

We would like to thank the reviewers and the editor for their helpful and constructive comments on the manuscript “The Largest Crop Production Shocks: Magnitude, Causes and Frequency”.

We found all of the feedback to be useful in improving and sharpening the research. We have now updated the manuscript to address the comments. We believe it has been significantly strengthened and is now suitable for publication. Below we have listed the reviewer and editor comments in black, along with our responses in **light green**. Text that has been added to the manuscript is in *italics and darker green*.

Reviewer #1

General comments

This is an impressive and engaging analysis of global food production shocks and their causes. The study makes good use of FAO data to identify and interpret the largest national food production shocks (in total calorie terms) over 1961–2023. I found the paper clear, rich in narrative detail, and well organized. It provides a valuable dataset and synthesis that will be of interest to both researchers and policymakers. My comments below are intended to help the authors strengthen the framing, clarify assumptions, and ensure that key methodological choices are transparent and well justified.

We thank the reviewer for their very positive assessment of our paper.

Specific comments

This paper clearly builds on Cottrell et al. (2019). It would help readers if the introduction and discussion more explicitly distinguished this study’s new contributions—for example through expanded data coverage, new cause-attribution methods, or additional insights.

We added an additional paragraph to the introduction to highlight the main connections and differences.

Our approach builds on previous work, such as Cottrell et al. (2019) and Anderson et al. (2023). However, rather than analyzing climate patterns that might cause shocks like Anderson et al. (2023) or identifying shocks across multiple food sectors like Cottrell et al. (2019), this paper systematically describes the worst crop production shock that each country experienced and why it happened. We believe this unique focus on the largest magnitude shocks highlights the greatest dangers that crop production faces, providing a comprehensive map of actual worst-case vulnerabilities rather than merely describing risk factors in general.

The assumption that all crops could be diverted to human consumption in a crisis is strong and may not hold in practice. Many of the listed crops (for example, seed cotton, maize, soy, and barley) are primarily non-food or feed crops. I encourage the authors to discuss this limitation in more detail or, if feasible, re-analyze using food-only fractions or “delivered calories” that account for feed conversion losses (see

Cassidy et al., 2013). Even a short sensitivity check would substantially strengthen the robustness of the findings. Otherwise your findings would be weighted heavily toward feed crops and those countries that produce them (e.g., consider that only about a quarter of produced calories from maize ends up as human calories).

We discuss our reasoning now in more detail and have also done a sensitivity analysis, which shows that this does not lead to a skew in the results, regardless:

We do not differentiate between which of these crops are intended for feed or food, because in a famine situation, we assume that most, if not all, of it would be used for human consumption. We recognize that this does not reflect current food consumption patterns, because several of the crops (like maize or soya beans) are mostly used for feed and only 55 % of global crop calories reach humans directly (Cassidy et al., 2013). However, our aim is to quantify crop production shocks, rather than current consumption patterns. During severe food crises, feed is often redirected towards human consumption. For example, there are documented cases of this phenomenon for both World Wars (Collingham, 2012; Offer, 1991) and during the Great Chinese Famine (Meng et al., 2015). Depending on the crop, this might take some time and infrastructure, but it represents a sensible crisis response. Most of the crops we consider here are directly edible by humans. The crops used here, which are likely the most difficult for humans to consume, are seed cotton, rapeseed, and soya beans. To assess whether this changes our findings, we redid the analysis excluding seed cotton, rapeseed and soya beans. The results stay almost exactly the same, and for most countries, the results only change by a percentage point or less. This can also be seen in Figure S1, which is a version of Figure 2 but without those crops. The changes are so small that they are almost not detectable visually. We therefore conduct the analysis with the whole set of crops.

The Savitzky–Golay filter is well motivated, but it would be useful to show that results are not overly sensitive to this choice. I recommend testing one or two alternative detrending methods (e.g., Gaussian or LOESS) and examining whether the identified “largest shocks” or their magnitudes change materially. Similarly, reconsider the “must be below last year” rule or provide a robustness check without it.

We have added an explanation that highlights that the results between the two methods are rather small and provided a new supplementary figure to show it:

Though ultimately, a Gaussian filter and the Savitzky-Golay filter deliver very similar results for our dataset and identify similar magnitudes of shocks, as well as the same years with the largest shocks (Figure S2).

We also added an additional explanation to justify our usage of the additional constraint:

The additional constraint was added because the initial analysis incorrectly flagged years as shocks when yields had actually increased from the previous year. However, having more crops than the year before can hardly be considered a shock.

In your synchrony analysis, how do you account for the differences in size and production of different countries? Larger producers will naturally drive global totals, so weighting by production share or caloric contribution could yield a more accurate view of which regions most influence global variability. Clarifying or adding this weighting step would help the “buffering” interpretation.

We calculated correlations between each country and world production, excluding that country's contribution to avoid spurious correlations. Spearman correlation measures whether production changes move in the same direction simultaneously, rather than production magnitude—a country producing 2% or 20% of global calories shows identical correlation coefficients if their yields rise and fall synchronously.

Some of the observed geographic patterns may reflect differences in crop composition rather than exposure or governance. The authors could discuss this possibility, or test whether patterns persist when comparing regions growing similar crop mixes.

We agree that regional crop composition differences likely contribute to the geographic patterns in shock severity we observe and have added a paragraph to section 4.1 to address this:

The geographic patterns in shock magnitude we observe likely reflect not only differences in climate exposure and governance, but also regional crop composition. Extreme shocks in Southern Africa occur in maize-dominated systems, where drought sensitivity is approximately twice that of wheat (Lesk et al., 2022). Europe's wheat-based systems and Asia's flooded paddy rice systems show greater resilience to moderate water stress, though all crops remain vulnerable to severe drought. These crop-specific vulnerabilities interact with regional climate patterns to shape the overall shock magnitudes.

A few recent studies might offer useful methodological or interpretive ideas (and very sorry for the self citations—these do not need to be cited if not directly relevant):

1. On synchrony (sections 2.4, 3.4), see Mehrabi and Ramankutty (2019) and Egli et al. (2021). Drawing on their framework for quantifying and decomposing synchrony could strengthen your analysis.
2. On the role of trade (section 4.3), see Bajaj et al. (2025).
3. On diversification of trade (section 4.4), see Hertel et al. (2021).

Thank you for those helpful papers. We have extended the discussion:

For Section 4.3 (The role of trade):

Recent analysis by Bajaj et al. (2025) demonstrates that trade's stabilizing role varies systematically by income level, mitigating future climate impacts for 60% of low-income countries while aggravating impacts for 53% of high-income countries. Import-dependent lower-income countries often source from regions where climate change may increase production, whereas wealthier nations face amplified risks from climate impacts in their trading partners.

For Section 4.4 (Preparation is needed):

As Hertel et al. (2021) emphasize, diversification across crops, landscapes, income sources, and trade partners represents a fundamental strategy for building food system resilience at multiple scales. However, increased market integration can encourage production specialization even as it reduces overall risk exposure. Therefore, policies promoting resilience should consider how production, trade, and household diversification interact to avoid creating new vulnerabilities.

Technical corrections

1. Consider renaming section 3.2 to something like “Geographic patterns of shock types”, because the geographic patterns of shocks has already been seen in figure 2 of section 3.1.

Changed as proposed.

2. Lines 221-222: The conclusion that “pests and diseases are not a major factor for the largest shocks” may be too strong given only one observed data point.”

The fact that it is only one datapoint and that this datapoint is also rather small in comparison to the other categories hints that pests and diseases do not seem to be able to cause these major shocks. If they were more important, we would see more of them.

3. Lines 237-238: The reference to “North America” appears to describe tropical storm impacts in the Caribbean. “Central America” might be more appropriate, and the map (with only one blue country) suggests that this pattern could be toned down in the text.

Changed as proposed.

4. Lines 250-251: You discuss a decade of mismanagement under Idi Amin – it’s not clear how a decade-long effect would result in a single year shock?

This depends somewhat on how we calculate shocks here. We do not calculate a year-to-year drop, but how much the production deviates from the long-term trend. Uganda had a rising production before Idi Amin took power and was able to recover afterwards. This means it had a high expected production, even in the years of Idi Amin. As the production got worse pretty much every year of his rule, this means the last year of his reign is detected as the largest shock.

5. Lines 274-275 & Figure 6: Because the 2020s decade includes only four years of data, the low count of shocks is expected. Normalizing by the number of years per decade (i.e., showing average shocks per year) would provide a fairer comparison.

We have chosen this way to visualize the figure intentionally. This way, we can more easily compare the actual values of shocks per decade. Additionally, although the 2020s have only four years of data in our comparison, this still indicates that they have fewer shocks than we initially expected. Even if we scale this by the ten years of the decade, we still end up with fewer shocks than every other decade. However, we have now noted this in the caption of Figure 6.

6. Lines 338-341: Please add supporting citations for these statements.

Changed as proposed.

7. Lines 342-347: I had a hard time understanding the argument in this paragraph. How does the Zhang et al. study (which only examined climate driven shocks, so did not compare it to other shocks) support the finding that climate is the main driver of shocks?

We have rephrased the paragraph to make the argument clearer:

The earlier food production shock study by Cottrell et al. (2019) also identified climate (and, to a lesser extent, conflict) as the main driver of disruptions in food production. These two drivers may be causally linked. Zhang et al. (2011) showed how climate shocks reduce food production, which in turn triggers famine, conflict, and disease, ultimately leading to population decline. This means climate-driven crop failures can create the conditions for conflict. The prominence of both climate and conflict in our results fits with this pattern of cascading effects in food system disruptions.

Reviewer #2

Nicely done study on crop production shocks, however I'm not sure if it brings so much new information to the table. The basic methodology of the study is analogous to Cottrell 2019 and Anderson 2023 which the authors already state. The added sophistication and differentiation in my view comes from the use of a

LLM to identify possible drivers of crop production shocks, as well as a different filter in the methodology

We added an additional paragraph to the introduction to highlight the main connections and differences.

Our approach here builds on previous work like Cottrell et al. (2019) and Anderson et al. (2023). However, rather than analyzing climate patterns that might cause shocks like Anderson et al. (2023) or identifying shocks across multiple food sectors like Cottrell et al. (2019), this paper systematically describes the worst crop production shock that each country experienced and why it happened. We think this unique focus on shocks of the largest magnitude highlights the greatest dangers crop production faces, providing a comprehensive map of actual worst-case vulnerabilities rather than describing risk factors in general.

(does the employment of a Gaussian filter change results much? Would be a relatively easy sensitivity test I imagine).

We have added an explanation that highlights that the results between the two methods are rather small and provided a new supplementary figure to show it:

Though ultimately, a Gaussian filter and the Savitzky-Golay filter deliver very similar results for our dataset and identify similar magnitudes of shocks, as well as the same years with the largest shocks (Figure S2).

The authors use FAOSTAT which provides more countries than Anderson, although less temporal extent; This is more useful for looking at strong shocks in individual countries, while globally synchronous shocks can already be mainly covered by a small number of countries. They also neglect the marine aspect which is already included in Cottrell, which in this paper's case, with its focus on individual

countries and large shocks, may be relevant as these are often island countries with low production so indeed marine sources of food could be interesting.

Marine food sources are an important part of the food system, and we do not question this. However, the paper is about crop production; therefore, marine sources fall outside the scope of our work. We do not include meat or animal products in the analysis for the same reason.

However, as the authors also note, the results are quite similar to what is already in the literature, that climatic factors, also ENSO are strong drivers of production shocks, along with geopolitical factors.

Our paper addresses a different research question than prior work. Previous studies characterized general patterns and frequencies of food production shocks. We instead ask: what are the absolute worst events that have occurred in each country's agricultural history, and what caused them?

This focus on extreme outliers reveals insights absent from the literature. We now know worst-case shocks vary dramatically by region (up to -80% in Africa versus -5% to -15% in Asia/Central Europe), that continent-level shocks above 5% happen every 1.8 years despite being rare globally, and that climate's role in the largest shocks has grown from 25% to 50-60% over time. The country-world correlation analysis, identifying which regions buffer versus amplify global shocks during extreme events, is also new.

When planning for catastrophic food failures, knowing the actual magnitude and causes of historical worst-case events provides an empirical foundation that general risk factor analysis cannot offer.

An added element here that could make the paper more interesting, also harnessing its integration of the LLM into the methodology, is to qualitatively trace the biophysical impacts back to human impacts - i.e. in years with production shocks were there reports of price inflation, shifts in global trade patterns, hunger indices, etc. This may be more possible now with the LLM doing the first screening.

We agree that this would make a fascinating research project. However, it is out of scope for this paper, as it would require a significant amount of work that is arguably larger than the paper presented here.

Finally, they note that some country-level data appears erroneous or unreliable. Can these be given an initial screen, or some way to account for reliability, especially the earlier FAOSTAT data is often quite dodgy.

As there is no objective cut-off on when to say that a specific time series is too unreliable, we rather include all of them here, not to arbitrarily exclude anything. Additionally, the unreliable data will just be added to the unknown causes category, as it would be impossible to find suitable literature. This means

even if we exclude all unreliable data, it would not significantly change the results or the conclusions of the paper.