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Using a single metric to assess the performance of bio-optical algorithms is an interesting but 
challenging topic. The Euclidean Distance Score (EDS) proposed by the authors could be a 
useful approach. My major concerns, similar to those raised by other reviewers, involve the 
choice of individual metrics, their robustness, existing correlations, and inconsistent ranges 
(i.e., lack of normalization). These issues are critical and should be properly addressed. 

From a potential user’s perspective, the selection of metrics is somewhat arbitrary, and the 
results can therefore be misleading. Although the mathematics behind the Euclidean distance 
is straightforward, the method implicitly assumes that all metrics are equally important, which 
is not always the case and may vary across application scenarios. For example, in water-quality 
monitoring, absolute error may be the most important metric, while in time-series studies, bias, 
which indicates systematic over- or underestimation, may be more relevant. A combined score 
may hide such differences. This raises the question of how sensitive the EDS is to each input 
metric. The authors may consider performing a sensitivity analysis to examine whether all 
selected metrics contribute equally or whether some dominate the score. 

Overall, the paper is well written. I was pleased to read it. However, the issues above need to be 
properly addressed for the paper to contribute to the field. 

We thank the reviewer for this thoughtful assessment and for raising concerns that are indeed central 
to the design of a composite performance metric. These considerations, together with related 
comments from other reviewers, directly motivated revisions and further development of the EDS 
framework. 

Regarding the perceived arbitrariness in metric selection, the revised manuscript will include a 
dedicated section detailing the selection process. This includes a characterization of candidate 
metrics (summarized in Table 3) and a redundancy analysis (more details on Reply to Reviewer 3, D) 
to ensure that only complementary metrics are retained. Based on this analysis, the EDS was 
restricted to three dimensionless metrics representing distinct performance aspects: error 
magnitude (median symmetric accuracy, 𝜖), systematic bias (symmetric signed percentage bias, 𝛽), 
and retrieval robustness (valid retrieval ratio, 𝑛). Metrics found to be redundant, range-dependent, or 
sensitive to regression assumptions (e.g., slope and correlation) were removed. 

Figure 1 illustrates a geometric representation of the revised EDS in a three-dimensional space, 
following the exclusion of regression slope and Pearson correlation coefficient from the score . Of 
the three remaining metrics, the valid retrieval ratio (𝑛) is naturally bounded between 0 and 1 and 
referenced to an ideal value of unity. Median Symmetric Accuracy (𝜖) and Symmetric Signed 
Percentage Bias (𝛽) are dimensionless, defined relative to an ideal value of zero, with magnitudes 
that directly reflect fractional deviations from perfect agreement. Although they are formally 
unbounded and may exceed unity, we choose to not normalize them so that extreme deviations are 
strongly penalized rather than compressed through imposed bounds. For retrievals with errors and 
biases below 100% (corresponding to reasonably performing retrievals in practice), all metrics are of 



order unity and therefore can contribute comparably to the distance. This is reflected in the 
approximately isotropic geometry of the high-EDS region, indicating that no single metric is implicitly 
favoured in that regime. In contrast, values of 𝜖 or |𝛽| exceeding unity correspond to strongly 
degraded retrievals and dominate the distance, displacing the solution away from the ideal point in 
the EDS space. 

 

Figure 1. Geometric representation of the Euclidean Distance Score (EDS) in the three-dimensional (𝛽, 𝜖, 𝑛) space. The 
ideal retrieval corresponds to (𝛽, 𝜖, 𝑛) = (0,0,1). The shown domain is restricted to metric combinations satisfying ∣ 𝛽 ∣≤
𝜖, consistent with their definition. For visualization purposes, EDS values are displayed over the range [−2,1].  

Nevertheless, having comparable numerical scales does not imply that all metrics exert equal 
influence on the EDS across its admissible domain. The components exhibit different empirical 
variances: the agreement-based terms (𝜖 and 𝛽) may span a wide range depending on retrieval 
quality, whereas the valid retrieval ratio (𝑛) is bounded and, in most realistic applications, 
concentrated near its ideal value of unity. To quantify how these differences translate into effective 
influence on the score, we performed a pointwise sensitivity analysis based on the analytical 
gradient of the Euclidean distance, identifying the locally dominant direction of score variation at 
each admissible point. 



The resulting dominance structure, illustrated in Figure 2, shows that variations in error magnitude 
(𝜖) control the sensitivity of the score over most of the admissible space. Systematic bias (𝛽) does 
not emerge as a dominant sensitivity on its own, but attains equal influence with 𝜖 along a narrow, 
well-defined surface where ∣ 𝛽 ∣= 𝜖 and both exceed 𝑛 − 1. Sensitivity to the valid retrieval ratio (𝑛) 
is comparatively smaller over large portions of the space, but becomes dominant where 𝜖 and 𝛽 are 
low. 

When averaged over the explored domain (restricted to EDS > −2), the mean relative sensitivities are 
1.106 for 𝜖, 0.338 for 𝛽, and 0.116 for 𝑛. These values describe the average local responsiveness of 
the EDS to perturbations in each component across the admissible space. Stratifying the analysis by 
EDS (Table 1) reveals a transition in sensitivity regimes: near-optimal retrievals (EDS > 0.75) are most 
sensitive to 𝑛, whereas increasingly degraded retrievals exhibit progressively stronger sensitivity to 
𝜖. The comparatively lower sensitivity associated with 𝛽 does not imply a negligible contribution of 
bias to the distance. Rather, it reflects the constraint ∣ 𝛽 ∣≤ 𝜖, which limits the independent variability 
of bias and confines its influence on the distance to specific regions of the space where systematic 
over- or underestimation occurs. 

 

Figure 2. Sensitivity dominance structure of the Euclidean Distance Score (EDS) in the three-dimensional (𝛽, 𝜖, 𝑛) space 
under the constraint ∣ 𝛽 ∣≤ 𝜖. Colored regions indicate the metric to which the EDS is locally most sensitive, based on the 
analytical gradient of the distance 



Table 1. Mean relative sensitivities of the Euclidean Distance Score (EDS) with respect to error magnitude (ϵ), systematic 
bias (β), and valid retrieval ratio (n), computed over non-overlapping EDS bins. Sensitivities quantify the average local 
response of the score to perturbations in each component. 

EDS range ⟨Sn⟩ ⟨Sβ⟩ ⟨Sϵ⟩ Dominant sensitivity 
EDS > 0.75 0.425 0.023 0.103 n 
0.50 < EDS ≤ 0.75 0.362 0.049 0.220 n 
0.25 < EDS ≤ 0.50 0.284 0.078 0.351 ϵ 
0.00 < EDS ≤ 0.25 0.203 0.108 0.485 ϵ 
EDS ≤ 0.00 0.098 0.373 1.206 ϵ 

 

While the preceding analyses examine the theoretical geometry and sensitivity structure of the EDS, 
it is also instructive to assess how the score behaves in practical retrieval scenarios. We therefore 
conducted a structured perturbation analysis across 25 retrieval instances (two algorithms applied 
to four datasets and multiple variables). 𝜖, 𝛽 and 𝑛 were independently perturbed by ±5%, ±10%, 
±20%, and ±30%, while keeping the remaining components unchanged. The results show that EDS 
responded smoothly to increasing perturbation magnitude, with the largest sensitivity associated 
with 𝜖, followed by 𝛽, and smaller effects for 𝑛. For example, a ±20% perturbation yields median 
absolute EDS changes of approximately 0.054 for 𝜖, 0.016 for 𝛽, and 0.014 for 𝑛. The comparatively 
smaller influence of 𝑛 reflects the fact that, for most practical retrieval instances, 𝑛 is close to its 
ideal value and contributes little to the total distance. This analysis demonstrates that, in real 
applications, the sensitivity of the EDS strongly depends on the relative contribution of each 
component for a given retrieval. For context, the relative contribution of the metrics for the same 25 
retrieval instances are shown in Error! Reference source not found.. The score is primarily driven 
by 𝜖, systematic bias (𝛽) generally plays a secondary role, and contribution of the valid retrieval ratio 
(𝑛) is small for most retrievals. 

Table 2. Sensitivity of the Euclidean Distance Score (EDS) to metric-level perturbations. Minimum, median, mean, and 
maximum absolute changes in EDS (∣ 𝛥𝐸𝐷𝑆 ∣) resulting from ±5%, ±10%, ±20%, and ±30% perturbations 

Metric Perturbation Min ∣ 𝚫𝐄𝐃𝐒 ∣ Median ∣ 𝚫𝐄𝐃𝐒 ∣ Mean ∣ 𝚫𝐄𝐃𝐒 ∣ Max ∣ 𝚫𝐄𝐃𝐒 ∣ 
𝜷 5% 3.38E-06 3.89E-03 8.05E-03 6.10E-02 
𝜷 10% 6.58E-06 7.78E-03 1.61E-02 1.23E-01 
𝜷 20% 1.25E-05 1.55E-02 3.21E-02 2.52E-01 
𝜷 30% 1.77E-05 2.29E-02 4.78E-02 3.85E-01 
𝝐 5% 1.18E-03 1.38E-02 1.83E-02 6.10E-02 
𝝐 10% 2.34E-03 2.75E-02 3.66E-02 1.23E-01 
𝝐 20% 4.59E-03 5.38E-02 7.31E-02 2.52E-01 
𝝐 30% 6.73E-03 7.87E-02 1.09E-01 3.85E-01 
𝒏 5% 0.00E+00 2.56E-03 4.36E-03 2.65E-02 
𝒏 10% 0.00E+00 8.07E-03 1.18E-02 7.16E-02 
𝒏 20% 0.00E+00 1.44E-02 3.33E-02 1.69E-01 
𝒏 30% 0.00E+00 2.28E-02 6.10E-02 2.68E-01 

 
 



 

Figure 3. Fractional contribution of the EDS components to the squared distance for each retrieval instance (stacked 
bars), with the corresponding EDS shown on the secondary axis. Contributions are shown for 𝜖, 𝛽, and 𝑛. 

 

We also acknowledge that different applications may prioritize different performance aspects (e.g., 
error magnitude versus bias), thank you for raising this point. The EDS was conceptualized for typical 
algorithm validation in aquatic remote sensing. We do however highlight that the EDS formulation 
could be adapted to give more weight to different aspects according to the needs of the user. In the 
revised manuscript we will highlight this more explicitly.  

 

  

 

 

 



Table 3. Summary of candidate performance metrics considered for the evaluation of bio-optical retrieval algorithms. For each metric, the table reports its mathematical 
definition, metric class, key characteristics, and main limitations when applied to bio-optical variables. In all definitions, 𝐸𝑖  and 𝑂𝑖  denote the estimated and observed 
values of the 𝑖-th retrieval, respectively, and 𝑄𝑖 = 𝐸𝑖/𝑂𝑖  is the corresponding accuracy ratio. 

Metric Definition Metric Class Key characteristics Limitations for bio-optical variables 

MAPE 
100

𝑛
∑ |

𝐸𝑖 − 𝑂𝑖

𝑂𝑖
|

𝑛

𝑖=1

 

Agreement 
(multiplicative, 
deviation-based) 

- Average deviation in percentage format 

- Range-independent interpretability 

- Unstable for small observed values 

- Asymmetric (overestimation penalized 
more than underestimation) 

RMSE 

√
1

𝑛
∑(𝐸𝑖 − 𝑂𝑖)

2

𝑛

𝑖=1

 

Agreement 
(additive, deviation-
based) 

- Deviation in original units 

- Quadratic penalty emphasizes large 
errors 

- Highly sensitive to outliers and 
heteroscedasticity 

-  Interpretability affected by the range of the 
data 

MAE 
1

𝑛
∑|𝐸𝑖 − 𝑂𝑖|

𝑛

𝑖=1

 

Agreement 
(additive, deviation-
based) 

- Average deviation in original units 

- Less sensitive to outliers than RMSE 

- Sensitive to heteroscedasticity 

-  Interpretability affected by the range of the 
data 

Bias 
1

𝑛
∑(𝐸𝑖 − 𝑂𝑖)

𝑛

𝑖=1

 

Agreement 
(additive, signed 
deviation-based) 

- Average signed deviation in original units 

- Measure of systematic over- /under 
estimation 
 

- Sensitive to heteroscedasticity 

-  Interpretability affected by the range of the 
data 

MAE-ratio  

10
1
𝑛

∑ |log10(𝑄𝑖) |𝑛
𝑖=1  

Agreement 
(multiplicative, 
ratio-based) 

- Average deviation in ratio-based format 

- Range-independent interpretability 

- Suitable for log-normally distributed 
variables 

- Mean aggregation remains sensitive to 
outliers and heteroscedasticity that could 
remain even in log space 

Bias-ratio   

10
1
𝑛

∑ log10(𝑄𝑖) 𝑛
𝑖=1  

Agreement 
(multiplicative, 
signed ratio-based) 

- Average signed deviation in ratio form 

- Measure of systematic over- /under 
estimation 

- Range-independent interpretability 

- Mean aggregation remains sensitive to 
outliers and heteroscedasticity that could 
remain even in log space 



Metric Definition Metric Class Key characteristics Limitations for bio-optical variables 

- Suitable for log-normally distributed 
variables 

RMSE-ratio  
 

10
1
𝑛

∑ (log10(𝑄𝑖) )2𝑛
𝑖=1  

Agreement 
(multiplicative, 
ratio-based) 

- Deviation in a ratio format 

- Quadratic penalty emphasizes large 
errors 

- Range-independent interpretability 

- Suitable for log-normally distributed 
variables 

- Mean aggregation remains sensitive to 
outliers and residual heteroscedasticity that 
could remain even in log space 

Median 
Symmetric 
Accuracy 
(𝛜) 10𝑚𝑒𝑑𝑖𝑎𝑛(|log10(𝑄𝑖) |)

− 1 

Agreement 
(multiplicative, 
deviation-based) 

- Median proportional deviation 

- Range-independent interpretability 

- Suitable for log-normally distributed 
variables 

- Median aggregation yields robustness to 
outliers and residual heteroscedasticity 

- Less familiar metric 

Symmetric 
Signed 
Percentage 
Bias (β) 

sign(𝑀)(10|𝑀|

− 1) 
 

where 𝑀 =
median(log10(𝑄𝑖)) 

 

Agreement 
(multiplicative, 
signed deviation-
based) 

- Median signed proportional deviation 
(systematic bias) 

- Range-independent interpretability 

- Suitable for log-normally distributed 
variables 

- Median aggregation yields robustness to 
outliers and residual heteroscedasticity 

- Less familiar metric 

Pearson 
correlation 
coefficient 
(r) 

𝑟 =
𝑐𝑜𝑣(𝐸, 𝑂)

𝜎𝐸𝜎𝑂
 

 

Association - Strength of linear association (typically in 
log space) 
 

- Does not quantify agreement 

- Lacks response to bias 



Metric Definition Metric Class Key characteristics Limitations for bio-optical variables 

- Sensitive to outliers, leverage points and 
data range  

Regression 
slope Regression 

method 
dependent 

Association - Describes how variability in the 
observations is scaled by the estimates 
(typically in log space) 

- Does not quantify agreement 

- Sensitive to outliers and leverage points 

- Poorly conditioned for narrow data ranges 
Intercept Regression 

method 
dependent 

Association - Describes the offset between estimated 
and observed values at the origin (typically 
in log space) 

- Limited physical interpretability 

Valid 
retrieval 
ratio (n) 𝑁E,valid

𝑁O
 

Algorithm 
robustness 

- Fraction of cases for which a valid 
retrieval is produced 

- Captures algorithm convergence and 
ability to produce physically plausible 
outputs 

- Depends on the definition of the valid 
retrieval range, which can be subjective 

 

 


