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Abstract. In the absence of community consensus, there remains a gap in standardized, consistent performance assessment

of remote-sensing algorithms for water-quality retrieval. Although the use of multiple metrics is common, whether reported

individually or combined into scoring systems, approaches are often constrained by statistical limitations, redundancy, and

dataset- and context-dependent normalizations, leading to subjective or inconsistent interpretations. To address this, we propose

the Euclidean Distance Score (EDS), which integrates five statistically appropriate and complementary metrics into a composite5

score. Capturing three core aspects of performance (regression fit, retrieval error, and robustness), EDS is computed as the

Euclidean distance from an idealized point of perfect performance, providing a standardized and interpretable measure. We

demonstrate the applicability of EDS in three scenarios: assessing a single algorithm for different retrieved variables, comparing

two algorithms on shared retrievals, and evaluating performance across contrasting trophic conditions. By offering an objective

framework, EDS supports consistent validation of aquatic remote sensing algorithms and transparent comparisons in varied10

contexts.

1 Introduction

Assessing the quality of remote sensing products is vital to monitoring and understanding aquatic ecosystems. The growing

availability of algorithms that estimate water quality variables from optical signals, along with their varying transferability

across regions and conditions, underscores the need for rigorous performance metrics to evaluate them (Werdell et al., 2018).15

In the absence of consensus in the community, studies often report multiple metrics (e.g., Pearson’s r, r2, slope, mean absolute

error, mean percentage error, bias, root-mean-squared error) to quantify agreement between retrievals and observations. While

reporting several metrics is important to capture complementary aspects of performance (Stow et al., 2009; IOCCG, 2019),

some are partially redundant in what they represent, and not all are well-suited for the statistical properties of bio-optical data

(Werdell et al., 2018). This can introduce subjectivity and risk biased or inconsistent assessments (Simão et al., 2024; Seegers20

et al., 2018).
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Bio-optical data (i.e., optical proxies of biogeochemical state such as absorption, scattering, attenuation coefficients, and

constituent concentrations) typically follow log-normal distributions and span wide dynamic ranges (Campbell, 1995). Conse-

quently, several common error metrics are less appropriate. For example, root-mean-squared error is most informative when

residuals are approximately Gaussian and homoscedastic. Because it squares residuals, it disproportionately penalizes large25

deviations and becomes sensitive to skew and outliers (Morley et al., 2018). Therefore, for this type of data, simple deviation

metrics are preferred over sums of squares (Seegers et al., 2018), and calculations on log-transformed values are recom-

mended (IOCCG, 2019; EUMETSAT, 2021; Mélin and Franz, 2014). Additional good practices include using medians to

reduce outlier influence, ensuring symmetric treatment of over- and under-prediction, and favoring relative errors to maintain

meaning across large ranges (O’Shea et al., 2023; Pahlevan et al., 2022).30

To mitigate subjectivity from multiple standalone metrics, scoring-based and comparative approaches have been explored.

Brewin et al. (2015) introduced a composite score aggregating multiple metrics, later adapted by Neil et al. (2019). However,

potential redundancy among metrics may bias comparisons (Seegers et al., 2018). Seegers et al. (2018) also proposed a pair-

wise comparison metric (% wins), identifying the algorithm with the lowest residual error per observation. The method also

accounts for algorithm robustness, as failed retrievals penalize the score. While valuable for ranking multiple algorithms, these35

comparative methods are less suited for evaluating a single algorithm across variables, environmental conditions, or datasets.

Graphical multidimensional tools are also used to summarize performance across metrics. Taylor diagrams have supported

cross-dataset comparisons in aquatic remote sensing (Arabi et al., 2020), but are limited to a fixed set of metrics and lack scoring

capability. Radar/star plots offer more flexibility and are increasingly used to derive composite scores: Tran et al. (2023) defined

a summary indicator based on the area enclosed by polygons linking normalized metrics; Simão et al. (2024) incorporated the40

distance from the polygon centroid to the center to reward both high and balanced performance; Subirade et al. (2024) summed

normalized scores to rank algorithms. These enhance within-study interpretation, but reliance on normalization constrains

broader applicability: scores become tied to dataset-specific ranges. Shifts in value distributions or context (e.g., different

optical water types/trophic states, oceanic vs. coastal) change the normalization baseline, and heterogeneity in variables and

units further limits comparability. As a result, such indices remain inherently relative and are not comparable across broader45

contexts.

Considering these challenges, we propose the Euclidean Distance Score (EDS), designed to provide a standardized and

broadly applicable framework for evaluating aquatic remote sensing algorithms. EDS quantifies performance as the Euclidean

distance from an idealized result, integrating complementary metrics selected for their suitability to bio-optical data. By avoid-

ing redundancy and dataset-specific normalization, EDS supports consistent evaluation of water quality retrievals and strength-50

ens the reliability of remote sensing products that support aquatic biogeochemistry and ecosystem monitoring. The following

sections review Euclidean distance in composite scoring (2), detail metric selection (3), introduce the EDS formulation (2),

and demonstrate its application (5).
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2 Euclidean Distance in Composite Scores

The Euclidean distance quantifies the separation between two points in n-dimensional space. For points x = (x1, . . . ,xn) and55

y = (y1, . . . ,yn), it is defined as:

d(x,y) =

√√√√
n∑

i=1

(xi− yi)2. (1)

This provides a straightforward and interpretable measure of dissimilarity and forms the basis for composite performance

scores across scientific domains. When multiple performance indicators are treated as spatial dimensions, a single score can be

derived from their distance to an idealized reference point.60

In hydrology, the widely used Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) combines correlation, bias, and variability

into one score, computed as the Euclidean distance from a perfect model. Similarly, Hu et al. (2019) introduced the DISO

metric, which integrates correlation, absolute error, and RMSE to evaluate climate model performance (Hu et al., 2019). These

examples demonstrate the usefulness of Euclidean distance in synthesizing multiple indicators into a robust, interpretable score.

Developing effective composite scores requires careful selection of individual components. Chosen metrics should be rele-65

vant to the application domain and reflect distinct performance aspects to avoid redundancy. While equal weighting supports

balance, formulations could also be adapted to emphasize specific aspects based on application needs. Additionally, limiting the

number of metrics helps preserve robustness, as high dimensionality can reduce the reliability of distance-based scores (Saman-

taray et al., 2024). The next section outlines the rationale for selecting the individual performance metrics to be used in our

composite approach.70

3 Selection of Individual Metrics

For the construction of our composite score, we define three core dimensions of retrieval performance: (A) regression fit, which

reflects how well the estimated values follow the pattern of the observed data; (B) retrieval error, which quantifies the magnitude

and direction of deviations between estimates and observations; and (C) retrieval robustness, which describes the algorithm’s

ability to produce valid outputs consistently. For each dimension, we selected metrics suited to characterizing performance in75

the context of bio-optical data.

3.1 Regression Fit

To characterize the regression fit between estimated and observed values, we employ a Type II regression (reduced major axis)

to account for uncertainty in both in-situ and retrieved values. Calculations are performed in logarithmic space to accommodate

the log-normal distribution of bio-optical data (Campbell, 1995). The following metrics are selected:80

– Pearson correlation coefficient (r): Quantifies the strength and consistency of the linear association between log-

transformed estimated and observed values.
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– Slope (m): Describes the proportionality of estimates relative to observations, indicating whether the dynamic range is

well represented.

3.2 Retrieval Error85

To characterize retrieval error, we selected metrics that quantify the typical magnitude of deviation and the systematic bias

between estimated and observed values. We adopt two metrics proposed by Morley et al. (2018) to address limitations of

traditional measures such as root-mean-squared error and mean average percentage error (Salama et al., 2022), which are

advised for variables that span over orders of magnitude. These have been increasingly adopted in recent aquatic remote sensing

studies (O’Reilly and Werdell, 2019; O’Shea et al., 2021, 2023; Pahlevan et al., 2020). Advantages of these metrics include90

their relative (percentage) format for interpretability and comparability, symmetric treatment of over- and under-estimations,

and robustness to outliers and skewed distributions (Morley et al., 2018).

Both metrics are based on the accuracy ratio (Qi), defined as:

Qi =
Ei

Oi
(2)

where Ei and Oi are the estimated and observed values, respectively.95

Based on the accuracy ratio, the retrieval error metrics are calculated as follows:

– Median Symmetric Accuracy (ϵ): Measures the typical relative error between estimates and observations. It is defined

as:

ϵ = 10mediani=1,...,n(|log10(Qi)|)− 1 (3)

– Signed Symmetric Bias (β): Quantifies the systematic tendency of the algorithm to overestimate or underestimate100

observations. The median of the logarithmic accuracy ratio is first defined as:

M = mediani=1,...,n (log10(Qi)) (4)

Using this definition, β is computed as:

β = sign(M)× (10|M |− 1) (5)

It should be noted that although Morley et al. (2018) formulated these metrics using the natural logarithm, the choice of105

logarithm base is arbitrary. Furthermore, since log(Q) = log(E)− log(O), these metrics are conceptually analogous to the

mean absolute error and bias calculations as recommended by Seegers et al. (2018). The differences are the use of median

instead of mean aggregation (as the distribution of log(Q) may not be symmetric (Morley et al., 2018)), and that 1 is directly

subtracted to rescale the value into a percentage deviation term.
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3.3 Retrieval Robustness Metrics110

Retrieval robustness characterizes the algorithm’s ability to consistently produce valid outputs across the dataset. In real-

world remote sensing applications, retrieval algorithms may fail to converge or generate valid estimates under challenging

observational conditions. To quantify this aspect of performance, we use:

– Valid Retrieval Ratio (n):

n =
nvalid

ntotal
(6)115

where nvalid is the number of retrievals yielding valid outputs and ntotal is the total number of retrieval attempts.

4 The Proposed Euclidean Distance Score (EDS)

The Euclidean Distance Score (EDS) aggregates the selected individual metrics into a single composite score that quantifies

the overall retrieval performance by calculating the Euclidean distance from an idealized result. The score is computed as:

EDS = 1−
√

(r− 1)2 + (m− 1)2 + ϵ2 + β2 + (n− 1)2 (7)120

In this formulation, an ideal algorithm would achieve r = 1, m = 1, ϵ = 0, β = 0, and n = 1, yielding an EDS of 1. As

deviations from these values increase, the EDS decreases proportionally, reflecting poorer algorithm performance.

To help interpret the EDS, benchmarks can be set based on typical thresholds for acceptable retrieval performance. For

example, with ϵ and β at 30% (commonly accepted error in aquatic remote sensing (IOCCG, 2019)), r = 0.5, slope = 1.2 (or

0.8), and n = 0.9, the EDS is approximately 0.31. This suggests that results exceeding this benchmark could be considered125

generically indicative of good retrieval performance in this context.

EDS can be extended to evaluate overall performance when algorithms retrieve multiple variables by averaging individual

EDS values into an aggregated score. This approach enables flexible comparisons depending on evaluation priorities: if one

variable is of primary interest, the highest individual EDS can guide selection; if balanced performance is desired, the aggre-

gated EDS identifies the most consistent algorithm across variables. Additionally, weights can be applied to reflect variable130

importance, allowing tailored assessments to specific application needs.

4.1 Relative influence of performance components

The design of the EDS balances three aspects of retrieval performance: regression fit, retrieval error, and retrieval robustness.

When errors (ϵ and β) are below 1 (i.e., within 100%), the slope (m) is within ±1 of the ideal (i.e., 0≤m≤ 2), and the

correlation is positive (r ≥ 0), the maximum contribution to the distance calculation is 2 for regression fit (if r = 0 and m = 0135

or m = 2), 2 for retrieval error (if ϵ = 1 and β = 1), and 1 for retrieval robustness (if n = 0). This means that regression fit

and retrieval error typically weigh equally and collectively more than retrieval robustness, prioritizing output quality while
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still accounting for algorithmic stability. However, if errors or slope deviations are excessive, or correlation is negative, these

factors can contribute disproportionately to the distance calculation, strongly penalizing the final EDS.

4.2 Metrics dependency140

The EDS is designed to capture complementary aspects of retrieval performance while minimizing metric redundancy. Al-

though the selected metrics are conceptually independent, correlations may still arise in practice due to shared responses to

specific data patterns or algorithm behavior. For example, ϵ and β may co-vary when there is consistent over- or underestima-

tion, and in some datasets, r and m may show strong empirical correlation. However, in reduced major axis regression, m is

not directly dependent on r, as it is governed by the ratio of standard deviations and only adopts the sign of r (Smith, 2009).145

Such empirical correlations do not indicate conceptual redundancy, as each metric captures a distinct and relevant aspect of

retrieval performance.

5 Application Examples

We demonstrate the EDS by evaluating bio-optical retrievals against in situ reference data, focusing on inherent optical prop-

erties (IOPs) commonly used to characterize water quality.150

The analysis illustrates three main use cases of the EDS framework. First, we evaluate the retrieval of different variables using

a single algorithm, including three IOPs—phytoplankton absorption (aϕ(443)), detrital and gelbstoff absorption (adg(443)),

and particulate backscattering (bbp(443))—and the diffuse attenuation coefficient (Kd(489)) (a quasi-IOP (Yu et al., 2016)).

Second, we compare the performance of two algorithms retrieving the same variables. Finally, we examine how performance

for Kd(489) varies across water types, defined by chlorophyll-a thresholds (0.1 and 1 mg·m−3) for oligotrophic, mesotrophic,155

and eutrophic conditions.

5.1 Dataset and Processing

The dataset used is the NASA bio-Optical Marine Algorithm Dataset (NOMAD) (Werdell and Bailey, 2005), a publicly avail-

able, globally distributed collection of 4,459 in situ bio-optical observations across diverse aquatic environments. Each record

includes spectral upwelling radiance (Lw) and downwelling irradiance (Es) at 21 nominal wavelengths (411–683 nm), along-160

side coincident optical property measurements and metadata.

Remote sensing reflectance (Rrs) was calculated as Lw/Es. The IOPs of interest—aϕ(443), adg(443), and bbp(443)—were

derived using standard relationships. Solar geometry was computed from coordinates and time, with a fixed sensor viewing

geometry (40° zenith, 135° azimuth relative to the sun (Mobley, 1999)).

Rrs spectra and geometry serve as input to 2SeaColor algorithm (Salama and Verhoef, 2015), to retrieve the three IOPs and165

Kd(489), and to the Quasi-Analytical Algorithm (QAA) (Lee et al., 2002), to retrieve only the IOPs.

Post-processing involved filtering retrievals with variable-specific thresholds to exclude unrealistic values and define invalid

retrievals:
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– aϕ(443): 0.0001–11 m-1

– adg(443): 0.0001–9 m-1170

– bbp(443): 0.000215–12 m-1

– kd(489): 0.001–10 m-1

Minimum values for aϕ and adg reflect WET-Labs ac9 instrument uncertainty (Brewin et al., 2015), while the lower bound

for bbp corresponds to the minimum seawater backscattering at 443 nm, estimated from dataset temperature and salinity. Upper

limits are based on extreme values reported in the literature (Jorge et al., 2021).175

Finally, the EDS is computed from valid retrievals, integrating the individual metrics described in Section II.

5.2 Use Case 1: Evaluating Variable-Specific Retrieval Performance

The first use case demonstrates how EDS captures performance differences across multiple retrieval targets using 2SeaColor

(Fig. 1). Among the evaluated variables, Kd(489) achieved the highest EDS (0.80), reflecting excellent overall performance

with perfect convergence (3346/3346), low errors, and strong correlation. In contrast, bbp(443) shows the lowest EDS (0.06),180

despite low bias (β =−4%) and acceptable median symmetric accuracy (ϵ = 24%). The poor score is mostly driven by an

exaggerated slope (1.86). Intermediate scores for aϕ(443) (0.45) and adg(443) (0.25) reflect strong correlation but higher

errors.

5.3 Use Case 2: Comparing Algorithms

This second use case illustrates how EDS supports direct comparison of algorithm performance for the same variables. Fig. 2185

shows QAA retrievals for aϕ(443), adg(443), and bbp(443), while 2SeaColor results are in Fig. 1. For aϕ(443), both algorithms

achieve the same EDS (0.45), despite differences in individual metrics. QAA performs better for adg(443) (EDS = 0.41 vs.

0.25), with stronger correlation and better alignment with the 1:1 line. For bbp(443), both perform poorly, but QAA yields

worse results due to a steeper slope and stronger negative bias (β =−37% vs. −4%).

Aggregated EDS scores are nearly identical (0.25 for 2SeaColor and 0.24 for QAA) indicating comparable overall perfor-190

mance. However, if one variable is particularly important for a given application, the algorithm with the highest EDS for that

variable should be preferred.

5.4 Use Case 3: Evaluating Retrieval Performance Across Water Types

The third use case illustrates how EDS enables performance evaluation across water types with varying dynamic ranges. Fig. 3

shows Kd(489) results grouped by trophic state: oligotrophic, mesotrophic, and eutrophic. In oligotrophic waters, EDS is 0.50195

despite the lowest correlation (r = 0.55), driven by low errors. Mesotrophic waters show the highest overall performance (EDS

= 0.76), with a balanced metric profile. Eutrophic waters also yield high performance (EDS = 0.73), with the highest r due to

greater variability, though increased scatter is reflected in a higher ϵ.
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Figure 1. Scatterplots of in situ vs. retrieved values using 2SeaColor, with annotations for the correlation coefficient (r), regression slope

(m), median symmetric accuracy (ϵ), signed symmetric bias (β), valid retrieval ratio (n, valid retrievals/all input points), and the Euclidean

Distance Score (EDS). Red contours indicate data density.
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Figure 2. Scatterplots of in situ vs. retrieved values using QAA. Panel annotations follow the same convention as in Figure 1.

6 Conclusions

The Euclidean Distance Score (EDS) provides an objective framework for synthesizing algorithm performance in aquatic200

remote sensing. By integrating regression fit, retrieval error, and robustness into a single, interpretable score, we show how EDS
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Figure 3. Scatterplots of in situ vs. retrieved Kd(489) for three water types: oligotrophic, mesotrophic, and eutrophic. Panel annotations

follow the same convention as in Figure 1.

enables consistent comparisons across variables, algorithms and environmental contexts. Its transparent formulation based on

established metrics supports reproducibility, while its simplicity facilitates broader adoption in both research and operational
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contexts. In addition, the framework can be adapted to emphasize specific aspects of performance when required, ensuring

flexibility across diverse applications. Although EDS offers a unified view of performance and supports decision-making,205

reporting individual metrics remains essential for diagnosing specific retrieval limitations and guiding targeted improvements

of algorithms.
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