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Abstract: Ozone (O3) contributes to global climate change and poses a direct threat to human health.15

This study analyzes historical and future changes, as well as current uncertainties, in surface O3

concentrations in China, based on CMIP6 and the Tracking Air Pollution in China (TAP) dataset. The

results are as follows: (1) The Multi-Model Ensemble Mean (MME) of CMIP6 simulated O3

concentrations is higher during June–August (JJA), averaging 105 μg·m-3, and lowest during

December–February (DJF) at 55 μg·m-3. (2) CMIP6 models generally underestimate O3 concentrations20

in most regions of China, with the most significant underestimation occurring in East China. (3) The

MME-simulated O3 concentrations exhibit lower Bias, MAE, and RMSE over natural land surfaces

compared to those over anthropogenic land surfaces. The Bias reaches its minimum under cloudy

conditions and peaks under partly cloudy conditions. Furthermore, the Bias generally increases with

rising PM2.5 concentrations, however, once PM2.5 exceeds a specific threshold, the Bias begins to25

decline. (4) Over the entire historical period, the MME simulates an increase of 39.3 μg·m-3 in the

annual mean surface O3 concentration in China. (5) Under future SSP scenarios, MME projects

generally increasing O3 under weak mitigation (SSP3-7.0), with East China rising by 26.9%. Strong

mitigation (SSP1-2.6) leads to widespread decreases, especially in Southwest and South China (>30

μg·m-3). (6) Differences in climate treatment, circulation, chemistry, and precursor emissions create30

substantial uncertainties, emphasizing the need to understand how emissions (including precursors and

PM2.5), climate, and model processes jointly affect future O3 projections.
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1 Introduction

Ozone (O3) is one of the most important trace components in the Earth's atmosphere, serving as a35

protective barrier for the global ecosystem and a crucial heat source in the stratosphere (Zhang et al.,

2017), and its variations strongly influence the climate of the stratosphere and even the troposphere

(Xie et al., 2017; Haase and Matthes, 2019; Lin and Ming, 2021), playing a critical role in controlling

the temperature structure of Earth's atmosphere. Studies have shown that 90% of atmospheric O3 is

concentrated in the stratosphere, with only about 10% distributed in the troposphere, however, the40

climatic effects caused by tropospheric O3 variations can be comparable to the perturbations induced in

the stratosphere (Xie and Zhang, 2014). As one of the major sources of OH radicals, O3 indirectly

determines the lifetime of various trace constituents in the troposphere (Levy, 1971). Additionally, O3

is an important greenhouse gas, a strong oxidant, and a plant toxin, which not only influences global

climate change (Monks et al., 2015) but also directly harms human health (Shindell et al., 2012; Wang45

et al., 2021) and vegetation growth (Avnery et al., 2011; Lin et al., 2018; Feng et al., 2018). The Global

Burden of Disease Report (GBDR) states that more than 360,000 premature deaths globally in 2019

were attributed to exposure to ambient O3, and that high O3 exposure may exacerbate the

PM2.5-mortality risk (Weichenthal et al., 2017). Therefore, studying the evolution of O3 is of great

significance for understanding global climate change and protecting Earth's organisms.50

Over the past few years, due to rapid industrial development, precursor pollutants have been

continuously emitted in large quantities, causing severe PM2.5 and O3 pollution in China (Maji et al.,

2018; Lu et al., 2018; Qin et al., 2021). To improve air quality, the State Council issued the "Air

Pollution Prevention and Control Action Plan" (APPCAP) in 2013, with the goal of reducing PM2.5

concentrations in the key regions of Beijing-Tianjin-Hebei, the Yangtze River Delta, and the Pearl55

River Delta by 25%, 20%, and 15%, respectively, by 2017. Accordingly, a series of air pollution

control measures have been implemented, including optimizing industrial structure, increasing the

supply of clean energy, limiting high-emission vehicles, and banning high-emission sources such as

open biomass burning (Qiu et al., 2016). As a result, since the "13th Five-Year Plan", China has made

significant progress in air pollution mechanism research and control (Li et al., 2020; Lu et al., 2020; An60

et al., 2022; Su et al., 2022), particularly with a notable decrease in the annual average concentration of

PM2.5 in major regions.
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In stark contrast to the improvements in PM2.5 pollution control, most regions in China experienced a

persistently fluctuating upward trend in annual O3 concentrations during 2013–2018, with an average

annual increase of 1–3 ppb (Li et al., 2019). By 2018, the national annual mean O3 concentration had65

increased by 17.59% and 15.22% compared to 2013 and 2015 levels, respectively (Wang et al., 2020).

The proportion of O3-polluted days has become increasingly significant, and prolonged, large-scale O3

pollution episodes have occurred more frequently, particularly in major urban agglomerations such as

the Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) regions

(Dai et al., 2020; Zhao et al., 2020). Notably, since 2015 in the PRD and since 2017 in the YRD, the70

proportion of days with O3 exceedance has surpassed that of particulate matter, making O3 the primary

pollutant (Lu et al., 2018; Wang et al., 2020). Despite the positive effects of policy implementation on

reducing nitrogen oxides (NOₓ) and volatile organic compounds (VOCs) in China (Lu et al., 2018),

significant uncertainties remain regarding the abundance, spatial distribution, and related processes of

these short-lived gases, which constrain the further optimization and effectiveness of emission control75

policies (Wild et al., 2020). Against this backdrop, surface O3 pollution in China continues to worsen

and expand. While PM2.5 pollution has shown consistent improvement, effectively controlling O3

pollution has emerged as a critical challenge for air quality management in China, posing serious

difficulties for both the scientific community and policymakers. Under the guidance of the

“Dual-Carbon” strategy, achieving sustained improvements in air quality through precise and80

science-based measures has become an urgent scientific and technological issue. Therefore, accurately

understanding the spatiotemporal evolution of surface O3 concentrations in China is of great

importance.

Currently, ground-based observations (including surface and radiosonde measurements) (Zhan et al.,

2021; Liu et al., 2022), satellite remote sensing retrievals (such as column concentrations, vertical85

profiles, and multi-source data fusion) (Hubert et al., 2021; Zhao et al., 2022), and model simulations

(Xue et al., 2020; Morgenstern, 2021) provide essential data and analytical approaches for monitoring

O3 and its precursors, investigating pollution sources and transport characteristics, and evaluating the

accuracy of retrieval products. Ground-based observations are known for their high accuracy, satellite

remote sensing offers broad coverage, and model simulations can extend both spatially and temporally90

through parameterization, these methods complement each other and collectively support ozone-related

research. For a long time, chemical-climate models have been essential tools for global surface O3
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research, capable of reproducing past and present O3 distributions across different spatial and temporal

scales, and exploring their relationships with precursors and atmospheric physical-dynamic processes.

However, due to the complexity of the tropospheric O3 budget mechanisms, particularly the effects of95

chemical reaction chains, precursor emission distributions, and meteorological conditions, significant

discrepancies remain in model results, both among different models and compared with observations.

These discrepancies reflect the limitations of the models in parameterization of physical and chemical

processes, as well as uncertainties in emission inventories and boundary conditions. Therefore,

identifying, investigating, and quantifying the differences between models and observations is crucial100

for improving and advancing model performance (Young et al., 2018).

CMIP6 and the latest IPCC AR6 adopt new emission scenarios driven by different socioeconomic

pathways, the Shared Socioeconomic Pathways (SSPs), replacing the four Representative

Concentration Pathways (RCPs) used in CMIP5, this is a significant advancement in the CMIP6

scenarios (Eyring et al., 2016; Zhou et al., 2019). Previous studies have shown that most CMIP6 Earth105

System Models (ESMs) are capable of capturing the spatial distribution of global surface O3

concentrations (Turnock et al., 2020; Ivanciu et al., 2021; Griffiths et al., 2021; Shang et al., 2021), but

they tend to produce an overall positive bias of 5–10% (3.6±4.4 ppbv) (Sun and Archibal, 2021), with

larger biases in the Northern Hemisphere and smaller biases in the Southern Hemisphere. This

discrepancy may be attributed to the limitations of O3 precursor emission data (Young et al., 2013).110

Currently, the evaluation of the latest CMIP6 simulations for surface O3 in China is still limited.

Therefore, this paper based on multi-model O3 products from CMIP6, conducts an analysis of the

historical and future changes of surface O3 in China, as well as the associated current uncertainties.

First, using the O3 dataset from the Tracking Air Pollution in China (TAP), we assess the distribution

and uncertainty of surface O3 simulated by nine CMIP6 models under various conditions, including115

different temperatures, cloud cover levels, complex land surface types, and pollutant concentrations,

for the period 2014–2023 across China and its seven sub-regions (Northeast China, North China, East

China, South China, Central China, Northwest China and Southwest China) (Figure 1). Secondly, the

changes in surface O3 over different regions of China during the historical period 1850–2014 are

calculated to provide a background for the analysis of future changes. Then, based on different SSPs in120

CMIP6 experiments, the future changes in surface O3 across China are predicted and analysed for the

period 2015–2100. Finally, a comparison of different CMIP6 models under a single future scenario
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(SSP3-7.0) is conducted to identify the potential causes of models differences, aiming to provide

valuable references for future O3 pollution control and prediction efforts.

2 Research data and methods125

The data used in this paper primarily includes O3 products simulated by all models (9 models) in the

CMIP6 chemistry models ("AERmon" CMIP6 table ID) under both historical and future scenarios (see

Table 1). All data can be accessed from the World Climate Research Programme node(WCRP)

(https://esgf-node.llnl.gov/search/cmip6/, last access: 8 April 2024). Specifically, all available data

from 1850 to 2014 were obtained from the historical experiments of CMIP6 (Eyring et al., 2016),130

which studied the surface O3 changes in China during the industrial period. Additionally, all available

data for the period 2015–2100 from different shared economic pathways in ScenarioMIP (O'Neill et al.,

2016), were used, and the specific SSP3-7.0-lowNTCF scenario from AerChemMIP (Collins et al.,

2017) were used to investigate future changes in surface O3 across different regions of China. To

investigate the potential drivers behind the differences in future surface O3 projections over China and135

its sub-regions under the SSP3-7.0 scenario, this study further incorporates and analyzes VOCs

emission data provided by CMIP6. In CMIP6, variables representing non-methane volatile organic

compound (NMVOC) emissions primarily include emivoc and emibvoc. The emivoc variable denotes

the total emission rate of NMVOCs, covering both anthropogenic and biogenic sources, whereas

emibvoc represents NMVOCs emissions from natural sources (e.g., vegetation), and is commonly used140

as a proxy for biogenic volatile organic compounds (BVOCs). For clarity and consistency, the terms

NMVOCs and BVOCs are hereafter used to refer to the emission fluxes represented by emivoc and

emibvoc, respectively.

For the historical experiments, CMIP6 provides O3 data from 9 models and 44 ensemble members. The

future scenario with the most available data is SSP3-7.0, with O3 data from 9 models and 37 ensemble145

members. This is followed by SSP3-7.0-lowNTCF scenarios, which have O3 data from 8 models and

15 ensemble members. For other scenarios from the Tier 1 experiments in CMIP6 (SSP1-2.6,

SSP2-4.5), O3 data from 5 models are available for analysis, while only 4 models are available for

SSP5-8.5. Due to the limited availability of model data for the Tier 2 CMIP6 scenarios (SSP1-1.9,
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SSP4-3.4, SSP4-6.0, and SSP5-3.4-over), our analysis focuses on SSP3-7.0 and the other scenarios150

from the Tier 1 experiments.

Table1. Number of ensemble members used for the historical- and future-scenario experiments from each

model in the analysis of surface O3 in this study.

155

To assess the uncertainty in the CMIP6 simulation of current O3 concentrations, this study utilizes the

TAP (http://tapdata.org.cn/, last access: 8 April 2024) O3 monthly products for the period from January

2014 to December 2023, with a spatial resolution of 0.1°. TAP is a near-real-time atmospheric

composition tracking dataset for China, developed by Tsinghua University in collaboration with several

other institutions, which mainly includes O3, PM2.5 and their major chemical components. The O3160

product is derived through a machine learning model that integrates multiple data sources, including O3

observational data, satellite remote sensing vertical profiles of O3, CMAQ simulations, WRF

simulations, vegetation indices, nighttime lights, and population data, to estimate daily O3

concentrations. TAP estimates show a high correlation with in-situ observations of maximum daily

8-hour average O3, with an R² value of up to 0.70 (Xue et al., 2020; Xiao et al., 2022). Figure 1 shows165

the trends in surface pollutant concentrations across China and its sub-regions from 2000 to 2023 based

on TAP data. Overall, O3 concentrations have shown an increasing trend (10% increase) across China

and sub-regions over the past decade, with a multi-year average concentration of 123.3 μg·m-3. Among

CMIP6 Models Institution
Histor
ical

SSP1
-2.6

SSP
2-4.5

SSP3
-7.0

SSP3-7.0-l
owNTCF

SSP5
-8.5

Model
reference

BCC-ESM1
Beijing Climate Center, China

Meteorological Administration, China
3 3 3 Wu et al.

(2020)

CESM2-WACCM
National Center for Atmospheric Research,

Climate and Global Dynamics Laboratory, USA 3 3 3 Emmons et
al. (2020)

EC-Earth3-AerChem
European Consortium of Meteorological

Services, Research Institutes, and
High-performance Computing Centers

4 1 3 3 Noije et al.
(2021)

GFDL-ESM4
NOAA Geophysical Fluid Dynamics

Laboratory, USA 1 1 1 1 1 1 Horowitz et
al. (2020)

ISPL-CM5A2-INCA Institute Pierre Simon Laplace, Paris, France 1 1 1
Sepulchre

et al.
(2020)

MIROC-ES2H
University of Tokyo, National Institute for

Environmental Studies, and Japan Agency for
Marine–Earth Science and Technology, Japan

3 1 2 1 3 Hajima et
al. (2020)

MRI-ESM2-0 Meteorological Research Institute, Japan 10 4 10 5 3 5 Yukimoto
et al. (2019)

UKESM1-0-LL
Natural Environment Research Council, and

Met Office, United Kingdom 18 5 5 19 1 4 Sellar et al.
(2019)

UKESM1-1-LL Natural Environment Research Council, and
Met Office, United Kingdom

1 3 1 Sellar et al.
(2019)

Total number of models 44 14 19 37 15 13
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these, North China exhibits the most significant increase (20% increase), with the highest average

concentration of 141 μg·m-3, followed by East China with 133 μg·m-3, and the Northeast and Southwest170

regions have lower concentrations, with average values of 114 μg·m-3 and 106 µg·m⁻³, respectively. In

contrast, PM2.5 concentrations have shown a decreasing trend (35% decrease) over the past 24 years,

with a multi-year average concentration of 41 μg·m-3. North China again shows the most notable

decrease (42% decrease), with the highest average concentration of 57 μg·m-3, followed by Central

China at 54 μg·m-3, and the Northwest and Southwest regions have lower concentrations, with averages175

of 32 μg·m-3 and 31 μg·m-3, respectively. Except for the Northwest (2015), all other regions reached

their peak concentrations in 2006–2007. The components of PM2.5 have also shown decreasing trends,

with the most significant reductions observed in SO4 and OM, while the reductions in BC and NH4 are

less pronounced.

180

Figure 1. An overview of the geographic location of China and seven sub-regions (Northeast China, North

China, East China, South China, Central China, Northwest China and Southwest China), and the annual

variations in O3 and PM2.5 components from 2000–2023 based on TAP data.

185

In this paper, surface O3 concentration is obtained by extracting the lowest vertical layer data from the

horizontal and vertical grids of each CMIP6 model. For each model, the mean of all available ensemble

products is taken as the model's simulation results. In assessing the uncertainty of CMIP6 simulations
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for current O3 concentrations, all CMIP6 data are linearly interpolated to a resolution of 0.1° to match

the TAP data.190

3 Present-Day O3 concentrations simulations and uncertainties

3.1 Under different temperature and sub-regions

Temperature directly influences O3 production by affecting the rates of photochemical reactions and

the emission of plant VOCs, such as isoprene (Coates et al., 2016). Therefore, this study compares and

analyzes the multi-year annual mean and seasonal distribution, standard deviation, and biases with TAP195

data for surface O3 concentrations over China based on the Multi-Model Ensemble Mean (MME) of

CMIP6 for the period 2014–2023 (Figure 2). It is evident that during summer (June, July, and August;

JJA), MME shows higher O3 concentrations, with a mean value of 105 μg·m-3. This is primarily due to

increased photolysis activity, higher levels of oxidants, and enhanced biogenic emissions, all of which

promote O3 formation .Additionally, high temperatures are typically associated with increased200

atmospheric stability and a reduction in mixing layer height, making it more difficult for O3 to disperse

and dilute, leading to its accumulation near the surface and higher concentrations(Yang et al., 2022). In

spring (March, April, and May; MAM) and autumn (September, October, and November; SON), the

simulated O3 concentrations are lower than in JJA, with mean values of 89 μg·m-3 and 78 μg·m-3,

respectively. The lowest O3 concentrations are observed in winter (December, January, and February;205

DJF), with a mean of 55 μg·m-3.

For the seven sub-regions, the seasonal patterns are generally consistent with those of the entire China

(except for South China). Among them, Central China exhibits the highest O3 concentration during JJA,

reaching up to 117 μg·m-3, while the lowest concentration is simulated in DJF, at only 34 μg·m-3. In

South China, O3 concentrations are higher in SON, with a mean value of 99 μg·m-3, slightly exceeding210

those in JJA. According to TAP data, O3 concentrations in JJA are also lower than those in MAM and

SON in South China, and only slightly higher than in DJF. This could be attributed to the stronger

southeast monsoon during JJA, which drives the northward transport of O3 and its precursors, while

also bringing increased precipitation and humidity (Yin et al., 2019), thereby reducing O3

concentrations. In Southwest China, O3 concentrations during MAM, SON, and DJF are notably higher215

than in other regions, particularly in the Tibetan Plateau, where the average O3 concentration in DJF
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exceeds 90 μg·m-3. This may result from transboundary transport from foreign regions, especially India,

where precursor emissions and O3 concentrations are relatively high (Sahu et al., 2021). In Northwest

China, O3 concentrations remain high across all four seasons, with the average O3 concentrations in

JJA reaching 113 μg·m-3, and in MAM and DJF, O3 concentrations are second only to those in220

Southwest China. Northeast China, on the other hand, has the lowest O3 concentrations among all

sub-regions, particularly during MAM, JJA, and SON, with concentrations of only 76 μg·m-3, 88

μg·m-3, and 54 μg·m-3, respectively. In the experimental scenario designed by Zhang et al. (2018),

which applied clean-air background concentration boundary conditions and excluded the influence of

transboundary anthropogenic emissions from foreign regions, simulated O3 concentrations decreased225

significantly over western China but showed little change over eastern China. These results suggest that

emissions from external regions primarily affect O3 levels in western China, whereas domestic

emissions remain the dominant contributor to O3 concentrations in eastern China.

The standard deviation (SD) among the models is largest in DJF (especially in the Sichuan Basin of

Southwest China and South China), followed by JJA, smallest in SON. This suggests greater diversity230

in the seasonal O3 cycles simulated by individual models during DJF, especially for UKESM1-0-LL

and UKESM1-1-LL, which exhibit the most distinct seasonal cycles among the nine models (Figure 3),

with significant negative biases in simulated O3 concentrations during DJF. The spatial variation of the

Bias of MME shows that O3 concentrations are significantly underestimated in the eastern and northern

China, particularly during DJF. In contrast, concentrations are overestimated in Southwest China,235

especially in SON and JJA. The bias in Northwest China is the lowest across all seasons, with

simulated O3 concentrations most closely matching the TAP values.
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Figure 2. Multi-model (nine CMIP6 models) annual and seasonal mean surface O3 concentrations over the

2014–2023 period in (a) MAM; (b) JJA; (c) SON; (d) DJF; and (e) annual mean. The SD of the MME in240
(f)MAM, (g) DJF, (h) JJA, (i)SON, and (j) annual mean. The difference between the MME and TAP

observations in (k)MAM, (l) DJF, (m) JJA, (n)SON, and (o) annual mean.
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The annual cycles of surface O3 concentrations in China and its sub-regions simulated by the nine

CMIP6 models were compared with the TAP-derived values (Figure 3), it can be seen that the245

correlation between the two is generally good in most regions (r > 0.73), which suggests that the

seasonality of the circulation patterns, stratosphere-troposphere exchange, and natural emissions are

well captured. However, (1) the timing of O3 peak concentrations in the CMIP6 models (mostly in

July–August) is slightly delayed compared to TAP (mostly in May–June), which is consistent with the

results of the ACCMIP models (Young et al., 2018). (2) The nine CMIP6 models evaluated in this250

study exhibit significant underestimation of O3 concentrations across most sub-regions of China, with

the most severe underestimations found in UKESM1-0-LL and UKESM1-1-LL, except for slight

overestimations in Southwest China from May to September, all other regions show underestimations,

particularly in East and Central China during DJF, where the simulated O3 concentrations are nearly 60

μg·m-3 lower than those calculated by TAP. This is consistent with the findings of Turnock et al.255

(2020), and may be due to excessive NOx titration in the UKESM1-0-LL model, leading to an

underestimation of surface O3 concentrations over much of the Northern Hemisphere’s continental

regions during DJF. (3) In contrast, a small number of CMIP6 models evaluated in this study, including

BCC-ESM1, EC-Earth3-AerChem, and MRI-ESM2-0, show a certain degree of overestimation in

surface O3 concentrations throughout the year in Southwest China (with an average overestimation of260

30 μg·m-3), Northwest China (with an average overestimation of 10 μg·m-3), and during JJA in South

China. This may result from common sources of error in the models, such as uncertainties in emission

inventories, deposition processes, or vertical mixing (Wild et al., 2020). Additionally, the coarse

resolution of ESMs may lead to overestimation of O3 concentrations in polluted areas, while

higher-resolution models and better consistency between nested models may improve the accuracy of265

simulated surface O3 concentrations (Neal et al., 2017).
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Figure 3. Comparison of the annual cycle of O3 concentrations, between individual CMIP6 models, the

MME and TAP in China and sub-regions for the period 2014–2023. The shading shows SD of TAP270
observations within the region.

Figure 4. Distribution of differences for O3 concentrations (μg·m-3) from nine CMIP6 models in China and

sub-regions during 2014–2023. The box plots show the 25th and 75th percentiles as solid boxes, median

values as solid lines, dots represent the concentrations from MAE, MFB and RMSE, and whiskers extending275
to the minimum and maximum.

https://doi.org/10.5194/egusphere-2025-4348
Preprint. Discussion started: 25 September 2025
c© Author(s) 2025. CC BY 4.0 License.



13

Figure 5. Heatmap of O3 concentrations Bias from nine CMIP6 models compared to TAP across different

months and regions in China and sub-regions.280

Figure 4 presents a comparison of the Mean Absolute Error (MAE), Mean Fractional Bias (MFB), and

Root Mean Square Error (RMSE) between the CMIP6 models and TAP for surface O3 concentrations.

Combined with the Bias for different months and sub-regions (Figure 5), correlation coefficients, and

SD (Figure 6), it can be observed that the MME simulates the O3 concentration for China with the285

smallest Bias in June and the largest in January. Among the sub-regions, the simulation results for

Northwest China are the most accurate, with high correlation, and the smallest MAE, MFB, RMSE, SD,

and Bias. In contrast, the largest MAE, MFB, RMSE, SD, and Bias are found in East China,

particularly in the autumn and winter. For individual models, EC-Earth3-AerChem shows the smallest

annual average Bias for O3 concentrations in China, with an MFB close to zero; BCC-ESM1 exhibits290

the best correlation; MIROC-ES2H has the smallest MAE and RMSE, providing relatively good

simulation results; while UKESM1-0-LL has the largest MAE, MFB, RMSE, SD, and Bias. Among the

sub-regions, MIROC-ES2H provides relatively good simulations of O3 concentrations in South China,

while UKESM1-0-LL shows the largest MAE, MFB, RMSE, SD, and Bias in East China. Thus,Overall,

the MME of CMIP6 performs better in simulating O3 concentrations during JJA, with larger295

discrepancies observed in DJF. The simulation in Northwest China is closest to TAP, while the largest

discrepancies occur in East China. EC-Earth3-AerChem is better suited for simulating or forecasting

the annual average O3 concentrations over China, while MIROC-ES2H is more appropriate for

error-sensitive scenario analyses, BCC-ESM1 demonstrates superior performance in terms of

correlation and temporal consistency, whereas both UKESM1-0-LL and UKESM1-1-LL exhibit higher300

simulation uncertainties.
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Figure 6. Taylor diagram of the annual mean surface O3 concentrations simulated by nine CMIP6 models

compared with the TAP data during 2014–2023 in China and sub-regions. The radial coordinate shows the305
standard deviation in the spatial pattern, normalized by the observed standard deviation. The azimuthal

variable shows the correlation of the modeled spatial pattern with the observed spatial pattern.

3.2 Under different underlying surface types

Vegetation type, land cover, and land use changes can influence biogenic emissions, which in turn310

affect the accuracy of model-simulated O3 concentrations (Ashworth et al., 2012). To investigate the

impact of these factors on simulation discrepancies and minimize the interference of temperature

changes, this study focuses on the JJA period in Northwest China, which has similar climatic

conditions and complex surface types. The selected typical underlying surfaces include natural land

surfaces such as grassland, forest, desert, and snow and ice (perennial snow), as well as anthropogenic315

land surfaces such as cropland and urban. By comparing the Bias, MAE, RMSE, and SD of

MME-simulated surface O3 concentrations relative to TAP (Figure 7), it is observed that TAP

simulates lower O3 concentrations over natural land surfaces compared to anthropogenic land surfaces,

and the MME simulations generally follow this trend. However, the MME simulation results show the

highest O3 concentrations over snow and ice surfaces and the lowest over cropland surfaces. Overall,320

the MME simulations exhibit lower Bias, MAE, and RMSE for natural land surfaces compared to

anthropogenic land surfaces, with the best performance over forest and desert surfaces, and the worst

performance over urban surfaces, followed by cropland and snow and ice surfaces.

This is likely mainly due to the fact that natural land surfaces have relatively consistent physical and

chemical properties, with less human influence, resulting in more accurate O3 concentration325

simulations. In contrast, urban surfaces, due to intense human activities and diverse pollution sources

(such as transportation and industrial emissions), present a more complex environment, making the
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processes of O3 formation and destruction more intricate and leading to larger discrepancies in the

simulation results.

The high albedo of snow and ice surfaces significantly reduces the absorption of solar radiation by the330

surface, thereby leading to a decrease the intensity of photochemical reactions, particularly the rate of

NO2 photolysis that leads to O3 formation. In addition, the snow and ice surfaces have a weaker

capacity to adsorb O3, with a deposition velocity (0.03 cm·s-1) typically lower than other natural land

surfaces such as vegetation or soil (Wesely et al., 1981). At the same time, the amount and composition

of deposited trace gases, solar irradiance, snow temperature, and the underlying materials beneath the335

snowpack (e.g., glacier ice, sea ice, frozen soil, and "warm" mid-latitude soils) also affect the process

control, intensity, and direction of O3 flux (Helmig et al., 2007). However, current atmospheric

chemistry models may not adequately account for these specificities when simulating O3 deposition on

snow and ice surfaces. For example, deposition rate parameterisation schemes are often based on

observations of underlying surface such as vegetation and soil, which do not accurately reflect the340

physical and chemical properties of snow and ice surfaces. Therefore, compared to other natural land

surfaces, the simulation errors in O3 concentrations over snow and ice surfaces are larger, especially in

high-latitude regions or areas with significant snow and ice cover during winter. This also highlights

the importance of developing more detailed snow-O3 exchange parameterizations for improving

models.345

The simulation bias over cropland may stem from the fact that croplands are often associated with

agricultural activities (e.g., fertilization and irrigation), which release large amounts of NOx and VOCs,

thereby increasing the complexity of O3 formation. Furthermore, changes in vegetation types and

management practices in agricultural land can also influence biogenic emissions, further affecting the

simulation of O3 concentrations and leading to larger model biases.350
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Figure 7. The bias, MAE, RMSE and SD of surface O3 concentrations simulated by CMIP6 models relative

to TAP from 2014 to 2023 over the complex underlying surface in China.

355

3.3 Under different level of total cloud cover

Referring to the definition of cloud cover levels in weather forecast and the classification of cloud

cover level by Han and Cong (2015), the total cloud cover ranging from 0 %–10 % is defined as clear

sky, 20 %–30 % as partly cloudy, 40 %–70 % as cloudy, and 80 %–100 % as overcast. This study

analyzes the Bias of surface O3 concentrations simulated by MME relative to those simulated by TAP360

under different total cloud cover levels (Fig. 8). Analysis results show that the TAP simulation exhibits

the highest surface O3 concentrations under partly cloudy conditions, while under other cloud cover

categories, O3 concentrations generally decrease with increasing total cloud cover (except during JJA).

This is primarily attributed to the attenuation of solar radiation by clouds and associated precipitation

processes. Clouds reduce incoming solar radiation, thereby slowing photochemical O3 production. In365

addition, wet deposition removes certain precursors, further suppressing O3 formation. Under partly

cloudy conditions, however, the atmosphere is generally more stable with weaker vertical mixing,

allowing O3 to accumulate near the surface. However, during JJA, the relationship becomes more

complex, high pollutant loads and intricate meteorological conditions likely counteract the influence of

total cloud cover, leading to a less straightforward association between cloud amount and O3370

concentrations.

In contrast, the MME simulations do not fully reproduce this pattern. The annual mean bias is smallest

under cloudy conditions and largest under partly cloudy conditions. On a seasonal scale, the smallest

bias occurs under clear-sky conditions during JJA, while the largest bias is found under partly cloudy

conditions. These discrepancies may stem from the complex interactions through which cloud cover375

influences O3 by modulating shortwave radiation, photochemical rates, and meteorological variables
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such as temperature, precipitation, and boundary layer height. They are also closely tied to structural

differences among models in physical parameterizations, radiative transfer schemes, and chemical

mechanisms.

Therefore, when using CMIP6 models for O3-related assessment and projection, it is essential to380

adequately account for the interactions among cloud cover, precipitation, and other key meteorological

factors, particularly under polluted and complex meteorological conditions, in order to reduce model

uncertainties and improve simulation accuracy (Jacob and Winner, 2009).

385
Figure 8. The bias in surface O3 concentrations simulated by CMIP6 models relative to TAP from 2014 to

2023 under different total cloud cover levels in China.

3.4 Under different concentrations of PM2.5 and its components

Aerosols play a crucial role in the simulation of O3 concentrations, Variations in PM2.5 concentrations390

can influence O3 concentrations by altering the chemical composition and light absorption

characteristics of aerosols, as well as the impact on solar radiation, which in turn affect the rate of

photochemical reactions. Lou et al. (2014) used GEOS-Chem simulations to show that the mean Bias

in O3 concentrations for the China is 9% when aerosols are considered, compared to 33% when

aerosols are not considered. Therefore, this study analyzes the Bias in surface O3 concentrations395

simulated by the MME relative to TAP under different PM2.5 levels(Figure 9). The results show that

during the JJA and SON, when PM2.5 concentrations are relatively low, TAP data indicate an increase

in O3 concentrations with rising PM2.5 levels. However, during the DJF, when PM2.5 concentrations are

higher, O3 concentrations decrease as PM2.5 levels increase. This is primarily due to the fact that,

during JJA and SON, although the increase in PM2.5 concentrations may have some localized inhibitory400

effects on O3 formation, the abundant sunlight and favorable meteorological conditions promote O₃
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generation. In contrast, during DJF, due to insufficient sunlight, stronger atmospheric stability, and

higher NOx concentrations, NOx titration is more likely to occur, which suppresses O3 formation. At the

same time, the increase in BC concentration in PM2.5 (Figure S1) enhances the light absorption of PM2.5,

further reducing UV radiation intensity and thus inhibiting O3 photochemical production. Additionally,405

other components of PM2.5, such as NO3 and OM, may also affect O3 concentrations through various

pathways. These factors collectively lead to a decrease in O3 concentration when PM2.5 increases.

The MME simulation results indicate that surface O3 concentrations generally decrease with increasing

PM2.5 levels (except during JJA). However, under extreme pollution conditions in DJF, O3

concentrations exhibit a slight increase once PM2.5 exceeds 125 μg·m-3. This suggests a complex410

nonlinear relationship between PM2.5 and O3 formation. Previous studies have shown that reducing

aerosol emissions without corresponding cuts in precursor pollutants could lead to increased surface O3

over eastern China (Li et al., 2018), indicating that aerosols suppress O3 production through light

attenuation and heterogeneous reactions. At low to moderate PM2.5 concentrations, the increase in

PM2.5 largely inhibits O3 formation by scavenging key radicals (e.g., HO2 and NOx) and reducing solar415

radiation intensity, thereby leading to a decline in O3. However, under extreme pollution conditions,

especially in winter, this suppressing effect tends to saturate. Meanwhile, the nocturnal titration of O3 is

weakened under high NOx conditions, which, combined with unfavorable meteorological conditions

such as temperature inversions and a lower boundary layer, results in O3 concentrations no longer

decreasing with further increases in PM2.5 and may even slightly increase.420

Figure 9. The bias in surface O3 concentrations simulated by CMIP6 models relative to TAP from 2014 to

2023, under different PM2.5 concentrations in China.

425

These findings highlight that the synergistic and inhibitory effects between PM2.5 and O3 vary

significantly across seasons and pollution levels. This implies that future air pollution control strategies
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should adopt coordinated mitigation of both PM2.5 and O3 precursors to avoid potential side effects

from single-pollutant reduction policies.

4 O3 from the pre-industrial period to present day430

This study analyzes the annual mean surface O3 concentration changes in China and its sub-regions

from pre-industrial to present times based on 9 CMIP6 models and MME relative to the 2014–2023

mean (Figure 10). The MME results show that, since 1850, the annual mean surface O3 concentration

in China has increased by 39.3±14.4 μg·m-3 (±1 SD), with the maximum change of 57.9 μg·m-3 (from

the MIROC-ES2H model) and the minimum change of 23.1 μg·m-3 (from the UKESM1-0-LL model).435

Before 1950, the annual mean increase in O3 concentration was relatively slow, at only 0.12 μg·m-3;

however, after 1950, the rate of increase accelerated significantly, with an annual mean increase of 0.28

μg·m-3. This change is likely primarily related to the significant increase in anthropogenic activities

during this period, especially the substantial increase in anthropogenic precursor emissions, such as

CH4, NOx, CO, and NMVOCs. The simulations of historical O3 concentrations by different CMIP6440

models show that the EC-Earth3-AerChem model yields the highest values, while the

IPSL-CM5A2-INCA model yields the lowest. These differences reflect variations in aerosol, climate,

and atmospheric chemistry process simulations across different models. Griffiths et al. (2021), based

on ground, sounding, and satellite data from the past few decades, assess the performance of multiple

CMIP6 models in simulating surface O3 concentrations. Their study indicates that these models are445

capable of accurately reproducing the spatial distribution, seasonal variation, and interannual variability

and trends of surface O3 concentrations. This also indicates the reliability of CMIP6 models in

simulating historical surface O3 variations, which provides support for their future projections of O3

concentrations under climate change scenarios.

450
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Figure 10. Changes in the China and sub-regions annual mean surface O3 concentrations from the

pre-industrial period to present day, relative to a 2014–2023 mean value, across nine CMIP6 models and

MME. The Multi-model annual mean 2014 – 2023 surface O3 concentrations (±1 SD) are shown in the top

left of each panel.455

The historical changes in surface O3 concentrations simulated by different CMIP6 models show

significant regional variations, the UKESM1-0-LL model tends to simulate the smallest historical O3

changes (with the smallest change in Northeast China); while the MIROC-ES2H model simulates the

largest O3 changes (with the largest change in Central China), followed by MRI-ESM2-0 and460

BCC-ESM1. Although the UKESM1-0-LL simulation has a smallest historical surface O3 response, it

exhibits a larger tropospheric O3 change during the historical period compared to other CMIP6 models

(Griffiths et al., 2021). Moreover, the O3 change simulated by UKESM1-0-LL is similar to the changes

driven solely by precursor emission variations (Turnock et al., 2020), suggesting that this model may

be highly sensitive to changes in emission sources when simulating O3 responses. Central China465

exhibits the largest discrepancies in historical surface O3 changes among the CMIP6 models, with the

maximum difference reaching 29.6 μg·m-3. Turnock et al. (2020) suggest that the large differences in

surface O3 responses across CMIP6 models can be attributed to variations in the magnitude of

simulated O3 concentrations during the 1850s and the regional average O3 concentration change rates,
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which are closely related to the differing chemical sensitivities of O3 formation processes to NOx470

concentration changes across models. Additionally, the significant changes in PM2.5 concentrations in

this region (Su et al., 2022) may affect the O3 formation process by altering the heterogeneous loss rate

of aerosols by radicals. Future simulations should further consider the impact of aerosols on O3 to

improve the accuracy of surface O3 concentration simulations.

5 O3 from present day to 2100475

Figure 11 shows the future changes in surface O3 concentrations across China and its sub-regions under

different CMIP6 scenarios (relative to the 2014–2023 mean). Overall, it is projected that by 2100,

surface O3 concentrations in China will decrease in most scenarios, with sub-regions responding

similarly to the national trend, though with varying magnitudes (Figure 12). In the Tier 1 experiment,

under the SSP1-2.6 scenario, which involves low radiative forcing, strong climate mitigation, and480

significant air pollution reduction, surface O3 concentrations in China are projected to decrease by

12.6±3.1 μg·m-3 (±1 SD of the MME) by 2050 relative to the 2013–2024 annual mean, and decrease by

25.3±7.2 μg·m-3 by 2100, with a reduction of approximately 32%. Due to substantial reductions in

precursor emissions, a decrease in CH4 concentrations, and relatively small climate changes, under this

scenario, surface O3 concentrations in all sub-regions also show significant declines. Projections485

indicate that by 2100, surface O3 concentrations in the Southwest and South China regions will

decrease by more than 30 μg·m-3, while in East China, which experiences the smallest reduction, O3

concentrations will still decrease by nearly 20 μg·m-3.

For the medium forcing SSP2-4.5 scenario, it is projected that by 2100, the annual mean surface O3

concentration in China will decrease by 13.6±7.2 μg·m-3, with a reduction of 17%. Meanwhile in this490

scenario, the projections show that the annual mean surface O3 concentrations in all sub-regions of

China will slightly increase in 2055 compared to the 2014–2025 mean, and then start to decrease, by

2100, the reduction will exceed 10 μg·m-3, with the most significant decrease occurring in South China,

where it may reach 24.5 μg·m-3. This change is primarily driven by enhanced control of precursor

emissions, relatively small climate changes, and variations in CH4 concentrations.495

In the SSP3-7.0 scenario, due to weak climate mitigation and weak air pollutant reduction, the annual

mean surface O3 concentration in China is projected to increase by 8.4±2.0 μg·m-3 by 2050, and
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increase by 13.9±4.0 μg·m-3 by 2100, with an increase of 17%. In this scenario, the annual mean

surface O3 concentrations in all seven sub-regions show an upward trend, with the largest increase in

East China, where the concentration is expected to rise by 19.3±6.9 μg·m-3 by 2100, with an increase of500

27%. Although emissions of O3 precursors such as NOx are projected to start decreasing around 2040

(Figure S3), the surface O3 concentrations in all sub-regions continue to increase, indicating the

importance of changes in chemical composition, increasing CH4 concentrations, and climate change in

the simulation of surface O3 under the SSP3-7.0 scenario (Turnock et al., 2020; Young et al., 2013; Li

et al., 2019). Additionally, the projected differences among CMIP6 models are most pronounced in505

Central and East China, suggesting some divergence in the model simulations of O3 in these regions.

In the SSP3-7.0-lowNTCF scenario (Tier 2 experiment), strong carbon emission control measures are

implemented on top of the weak climate mitigation of the SSP3-7.0 scenario, along with a substantial

reduction in short-lived climate forcers (SLCFs), including BC and O3 precursors, these measures

significantly improve air quality and slow down climate change. Consequently, the projections show510

that under the SSP3-7.0-lowNTCF scenario, the increase in surface O3 concentrations in China is

slower than in the SSP3-7.0 scenario, with relatively lower concentrations. By 2050, the annual mean

surface O3 concentration in China is projected to increase by only 5.8±1.5 μg·m-3, and by 2100, it will

increase by 4.9±2.0 μg·m-3, representing a 6% increase. In this scenario, by 2100, surface O3

concentrations in China and most of its sub-regions are expected to return to or be close to the515

2014–2023 levels (especially in the Northwest China), showing a significant improvement in surface

O3 pollution compared to the SSP3-7.0 scenario. However, compared to other regions of the world, the

additional reduction in precursor emissions under the SSP3-7.0-lowNTCF scenario has a relatively

small impact on improving surface O3 pollution in China. This is mainly due to the increase in surface

O3 concentrations in eastern China (especially in Central and Eastern China). This increase is caused520

by a slight rise in NMVOCs emissions and a reduction in O3 titration due to a significant decrease in

NOx emissions (Turnock et al., 2020). Additionally, the decrease in PM2.5 concentrations under the

SSP3-7.0-lowNTCF scenario leads to a reduction in the heterogeneous loss of free radicals, which may

also contribute to the rise in surface O3 concentrations (Li et al., 2019).

In the SSP5-8.5 scenario, characterized by high radiative forcing, weak climate mitigation, and weak525

air pollutant emission reductions, the annual mean surface O3 concentration in China is projected to

increase by 6.3±1.6 μg·m-3 by 2050. However, by 2100, the surface O3 concentration is expected to
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decrease by 3.4±2.9 μg·m-3 relative to the 2013–2024 mean, a reduction of approximately 4.2%. The

projected changes in surface O3 concentrations for the sub-regions in this scenario are similar to those

in the SSP3-7.0-lowNTCF scenario (with a correlation of up to 0.7), likely due to comparable levels of530

air pollutant emissions and climate change. By 2050, the surface O3 concentration in most sub-regions

will increase slightly faster in the SSP5-8.5 scenario than in the SSP3-7.0-lowNTCF scenario (except

for Northeast and North China), but slower than in the SSP3-7.0 scenario (except for Central and East

China). This may be attributed to the different changes in CH4 emissions under different scenarios.

Additionally, more CMIP6 model data are available for the SSP3-7.0 scenario (9 models) compared to535

the SSP5-8.5 scenario (4 models), which may also influence the MME response.

In the Tier 2 experiment, under the SSP1-1.9 scenario, the annual mean surface O3 concentration in

China is projected to decrease by 16.6±7.1 μg·m-3 by 2050, and decrease by 25.3±9.5 μg·m-3 by 2100,

with a reduction of approximately 32%. Although the SSP1-1.9 scenario represents weak climate

mitigation and weak air pollutant emission reductions, the simulated results indicate a significant540

decrease in surface O3 concentrations. This phenomenon may be closely related to the reduction of

PM2.5 emissions in China and the complex effects of climate change. Specifically, climate change not

only alters the rates of chemical reactions in the atmosphere but also impacts convection activities and

the distribution of pollutants, thereby inhibiting O3 formation or altering the balance between its

formation and consumption. Furthermore, the reduction of PM2.5 may further exacerbate the decline in545

surface O3 concentrations by influencing atmospheric photochemical processes or altering the

concentrations of O3 precursors.

Under the SSP4-3.4 and SSP4-6.0 scenarios, which represent moderate climate mitigation with

moderate air pollutant emission reductions, and under the SSP5-3.4-over scenarios which represents

moderate climate mitigation with stronger air pollutant emission reductions, the surface O3550

concentration in China is projected to increase by 13.5±1.3 μg·m-3, 18.3±1.4 μg·m-3, and 12.6±1.6

μg·m-3 by 2050, respectively. By 2100, the surface O3 concentrations are expected to decrease by

9.2±8.3 μg·m-3, 1.6±5.9 μg·m-3, and 13.9±11.7 μg·m-3 respectively. This trend indicates that strong air

pollutant emission reduction measures will play a significant role in controlling future O3

concentrations, improving air quality and mitigating negative climate impacts.555

In summary, projections from the CMIP6 models suggest that mitigating surface O3 pollution across

China will require not only reducing greenhouse gas emissions to moderate future climate change but
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also implementing enhanced controls on emissions of O3 precursors (including CH4). Under scenarios

with pronounced climate change impacts, such as SSP3-7.0 and SSP5-8.5, the stringency of controls on

key O3 precursors, particularly NMVOCs and NOx, beyond 2050 is expected to lead to divergent560

regional responses in long-term surface O3 trends.

Figure 11. Future China and sub-regions changes in annual mean surface O3 for the different SSPs used in

CMIP6. The dashed black line represents the curve of the difference at zero. The multi-model regional mean565
value for the years 2014–2023 mean value is shown in the top left corner of each panel.

Figure 12. Percentage change in 2050 (circles) and 2100 (squares), relative to 2015, for annual mean of O3

across China and sub-regions in the four Tier 1 future CMIP6 scenarios and the SSP3-7.0-lowNTCF570
scenario.
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Since the number of available CMIP6 models is the greatest under the SSP3-7.0 scenario (Table 1), this

paper conducts a comparative analysis of the changes in surface O3 concentrations across China and its

sub-regions under the SSP3-7.0 scenario, aiming to identify the potential causes of model discrepancies.

Figure 13 illustrates the changes in the annual mean and seasonal mean surface O3 concentrations in575

China and its sub-regions for the years 2050 (2045–2055 mean) and 2095 (2090–2100 mean) relative

to the 2014–2023 mean baseline, based on different CMIP6 models under the SSP3-7.0 scenario. O3 is

not directly emitted into the troposphere but is produced through photochemical oxidation of CO, CH4,

and NMVOCs in the presence of NO and NO2. The abundance of tropospheric O3 is determined by its

budget, which includes chemical production, stratospheric transport, chemical loss, and deposition to580

the surface (Lelieveld and Dentener, 2000), and the intensity of these processes is highly sensitive to

current climate conditions and the emissions and distribution of O3 precursors (including NOx,

NMVOCs, CH4, etc.). Therefore, this study further analyzes the correlation between future annual

mean surface O3 concentrations under the SSP3-7.0 scenario and other variables, including CH4

concentrations, Near-Surface Air Temperature (TAS), NOx concentrations, total emissions of585

NMVOCs and BVOCs (Figure 14).

It can be observed that surface O3 concentrations predicted by different CMIP6 models under the

SSP3-7.0 scenario exhibit significant regional discrepancies. In particular, in Central China, the O3

concentrations predicted by MRI-ESM2-0 and EC-Earth3-AerChem are nearly twice as high as those

predicted by UKESM1-0-LL and GFDL-ESM4 (Figure S2). The lower annual mean O3 concentrations590

in Central China for UKESM1-0-LL and GFDL-ESM4 are primarily attributed to higher NOx

emissions under the SSP3-7.0 scenario. In this region, NOx emissions are approximately 2–3 times

higher than those in the other two models (Figure S2), which likely triggers NOx titration and results in

lower simulated surface O3 concentrations. In contrast, in the MRI-ESM2-0 and EC-Earth3-AerChem,

NOx titration is rare during DJF, and the CH4 concentration is higher in the EC-Earth3-AerChem model595

(Fig. S4), resulting in higher simulated O3 concentrations in Central China. These discrepancies

highlight that, although the driving factors related to O3 changes (such as climate change and pollutant

emissions) are crucial in all models (Figure 14), the differences in precursor emissions (NOx and CH4)

and chemical process responses between models in future scenarios with significant climate change

have a substantial impact on regional O3 concentration predictions.600
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Figure 13. Changes in the annual and seasonal mean surface O3 inChina and its sub-regions, relative to the

2014–2023 mean, for the SSP3-7.0 scenario used in CMIP6. Each coloured circle represents the annual

mean response for an individual model in (a) and (b) for 2045–2055, and in (c) and (d) for 2090–2100, with605
the coloured bars showing the SD across the annual mean. The seasonal mean responses for DJF and JJA,

averaged over the relevant 10-year periods, are shown by squares and triangles, respectively. The

Multi-model regional mean for the 2014–2023 period is shown on the left of each panel.

IPSL-CM5A2-INCA (predictions extending only to 2055) under the370 scenario, which projects that610

by 2050, surface O3 concentrations in northern China (including Northeast, North, and Northwest

China) will be lower than the 2014–2023 mean, with the most significant decrease expected in North

China, where O3 concentrations are projected to drop by approximately 10%. IPSL-CM5A2-INCA

(ECS; 3.6 K) is a model with moderate equilibrium climate sensitivity, showing a moderate response to

global temperature increases caused by greenhouse gases. The model simulates relatively high BVOCs615

emissions during the 2014–2023 period (covering a broader range of BVOCs types), with emissions

approximately 4–8 times higher than those of other models (Figure S5), and these emissions have

shown a consistent upward trend. However, despite the increase in BVOCs emissions, this model
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simulates relatively low NOx concentrations and surface TAS, resulting in a smaller increase in O3

concentrations, and even a decrease in some regions. This indicates that differences in the magnitude of620

climate change and O3 precursor (NOx) variations, as well as the different ways these factors are

coupled in different CMIP6 models, lead to significant differences in the response of the models to

BVOCs emissions. Such differences could directly influence future surface O3 changes, particularly in

localized regions.

CESM2-WACCM and GFDL-ESM4 under the SSP3-7.0 scenario, on the other hand, predict that by625

2050, surface O3 concentrations in southern China (including East, Central, and South China) will be

lower than the 2014–2023 annual mean, with the most significant decrease observed in South China,

where O3 concentrations are projected to drop by 9% and 13% in the two models, respectively. Firstly,

CESM2-WACCM (ECS; 4.7 K) and GFDL-ESM4 (ECS; 4.4 K) exhibit higher climate sensitivity,

meaning that their projected temperature increase and water vapor increase are more significant.630

Higher temperatures and water vapor content facilitate the generation of OH radicals, which in turn

accelerate O3 destruction reactions (Wild et al., 2020). In tropical and subtropical regions, where both

temperature and water vapor are already high, the presence of these factors may further enhance the

consumption of O3 by OH radicals, a phenomenon particularly evident in South China. Secondly, both

models tend to simulate lower BVOCs emissions (Figure S5), with GFDL-ESM4 showing the lowest635

and virtually unchanged BVOCs emissions under the SSP3-7.0 scenario, which may reduce the

formation of O3. Furthermore, the pollutant emissions and atmospheric chemical processes in southern

China differ from those in the north. The southern regions are likely more dependent on photochemical

reactions, which are more active under higher temperatures and stronger solar radiation conditions.

Therefore, CESM2-WACCM and GFDL-ESM4 may simulate a greater number of photochemical640

reactions, further accelerating O3 decomposition.

Under the SSP3-7.0 scenario, both UKESM1-0-LL and UKESM1-1-LL project that surface O3

concentrations across China and its sub-regions will decrease by 2050 relative to the 2014–2023 annual

mean, with the most significant decrease observed in Northeast China, where the reduction is projected

to be 23% and 20% for the two models, respectively. Although a moderate increase is projected by645

2095, O3 concentrations remain below the 2014–2023 baseline in most regions, except East China.

Compared to other CMIP6 models, UKESM1-0-LL (ECS; 5.4 K) and UKESM1-1-LL (ECS; 4.2 K)

exhibit higher climate sensitivities. The elevated temperatures (Figure S7) and altered climatic
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conditions in these models likely enhance O3 degradation, contributing to the generally lower O3

concentrations in their simulations. Moreover, UKESM1-0-LL simulates higher atmospheric NOx650

levels, promoting NOₓ titration that suppresses O3 formation. This model also projects higher

NMVOCs emissions (Figure S6). Under high-NOx conditions, the interplay between NOx and

NMVOCs can modify photochemical O3 production pathways, further inhibiting net O3 formation

(Jiménez & Baldasano; Xing et al., 2011). To further investigate this mechanism, we constructed a

two-dimensional framework based on ground observations, analyzing O3 distribution across China655

within the NO2-NMVOCs space (Figure 15). Results indicate that the highest O3 levels occur under

moderate NO2 (20–40 μg·m-3) and elevated NMVOCs (>500 t·month-1) conditions, reflecting a typical

VOC-limited O3 formation regime. In such environments, abundant NMVOCs coupled with relatively

low NOₓ levels promote efficient photochemical O3 production. However, when NO2 concentrations

reach 60–120 μg·m-3, O3 decreases significantly even at intermediate-to-high NMVOCs, indicating660

strong inhibition of O3 formation by excess NOx.

The projections of annual mean surface O3 concentrations for China and its sub-regions under the

SSP3-7.0 scenario by BCC-ESM1 (ECS; 4.0K, predictions extending only to 2055),

EC-Earth3-AerChem (ECS; 3.0K), MIROC-ES2H (ECS; 3.6K), and MRI-ESM2-0 (ECS; 5.4K) show

significant consistency, with O3 concentrations in 2050 and 2095 both being higher than the 2014–2023665

mean. Among these models, MIROC-ES2H and MRI-ESM2-0 exhibit higher climate sensitivity,

although their projected NOx and CH4 concentrations are relatively low (Figure S3–S4), they still tend

to predict larger increases in O3 compared to the other models, with the most significant O3 increase

observed in southern China (including East China, Central China, and South China). In contrast,

BCC-ESM1 and EC-Earth3-AerChem predict more noticeable increases in O3 concentrations in670

northern China (including Northeast, North, Northwest, and Southwest China). EC-Earth3-AerChem,

with a relatively low ECS, simulates lower NOx concentrations in China and its sub-regions, while its

CH4 concentrations are the highest among the models (Figure S4). Under low NOx conditions and a

weak NOx titration effect, an increase in CH4 promotes O3 formation, leading to O3 accumulation and a

more pronounced increase in simulated O3 concentrations in the model. BCC-ESM1, on the other hand,675

tends to simulate higher NOx concentrations and lower TAS (Figure S3 and S7), which contributes to

the more noticeable O3 increase predicted by this model.
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Figure 14. Correlation coefficients calculated when comparing future annual mean surface O3680
concentrations against individual variables of surface CH4 concentrations, temperature at Surface (TAS),

emissions of NMVOCs and BVOCs, NOx (NO + NO2) concentrations and from individual CMIP6 models

over the period 2015 to 2100 in the SSP3-7.0 scenario.

The seasonal responses of different models under the SSP3-7.0 scenario also show variations across685

sub-regions. Most models predict that surface O3 concentrations increase more in JJA than in DJF.

However, some regions exhibit a decreasing trend in O3 concentrations during JJA, which aligns with

the findings of Turnock et al. (2020).

As shown in Figure 14, under the SSP3-7.0 scenario, a negative correlation between surface O3 and

NOx concentrations is observed across China and its sub-regions in all the CMIP6 models compared,690

which may be related to the higher NOx emissions in the region, leading to the occurrence of NOx

titration. In this scenario, NOx reacts with surface O3, depleting a significant amount of O3. As NOx

emissions decrease under this scenario (after 2030), the NOx titration effect weakens, thereby

promoting O3 formation at the surface. Consequently, under the SSP3-7.0 scenario, as NOx emissions

decrease, surface O3 concentrations in China and its sub-regions show an increasing trend. Furthermore,695

most CMIP6 models exhibit positive correlations between other variables (TAS, CH4, NMVOCs, and
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BVOCs), indicating that climate change and anthropogenic activities are also important drivers of the

increase in surface O3 concentrations in the region.

700
Fig. 15 Distribution of O3 concentration in NO2-NMVOCs coordinate in China

The differences in simulations between different CMIP6 models highlight the importance of further

understanding how future O3 concentrations will be influenced by the combined effects of pollutant

emissions (especially with regard to the differences in how O3 precursors, PM2.5, and other factors are705

coupled and how chemical processes respond across models) and climate change. For example, in the

Central China region, the prediction differences between models are highly significant, with some

models predicting O3 concentrations that could be twice as high as those of others. This discrepancy

reflects the need for future research to focus more on model uncertainty in order to improve the

accuracy of future air quality predictions.710

6 Summary

In recent years, with the increase in industrial activities and transportation, O3 concentrations in the

atmosphere have risen significantly, leading to profound impacts on the global climate system and

human health. Therefore, an in-depth study of O3 changes over historical periods and under different

future scenarios, as well as its interactions with climate mitigation measures, is essential for assessing715

the potential impacts of O3 on the climate and human health. CMIP6 provides a valuable opportunity to

evaluate the simulations of historical and future air pollutant changes using the latest generation of

earth system and climate models, based on the most recent socio-economic development scenarios.
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This study, based on the CMIP6 multi-model O3 products and the TAP dataset, analyzes the surface O3

distribution in China and its sub-regions by nine CMIP6 models, as well as the reasons for the720

uncertainties in these simulations. It also presents the historical changes of surface O3 in China and its

sub-regions from 1850 to 2014, and evaluates the future changes in surface O3 under different

scenarios (from weak to strong air pollutants and climate mitigation) simulated by the CMIP6 models

for China and its sub-regions. The main conclusions are as follows:

(1) The MME of CMIP6 simulated O3 concentrations in China are higher in JJA, with an average725

value of 105 μg·m-3, and lowest in DJF, with a value of 55 μg·m-3.Among the seven sub-regions, the

highest O3 concentrations in JJA are found in Central China, while in the other three seasons, the

Southwest region has noticeably higher O3 concentrations compared to other regions, especially in

Tibet. Nine CMIP6 models show significant underestimation in most regions of China, with the most

pronounced underestimation occurring in East China, where the difference is greatest. The Southwest730

China is slightly overestimated, while the simulated values for the Northwest China are closest to the

TAP data. All CMIP6 models perform better in JJA simulations, while the differences are larger in DJF.

Among these, EC-Earth3-AerChem, MIROC-ES2H, and BCC-ESM1 produce better simulations, while

UKESM1-0-LL and UKESM1-1-LL show larger discrepancies, with more severe underestimation.

(2) The Bias, MAE, and RMSE of O3 concentrations simulated by MME on natural land surfaces are735

all lower than those on anthropogenic land surfaces. Among these, the simulation performs best on

forest and desert surfaces, while its performance is relatively poorer on urban surface. The Bias of

annual mean surface O3 simulated by MME is lowest under cloudy conditions and highest under partly

cloudy conditions, while for seasonal averages, the variability is smallest under clear-sky conditions in

the summer and largest under less cloudy conditions in the summer. The MME simulations generally740

show a decrease in surface O3 concentrations with increasing PM2.5 levels (except in JJA), however,

during the DJF, when PM2.5 concentrations are high, O3 concentrations increase instead when PM2.5

concentrations exceed a certain threshold. Furthermore, The Bias of O3 concentrations simulated by

MME generally increases with the increase in PM2.5 concentrations, but once the PM2.5 concentrations

exceed a certain threshold value, the Bias then begins to decrease. This also indicates that the effects of745

meteorological conditions, subsurface type, cloud cover, pollutant concentration, etc. need to be further

considered when modelling O3 concentration.
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(3) Over the entire historical period (1850–2014), the MME-simulated an increase of 39.3 μg·m-3 in

the annual mean surface O3 concentration in China, with the maximum change of 57.9 μg·m-3 (from the

MIROC-ES2H model) and the minimum change of 23.1 μg·m-3 (from the UKESM1-0-LL model).750

Before 1950, the annual mean increase in O3 concentration was relatively slow, at only 0.12 μg·m-3;

however, after 1950, the rate of increase accelerated significantly, with an annual mean increase of 0.28

μg·m-3. There are significant discrepancies in the historical changes simulated by different models

across various sub-regions, with UKESM1-0-LL tending to simulate the smallest historical changes

(smallest in Northeast China), and MIROC-ES2H simulating the largest changes (largest in Central755

China). Central China is also the region with the greatest diversity of simulated historical changes in

surface O3, with a maximum difference of up to 29.6 μg·m-3 among multi-model simulations.

(4) Under the weak mitigation scenarios (SSP3-7.0 and SSP5-8.5), the MME projects an increase in

surface O3 concentrations across most sub-regions of China under SSP3-7.0,driven by the combined

effects of increased air pollutant emissions, higher global CH4 abundance, and climate change. This760

increase is particularly pronounced in East China, where surface O3 is projected to rise by 19.3 μg·m-3

by 2100, a 26.9% increase. Under SSP5-8.5, surface O3 is expected to increase by 2050, but decrease

by 2100, especially in South China with a decrease of 12.5 μg·m⁻³ by 2100, a decrease of 14.6%. The

SSP3-7.0-lowNTCF predicts relatively small changes in surface O3 across China, with a slight increase

(a 4.9 μg·m-3 rise by 2100, a 6% increase). In contrast, under the strong climate mitigation and765

significant air pollutant emission reduction scenario (SSP1-2.6), surface O3 concentrations are

projected to decrease across China, particularly in Southwest and South China, where reductions

exceed 30 μg·m-3. In medium climate mitigation scenarios (SSP2-4.5, SSP4-3.4, SSP4-6.0, and

SSP5-3.4-over), surface O3 is expected to increase by 2050, but decrease by 2100. Although SSP1-1.9

represents a weak climate mitigation and weak air pollution reduction scenario, its simulated results770

show a significant decrease in surface O3, which may be closely related to the reduction of PM2.5 in

China and the complex effects of climate change.

(5) The projected surface O3 concentrations over China and its sub-regions vary significantly among

different climate models, reflecting discrepancies in how these models handle climatic factors (e.g.,

TAS), atmospheric circulation processes, key chemical reactions (involving NOx and CH4), and775

precursor emissions (such as NMVOCs and BVOCs), these differences contribute to substantial

uncertainties in regional O3 simulations, particularly in Central China. Under the SSP3-7.0 scenario,
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there is a negative correlation between surface O3 and NOx concentrations, likely due to the occurrence

of the NOx titration effect. In addition, surface O3 shows a positive correlation with other variables

(TAS, CH4, NMVOCs, and BVOCs) in most CMIP6 models, indicating that climate change and780

human activities are also important drivers of surface O3 increases in this region.

This study analyzes the simulation of surface O3 distributions and the reasons for their biases by

different CMIP6 models under various conditions, including different temperatures, cloud cover,

complex underlying surface, and pollutant concentrations in China and its sub-regions. For the

SSP3-7.0, this paper also discusses the interactions between surface O3 concentrations and chemical785

species (NOx and CH4), climate factors (TAS), and natural precursor emissions (NMVOCs, BVOCs),

and analyzes the reasons behind the differences in O3 simulations among the CMIP6 models. It is

noteworthy that, although the driving factors related to O3 changes are important across all models,

significant differences exist in the coupling methods and chemical process responses of the models in

regions with large changes in pollutant emissions (such as O3 precursors, PM2.5, etc.) under future790

scenarios with significant climate change. A deeper understanding of the mechanisms behind these

differences is crucial for comprehending future O3 trends, developing effective air quality management

strategies, and improving the ability to predict future regional air quality. Additionally, the

ground-based observation data used in this study are relatively limited, and future research should

incorporate more satellite observation data with high spatial and temporal resolution to enrich related795

studies and discussions.
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