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*Reviewer comments appear in bold. Authors’ responses are in plain text.

Using a single metric to assess the performance of bio-optical algorithms is an interesting but
challenging topic. The Euclidean Distance Score (EDS) proposed by the authors could be a
useful approach. My major concerns, similar to those raised by other reviewers, involve the
choice of individual metrics, their robustness, existing correlations, and inconsistent ranges
(i.e., lack of normalization). These issues are critical and should be properly addressed.

From a potential user’s perspective, the selection of metrics is somewhat arbitrary, and the
results can therefore be misleading. Although the mathematics behind the Euclidean distance
is straightforward, the method implicitly assumes that all metrics are equally important, which
is not always the case and may vary across application scenarios. For example, in water-quality
monitoring, absolute error may be the most important metric, while in time-series studies, bias,
which indicates systematic over- or underestimation, may be more relevant. Acombined score
may hide such differences. This raises the question of how sensitive the EDS is to each input
metric. The authors may consider performing a sensitivity analysis to examine whether all
selected metrics contribute equally or whether some dominate the score.

Overall, the paper is well written. | was pleased to read it. However, the issues above need to be
properly addressed for the paper to contribute to the field.

We thank the reviewer for this thoughtful assessment and for raising concerns that are indeed central
to the design of a composite performance metric. These considerations, together with related
comments from other reviewers, directly motivated revisions and further development of the EDS
framework.

Regarding the perceived arbitrariness in metric selection, the revised manuscript will include a
dedicated section detailing the selection process. This includes a characterization of candidate
metrics (summarized in Table 3) and a redundancy analysis (more details on Reply to Reviewer 3, D)
to ensure that only complementary metrics are retained. Based on this analysis, the EDS was
restricted to three dimensionless metrics representing distinct performance aspects: error
magnitude (median symmetric accuracy, €), systematic bias (symmetric signed percentage bias, ),
and retrieval robustness (valid retrieval ratio, n). Metrics found to be redundant, range-dependent, or
sensitive to regression assumptions (e.g., slope and correlation) were removed.

Figure 1 illustrates a geometric representation of the revised EDS in a three-dimensional space,
following the exclusion of regression slope and Pearson correlation coefficient from the score . Of
the three remaining metrics, the valid retrieval ratio (n) is naturally bounded between 0 and 1 and
referenced to an ideal value of unity. Median Symmetric Accuracy (¢) and Symmetric Signed
Percentage Bias () are dimensionless, defined relative to an ideal value of zero, with magnitudes
that directly reflect fractional deviations from perfect agreement. Although they are formally
unbounded and may exceed unity, we choose to not normalize them so that extreme deviations are
strongly penalized rather than compressed through imposed bounds. For retrievals with errors and
biases below 100% (corresponding to reasonably performing retrievals in practice), all metrics are of



order unity and therefore can contribute comparably to the distance. This is reflected in the
approximately isotropic geometry of the high-EDS region, indicating that no single metric is implicitly
favoured in that regime. In contrast, values of € or |B| exceeding unity correspond to strongly
degraded retrievals and dominate the distance, displacing the solution away from the ideal pointin
the EDS space.
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Figure 1. Geometric representation of the Euclidean Distance Score (EDS) in the three-dimensional (3, €,n) space. The
ideal retrieval corresponds to (8, €,n) = (0,0,1). The shown domain is restricted to metric combinations satisfying | § 1<
€, consistent with their definition. For visualization purposes, EDS values are displayed over the range [—2,1].

Nevertheless, having comparable numerical scales does not imply that all metrics exert equal
influence on the EDS across its admissible domain. The components exhibit different empirical
variances: the agreement-based terms (¢ and ) may span a wide range depending on retrieval
quality, whereas the valid retrieval ratio (n) is bounded and, in most realistic applications,
concentrated near its ideal value of unity. To quantify how these differences translate into effective
influence on the score, we performed a pointwise sensitivity analysis based on the analytical
gradient of the Euclidean distance, identifying the locally dominant direction of score variation at
each admissible point.



The resulting dominance structure, illustrated in Figure 2, shows that variations in error magnitude
(€) control the sensitivity of the score over most of the admissible space. Systematic bias (f) does
not emerge as a dominant sensitivity on its own, but attains equal influence with € along a narrow,
well-defined surface where | f |= € and both exceed n — 1. Sensitivity to the valid retrieval ratio (n)
is comparatively smaller over large portions of the space, but becomes dominant where € and f are

low.

When averaged over the explored domain (restricted to EDS > -2), the mean relative sensitivities are
1.106 for €, 0.338 for 8, and 0.116 for n. These values describe the average local responsiveness of
the EDS to perturbations in each component across the admissible space. Stratifying the analysis by
EDS (Table 1) reveals a transition in sensitivity regimes: near-optimal retrievals (EDS > 0.75) are most
sensitive to n, whereas increasingly degraded retrievals exhibit progressively stronger sensitivity to
€. The comparatively lower sensitivity associated with § does not imply a negligible contribution of
bias to the distance. Rather, it reflects the constraint | § |< €, which limits the independent variability
of bias and confines its influence on the distance to specific regions of the space where systematic

over- or underestimation occurs.
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Figure 2. Sensitivity dominance structure of the Euclidean Distance Score (EDS) in the three-dimensional (3, €,n) space
under the constraint | B |< €. Colored regions indicate the metric to which the EDS is locally most sensitive, based on the

analytical gradient of the distance



Table 1. Mean relative sensitivities of the Euclidean Distance Score (EDS) with respect to error magnitude (e), systematic
bias (B), and valid retrieval ratio (n), computed over non-overlapping EDS bins. Sensitivities quantify the average local
response of the score to perturbations in each component.

EDS range (Sn) (SB) (Se) Dominant sensitivity
EDS >0.75 0.425 0.023 0.103 n
0.50<EDS=0.75 0.362 0.049 0.220 n
0.25<EDS = 0.50 0.284 0.078 0.351 €
0.00<EDS=0.25 0.203 0.108 0.485 €
EDS = 0.00 0.098 0.373 1.206 €

While the preceding analyses examine the theoretical geometry and sensitivity structure of the EDS,
it is also instructive to assess how the score behaves in practical retrieval scenarios. We therefore
conducted a structured perturbation analysis across 25 retrieval instances (two algorithms applied
to four datasets and multiple variables). €, f and n were independently perturbed by 5%, +10%,
+20%, and £30%, while keeping the remaining components unchanged. The results show that EDS
responded smoothly to increasing perturbation magnitude, with the largest sensitivity associated
with €, followed by 5, and smaller effects for n. For example, a £20% perturbation yields median
absolute EDS changes of approximately 0.054 for €, 0.016 for 8, and 0.014 for n. The comparatively
smaller influence of n reflects the fact that, for most practical retrieval instances, n is close to its
ideal value and contributes little to the total distance. This analysis demonstrates that, in real
applications, the sensitivity of the EDS strongly depends on the relative contribution of each
component for a given retrieval. For context, the relative contribution of the metrics for the same 25
retrieval instances are shown in Error! Reference source not found.. The score is primarily driven
by €, systematic bias (f) generally plays a secondary role, and contribution of the valid retrieval ratio
(n) is small for most retrievals.

Table 2. Sensitivity of the Euclidean Distance Score (EDS) to metric-level perturbations. Minimum, median, mean, and
maximum absolute changes in EDS (| AEDS |) resulting from +5%, £10%, +20%, and +30% perturbations

Metric Perturbation Min | AEDS | Median | AEDS | | Mean| AEDS | | Max| AEDS |
B 5% 3.38E-06 3.89E-03 8.05E-03 6.10E-02
B 10% 6.58E-06 7.78E-03 1.61E-02 1.23E-01
B 20% 1.25E-05 1.55E-02 3.21E-02 2.52E-01
B 30% 1.77E-05 2.29E-02 4.78E-02 3.85E-01
€ 5% 1.18E-03 1.38E-02 1.83E-02 6.10E-02
€ 10% 2.34E-03 2.75E-02 3.66E-02 1.23E-01
€ 20% 4.59E-03 5.38E-02 7.31E-02 2.52E-01
€ 30% 6.73E-03 7.87E-02 1.09E-01 3.85E-01
n 5% 0.00E+00 2.56E-03 4.36E-03 2.65E-02
n 10% 0.00E+00 8.07E-03 1.18E-02 7.16E-02
n 20% 0.00E+00 1.44E-02 3.33E-02 1.69E-01
n 30% 0.00E+00 2.28E-02 6.10E-02 2.68E-01
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Figure 3. Fractional contribution of the EDS components to the squared distance for each retrieval instance (stacked
bars), with the corresponding EDS shown on the secondary axis. Contributions are shown for €, 3, and n.

We also acknowledge that different applications may prioritize different performance aspects (e.g.,
error magnitude versus bias), thank you for raising this point. The EDS was conceptualized for typical
algorithm validation in aquatic remote sensing. We do however highlight that the EDS formulation
could be adapted to give more weight to different aspects according to the needs of the user. In the
revised manuscript we will highlight this more explicitly.



Table 3. Summary of candidate performance metrics considered for the evaluation of bio-optical retrieval algorithms. For each metric, the table reports its mathematical
definition, metric class, key characteristics, and main limitations when applied to bio-optical variables. In all definitions, E; and O; denote the estimated and observed
values of the i-th retrieval, respectively, and Q; = E;/0; is the corresponding accuracy ratio.
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(multiplicative,
signed ratio-based)

- Measure of systematic over- /under
estimation

- Range-independent interpretability

Metric Definition Metric Class Key characteristics Limitations for bio-optical variables
MAPE n Agreement - Average deviation in percentage format - Unstable for small observed values
1002 |Ei —0i| | (muttiplicative, . _ » . - _
n - 0; deviation-based) - Range-independent interpretability - Asymmetric (overe.stlm.atlon penalized
= more than underestimation)
RMSE Agreement - Deviation in original units - Highly sensitive to outliers and
(additive, deviation- . ) heteroscedasticity
based) - Quadratic penalty emphasizes large
errors - Interpretability affected by the range of the
data
MAE Agreement - Average deviation in original units - Sensitive to heteroscedasticity
1% (additive, deviation- . . -
EZIEL- — 0] based) - Less sensitive to outliers than RMSE - Interpretability affected by the range of the
i=1 data
Bias n Agreement - Average signed deviation in original units - Sensitive to heteroscedasticity
1 (E,—0,) | (additive, signed _ 3
n i i deviation-based) - Measure of systematic over- /under - Interpretability affected by the range of the
=1 estimation data
MAE-ratio Agreement - Average deviation in ratio-based format - Mean aggregation remains sensitive to
(multiplicative, . : - outliers and heteroscedasticity that could
10%Z?=1|10g10(Qi) | | ratio-based) - Range-independent interpretability remain even in log space
- Suitable for log-normally distributed
variables
Bias-ratio Agreement - Average signed deviation in ratio form - Mean aggregation remains sensitive to

outliers and heteroscedasticity that could
remain even in log space




Metric Definition Metric Class Key characteristics Limitations for bio-optical variables
- Suitable for log-normally distributed
variables
RMSE-ratio Agreement - Deviation in a ratio format - Mean aggregation remains sensitive to
(multiplicative, ; ; outliers and residual heteroscedasticity that
ratio-based) - Quadratic penalty emphasizes large could remain even in log space
. errors
1052?:1(10&0(@) )2
- Range-independent interpretability
- Suitable for log-normally distributed
variables
Median Agreement - Median proportional deviation - Less familiar metric
Symmetric (multiplicative, ) ] .
Accuracy deviation-based) - Range-independent interpretability
an(ll )
(€) 1omedian(iogio@ D - Suitable for log-normally distributed
-1 variables
- Median aggregation yields robustness to
outliers and residual heteroscedasticity
Symmetric Agreement - Median signed proportional deviation - Less familiar metric
Signed (multiplicative, (systematic bias)
i [M]|
Percentage 51gn(M)(10 signed deviation- . ; o
Bias (B) = 1) based) - Range-independent interpretability
e Y = - Suitable for log-normally distributed
median(log,,(Q;)) variables
- Median aggregation yields robustness to
outliers and residual heteroscedasticity
Pearson cov(E, 0) Association - Strength of linear association (typically in | - Does not quantify agreement
correlation r=——"2 log space) )
Og0p - Lacks response to bias

coefficient

(r)




Metric Definition Metric Class Key characteristics Limitations for bio-optical variables
- Sensitive to outliers, leverage points and
data range
Regression Association - Describes how variability in the - Does not quantify agreement
slope Regression observations is scaled by the estimates
method (typically in log space) - Sensitive to outliers and leverage points
dependent
- Poorly conditioned for narrow data ranges
Intercept Regression Association - Describes the offset between estimated - Limited physical interpretability
method and observed values at the origin (typically
dependent in log space)
Valid Algorithm - Fraction of cases for which a valid - Depends on the definition of the valid
retrieval robustness retrieval is produced retrieval range, which can be subjective
ratio (n) Ng yalid
No - Captures algorithm convergence and

ability to produce physically plausible
outputs




