales Unveils Key Insights for Food Systems Resilience,
614 <https://doi.org/10.21203/rs.3.rs-5204730/v1>, 4 December 2024.

615 Jehn, F. U. and Mulhall, J.: allfed/Historical-Food-Shocks: First full release, , <https://doi.org/10.5281/ZENODO.16962681>,
616 2025.

617 Jehn, F. U., Gajewski, Ł. G., Hedlund, J., Arnscheidt, C. W., Xia, L., Wunderling, N., and Denkenberger, D.: Food trade
618 disruption after global catastrophes, <https://eartharxiv.org/repository/view/7339/>, 29 June 2024a.

619 Jehn, F. U., Dingal, F. J., Mill, A., Harrison, C., Ilin, E., Roleda, M. Y., James, S. C., and Denkenberger, D.: Seaweed as a
620 resilient food solution after a nuclear war, *Earth's Future*, 12, <https://doi.org/10.1029/2023EF003710>, 2024b.

621 Ji, G., Zhong, H., Feukam Nzudie, H. L., Wang, P., and Tian, P.: The structure, dynamics, and vulnerability of the global
622 food trade network, *Journal of Cleaner Production*, 434, 140439, <https://doi.org/10.1016/j.jclepro.2023.140439>, 2024.

623 Keys, P. W., Barnes, E. A., Diffenbaugh, N. S., Hertel, T. W., Baldos, U. L. C., and Hedlund, J.: Exposure to compound
624 climate hazards transmitted via global agricultural trade networks, *Environ. Res. Lett.*, 20, 044039,
625 <https://doi.org/10.1088/1748-9326/adb86a>, 2025.

626 Kuhla, K., Puma, M., Schewe, J., Kubiczek, P., and Otto, C.: Learning from the international response to the Russian
627 invasion of Ukraine to avert the next major food crisis, <https://doi.org/10.13140/RG.2.2.30912.00001>, 4 January 2023.

628 Kung, J. K. and Lin, J. Y.: The Causes of China's Great Leap Famine, 1959–1961, *Economic Development and Cultural
629 Change*, 52, 51–73, <https://doi.org/10.1086/380584>, 2003.

630 Laio, F., Ridolfi, L., and D'Odorico, P.: The past and future of food stocks, *Environ. Res. Lett.*, 11, 035010,
631 <https://doi.org/10.1088/1748-9326/11/3/035010>, 2016.

632 Lenton, T. M., Armstrong McKay, D., Loriani, S., Abrams, J. F., Lade, S. J., Donges, J. F., Milkoreit, M., Powell, T., Smith,
633 S. R., Zimm, C., Bailey, E., Buxton, J. E., Dyke, J. G., Ghadiali, A., and Laybourn, L.: Global Tipping Points Report 2023,
634 University of Exeter, 2023.

635 Mandel, E.: The Roots of the Polish Economic Crisis, *International Viewpoint*, 0, 29–34, 1982.

636 Marchand, P., Carr, J. A., Dell'Angelo, J., Fader, M., Gephart, J. A., Kummu, M., Magliocca, N. R., Porkka, M., Puma, M.
637 J., Ratajczak, Z., Rulli, M. C., Seekell, D. A., Suweis, S., Tavoni, A., and D'Odorico, P.: Reserves and trade jointly
638 determine exposure to food supply shocks, *Environ. Res. Lett.*, 11, 095009, <https://doi.org/10.1088/1748-9326/11/9/095009>,
639 2016.

640 Martinez, L.: The Algerian civil war: 1990 - 1998, 1. publ. in the UK., Hurst, London, 265 pp., 2000.

641 Meng, X., Qian, N., and Yared, P.: The Institutional Causes of China's Great Famine, 1959–1961, *The Review of Economic
642 Studies*, 82, 1568–1611, <https://doi.org/10.1093/restud/rdv016>, 2015.

643 Moersdorf, J., Rivers, M., Denkenberger, D., Breuer, L., and Jehn, F. U.: The Fragile State of Industrial Agriculture:
644 Estimating Crop Yield Reductions in a Global Catastrophic Infrastructure Loss Scenario, *Global Challenges*, 8, 2300206,
645 <https://doi.org/10.1002/gch2.202300206>, 2024.

646 Offer, A.: The First World War: an agrarian interpretation, 1. issued in paperback (with corr.), Clarendon Press, Oxford, 449
647 pp., 1991.

648 Piñeiro, M. and Piñeiro, V.: Geopolitical changes and their implications for agricultural trade negotiations, 2024.

649 Puma, M. J., Bose, S., Chon, S. Y., and Cook, B. I.: Assessing the evolving fragility of the global food system, *Environ. Res.
650 Lett.*, 10, 024007, <https://doi.org/10.1088/1748-9326/10/2/024007>, 2015.

651 Reuters: Suriname's Leader and Rebel Chief Vow to Negotiate Uprising's End, The New York Times, 27th March, 1991.

652 Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A.: The global burden of pathogens and
653 pests on major food crops, *Nat Ecol Evol*, 3, 430–439, <https://doi.org/10.1038/s41559-018-0793-y>, 2019.

654 Savitzky, Abraham. and Golay, M. J. E.: Smoothing and Differentiation of Data by Simplified Least Squares Procedures.,
655 *Anal. Chem.*, 36, 1627–1639, <https://doi.org/10.1021/ac60214a047>, 1964.

656 Sgroi, L. C., Lovino, M. A., Berbery, E. H., and Müller, G. V.: Characteristics of droughts in Argentina's core crop region,
657 *Hydrology and Earth System Sciences*, 25, 2475–2490, <https://doi.org/10.5194/hess-25-2475-2021>, 2021.

658 Simons, M.: Mexican Drought, Frost May Increase Migration, *The Washington Post*, 17th January, 1980.

659 Smith, B.: Dutch disease and the oil boom and bust, *Canadian Journal of Economics/Revue canadienne d'économique*, 52,
660 584–623, <https://doi.org/10.1111/caje.12376>, 2019.

661 Stehl, J., Vonderschmidt, A., Vollmer, S., Alexander, P., and Jaacks, L. M.: Gap between national food production and food-
662 based dietary guidance highlights lack of national self-sufficiency, *Nat Food*, 6, 571–576, <https://doi.org/10.1038/s43016-025-01173-4>, 2025.

664 Steinberg, D. I.: *Burma's Road Toward Development: Growth And Ideology Under Military Rule*, Routledge, New York,
665 256 pp., <https://doi.org/10.4324/9780429048722>, 2019.

666 Szayna, T. S., Watts, S., O'Mahony, A., Frederick, B., and Kavanagh, J.: *What Are the Trends in Armed Conflicts, and
667 What Do They Mean for U.S. Defense Policy?*, 2017.

668 Tambi, M.: *Economic Growth, Crisis, and Recovery in Cameroon: A Literature Review*, *Journal of Industrial Distribution &
669 Business*, 6, 5–15, <https://doi.org/10.13106/ijidb.2015.vol6.no1.5>, 2015.

670 Throup, J., García Martínez, J. B., Bals, B., Cates, J., Pearce, J. M., and Denkenberger, D. C.: Rapid repurposing of pulp and
671 paper mills, biorefineries, and breweries for lignocellulosic sugar production in global food catastrophes, *Food and
672 Bioproducts Processing*, 131, 22–39, <https://doi.org/10.1016/j.fbp.2021.10.012>, 2022.

673 Ummenhofer, C. C., England, M. H., McIntosh, P. C., Meyers, G. A., Pook, M. J., Risbey, J. S., Gupta, A. S., and Taschetto,
674 A. S.: What causes southeast Australia's worst droughts?, *Geophysical Research Letters*, 36,
675 <https://doi.org/10.1029/2008GL036801>, 2009.

676 UN Department of Humanitarian Affairs: *Bolivia - Drought Aug 1983 UNDRO Situation Reports 1-13 - Bolivia
677 (Plurinational State of) | ReliefWeb*, UN Department of Humanitarian Affairs, 1983.

678 UN Department of Humanitarian Affairs: *Djibouti - Floods Apr 1989 UNDRO Situation Reports 1-4 - Djibouti | ReliefWeb*,
679 UN Department of Humanitarian Affairs, 1989.

680 UNDP: *Independent Country Programme Evaluation: Guinea*, United Nations Development Programme, 2023.

681 United Nations World Food Programme: *Famine Hits Parts Of South Sudan*, 2017.

682 U.S. Central Intelligence Agency: *Allende's Chile: The Widening Supply-Demand Gap*, U.S. Central Intelligence Agency,
683 1972.

684 USDA Foreign Agricultural Service: Drought in Paraguay, USDA Foreign Agricultural Service, 2012.

685 Vasiliades, L. and Tzabiras, J.: Evaluation of Climate Change on Drought Impulses in Thessaly, Greece, European Water,
686 17, 2007.

687 Velazco, J.: Agricultural Production in Peru (1950-1995):: Sources of Growth, FAO, 1999.

688 Vellutini, R.: Macroeconomic adjustments, agricultural performance, and income distribution in Brazil since 1973, United
689 Nations University Press, 1987.

690 Verschuur, J., Murgatroyd, A., Vittis, Y., Mosnier, A., Obersteiner, M., Godfray, C., and Hall, J.: The impacts of polycrises
691 on global grain availability and prices, <https://doi.org/10.21203/rs.3.rs-3969801/v1>, 8 March 2024.

692 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
693 Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E.,
694 Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
695 Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P.: SciPy
696 1.0: fundamental algorithms for scientific computing in Python, *Nat Methods*, 17, 261–272, <https://doi.org/10.1038/s41592-019-0686-2>, 2020.

697

698 Wang, X., Ma, L., Yan, S., Chen, X., and Growe, A.: Trade for Food Security: The Stability of Global Agricultural Trade
699 Networks, *Foods*, 12, 271, <https://doi.org/10.3390/foods12020271>, 2023.

700 Weather Underground: Most Expensive Weather Disaster of 2018: a \$3.9 Billion Drought in Argentina and Uruguay, 2018.

701 Wescombe, N. J., Martínez, J. G., Jehn, F. U., Wunderling, N., Tzachor, A., Sandström, V., Cassidy, M., Ainsworth, R., and
702 Denkenberger, D.: It's time to consider global catastrophic food failures, *Global Food Security*, 46, 100880,
703 <https://doi.org/10.1016/j.gfs.2025.100880>, 2025.

704 Wheaton, E., Kulshreshtha, S., Wittrock, V., and Koshida, G.: Dry times: hard lessons from the Canadian drought of 2001
705 and 2002, *Canadian Geographies / Géographies canadiennes*, 52, 241–262, <https://doi.org/10.1111/j.1541-0064.2008.00211.x>, 2008.

706

707 Xia, L., Robock, A., Scherrer, K., Harrison, C. S., Bodirsky, B. L., Weindl, I., Jägermeyr, J., Bardeen, C. G., Toon, O. B.,
708 and Heneghan, R.: Global food insecurity and famine from reduced crop, marine fishery and livestock production due to
709 climate disruption from nuclear war soot injection, *Nat Food*, 1–11, <https://doi.org/10.1038/s43016-022-00573-0>, 2022.

710 Yu, C., Huang, X., Chen, H., Huang, G., Ni, S., Wright, J. S., Hall, J., Ciais, P., Zhang, J., Xiao, Y., Sun, Z., Wang, X., and
711 Yu, L.: Assessing the Impacts of Extreme Agricultural Droughts in China Under Climate and Socioeconomic Changes,
712 *Earth's Future*, 6, 689–703, <https://doi.org/10.1002/2017EF000768>, 2018.

713 Zhang, D. D., Lee, H. F., Wang, C., Li, B., Pei, Q., Zhang, J., and An, Y.: The causality analysis of climate change and
714 large-scale human crisis, *Proceedings of the National Academy of Sciences*, 108, 17296–17301,
715 <https://doi.org/10.1073/pnas.1104268108>, 2011.

716 Zheng, Y., Tam, C.-Y., and Collins, M.: Indian Ocean Dipole Impacts on Eastern African Short Rains Across Observations,
717 Historical Simulations and Future Projections, *Earth's Future*, 13, e2024EF005219, <https://doi.org/10.1029/2024EF005219>,
718 2025.

719 Zipper, S. C., Qiu, J., and Kucharik, C. J.: Drought effects on US maize and soybean production: spatiotemporal patterns and

