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Stumpf, 20 Oct 2025

*Reviewer comments appear in bold. Authors’ responses are in plain text and indented for clarity.

The paper proposes a strategy for algorithm comparison/evaluation by designing a single metric
to combine multiple metrics. This is a solid progression from previous work (referenced) that
looked at metrics for algorithm assessment. The “Euclidan Distance Score” (EDS) is a strong
approach to summarize the data. A critical objective of the authors is to identify only the
metrics that are relevant, and summarize those, rather than to include lots of (often closely
related) metrics and leave it to the reader to make sense of them. | will say that this paper was
a pleasure to review, and it will become an excellent paper that should be quite important (and
hopefully well used). But it does need revision to make sure itis correct.

A concern with comparing metrics is how to “normalize” those metrics that have quite
disparate ranges. This approach addresses it by treating ratios & proportions, and so are
unitless. That provides a good approach that is not arbitrary. While it does not force results to
be between 0 and 1, it is set up with two strong conditions. An EDS =1 is “perfect”. Any EDS <0
is unacceptably poor, and each of the input parameters to the EDS are typically going to be
between 0 and 1. The ones that are not (proportional slope deviation, proportional error, and
proportional bias), are really unacceptable if the values exceed 1.

| have two large concerns that should be directly solvable. First: the parameters to input.
Second is whether the configuration of the equation parameters is correct.

We thank the reviewer for the encouraging evaluation of our proposed method and for the
constructive assessment and suggestions. The identification of the key issues is appreciated.
We address each group of comments in detail below.

The inputs are R (Pearson correlation coefficient), linear regression slope calculated in log
space (m), median ratio error (e ~ epsilon), Median ratio bias (B ~ beta), and valid retrieval ratio

(n).

The question is: are these all robust and independent? Of these, e, B, and n are quite good. ltis
true that e and B are not actually independent, but as there appears to be no robust means of
separating the two (de-biasing the error means calculating mean errors, rather than median
errors, which gets into non-robust methods), so we will go with it.

As a practical matter a competent product should tend toward a bias ratio of 1. If it does not,
then it is punished relatively severely, as e >= B. A biased “low error” model will probably do
worse than an unbiased relatively high error model. This should be noted in the paper.

We agree that, in practice, a good retrieval result should tend toward negligible systematic
bias (8 = 0; note that f is already rescaled to deviation instead of ratio in our proposed
formulation. More details on how we make that more clear in answer below). In the EDS
framework, the typical magnitude error (¢) and the systematic bias (f) are both derived from
the same accuracy ratio Q = E/O and, by construction, | § |< €, with equality occurring
when deviations are purely systematic.



This dependence implies that bias-driven degradations tend to reduce EDS through two
pathways. For example, adding a constant offset of +0.05 to all log accuracy ratios in a tight,
unbiased distribution:

log 10(Q;) =[-0.03,-0.01,0,0.01,0.03],
yields:

log 10(Q;)' =[0.02,0.04,0.05,0.06,0.08],
for which 8 increases from 0 to approximately 12% and € increases from approximately 2%
to 12%. Assuming a fixed n = 0.98, the corresponding EDS decreases from 0.97 to 0.83.

In contrast, increasing magnitude error through additional scatter without introducing bias,
for example:

log 10(Q;)' = [-0.08,—0.06,0,0.06,0.08],
increases € from 2% to approximately 15% while 8 remains zero, resulting in a smaller EDS
decrease from 0.97 to 0.85. This illustrates that systematic bias can penalize EDS more
strongly than a comparable increase in magnitude error from unbiased scatter, consistent
with the reviewer’s observation.

We note, however, that this behaviour does not imply that EDS systematically favours
unbiased retrievals. For instance, at fixed n = 0.98, a case with e = f = 10% yields a higher
EDS (0.86) than a case with € = 20% and 8 = 0% (EDS = 0.80), demonstrating that total error
magnitude dominates the score in this case.

We will include this discussion in the revised manuscript, alongside a thorough sensitivity
analysis (more details on Reply to Reviewer 3).

At lines 24-28 the paper notes the problem of using root-mean-square error metrics. This is a
critical point. Basically, the paper sets out that robust metrics should be used, which is why the
paper proposed median e and B. However, Pearson regression and linear regression slope are
least squares solutions. Thiel-Sen slope, or an equivalent, should be used for the slope. This is
necessary, as many optical models (or for that matter, many models) often deviate at very low
or very high values. That statistical leverage will severely alter a least squares regression slope,
but not a robust slope metric.

Regression as a metric has an additional critical flaw: it normalizes to the standard deviation of
the data. Therefore, an exact subset of a population that has a smaller range will have a lower R
value than the population. (Worse, as observed in Seegers et al., a low error method with a small
range of data will have a lower R values than a higher error method with a much larger range of
data.) This problem is also seen in Figure 3. Oligotrophic water has the smallest error, but a low
R value. The problem is the narrow range of data. Conversely if the range is large enough, R
provides no useful information, both good and poor models can have high R values. Because of
this problem, including R means that EDS values are not be comparable across the different
data sets. (There is a good discussion of the problem of R by a top statistician
https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/10/lecture-10.pdf ).

By the way, R and linear regression slope are not independent, slope =S_y/S_x*R.



As to the input metrics, based on appropriate and consistently robust metrics, the appropriate
ones would then appear to be

1 median (Thiel=Sen) slope, to capture whether the data generally behaves well across the
range. (I will say that | don’t really like slope, but | do not see a better option, as that would
involve more complex partitioning alternatives that are difficult to standardize.)

2 median error
3 median bias
4 retrievals n.

We thank the reviewer for raising this important discussion and for directing us to relevant
literature. We acknowledge the concerns raised regarding regression-based diagnostics, in
particular their sensitivity to data range and leverage effects, which can compromise
comparability across datasets.

These considerations directly motivated the revisions to the EDS framework. In the revised
formulation, neither regression slope nor correlation coefficient are retained as components
of the composite score. We adopted a conservative approach and restricted the EDS to three
metrics: a robust measure of error magnitude (€), a robust measure of systematic bias (8),
and a term capturing retrieval feasibility (n).

While robust slope estimators such as the Theil-Sen method mitigate sensitivity to outliers
and leverage, slope estimates remain inherently dependent on the range of the evaluated
data regardless of the regression method employed. When values span a narrow range (e.g.,
within a single optical water type), slope estimates become poorly conditioned and
associated with increased uncertainty, such that small data perturbations can lead to large
variations in the estimated slope. Consequently, slopes are not always reliable as
performance metrics or directly comparable across datasets or stratifications. In addition,
our redundancy analysis (see reply to reviewer 3) indicated that including any slope-based
diagnostic introduces overlap with bias-related metrics.

By excluding regression-based diagnostics and focusing on robust, range-independent
measures, the revised EDS avoids the limitations highlighted by the reviewer and improves
comparability across datasets and stratifications. We have also expanded the discussion
about the rationale for metric selection and this will be included the revised manuscript.

Median error and bias do not appear to be correctly specified in EDS equation (7). As these are
ratios, shouldn’t they be (e - 1)’and (B-1)>? Both are defined as a ratio of E/O
(expected/observed), so a value of 1, is perfect, and should reduce to zero. Equation would be:

EDS=1-sqrt[(m-1)® + (e-1)2 + (B-1)? + (n-1)2]

As defined in Equations (3) and (5), € and 8 are expressed as proportional deviations from
unity (ratio minus one) and are therefore zero at perfect agreement. This formulation allows
zero-centred deviations to be combined directly in Equation (7) without additional
transformation.



The ratio-minus-one form was chosen to preserve interpretability: for example, a value of
0.10 directly indicates a 10% deviation, avoiding potentially confusing statements such as
“an error of 1.1 corresponds to a 10% deviation.”

To be as clear as possible, we will make it more explicit in the revised manuscript that € and
B are defined as zero-centred proportional deviations. The proposed description of the
metrics to be included is the following:

“Building on the concept of the accuracy ratio introduced by Tofallis (2015), Morley et al.
(2018) proposed a set of metrics designed for variables that span several orders of
magnitude. These metrics are based on the logarithm of the accuracy ratio:

log(Q;) = log (j)

i

To quantify typical error magnitude while ensuring symmetry between over- and under-
estimation, the absolute value of the logarithmic accuracy ratio is considered.
Interchanging estimated and observed values therefore yields the same error magnitude.
These values are aggregated across all estimation—-observation pairs using the median,
providing robustness to skewed distributions and outliers:

M = median(|log,,(Q;)])

The aggregated value is exponentiated to return to multiplicative space and shifted relative
to the ideal ratio of unity by subtracting one, yielding the Median Symmetric Accuracy (€):

e=10"-1

This formulation produces an unsigned, zero-centred measure of typical proportional
deviation from perfect agreement, directly interpretable as a fractional (or percentage)
error.

Using the same underlying quantity, systematic bias is quantified by taking the median of
the signed logarithmic accuracy ratio:

M' = median(log,,(Q;))
And defining the Symmetric Signed Percentage Bias (f) as:
B = sign(M)(10M' — 1)

where the sign indicates systematic over- or under-estimation and the magnitude reflects
the typical proportional bias relative to the ideal value of zero.”

The authors might ponder thought experiments as examples (suggestion only). | did only
one. An algorithm that has all results on an exact line with a slope of 1, but is severely
biased. Error (e ~ epsilon) and (B ~ beta) will be equal. If the bias is 2x, which is a low
performance, the EDS would return a value of zero.



We thank the reviewer for this constructive suggestion. We agree that thought experiments
can be valuable for illustrating the behaviour and interpretation of the EDS.

To support this, we have generated a geometric representation of the revised EDS in a three-
dimensional (f,€,n) space (Figure 1), following the exclusion of regression slope and
Pearson correlation coefficient from the score. This representation explicitly shows the
domain of admissible metric combinations and how the EDS varies as a function of error
magnitude, systematic bias, and retrieval robustness.

The reviewer’s example of an algorithm producing estimates that lie on an exact line with
slope one but are severely biased corresponds to the case € =| f |=1 i.e. a systematic
multiplicative bias of a factor of two. For this configuration, considering n = 1, the revised
EDS would be approximately —0.41. This value reflects a retrieval that is strongly inaccurate
and can also be used to motivate practical benchmark value, for instance illustrating that an
EDS around -0.4 corresponds to a consistently biased retrieval with errors on the order of
100%, which would generally be regarded as poor performance in practice.

In the revised manuscript, we will explicitly include such thought experiments derived from
the geometric representation to illustrate how different performance regimes map onto the
EDS.
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Figure 1. Geometric representation of the Euclidean Distance Score (EDS) in the three-dimensional (3, €,n) space. The
ideal retrieval corresponds to (S8, €,n) = (0,0,1). The shown domain is restricted to metric combinations satisfying | § 1<
€, consistent with their definition. For visualization purposes, EDS values are displayed over the range [—2,1].



