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Abstract. Black Carbon (BC) is a carbonaceous aerosol that strongly absorbs solar radiation. The high emissions of these 

highly absorbent particles exacerbate regional air quality and pose significant threats to global climate, both in the short and 

long term. Therefore, accurately quantifying the spatial distribution of BC is crucial for improving regional air quality and 

mitigating the climate change impacts driven by human activities. In this study, we developed a novel algorithm for 10 

retrieving BC surface concentration jointly using MODIS and AERONET data. Firstly, the algorithm employed the K-means 

clustering method to determine seasonal background aerosols model based on AERONET V3 daily products. Then, the 

Maxwell–Garnett effective medium approximation model was utilized to calculate the complex refractive index of the 

internally mixed aerosols. Subsequently, the lookup tables were established using the 6SV2.1 radiative transfer code to 

estimate optimal BC fraction and column concentration. Next, the column concentration data were converted to surface 15 

concentration using a conversion coefficient derived from MERRA-2. Finally, the retrieved MODIS BC surface 

concentration was validated with in-situ Aethalometer measurements. The validation showed a correlation coefficient (R) of 

0.727, a root mean square error (RMSE) of 0.353, a mean absolute error (MAE) of 0.211, and a linear fit function of y = 

0.718x + 0.015. These statistical parameters outperform those obtained from MERRA-2 BC data (R = 0.655, RMSE = 0.487, 

MAE = 0.381, and y = 0.686x + 0.400), demonstrating the superior performance of the proposed algorithm in this study area. 20 
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1 Introduction 

Black carbon aerosol (BC) particles have important impacts on the global climate, air pollution, and human health 

(Ramanathan and Carmichael, 2008). According to the latest report of the Intergovernmental Panel on Climate Change 

(IPCC) (Everett et al., 2022), the overall climate effect of aerosols is cooling, but the BC particles therein have a significant 25 

warming effect, and play an extremely important role in promoting glacier melting in the Arctic region (Flanner, 2013). In 

addition, BC emitted from human activities also significantly affects air quality (Cao et al., 2007). It is one of the main 

components of fine particulate matters (PM2.5) (Cai et al., 2020), which has a great impact on human health and is 

considered an important factor leading to obesity (Guo et al., 2022). Therefore, it is of great research significance to obtain 

accurate and reliable BC spatiotemporal distribution, especially BC surface concentration data that is extremely relevant to 30 

human activities. 
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Currently, the most common method to obtain the chemical composition of BC relying on in-situ measurements, such as 

Aethalometers (AE31/33) (Pavese et al., 2020), aerosol mass spectrometer (Wang et al., 2018), scanning electron 

microscopy (Brodowski et al., 2005)., etc. These methods are accurate and reliable but can only obtain BC concentrations in 

specific areas. In addition, using chemical transport models to simulate BC concentrations is also an important method (Xu 35 

et al., 2020). Still, the current assimilation products have low spatial resolution and the results are highly uncertain due to the 

deviation of model input data from actual atmospheric conditions (Sato et al., 2003). 

Over the past 20 years, obtaining aerosol physical and chemical properties based on ground-based remote sensing and 

satellite remote sensing methods has been a hot topic in atmospheric science research (Remer et al., 2024). In ground-based 

remote sensing, some scholars used the Aerosol Robotic Observation Network (AERONET) to invert the BC-dominated 40 

absorption component based on the observation results of the complex refractive index (RI), combined with the three aerosol 

characteristics of BC, ammonium sulfate, and aerosol water (Sato et al., 2003; Schuster et al., 2005). Later, the single 

scattering albedo (SSA) was introduced based on the RI, and a five-component inversion model was established (Wang et al., 

2013). On this basis, Xie et al. (2017) introduced the log-normal volume size distribution, and then using fine mode volume 

concentration and coarse mode volume concentration, combined with aerosol optical depth (AOD) correction, successfully 45 

separated the proportion of coarse and fine particles, and simulated the concentration and volume distribution of seven 

different aerosol types. Zhang et al. (2024) simultaneously obtained the long-term series BC column concentration of global 

AERONET stations based on the Generalized Retrieval of Aerosol and Surface Properties (GRASP)/Component algorithm 

(Dubovik et al., 2011). However, ground-based remote sensing cannot accurately describe the spatial variation of BC. 

Therefore, multi-temporal and wide-area observations using satellite remote sensing have the potential to monitor the large-50 

scale spatiotemporal variation of BC. Some studies have preliminarily proposed BC concentration inversion algorithms 

based on satellite data, such as applying the GRASP algorithm to polarized satellite data such as Polarization and 

Directionality of the Earth's Reflectances (POLDER) (Bao et al., 2019; Li et al., 2019, 2020) and Directional Polarimetric 

Camera (DPC) instruments (Li et al., 2022). Based on Moderate Resolution Imaging Spectroradiometer (MODIS) data, the 

BC column concentration was estimated in China using the lookup table method (LUT) (Bao et al., 2020). Based on the 55 

geostationary satellite Himawari-8 data, the hourly BC surface concentration in North China was estimated using the critical 

reflectance method (Bao et al., 2023). Choi et al. (2024) used the inferred BC volume fraction and particle mass 

concentration using the Earth Polychromatic Imaging Camera (EPIC) to infer the volume fraction and particle mass 

concentration of BC based on the spectral absorption provided by the Multi-Angle Implementation of Atmospheric 

Correction (MAIAC) algorithm. In this paper, we utilized MODIS data, long-term AERONET aerosol optical property 60 

observation data, considering the seasonal differences of background aerosols (BAs) across the study area. The K-means 

method was applied to categorize the optical properties of BAs for different seasons, and multiple LUTs were established 

with varying BC fraction. This enables the development of a novel BC surface concentration inversion algorithm tailored to 

the region. Given that MODIS has provided a substantial volume of long-term data, this new algorithm holds significant 

potential for investigating long-term spatiotemporal changes in BC concentrations. The Section 2 describes data source; 65 
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Section 3 illustrates the methodology, including forward model, calculation strategy for physical properties of internal mixed 

aerosols, inverse method, and sensitivity studies; Section 4 contains the retrieved MODIS BC surface concentration results, 

validation, and uncertainty analysis. Section 5 represents conclusion. 

2 Data 

2.1 MODIS data 70 

MODIS has been recording data on the Aqua and Terra satellites launched by NASA and has been providing a large amount 

of observations since 1999 (Remer et al., 2005). This study used MODIS data from November 2023 to June 2024 in the 

study area of 5°E - 20°E, 30°N - 50°N, including three types of datasets: MO/YD02 (L1B data), MO/YD03 (Geolocation 

data), and MO/YD04 (AOD data based on Dark Target algorithm (DT), 0.55µm). The DT used the linear relationship 

between the surface reflectance of 0.47µm, 0.66µm and 2.12µm to retrieve AOD. This product has been widely used in 75 

atmospheric remote sensing and climate change research due to its reliable accuracy and long time series. The DT used the 

linear relationship between the surface reflectance of 0.47µm, 0.66µm and 2.12µm to retrieve AOD (Levy et al., 2013). This 

product has been widely used in atmospheric remote sensing and climate change research due to its reliable accuracy and 

long time series. These datasets can be obtained from this website (https://ladsweb.modaps.eosdis.nasa.gov/, last accessed on 

July 5th, 2025).  80 

2.2 AERONET data 

AERONET is the world's most widely used ground-based aerosol physical characteristics observation network, providing 

long-term aerosol optical and physical property observation data from thousands of stations for nearly 30 years (Dubovik et 

al., 2000). This study used the AERONET V3 daily dataset of 32 stations in the study area to obtain BAs characteristic data, 

which was used as aerosol model input data in the atmospheric radiation transfer model. The locations of these sites are 85 

shown as red dots in Fig. 1, and the detailed site information is shown in Table 1. This dataset can be downloaded at 

(https://aeronet.gsfc.nasa.gov/, last accessed on July 5th, 2025). 

2.3 AE33 data 

AE33 aethalometer is based on the principle of light absorption and quantifies BC surface concentration by measuring the 

light absorption characteristics of aerosol samples at multiple wavelengths (Yus-Díez et al., 2021). The instrument typically 90 

conducts real-time continuous light absorption measurements at seven wavelengths, ranging from ultraviolet to near-infrared, 

allowing it to distinguish between different sources of BC and aerosol components, thus improving data accuracy (Rajesh 

and Ramachandran, 2018). In this study, we used the BC surface concentration data from 6 sites equipped with AE33 and 

located in the study area, with the measurement wavelength at 637nm. The locations of the 6 AE33 sites are shown in Fig. 1, 
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and the detailed site information is shown in Table 1. The AE33 BC surface concentration data can be obtained from this 95 

website (https://ebas.nilu.no/data-access/, last accessed on July 5th, 2025). 

2.4 MERRA-2 data 

MERRA-2 is a global atmospheric reanalysis dataset developed by NASA. It is specifically designed to provide high-quality 

historical datasets for the study of atmospheric and climate processes (Gelaro et al., 2017). In this paper, we used water 

vapor and ozone data to correct the absorption of MODIS L1B data, and BC column concentration and surface concentration 100 

data were used to obtain a priori ratio and for comparison. The MERRA-2 datasets can be downloaded from 

(https://search.earthdata.nasa.gov/, last accessed on July 5th, 2025). 

 
Fig. 1. Location distribution of AERONET and AE33 ground observation stations. The small red dots, large green dots, and 

text in the figure represent AERONET sites, AE33 sites, and AE33 site names, respectively. 105 

Table 1. AE33 and AERONET ground observation stations parameters. 

Station type Station name Longitude (°) Latitude (°) Altitude (m) 

AE33 Monte Cimone 10.70 44.19 2165 
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 ISAC Bologna II 11.34 44.52 54 

 Milano Pascal 9.23 45.48 118 

 Zürich-Kaserne 8.53 47.38 409 

 Marseille Longchamp 5.39 43.31 73 

 Kosetice (NAOK) 15.08 49.57 538 

AERONET AAOT 12.51 45.31 10 

 Bari_University 16.89 41.11 12 

 Ben_Salem 9.91 35.55 130 

 Bure_OPE 5.51 48.56 393 

 Carpentras 5.06 44.08 107 

 Ersa 9.36 43.00 80 

 ETNA 15.02 37.61 736 

 Gozo 14.26 36.03 111 

 IMAA_Potenza 15.72 40.60 770 

 IMC_Oristano 8.50 39.91 10 

 ISDGM_CNR 12.33 45.44 20 

 Ispra 8.63 45.80 235 

 Karlsruhe 8.43 49.09 140 

 Lamezia_Terme 16.23 38.88 8 

 Lampedusa 12.63 35.52 45 

 LAQUILA_Coppito 13.35 42.37 656 

 Lecce_University 18.11 40.34 30 

 Mainz 8.30 50.00 150 

 Messina 15.57 38.20 15 

 Modena 10.95 44.63 56 

 Munich_University 11.57 48.15 533 

 Napoli_CeSMA 14.31 40.84 50 

 OHP_OBSERVATOIRE 5.71 43.94 680 

 Rome_La_Sapienza 12.52 41.90 75 

 Rome_Tor_Vergata 12.65 41.84 130 

 Sirmione_Museo_GC 10.61 45.50 86 

 Toulon 6.01 43.14 50 

 Tunis_Carthage 10.20 36.84 10 
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 Venise 12.51 45.31 10 

 Vienna_BOKU 16.33 48.24 266 

 Villefranche 7.33 43.68 130 

3 Methodology 

3.1 Forward model 

In this study, we used the 6SV2.1 model (Vermote et al., 2016), which is widely used in current aerosol remote sensing 

inversion. When the zenith angle does not exceed 75°, the estimation error of top of atmosphere reflectance (TOA) does not 110 

exceed 0.4% (Jiang et al., 2022). The 6SV2.1 model equation is as follows: 

( )
( )

( ) ( ) ( )( )
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, , , , ,

, , , , , , 1 , ,
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1 s BC 2 v BC s s BC
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θ τ θ τ ρ ρ τ

=

 + 
 

−  

  (1) 

In the Eq. (1), 𝜃𝜃𝑠𝑠, 𝜃𝜃𝑣𝑣, 𝜑𝜑, 𝜏𝜏 and fBC denote solar zenith angle, satellite zenith angle, relative azimuth angle, AOD, and BC 

volume fraction, respectively. 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇, 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎,𝜌𝜌𝑠𝑠, S, 𝑇𝑇𝑔𝑔 , 𝑇𝑇1 , and 𝑇𝑇2  represent TOA, atmospheric path reflectance, surface 

reflectance, atmospheric spherical albedo, gaseous transmission, downward atmospheric transmission, and upward 115 

atmospheric transmission, respectively. 

3.2 Estimation of optical properties of mixture aerosol 

Maxwell−Garnett effective medium approximation model (MG-MEA) is used to estimate the Maxwell-Garnett dielectric 

function of aerosol mixtures (Schuster et al., 2005). In this paper, the schematic diagram of the mixture including BC 

surrounded by BAs is shown in Fig. 2. The MG-EMA equation is as follows: 120 

( ) ( )( ) ( ) ( )( )1 3 +2 1 +2MG BC BC BAs BC BAs BC BC BAs BC BAsf fε ε − ε ε ε ε − ε ε ε = + −    (2) 

where 𝜀𝜀𝑀𝑀𝑀𝑀 , 𝜀𝜀𝐵𝐵𝐵𝐵𝐵𝐵 , fBC and 𝜀𝜀𝐵𝐵𝐵𝐵  indicate mixture aerosol dielectric function, BAs complex dielectric function, BC volume 

fraction and BC complex dielectric function, respectively. For 𝜀𝜀𝐵𝐵𝐵𝐵𝐵𝐵 and 𝜀𝜀𝐵𝐵𝐵𝐵 values can be obtained through RI: 
2

j jRIε =                                                                                                                                                                                     (3) 

where j= BC, BAs, represents different component. 125 

After obtaining 𝜀𝜀𝑀𝑀𝑀𝑀, the mixture aerosol RI can be calculated by Eqs. (4) and (5): 

( )2 2 2r i rn ε ε ε= + +                                                                                                                                                             (4) 

( )2 2 2r i rk ε ε − ε= +                                                                                                                                                             (5) 



7 
 

where 𝜀𝜀𝑟𝑟 and 𝜀𝜀𝑖𝑖 are real part and imaginary part of 𝜀𝜀𝑀𝑀𝑀𝑀, n and k are real part and imaginary part of the mixture aerosol RI. 

We used the 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 = 1.95 − 0.79𝑖𝑖 (Bond and Bergstrom, 2006). As regards 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵, we obtained them from AERONET based 130 

on K-means cluster method (Russell et al., 2014). In AERONET V3 daily product, we used the following criteria to remove 

strong absorbing fine aerosol particles data before clustering: (1) At a wavelength of 440 nm, many aerosol particles exhibit 

strong absorption, making it challenging to separate strongly absorbing BC particles. However, BC still exhibits strong 

absorption in the 675-1020 nm range, and this characteristic can be leveraged to effectively isolate strongly absorbing fine 

particles (Bond et al., 2013), so we choose to remove the data with SSA (675-1020nm) < 0.85 and Fine mode fraction 135 

(FMF) > 0.4; (2) In some biomass combustion and industrial cases, SSA values range from 0.85 to 0.95 (Dubovik et al., 

2002). In order to reduce the impact of BC aerosols on classification, fine particles whose SSA decreases with wavelength 

climbing (Ångström Exponent, AE>1.5) are also removed. Fig. 3 shows the particle volume size distribution and SSA of 

BAs at different times. It can be observed that during spring and summer, the volume concentration of coarse-mode particles 

is higher in BAs, which is associated with the frequent occurrence of dust aerosols from North Africa during from March to 140 

June every year (Meloni et al., 2008). Moreover, the changes in SSA across different seasons are quite pronounced, with the 

absorption of fine aerosol particles being higher in winter. Using data from all seasons for clustering could introduce 

significant errors in the estimation of BAs. Therefore, this study clustered the AERONET data by season to obtain accurate 

seasonal variations in the physical properties of BAs. Table 2 and Table 3 show RI clustering results and particle volume 

size distribution parameters clustering results of BAs in different seasons. 145 

Table 2. RI clustering results of BAs in different seasons. 

Time 0.440µm 0.675µm 0.870µm 1.020µm 

DJF 1.429-0.005i 1.434-0.004i 1.433-0.004i 1.428-0.004i 

MAM 1.448-0.004i 1.453-0.003i 1.453-0.003i 1.448-0.003i 

JJA 1.443-0.004i 1.455-0.003i 1.455-0.003i 1.452-0.003i 

SON 1.430-0.004i 1.434-0.003i 1.435-0.004i 1.432-0.004i 

 

Table 3. Particle volume size distribution parameters clustering results of BAs in different seasons. Vol-m, VMR-m, and 

Std-m (m = F, C; F = Fine mode, C = Coarse mode) represent particle volume concentration, volume median radius, and 

standard deviation, respectively. 150 

Time Vol-F Vol-C VMR-F VMR-C Std-F Std-C FMF 

DJF 0.077 0.071 0.224 2.925 0.544 0.611 0.520 

MAM 0.061 0.122 0.192 2.545 0.539 0.624 0.333 

JJA 0.057 0.129 0.164 2.535 0.505 0.614 0.306 

SON 0.070 0.081 0.214 2.894 0.508 0.603 0.464 



8 
 

In the 6SV2.1 model, we need to input aerosol mixture RI and particle volume size distribution. The particle volume size 

distribution equation is as follows (Dubovik and King, 2000): 

( ) ( )( )2

1
2 0 5

n

i m,i i
i

idV dlnr C ln exp . ln r ln r lnσ σπ
=

 = − −  ∑   (6) 

In Eq. (6), i represents components, including BC, fine BAs, and Coarse BAs; r represents particle radius; Ci, 𝜎𝜎𝑖𝑖, and rm,j 

represent particles volume concentration, standard deviation, and volume median radius of different components, 155 

respectively. Particles volume size distribution parameters for BAs have been shown in Table 3. For BC, rm,BC = 0.095µm 

and 𝜎𝜎𝐵𝐵𝐵𝐵=1.80µm (Ganguly et al., 2009). Because the Ctotal is normalization parameter, Ci is equal to the volume fraction of 

each component. 

 
Fig. 2. Example diagram of internal mixing of aerosols. 160 
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Fig. 3. BAs particle optical properties in different seasons. (a) and (b) denote particle volume size distribution and SSA, 

respectively. DJF represents winter (December-January-February); MAM represents spring (March-April-May); JJA 

represents summer (June-July-August); SON represents autumn (September- October-November). 

3.3 Inverse method 165 

After geometric correction of the MODIS L1B data, the water vapor and ozone data of MERRA-2 were used to correct the 

gas absorption of the band (Xie et al., 2020). Considering that at 0.47 µm, there is strong absorption by other particles (like 

BrC et al.) besides BC absorption (Chung et al., 2012), this study used the band of 0.66µm and 2.12µm for inversion. The 

cloud mask algorithm used multiple wavelengths from visible to near-infrared for cloud identification (Xue et al., 2014). 

Then we used the 6SV2.1 to build LUT based on mixture aerosol optical properties. Since the fraction of BC in mixture 170 

aerosol particles generally does not exceed 6% (Bao et al., 2020), when generating the LUT, the value of fBC is from 0 to 

0.06, and the step size is 0.01. In the retrieval process, we used DT AOD to input for finding optimal results, the cost 

function is as follows: 

( )
22

1

cal DT
s , j s , j

j
minχ ρ ρ

=

= −∑                                                                                                                                                            (7) 

where j represents 2 band (0.66µm and 2.12µm), 𝜌𝜌𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐  and 𝜌𝜌𝑠𝑠𝐷𝐷𝐷𝐷 are calculated surface reflectance and surface reflectance 175 

generated by DT algorithm, respectively. 

Once the fBC is obtained, the BC column concentration can be calculated according to the following equation: 

column BC total BCBC f * C * ρ=                                                                                                                                                           (8) 

( ) ( )1total BAs BCC C fτ= −                                                                                                                                                            (9) 

In Eq. (8), ρBC= 1.0 g/cm3 (Ganguly et al., 2009), represents mass density of BC particles. CBAs is the integral of the volume 180 

size distribution of BAs obtained from AERONET clustering.  

Since AE33 measures BC surface concentration (BCsurface), the inverted BCcolumn needs to be converted. Previous studies 

assumed that BC was continuous uniform distribution below the atmospheric boundary layer, and directly divided BCcolumn 

by the boundary layer height to obtain BCsurface (Li et al., 2020; Bao et al., 2019). However, it is well known that the vertical 

distribution of BC is not uniform (Yuan et al., 2022), so this study used MERRA-2 data to obtain the ratio K at each pixel to 185 

improve the accuracy of the conversion. The conversion equation is as follows: 

surface columnBC K * BC=                                                                                                                                                               (10) 

The overall inversion process is shown in Fig. 4. 
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Fig. 4. BC surface concentration retrieval algorithm workflow chart. 190 

3.4 Model sensitivity analysis 

Based on the aerosol model physical properties obtained above, we took the aerosol model in the DJF period as an example 

to conduct sensitivity analysis on 6SV2.1. The solar zenith angle, satellite zenith angle and relative azimuth angle are 30°, 30° 

and 12° respectively, and the surface reflectance of 0.66μm change steps are 0.02, 0.10, 0.20, and 0.30. The relevant results 

are shown in Fig. 5. 195 

As shown in Fig. 5(a)-(d), the sensitivity analysis results indicate that as AOD increases, the estimated TOA standard 

deviation under different surface conditions gradually increases, suggesting that the theoretical inversion accuracy is higher 

under high aerosol loading conditions. However, when 𝜌𝜌𝑠𝑠 = 0.10 and the aerosol loading is high (AOD > 1.0), if the BC 

fraction is high (fBC ≥ 0.04), the TOA will basically not change with the increase of AOD, which will lead to an 

unsatisfactory inversion effect under such conditions. In Fig. 5(e), as the BC fraction increases, the SSA, which is 200 
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independent of aerosol load, decreases notably, suggesting that BC content has a substantial impact on the overall aerosol 

absorption properties. Additionally, under low fBC conditions, the standard deviation of the estimated TOA for dark surfaces 

is higher, while under high fBC conditions, the standard deviation of the estimated TOA for bright surfaces is higher. This 

indicates that bright surfaces are more sensitive to absorbing aerosols and are more conducive to estimating strongly 

absorbing BC particles. 205 

 
Fig. 5. Sensitivity analysis of BC inversion based on 6SV2.1 model. The (a)-(d) represents the 𝜌𝜌𝑠𝑠 at 0.66µm variation step 

sizes, which are 0.02, 0.10, 0.20, and 0.30, respectively. The (e) represents SSA and Standard deviation of TOA changes in 

different fBC. 
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4. Results and discussion 210 

4.1 Inverse results 

Fig. 6 shows the monthly variations in MODIS BC surface concentration from November 2023 to June 2024. It is evident 

that in the regions surrounding northern Italy, the BC concentration exhibits a pattern of first increasing and then decreasing 

from November 2023 to March 2024, with emission levels significantly higher than in other areas. This trend is likely related 

to the region's high population density, developed industry, and low temperatures, which hinder the timely dispersion of 215 

emitted BC. Additionally, the presence of the northern and western Alps as well as the southern Apennine Mountains 

determines weak wind conditions and frequent temperature retrogrades, which hinder atmospheric diffusion and trap 

pollution on the ground (Renna et al., 2024). From April to June, the overall BC concentration in the study area remains at a 

relatively low level. 

 220 
Fig. 6. Maps of monthly BC surface concentration distribution. (a)-(h) respectively represent from November 2023 to June 

2024. 
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4.2 Validation 

To specifically compare the differences between MODIS BC and AE33 BC, this study employed a spatio-temporal matching 

method. For MODIS, the average value of valid pixel data within a 50 km radius centered on the location of the ground 225 

station was used. For AE33, the average value was calculated from the data within one hour before and after the satellite’s 

transit time (Remer et al., 2005). Fig. 7 presents a comparison of the trend changes in the observed valid values of MODIS 

BC and AE33 BC from November 2023 to June 2024 at three AE33 stations (ISAC Bologna II, Marseille Longchamp, and 

Milano Pascal) located in high BC emission areas. It is evident that the fluctuation trends of MODIS BC and AE33 BC are 

generally consistent, although MODIS BC tends to be lower than AE33 BC most of the time. Therefore, the inversion results 230 

based on this algorithm can accurately capture the spatiotemporal variations of BC in high-emission areas. 

Fig. 8(a) presents a scatter plot of all valid values between MODIS BC and the six AE33 BC sites located in the study area 

from November 2023 to June 2024, used to quantitatively evaluate the accuracy of the algorithm. Additionally, Fig. 8(b) 

shows the BC surface concentration verification accuracy of MERRA-2 for comparison. Statistical parameters include the 

total number of matching points (N), correlation coefficient (R), root mean square error (RMSE), mean absolute error 235 

(MAE), and linear fitting function (Jiang et al., 2024). The corresponding accuracy validation results are summarized in 

Table 4. The correlation coefficient (R) for MODIS BC is 0.727, while for MERRA-2 BC it is 0.655, indicating that our 

algorithm performs better in terms of relevance. The RMSE for MODIS BC is 0.353, compared to 0.487 for MERRA-2 BC, 

and the MAE for MODIS BC is 0.211, whereas for MERRA-2 BC it is 0.381. These results suggest that the numerical 

difference between MODIS BC and AE33 is smaller, indicating better accuracy for MODIS BC. From the perspective of 240 

linear regression and scatter point density, MERRA-2 tends to overestimate the surface concentration of BC, while MODIS 

BC shows the opposite trend. This may be related to the MG-EMA model only considers BC internal mixing state, but there 

may still be a small amount of fresh and exposed BC externally mixed in the atmosphere (China et al., 2013), which may 

result in an underestimate of BC. 
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 245 
Fig. 7. Comparison of consistency changes between MODIS BC and AE33 BC. (a), (b), and (c) represent ISAC Bologna Ⅱ, 

Marseille Longchamp, and Milano Pascal, respectively. 
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Fig. 8. Scatter plot of MODIS BC and AE33 versus MERRA-2 BC and AE33. (a) and (b) represent MODIS BC and 

MERRA-2 BC, respectively. The black dashed line and the green solid line represent the 1:1 line and the linear regression 250 

function respectively. 

Table 4. Summary of statistical parameter results from Fig. 8. 

Statistical parameter MODIS BC MERRA-2 BC 

N 426 426 

R 0.727 0.655 

RMSE 0.353 0.487 

MAE 0.211 0.381 

Slope 0.718 0.686 

Offset 0.015 0.400 

4.3 Uncertainty analysis 

Fig. 9 analyzes the influence of AOD and surface reflectance on the Bias (MODIS - AE33) of the retrieved BC surface 

concentration. The results reveal that the BC bias exhibits different patterns of change. As shown in Fig. 9(a), when AOD is 255 

low, the uncertainty of the bias is high, but as AOD increases, the bias decreases. When AOD > 0.75, the overall bias 

approaches zero, and the uncertainty becomes very low. This trend aligns with the conclusion in Section 3.4, where the 

retrieval accuracy improves under high AOD conditions due to the stronger aerosol signal. In Fig. 9(b), the uncertainty of the 

bias gradually increases as surface reflectance rises. When 𝜌𝜌𝑠𝑠 > 0.08, the uncertainty of the bias increases significantly, 
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suggesting that the algorithm’s applicability in relatively high surface reflectance areas still needs improvement. However, it 260 

is worth noting that due to the lack of data from AE33 stations in high brightness areas (𝜌𝜌𝑠𝑠 ≥ 0.2), the surface reflectance of 

the AE33 stations in this study is below 0.12, and when 𝜌𝜌𝑠𝑠  > 0.1, the data also is insufficient. Therefore, uncertainty 

analysis confirms that this retrieval algorithm has better performance under high AOD conditions. However, due to the lack 

of ground-based AE33 observation data in high-brightness surface areas, the accuracy under this surface condition still lacks 

effective validation.  265 

 
Fig. 9. The box plot of BC surface concentration Bias (MODIS - AE33) independence analysis on the (a) AOD and (b) 

surface reflectance. The red box represents the interquartile range (IQR, 25th–75th percentiles), and the black whiskers 

extend to the most extreme data points within 1.5×IQR from the quartiles. 

5. Conclusion 270 

In this paper, we proposed a new algorithm for retrieving BC surface concentrations based on joint MODIS and AERONET 

data. First, the algorithm derived the optical properties of internally mixed BAs for each season from the AERONET V3 

daily product. It used the particle volume size distribution and MG-MEA approximation equation to calculate the RI and 

volume concentration of the internal mixed aerosol, which were the 6SV2.1 input data of the aerosol model. Then, the 

sensitivity analysis was conducted for AOD, surface reflectance, and BC fraction. During the inversion process, multiple 275 
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LUTs were established based on different BC fraction, and DT AOD values were inputted to iteratively find the optimal fBC. 

Next, the BC column concentration and surface concentration values generated by MERRA-2 were used to convert the 

inverted BC column concentration to surface concentration. Finally, the retrieved BC surface concentrations were validated 

against AE33 observation data. The BC surface concentrations obtained by this algorithm show relatively high reliability and 

accuracy (R = 0.727, RMSE = 0.353, MAE = 0.211), though there is a slight overall underestimation compared to high-280 

precision ground-based in-situ measurements. This might be due to a small number of BC particles being exposed on the 

outside of the shell, which led to the failure to estimate the relevant aspect. Additionally, uncertainty analysis of the 

inversion results indicates that the algorithm is more suitable for high AOD conditions. However, since there is no AE33 site 

data in the bright surface area, the performance of the inversion results on the bright surface still needs further verification. 

Therefore, future work will focus on improving the algorithm’s performance low aerosol loading conditions and evaluating 285 

inversion results accuracy in bright surface. 
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