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Abstract. Copernicus Land Monitoring Service (CLMS) produces biogeophysical maps of the global land surface. The CLMS

portfolio so far did not include actual evapotranspiration (ETa), despite it being a direct link between the energy, water and

carbon cycles and its importance for global food security, efficient water resources management and weather forecasting.

However, a global CLMS ETa product is currently under development and will enter operational production by the end of 2025.

It will have a spatial resolution of 300 m, dekadal (10-daily) temporal resolution, will consist of evaporation and transpiration5

sub-products and (like all other CLMS products) will be distributed under free and open data policy. It will be based mainly

on Copernicus input data with primary satellite imagery coming from the observations of OLCI and SLSTR sensors on board

of Sentinel-3 satellites. Such product will fill a gap in currently existing global and operational ETa products, thus satisfying

a wide range on potential users’ needs. In this paper, we describe the various design choices taken during the development of

the ETa product, ranging from cloud masking and gap-filling, through derivation of biophysical traits, radiation components10

and weather forcings to spatial sharpening of the land surface temperature observations. Those data were then used to drive

two evapotranspiration models: TSEB-PT and ETLook. A prototype implementation of the ETa processing chain was used

to produce ETa data across a globally representative range of climatic zones and plant functional types, which was validated

against measurements from 104 Eddy Covariance flux tower sites. The resulting overall best root mean squared error (RMSE)

of 0.80 mm/day (relative RMSE of 47%), bias of -0.12 mm/day (relative bias of 7%) and coefficient of determination of 0.8415

compare well with a similar global ETa dataset and are encouraging for the upcoming operational production of ETa maps.

1 Introduction

Copernicus (https://www.copernicus.eu, last accessed: 01/09/2025) is the Earth observation (EO) program of the European

Union that provides free and open access to data acquired by the Sentinel satellites (and other contributing missions) and to

higher level and non-space products through the Copernicus services. One of the main objectives of the program is to bring20

operational mindset to EO by guaranteeing long-term future continuity of the provided data and predictable planning of future

evolution of data and services. The Copernicus Land Monitoring Service (CLMS - https://land.copernicus.eu, last accessed:
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01/09/2025) produces a series of qualified global biogeophysical products on the status and evolution of the land surface. The

products are used to monitor vegetation, water cycle, energy budget and terrestrial cryosphere. Production and delivery are

carried out in a timely manner and are complemented by the constitution of long-term time series.25

Actual evapotranspiration (ETa) has so far not been included in the CLMS portfolio. This will change when the CLMS

near-real-time (NRT) ETa product will enter operational production by the end of 2025. Such product will be of importance

for many applications and research questions. The ETa is one of the Essential Climate Variables (ECV) as defined by the

Global Climate Observing System (Bojinski et al., 2014). It binds different processes occurring at the Earth’s surface (related

to energy, water and carbon cycles) and evolves coherently with other CLMS variables and associated products (e.g. vegetation30

indices, gross primary productivity, soil moisture, surface temperature). Since actual evapotranspiration is a direct proxy of

plant water use it can be utilized for consistent irrigation water use monitoring across natural and political boundaries, and

is therefore essential for Sustainable Development Goal (SDG) reporting, e.g. of SDG indicators 6.4.1 and 6.4.2 (O’Connor

et al., 2020). ETa can also be useful for forest fire risk/spread forecasting (Vidal et al., 1994), drought monitoring (Anderson

et al., 2011), hydrological modelling (Zhang et al., 2020; Larsen et al., 2016), irrigation accounting (Zhang and Long, 2021)35

and yield modelling (Jurečka et al., 2021; Gómez-Candón et al., 2021). In addition, spatially distributed fields of ET at an

adequate spatial resolution can help to improve the weather forecasting (Boone et al., 2025), in particular in irrigated fields in

semi-arid climates where the additional water supply in the soil affects the surrounding microclimate and thus the boundary

layer conditions (Udina et al., 2024; Lunel et al., 2024).

One of the initial primary users of the CLMS ETa product will be the Food and Agriculture Organisation (FAO) of the United40

Nations. FAO has been producing and disseminating ETa datasets, including a global product, through its "WAter Productivity

through Open-access of Remotely sensed derived data" (WaPOR - https://www.fao.org/in-action/remote-sensing-for-water-p

roductivity/en - last accessed 30/07/2025) project. The WaPOR data has been used in multiple applications such as improving

water use productivity or monitoring agricultural practices and water consumption (Chukalla et al., 2022; Hajirad et al., 2023;

Seijger et al., 2023). However, production of global operational satellite-based datasets is not in the core mandate of the FAO45

and therefore long-term continuity of the WaPOR project cannot be ensured. For this reason, FAO expressed strong interest to

the European Commission for the introduction of a global ETa dataset in the CLMS portfolio.

In order to satisfy this wide range of potential users’ needs, and for consistency with other global CLMS products, the CLMS

ETa product will have a spatial resolution of 300 m and a dekadal temporal resolution. Other product requirements are shown

in Table 1. Those requirements also closely match the specifications of the WaPOR global ETa dataset and fill a gap in cur-50

rently available satellite-based ETa products. Apart from WaPOR (the long-term continuity of which is not guaranteed), global

operational ETa datasets with closest matching spatio-temporal specifications are the MODIS and VIIRS ETa products (Román

et al., 2024). They have a higher temporal resolution (8-days) but lower spatial resolution (500 m) and use a modeling approach

which does not make direct use of land surface temperature (LST) measurements (Mu et al., 2011). Another operational and

global product which utilizes MODIS and VIIRS data is produced by United States Geological Survey using SSEBop energy55

balance model (Senay et al., 2020) with dekadal temporal resolution and 1 km spatial resolution. Other ETa datasets have

either much lower spatial and temporal resolutions (e.g. ETa product based on geostationary observations produced by the
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Table 1. Specifications (requirements) of the Copernicus Land Monitoring Service actual evapotranspiration product.

Property Specification

Spatial resolution 300 m

Temporal resolution Dekadal (dekad: days 1–10, 11–20, 21–end of month)

Spatial coverage Global

Temporal coverage 2019 – Near Real Time

Timeliness Within 2 days (optimally 1 day) after the end of each dekad

Products

- Actual evapotranspiration [mm/day]

- Soil evaporation [mm/day]

- Canopy transpiration [mm/day]

- Latent heat fluxes [W/m2]

- Sensible heat flux [W/m2]

EUMETSAT Satellite Application Facility on Land Surface Analysis - Barrios et al. (2024)), do not have global coverage (e.g.

OpenET - Melton et al. (2022)) or are not produced operationally and in NRT (e.g. ETMonitor - Zheng et al. (2022)).

Preparatory activities required to develop an operational CLMS ETa product recommended that two ET modelling frame-60

works should be further investigated. The first one is the Sen-ET framework (Guzinski et al., 2020, 2021) developed to model

ETa with Copernicus data at various spatial scales and using the Two-Source Energy Balance Priestley-Taylor (TSEB-PT) ET

model (Norman et al., 1995; Kustas and Norman, 1999; Anderson et al., 2024). The second is the WaPOR framework devel-

oped by FAO through the WaPOR project and using the ETLook ETa model (Bastiaanssen et al., 2012). Both models, although

conceptually different, estimate evaporation and transpiration and use LST as one of core input forcings.65

This paper aims to give an overview of the design choices made for the upcoming CLMS ETa product. In Section 2 , we

present the design of the CLMS ETa processing chain, starting with input data sources through their pre-processing to brief

description of the two ETa models and method used for gap-filling of the resulting maps. This is followed by Section 3 in

which a prototype ETa dataset, produced with both TSEB-PT and ETLook, is compared against measurements from 104 Eddy

Covariance (EC) flux tower sites. In Section 4, we compare the results with other similar ET datasets, justify the design choices70

described in Section 2 and outline suggestions for product improvement. Finally, conclusions are presented in Section 5.

2 Data and methods

2.1 Input data sources

Modelling actual evapotranspiration with satellite observations and TSEB-PT or ETLook models is a complex task requiring

diverse set of input forcing variables (Table 2). Those are derived from shortwave optical imagery needed to estimate biophys-75
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Table 2. Input forcing variables for Copernicus Land Monitoring Service actual evapotranspiration product. PAR indicates photosynthetically

active radiation part of the spectrum (400-700 nm) while NIR indicates near infra-red part of the spectrum (700-2500 nm).

Group Variable Units

Biophysical traits

Leaf Area Index (LAI) m2 m−2

Fraction of LAI that is green –

Mean leaf inclination angle (LIDF) º

Leaf PAR reflectance –

Leaf PAR transmittance –

Leaf NIR reflectance –

Leaf NIR transmittance –

Soil properties
Soil PAR reflectance –

Soil NIR reflectance –

Boundary condition Radiometric surface temperature K

Weather

100m air temperature K

100m wind speed m s−1

100m water vapour pressure hPa

Surface pressure hPa

Direct PAR irradiance W m−2

Diffuse PAR irradiance W m−2

Direct NIR irradiance W m−2

Diffuse NIR irradiance W m−2

Longwave irradiance W m−2

Daily shortwave irradiance W m−2

Daily reference ET mm day−1

Daily precipitation mm day−1

Canopy structure

Canopy height m

Fractional cover of clumped canopy –

Canopy width to height ratio m m−1

Effective leaf size m

Maximum stomata conductance m s−1

ical properties of the surface (e.g. leaf area index - LAI and albedo), thermal infrared observations of land surface temperature

(LST) which is the boundary condition for the land surface - air energy exchange and a proxy for root-zone soil moisture,

weather forcings, which drive (e.g. solar irradiance) and modulate (e.g wind speed) the energy exchange between the land

surface and the air, and ancillary data (e.g. digital elevation models and canopy height maps) that cannot be derived from the

other data sources.80

Copernicus products should, to the largest extent possible, be based on other Copernicus data. This is to ensure the free and

open license conditions, long-term future continuity and consistency across the CLMS portfolio. In case of the CLMS ETa
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Table 3. Input data sources for the Copernicus Land Monitoring Service actual evapotranspiration near-real-time product.

Data type Sensor / model Product name Source

Thermal imagery Sentinel-3 SLSTR SL_2_LST Copernicus Data Space Ecosystem

Shortwave imagery Sentinel-3 OLCI + SLSTR cgl_TOC v2.3.4 Copernicus Land Monitoring Service

Meteorological data ECMWF IFS CAMS global atmospheric composition forecasts Copernicus Atmosphere Monitoring Service

Landcover map PROBA-V (Sentinel-2) Global Dynamic Land Cover 2019 Copernicus Land Monitoring Service

Digital elevation model TanDEM-X Copernicus DEM Copernicus Data Space Ecosystem

Canopy height map GEDI LiDAR + Sentinel-2 ETH_GlobalCanopyHeight_10m_2020_version1 ETH Zurich

product, this means observations from optical (both shortwave and thermal infrared) sensors on board of Sentinel-3 satellites

and Copernicus Digital Elevation Model (DEM - European Space Agency and Airbus (2022)), both available from the Coper-

nicus Data Space Ecosystem (https://dataspace.copernicus.eu/ - last accessed 25/08/2025), and products provided by CLMS85

and Copernicus Atmosphere Monitoring Service (Peuch et al., 2022) (Table 3). The only exception is the canopy height map,

which is derived from fusion of GEDI LiDAR measurements and Sentinel-2 imagery (Lang et al., 2023).

The subsections below describe the pre-processing methods selected to convert the input data from Table 3 into ET model

input forcing variables shown in Table 2.

2.2 Sentinel-3 cloud-masking and gap-filling90

Biophysical characterization of land-surface is based on imagery obtained by two sensors on-board Sentinel-3 satellites: short-

wave Ocean and Land Colour Intrument (OLCI); and combined shortwave and thermal infrared Sea and Land Surface Tem-

perature Radiometer (SLSTR). Both of those sensors operate in the optical spectral domain, which is blocked by clouds and

therefore cloud detection and masking needs to be performed before further analysis of this data.

Atmospherically corrected and geolocated Top-Of-Canopy (TOC) reflectances derived from shortwave optical detectors on95

OLCI and SLSTR sensors are generated and distributed by the CLMS (Copernicus Land Monitoring Service, 2025b). The

cloud mask of this product is based on quality flags from Level 1 SLSTR and OLCI products and IDEPIX approach (Wevers

et al., 2022). No further cloud masking is performed during the ETa production and instead the recommendations on using the

annotation flags from Section 5.1 of Product User Manual (Copernicus Land Monitoring Service, 2025d) are followed.

Land Surface Temperature (LST) product (SL_2_LST___) is a Level 2 product based on thermal observations by the SLSTR100

sensor. It comes with quality layers indicating the presence of clouds. As recommended in the Copernicus Sentinel-3 SLSTR

Land User Handbook (https://sentiwiki.copernicus.eu/__attachments/1672112/OMPC.ACR.HBK.002-Sentinel3SLST

RLandHandbook2024-1.4.pdf, last accessed 01/08/2025), the probabilistic cloud mask is used during ETa production. This

cloud mask uses a semi-Bayesian approach by estimating a probability of a clear-sky using radiative transfer modelling and

meteorological conditions at the time of satellite overpass and observational climatology.105

The TOC reflectance is used to derive land surface biophysical traits (Sec 2.3) and albedo (Sec 2.4) and to sharpen the LST

(Sec 2.5). The reflectance values, as well as biophysical traits, usually show a clear seasonal cycle and spatial similarity, and

5

https://doi.org/10.5194/egusphere-2025-4342
Preprint. Discussion started: 23 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 1. Widths and locations of swaths of Sentinel-3 OLCI and SLSTR instruments (courtesy of Donlon et al. (2012)) (left) and maximum

view zenith angles (VZA) of those swaths overlaid on an example OLCI (colour) and SLSTR (greyscale) image (right). Also indicated are

potential limits of VZA on the western side of the swath (45° and 35°).

have same or similar values in both cloudy and sunny conditions (e.g. leaf area index does not change day to day depending

on cloudiness). Therefore, gaps in this data are highly suitable for filling using spatio-temporal gap-filling, e.g. StarFM (Gao

et al., 2006), and smoothing methods, e.g. Whittaker-Eilers smoother used by WaPOR (Eilers, 2003). On the other hand, LST110

is highly variable in both time (the temperature can change significantly at short time intervals even though it also has a strong

seasonal cycle) and space. In addition, LST under clouds is different to LST in clear-sky conditions and using gap-filled values

can lead to energy imbalance at the land surface. Therefore, LST is usually not gap-filled, especially if it is to be used as input

into ETa models.

In the case of the CLMS ETa product, we are using TOC reflectance and LST observations acquired by sensors onboard115

the same satellite platform and thus observing the land surface (and the clouds) at the same time. Therefore, since LST is not

gap-filled, there is also no need to gap-fill TOC reflectance acquired at the same time and location. However, the Sentinel-3

OLCI sensor has a swath width of 1270 km, while the nadir pointing scan of SLSTR sensor has a swath width of 1400 km

(Donlon et al., 2012). Both sensors are tilted to reduce the sun glint effect and therefore larger part of the swath is located

westwards of the satellite orbit path (Fig. 1 left).120

The sensors are positioned such that their swaths align at the western edge, while on the eastern edge the coverage of OLCI

ends at VZA of 24° while coverage of SLSTR ends at VZA of 35° (Fig. 1 right). When modelling ETa, LST observations

acquired at high VZA (e.g. above 45° as in the Sen-ET approach (Guzinski et al., 2020)) are usually omitted due to increased

uncertainty caused by longer atmospheric path, LST anisotropy and larger pixel footprint. However, SLSTR observations from

the eastern edge of the swath with VZA between 24° and 35° could still potentially be used if OLCI data for that part of the125

swath was gap-filled.

To assess whether it is worth to gap-fill the missing part of OLCI’s eastern swath, and whether maximum VZA should be

limited to 45° or 35° (threshold mission requirement value for planned Copernicus Land Surface Temperature Monitoring

6

https://doi.org/10.5194/egusphere-2025-4342
Preprint. Discussion started: 23 September 2025
c© Author(s) 2025. CC BY 4.0 License.



mission (Koetz et al., 2021)), we performed an analysis of number of monthly cloud-free Sentinel-3 LST acquisitions over

Europe and Africa (Fig. 2). This analysis was performed using 5 years of data (2020–2024) for months of March, June,130

September and December (apart from March 2020 and December 2024) and while limiting VZA of the western edge of swath

to either 45° or 35° and eastern edge to either 35° or 24°.

Figure 2 shows a clear seasonal trend in the number of cloud-free SLSTR observations. In June and September, most of

Europe has sufficient number of cloud-free observations for each dekad (at least 2 but often more than 4), while in March and,

especially in December, there are areas where less than two or even less than one cloud free observations are available in each135

dekad. In the equatorial region of Africa, there are predominantly cloudy conditions throughout the year but they shift north in

June and September and south in December and March. The difference between number of monthly cloud-free observations

with eastern VZA limited to 35° or 24° is in large majority of cases less than 2, except in the Sahara region and southern Africa

where there is sufficient number of observations in either case. The difference between limiting western swath to either 45° or

35° is more pronounced and can push some regions to having less than 1 observation per dekad.140

Based on this analysis, it was decided to limit the western VZA to 45° and eastern VZA to 24°. This means that the extra

processing that would be required to gap-fill the OLCI swath is avoided. Even though gap-filling of input imagery will not

be performed, the filling of cloud gaps in the produced ETa maps is required to fulfill the requirements of the ETa product.

Therefore gap-filling of outputs will be performed as described in Section 2.9.

2.3 Biophysical traits145

A sound and generalizable approach to obtain the biophysical traits required by the ETa models is the inversion of canopy

radiative transfer models (RTM), such as the combined PROSPECT (Jacquemoud and Baret, 1990; Feret et al., 2008; Féret

et al., 2017, 2021) and 4SAIL (Verhoef et al., 2007) RTMs. Together those models can simulate the canopy spectra from 400 to

2500 nm at every nm based on the inputs listed in Table 4 (Jacquemoud et al., 2009). One computationally efficient inversion

method consists of training a regression model based on large number of PROSPECT and 4SAIL simulations (Weiss et al.,150

2000, 2002; Verrelst et al., 2012). Then this regression model is applied to the spectral imagery to obtain the biophysical traits

maps.

In case of CLMS ETa, we are using a vectorized version of PROSPECT-D (Féret et al., 2017) and 4SAIL models (Nieto,

2025). This vectorized version allows us to run the RTMs very efficiently and thus enables us to generate specific regression

models for each scene, given their actual observation and illumination conditions. This contrasts with other similar algorithms,155

such as the BiophysicalOp in the Sentinel-2 toolbox of Sentinel Application Platform (Djamai et al., 2019), which applies the

same generic hybrid inversion approach to all scenes. The biophysical processing framework is summarized as:

1. Estimating the proportion of spectral direct and diffuse irradiance using the 6S model (Vermote et al., 1997) and mean

sun zenith and azimuth angles together with mean aerosol optical thickness and total column water vapor of Sentinel-3

TOC scene.160

2. Generating ca. 40000 PROSPECT-D+4SAIL simulated spectra by:
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Figure 2. Mean number of monthly cloud-free SLSTR observations for period 2020-2024 (apart from March 2020 and December 2024)

for March (top-left), June (top-right), September (bottom-left) and December (bottom-right). The titles of the sub-plots indicate view zenith

angle (VZA) limits on the western and eastern edges of the swath (e.g. W45–E35 indicates a VZA limit of 45° on the western edge and

35° on the eastern edge). The last column of each panel shows the difference in cloud-free observations per month between limiting eastern

swath to either 35° or 24°. Less than 3 observations per month means on average less than one observation per 10-day aggregation period

(dekad), less than 6 per month means less than 2 per dekad, less than 12 per month means less than 4 per dekad.
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Table 4. List of biophysical traits and ancillary information required by PROSPECT-D+4SAIL radiative transfer models together with range

of values which are simulated or set during the simulation. Ranges are based on information extracted from the LOPEX database (Hosgood

et al. 1993) and the Sentinel-2 Biophysical ATBD (Weiss et al., 2020)

.

Type Variable Units Lower range Upper range

Leaf trait

Leaf structure parameter – 1 3

Chlorophyll a+b concentration (Cab) µg cm−2 0 110

Carotenoids concentration (Car) µg cm−2 0 30

Antocyanins concentration (Ant) µg cm−2 0 40

Brown pigments (Cbrown) arbitrary 0 2

Dry matter content (Cm) g cm−2 0.0017 0.0031

Leaf water content (Cw) g cm−2 0 0.0525

Canopy trait

Total LAI m2 m−2 0 8

LIDF: Campbell (1990) mean leaf angle ° 20 80

Hotspot parameter – 0.05 1

Ancillary inputs

Soil spectrum – ECOSTRESS spectra library

Direct/diffuse irradiance – Scene mean

Solar angles ° Scene mean

Sensor angles ° Scene mean

(a) Creating the same amount of Monte Carlo random samples (Saltelli et al., 1999) of biophysical traits and observa-

tion angles, based on prescribed plausible ranges listed in Table 4.

(b) Running PROSPECT-D+4SAIL for each of these samples together with the generated proportion of spectral direct

and diffuse irradiance and the mean solar angles of the scene.165

(c) Convolving the simulated narrowband spectra using the Sentinel-3 OLCI and SLSTR spectral response functions

in order to obtain a set of 40000 simulated Sentinel-3 TOC reflectances.

3. Training a random forest regression in which the dependent variables are the randomly generated biophysical traits and

the explicative variables the correspondent simulated TOC reflectances and observation angles.

4. Applying the random forest regression to the actual TOC reflectance scene.170

As outputs we obtain 8 products: leaf area index (LAI), Campbell (1990) mean leaf angle, leaf chlorophyll a+b concentration,

leaf carotenoids concentration, leaf antocyanins concentration, brown pigments, leaf dry matter content, and leaf water content.

The retrieved leaf pigments concentration gives us an idea about the canopy greenness, and we have observed an increase of

Sentinel-3 estimated antocyanins concentration during vegetation curing in summer and the leaf senescence in fall. Indeed

antocyanins are red pigments and thus may become dominant over other leaf pigments in those situations (Féret et al., 2017).175
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For that reason, we can express the fraction of LAI that is green (fg) using an empirical piecewise linear relation to the

antocyanins (Ant):

fg =





1, if Ant≤ 5µg cm−2

1− 0.8Ant−5
20 , if Ant> 5µg cm−2 and Ant≤ 25µg cm−2

0.2, if Ant> 25µg cm−2

(1)

2.4 Albedo and net shortwave radiation

Net radiation (Rn) provides the energy that drives all other energy fluxes at the land-surface (including ET) and can be approx-180

imated as:

Rn = Sn +Ln = S↓ (1−α) + ϵ
(
L↓−σLST4

)
(2)

where Sn (S↓) and Ln (L↓) are the shortwave and longwave net radiation (incoming irradiances) respectively, α and ϵ are

surface albedo and emissivity, respectively, LST is the Land Surface Temperature, and σ ≈ 5.67× 10−8 (W m−2 K−4) is

the Stefan-Boltzmann constant. α and ϵ (as well as LST) can be estimated, with a certain degree of accuracy, from Earth185

Observation (EO) data.

Considering the larger magnitude of shortwave irradiance (S↓) compared to the longwave irradiance (L↓), and the fact

that Ln is usually computed internally by each ET model, we will focus on method for deriving Sn. In particular, this study

concentrates on the canopy and leaf properties that influence albedo and radiation partitioning between soil and canopy. The

albedo (α) is defined as the proportion of incident shortwave radiation that is reflected by the surface. The shortwave net190

radiation (Sn) is therefore the balance between the incident shortwave irradiance (S↓) and the reflected shortwave radiance

(S↑ = αS↓)

The spectral properties of the surface are key in determining the albedo. Leaves, due to their photosynthetic activity, absorb

a large proportion of light due to the presence of chlorophylls, as well as other leaf pigments. On the other hand, soils can

have a large range of albedo values, depending on their mineral composition, texture and topsoil moisture. Therefore, the195

albedo of a vegetated surface, and also radiation partitioning between soil and canopy, will depend not only on leaf chlorophyll

concentration but also on canopy density and, in a lesser degree, on the soil albedo in situations of sparse vegetation or initial

growth stages. Indeed, most of the Earth’s surface show certain anisotropic behaviour when reflecting radiation i.e. it scatters

different amounts of radiation depending on the scattering direction. Vegetation, as it is mainly composed by an array of leaves,

is also affected by this anisotropic behaviour. Therefore, plants will reflect radiation differently depending on their structural200

characteristics as well as the illumination geometry (i.e. the solar position) and the scattering direction (i.e. the sensor position),

changing their albedo with time.

To compute the net shortwave radiation and its partitioning between the canopy (SnC) and the soil (SnS) the model of

Campbell and Norman (1998) is used. The key aspect of this model is the calculation of the transmitted shortwave radiation
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through the canopy (τC), which is wavelength dependent due to vegetation absorbing a greater portion of photosynthetically ac-205

tive radiation (PAR - 400-700 nm) than near infra-red (NIR - 700-2500 nm) wavelengths. τC is partitioned into two components

(direct/diffuse) and in two spectral band (PAR/NIR).

Sn,C = (1− τC,DIR,PAR)(1− ρC,DIR,PAR)PARDIR+

(1− τC,DIR,NIR)(1− ρC,DIR,NIR)NIRDIR+

(1− τC,DIF,PAR)(1− ρC,DIF,PAR)PARDIF +

(1− τC,DIF,NIR)(1− ρC,DIF,NIR)NIRDIF (3a)

Sn,S = τC,DIR,PAR (1− ρS,PAR)PARDIR+

τC,DIR,NIR (1− ρS,NIR)NIRDIR+

τC,DIF,PAR (1− ρS,PAR)PARDIF +

210

τC,DIF,NIR (1− ρS,NIR)NIRDIF (3b)

where ρC,DIR is the canopy directional-hemispherical reflectance, ρC,DIF is the canopy bihemispherical reflectance, τC,DIR

canopy directional-hemispherical transmittance, τC,DIF canopy bihemispherical transmittance, which depend on leaf spectral

properties (absortance) and canopy structure (LAI and Campbell (1990) leaf inclination distribution parameter). On the other

hand, ρS is the soil bihemispherical reflectance. In all cases τ and ρ are separated between the PAR and NIR regions of the215

solar spectrum. The calculation of canopy tranmittances and reflectances is shown in Appendix A.

Campbell RTM requires the leaf absorptance (ζ = 1− ρ− τ ) as input for calculating canopy transmittance and reflectance.

To estimate this parameter, we are using the leaf traits retrievals from the biophysical processor described in Section 2.3.

With the information of these traits, we can run the PROSPECT-D leaf RTM in forward mode to get a spectral reflectance (ρ)

and transmittance (τ ) that could then be integrated to the required broadband regions. However, running PROSPECT-D for a220

large array of pixels is too computationally expensive. For that reason, a PROSPECT-D emulator (Guzinski et al., 2021) was

developed (Rivera et al., 2015): we generated broadband leaf reflectances and transmittances in the PAR and NIR from a large

range of PROSPECT-D simulations, covering all plausible range of leaf traits from Table 4, which was then used to train a

random forest model that relates the leaf traits to the broadband PAR and NIR leaf reflectance and transmittance. Figure 3

depicts the importance that each leaf trait has on the broadband reflectance emulator, showing that the most important pigment225

is the chlorophyll a+b concentration, due to its strong absorption of PAR radiation, followed by the leaf dry matter and water

contents, which are the main absorbers of the NIR/SWIR radiation.

Soil reflectance has a smaller role in most situations, since the radiation reaching the ground is smaller due to the interception

of light by the canopy. However, in sparse and semi-arid conditions, where vegetation is scarce or even not present, soil albedo

plays a significant role. Furthermore, these semi-arid areas are usually characterized by brighter soils since they are composed230

by sands, salts and with a small fraction of organic matter. For that reason, Guzinski et al. (2023) developed a method to unmix

the broadband soil reflectance (ρsoil,λ) from the TOC reflectance:
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Figure 3. Mean permutation importance for leaf biochemical components in the PROSPECT-D leaf radiative transfer emulator. Full variable

names can be found in Table 4.

ρsoil,λ =
ρsurface,λ− [1−P0 (θv)]ρleaf,λ

P0 (θv)
(4)

where P0 (θv) is the canopy gap fraction at the satellite observation angle θv computed by the Beer-Lambert law (e−κ(θv)LAI),

ρsurface,λ is the broadband surface reflectance, and ρleaf,λ is the leaf broadband reflectance computed previously.235

In order to convert the narrowband reflectances of the TOC product into broadband reflectances we have applied the approach

proposed by Liang (2001), who derived a linear regression model between the satellite spectral bands and the broad bands

corresponding to the PAR region (400–700 nm), NIR region (700–2500 nm) and the solar spectrum (SW - 400–2500 nm).

Similarly to Liang (2001), to overcome the limited amount of in situ measurements of albedo, we again made use of the

PROSPECT-D+4SAIL canopy RTM coupled with the 6S atmospheric RTM (Vermote et al., 1997) to run a large number of240

simulations covering all plausible illumination, atmospheric and canopy conditions. Once the RTM simulations are performed

(at 1 nm step), we convolved the results to both Sentinel-3A and Sentinel-3B specific spectral response functions, and integrated

these simulated spectra to the broadband regions defined above. Then, one multivariate linear regression model per broadband

region and per platform is fitted with the broadband reflectances as dependent variables and the Sentinel-3 simulated TOC

reflectances as explanatory variables. The resulting coefficients are shown in Table 5, showing the weight of each Sentinel-3245

band has on the broadband reflectances. It is worth noting that the coefficients are consistent with the expected behaviour, since

the spectral bands located in the PAR region have no influence on the NIR broadband reflectances, nor the spectral bands in

the NIR/SWIR influence on the PAR broadband model.
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Table 5. Narrowband to Broadaband conversion coefficients for Sentinel-3A and Sentinel-3B platforms

Platform BAND O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O16 O17 O18 O21 S5 S6

Sentinel-3A SW 0.10 -0.18 0.23 0.09 0.08 0.03 0.13 -0.41 0.32 0.04 0.09 0.01 0.21 -0.13 0.19 0.12 0.02

PAR 0.10 0.14 -0.01 0.24 0.17 0.24 0.15 -0.26 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NIR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.17 0.00 0.55 -0.39 0.40 0.19 0.07

Sentinel-3B SW 0.10 -0.18 0.23 0.09 0.08 0.03 0.14 -0.42 0.32 0.04 0.09 0.01 0.21 -0.13 0.19 0.12 0.02

PAR 0.10 0.14 -0.01 0.25 0.17 0.24 0.16 -0.28 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NIR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.17 0.00 0.55 -0.38 0.40 0.19 0.07

2.5 Land surface temperature sharpening

The CLMS ETa product specification states a spatial resolution of 300 m. However, the spatial resolution of the SLSTR LST250

product is 1 km. Therefore, a method to perform thermal sharpening of the LST is required. Most such methods are based on

machine learning approaches, of various complexities, which capture the relationships between shortwave spectral reflectance

(and possibly other ancillary data) and the LST. The shortwave reflectance is of higher spatial resolution and is resampled to the

resolution of LST to be used as explanatory variables for model training. Once trained, the model is applied to the reflectance

at its original resolution to obtain a representation of LST at that resolution. In most approaches, this is followed by a bias255

correction step to ensure conservation of energy between the LST maps at both the original and sharpened spatial resolutions.

Both the Sen-ET and WaPOR (version 3) modelling frameworks use a Data Mining Sharpener (DMS) thermal sharpening

approach (Gao et al., 2012) as implemented in the pyDMS Python package (https://github.com/radosuav/pyDMS, last

accessed 30/07/2025). It is a quite complex method, which however works well even for sharpening by a ratio of 50 i.e.

sharpening Sentinel-3 LST from 1 km to 20 m using Sentinel-2 reflectance (Guzinski and Nieto, 2019; Guzinski et al., 2023;260

Sánchez et al., 2024). Based on this work, we are applying it to sharpen Sentinel-3 LST using CLMS TOC product with 300 m

spatial resolution. The DMS regression models are trained on the whole Sentinel-3 TOC tile (10°by 10°) as well as on subsets

of 30 by 30 LST pixels in a moving window fashion.

In Sen-ET framework all relevant reflectance bands from Sentinel-2 or Sentinel-3 (depending on the target spatial resolution)

covering visible, near-infrared and shortwave-infrared parts of the spectrum were used as explanatory variables. For Sentinel-3265

this means the following 17 bands from CLMS TOC product: Oa02, Oa03, Oa04, Oa05, Oa06, Oa07, Oa08, Oa09, Oa10,

Oa11, Oa12, Oa16, Oa17, Oa18, Oa21, S5N, S6N. This configuration of variables, in addition to DEM and cosine of solar

zenith angle, is called "DMS - Reflectance" in Section 4.3.2. During the WaPOR project, feature engineering was performed

and spectral bands were converted to indices before evaluating their usefulness in DMS. This resulted in following 11 spectral

bands, reflectance indices and DEM-related products being used as explanatory variables: Oa04 (blue), Oa17 (NIR), Modified270

Normalized Difference Water Index (MNDWI), Plant Senescence Reflectance Index (PSRI), Normalized Difference Moisture

Index (NMDI), Visible Atmospherically Resistant Index Red Edge (VARI_RED_EDGE), Bare Soil Index (BI), elevation,

cosine solar zenith angle, aspect and slope. More details and the list of evaluated indices are available in the WaPOR wiki

(https://bitbucket.org/cioapps/wapor-et- look/wiki/Intermediate_Data_Components/LST, last accessed: 22/07/2025).
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Table 6. List of required CAMS global atmospheric composition forecast fields and their topographic correction status.

Variable Unit Topographic correction

10 m u-component of wind m s−1 No

10 m v-component of wind m s−1 No

2 m dewpoint temperature K Yes – altitude

2 m temperature K Yes – altitude

Geopotential height m2 s−2 No

Surface pressure Pa Yes – altitude

Total aerosol optical depth at 550 nm – No

Total column water vapour kg m−2 No

Surface solar radiation downwards J m−2 Yes – altitude and orientation

Surface thermal radiation downwards J m−2 No

Total precipitation m No

This combination of explanatory variables is called "DMS - WaPOR" in Section 4.3.2. Finally, since we do not expect strong275

influence of aspect and slope on LST those two variables were removed from the WaPOR list and the resulting combination

of 9 variables (called "DMS - WaPOR selected" in Section 4.3.2) is used in the ETa processing chain to sharpen the 1 km

Sentinel-3 LST to the required 300 m spatial resolution..

2.6 Weather forcing

Weather forcing is critical for accurate estimation of ET. Due to the 2-day timeliness requirements for the CLMS ETa product,280

the weather data source is Copernicus Atmosphere Monitoring Service (CAMS) forecasts (Peuch et al., 2022), produced by

the European Center for Medium Range Weather Forecasts and distributed freely and openly through the CAMS Data Store.

CAMS data contain surface meteorological parameters covering the whole Earth on a 0.4° grid and hourly temporal resolution.

Instantaneous weather forcing at the satellite overpass are used to drive both ET models and include air temperature, vapor

pressure, wind speed, surface pressure, and clear-sky solar irradiance (Table 6). All instantaneous data were obtained by linear285

interpolation between two CAMS hourly forecasts to the time of Sentinel-3 SLSTR acquisition over the area of interest. Daily

weather forcing is used to drive the ETLook ET model and to extrapolate and interpolate the instantaneous estimates of ET

and include solar irradiance as well as air and dew temperatures, wind speed, and pressure, which are then used to calculate the

FAO-56 reference ET (Allen, 1998) required for the gap filling (see Section 2.9). They are being integrated over a 24-h period

starting at midnight local time.290

The pre-processing of CAMS weather forcing, including topographic correction, was done using the open source Python

software meteo_utils (Nieto et al., 2025b) and as described in Guzinski et al. (2021). The only differences from Guzinski

et al. (2021) being the use of Copernicus DEM (COP-DEM_GLO-90-DTED - European Space Agency and Airbus (2022))

resampled to a resolution of 300 m for topographic correction and the use of REST2 model (Gueymard, 2008) to estimate clear
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sky solar irradiance. In addition daily total precipitation is calculated using 24-h integration of CAMS hourly total precipitation295

forecasts.

2.7 Structural and ancillary parameters

Resistance energy balance models need additional ancillary inputs, such as canopy height or roughness. The latter influences

the efficiency of the turbulent transport of heat and water between the land surface and the overlying air (Raupach, 1994;

Alfieri et al., 2019). Vegetation structure and density are thus important for estimating turbulent transport of momentum, heat300

and water vapour in the canopy air space (Garratt and Hicks, 1973; Thom, 1972; Raupach, 1994; Shaw and Pereira, 1982).

For that reason, the CLMS Global Dynamic Land Cover map (Copernicus Land Monitoring Service, 2015) is used to assign

vegetation parameters, which are difficult to estimate directly from other Earth Observation data (Guzinski et al., 2021). Those

parameters, and values assigned to different land cover classes, are listed in Table 7. The TSEB-PT model requires all of the

parameters, apart from stomatal resistance, while ETLook requires only vegetation height and stomatal resistance. Values of305

all parameters, except for vegetation height of forested land covers, were adapted from Guzinski et al. (2020).

Vegetation height is one the most important of the ancillary parameters, especially for the TSEB model (Burchard-Levine

et al., 2020), as it influences the aerodynamic resistance to heat transport. In order to better estimate the obstacle (canopy)

height in different land covers we use a framework that differs depending on predominant plant functional type of each land

cover. For for annual plant functional types, canopy height is dynamically computed considering its growth as:310

hc = hmin + (hmax−hmin)×min(
LAI

LAImax
, 1) (5)

where the symbols are described in Table 7.

For forest plant functional types we set a static canopy height based on a 10-m spatial resolution (resampled to 300 m

resolution) global forest canopy height map developed by combining the Global Ecosystem Dynamics Investigation (GEDI)

LiDAR and Sentinel-2 observations using a probabilistic deep learning model (Lang et al., 2023). Whenever the land cover315

map indicated a forest while the GEDI-based canopy height map was below the hmin parameter, the minimum value was

enforced.

2.8 ET modelling

2.8.1 TSEB-PT model

The Two-Source Energy Balance (TSEB) modelling scheme was proposed by Norman et al. (1995) and afterwards refined320

and applied in a multitude of applications and studies (Anderson et al., 2024) including in the Sen-ET framework (Guzinski

et al., 2020) and implemented as open source in pyTSEB Python package (Nieto et al., 2025a). In this modelling scheme the

directional radiometric LST (TR(θ)) is split into the temperatures of vegetation and soil based on the vegetation cover and LST
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Table 7. Land Cover (LC) Look-Up-Table for ancillary and structural parameters required by ET models, adapted from Guzinski et al.

(2020). hmin (m) is the minimum canopy height; hmax (m) is the maximum canopy height occurring when leaf area index (LAI) reaches its

optimal maximum LAImax (for annual plant functional types only); fc is the at-nadir fraction of the ground occupied by a clumped canopy

(fc = 1 for a homogeneous canopy); wc/hc is the canopy shape parameter, representing the canopy width to canopy height ratio; lw (m) is

the average leaf size; and rst (s m−1) is the minimum stomatal resistance. LC classes come from the CLMS Dynamic Land Cover map. Note

that snow/ice and water surfaces are masked in the current implementation.

LC hmin (m) hmax (m) LAImax (-) fc (-) wc/hc (-) lw (m) rst (s m−1) Description

20 2.0 2.0 0.0 1.0 1.0 0.05 175 Shrubs

30 0.1 1.0 4.0 1.0 1.0 0.02 150 Herbaceous vegetation

40 0.0 1.0 5.0 1.0 1.0 0.02 125 Cultivated and managed vegetation/agriculture (cropland)

50 10.0 10.0 0.0 0.0 0.0 0.00 400 Urban / built up

60 0.1 0.1 0.0 0.1 1.0 0.01 100 Bare / sparse vegetation

90 0.0 2.0 5.0 1.0 1.0 0.10 150 Herbaceous wetland

100 0.3 0.3 0.0 1.0 1.0 0.01 180 Moss and lichen

111 8.0 GEDI GEDI 0.8 0.5 0.05 200 Closed forest, evergreen needle leaf

112 8.0 GEDI GEDI 0.8 1.0 0.15 200 Closed forest, evergreen, broad leaf

113 8.0 GEDI GEDI 0.8 0.5 0.05 200 Closed forest, deciduous needle leaf

114 8.0 GEDI GEDI 0.8 1.0 0.15 200 Closed forest, deciduous broad leaf

115 8.0 GEDI GEDI 0.8 0.8 0.10 200 Closed forest, mixed

116 8.0 GEDI GEDI 0.8 0.8 0.10 200 Closed forest, unknown

121 5.0 GEDI GEDI 0.3 0.5 0.05 200 Open forest, evergreen needle leaf

122 5.0 GEDI GEDI 0.3 1.0 0.15 200 Open forest, evergreen, broad leaf

123 5.0 GEDI GEDI 0.3 0.5 0.05 200 Open forest, deciduous needle leaf

124 5.0 GEDI GEDI 0.3 1.0 0.15 200 Open forest, deciduous broad leaf

125 5.0 GEDI GEDI 0.3 0.8 0.10 200 Open forest, mixed

126 5.0 GEDI GEDI 0.3 0.8 0.10 200 Open forest, unknown

observation geometry.

TR(θ)≈ [f(θ)T 4
C + [1− f(θ)]T 4

S ]0.25 (6)325

f(θ) = 1− exp(−0.5Ω(θ)LAI
cosθ

) (7)

where θ is the view zenith angle of the thermal observation and Ω(θ) is the clumping factor of the vegetation at view angle θ

(Kustas and Norman, 1999) and has a value of less than 1 for clumped vegetation and subscripts C and S denote canopy and

soil respectively.
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Based on this split, the energy fluxes of vegetation and soil (net radiation - Rn, sensible heat flux - H, latent heat flux - λE,330

soil heat flux - G) are estimated separately, before being combined to obtain the bulk surface fluxes.

Rn,C =HC +λEC (8)

Rn,S =HS +λES +G (9)

Rn = (HC +HS) + (λEC +λES) +G=H +λE+G (10)

The soil (canopy) sensible heat flux is computed from the gradient between the soil (canopy) temperature (TS and TC335

respectively) and the air temperature at the sink-source height. This transfer of heat between the two components and the

atmosphere is modulated by resistances to heat exchange organized in a series resistance network (in analogy to electrical

systems) which depend on aerodynamic and meteorological conditions.

Since there are multiple solutions to TC and TS satisfying equation 6, an iterative approach is employed. The initial as-

sumption is that green canopy transpires at potential rate based on Priestley-Taylor formulation (Priestley and Taylor, 1972):340

λEC = αPT fg
∆

∆ + γ
Rn,C (11)

where αPT is the Priestley-Taylor coefficient, ∆ is the slope of the vapour pressure to air temperature curve (mbar K−1) and

γ is the psychrometric constant (mbar K−1). In all land-covers αPT has an initial value of 1.26, except for forests (hc ≥ 5m)

where it is lowered to account for reduction in stem conductivity (and therefore stomatal conductance) with height following345

Komatsu (2005): αPT =−0.269ln(hc) + 1.31. If unrealistic fluxes are obtained (λEC < 0 and λES < 0) then the canopy

transpiration (i.e., αPT ) is sequentially reduced and soil and canopy temperatures and fluxes are recalculated until realistic

values are obtained. This implementation of the TSEB scheme is called the TSEB-PT model.

TSEB-PT outputs instantaneous fluxes at the time of thermal image acquisition. The modelled instantaneous latent heat flux

(λEinst), calculated during clear-sky conditions, is extrapolated to daily ET values as λEdaily = λEinst×
S↓daily

S↓inst

, with S↓daily350

and S↓inst are the daily and instantaneous shortwave irradiances, respectively.

2.8.2 ETLook model

ETLook model (Bastiaanssen et al., 2012) is used in the WaPOR framework and is described in detail in Section 5 of "WaPOR

Data Manual, Evapotranspiration v2.2" (FRAME Consortium, 2020). Similarly to TSEB-PT, ETLook is a two-source model,

meaning that it derives soil evaporation (E) and vegetation transpiration (T) as two separate fluxes, and it ensures conservation355

of energy at the land-surface. The model assumes potential rates of daily E and T based on the Penman–Monteith equation

(Monteith, 1965) that are throttled down to actual E and T using stress factors:
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E =
∆(Rn,S −G) + ρcp

∆e

ra,S

∆ + γ(1 + rS

ra,S
)

(12a)

T =
∆(Rn,C) + ρcp

∆e

ra,C

∆ + γ(1 + rC

ra,C
)

(12b)

where ∆e (mbar) is vapor pressure deficit, ρ (kg m−3) is the air density, cp (J kg−1 K−1) is specific heat of dry air, ra,S360

and ra,C are aerodynamic resistances for soil and canopy respectively and rS and rC are resistances of soil and canopy. All

resistances are in s m−1.

The resistances of soil and canopy to energy transfer are calculated taking the stress factors into account:

rS = b(Stop
e )c (13a)

rC = (
rs,min

LAIeff
)(

1
StSvSrSm

) (13b)365

where b and c are soil resistance parameters, rs,min (s m−1) is the minimum stomatal resistance, LAIeff is effective leaf area

index. Soil evaporation is limited by top-soil moisture (Stop
e ), while plant transpiration is affected by air temperature stress

(St), vapour pressure stress (Sv), radiation stress (Sr) and root-zone soil moisture stress (Sm)(Jarvis, 1976).

The soil moisture required for E and T stress factors is derived using a trapezoid constructed in the LST - vegetation

fractional cover (fC) space (Yang et al., 2015). The trapezoid corner values as set based on theoretical calculations by inverting370

the Penman-Monteith equation for both dry and moist bare soil and vegetated conditions. Then the soil moisture of a pixel is

estimated using the relative location of LST and fC of that pixel within that trapezoid.

2.9 Output gap-filling

The CLMS ETa product consists of 5 sub-products: instantaneous sensible and latent heat fluxes (in Wm−2), and dekadal

(10-day mean) evapotranspiration and its components evaporation and transpiration (in mm day−1). The instantaneous heat375

fluxes represent values modeled at the time of Sentinel-3 satellite overpass and, therefore, do not undergo any gap-filling.

On the other hand, the water fluxes need to undergo gap-filling. Otherwise, the dekadal aggregation would only take into

account fluxes modeled during clear-sky conditions within the aggregation period. This would firstly result in frequent gaps

and secondly in a systematic overestimation of the dekadal aggregate.

The gap-filling of ET product, i.e. estimation of ET during cloudy conditions, is usually performed using a reference quantity380

that can be derived for any date regardless of cloud conditions. This implies that this reference quantity is mostly dependent on

weather forcing. In the Sen-ET approach the choice was made to use reference evapotranspiration calculated using the FAO-

56 method (Allen, 1998). A ratio of modeled daily ETa to reference ET (called crop-stress coefficient Ks,c) is calculated on

dates for which daily ETa is available and is used to recreate ETa on the target date which needs to be gap-filled, as described

in Guzinski et al. (2021). This method was further developed in Guzinski et al. (2023) to better account for soil drying by385

performing linear interpolation of Ks,c (applicable only in non-NRT modelling when ETa after the target date is available)
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and for soil wetting through rainfall by setting Ks,c to the maximum value observed during the gap-filling period if a simple

water-balance approach indicates that the soil is wet. Taking rainfall into account is important especially for longer gap-filling

periods (Delogu et al., 2021) and in climates in which rainfall initiates the growing season (e.g. rainy season in the Sahel and

other semi-arid areas). For the CLMS ETa processing chain we further improved the robustness of this method, especially for390

longer gap-filling windows, by replacing the maximum Ks,c observed within the gap-filling window with the 80th percentile of

ratios observed within the gap-filling period. If the latest know Ks,c before the target date was larger than 80th percentile then

the value of that last know Ks,c was preserved. This was done to ensure that taking rainfall into account would only increase,

and not reduce, the gap-filled ET values. To accommodate longer periods with few satellite observations (see Fig 2) a 60-day

gap-filling window is used during ETa production.395

Once the gap-filled ET is estimated, the split into evaporation and transpiration is performed using the ratio of evaporation

or transpiration to ET either from the closest non-gap-filled preceding date (in case of NRT processing) or linearly interpolated

ratio from the closest non-gap-filled preceding and succeeding dates (in case of non-NRT processing).

3 Prototype product validation

The main aim of the validation is to evaluate the performance of the prototype product through comparison of dekadal ETa400

values, as modelled by the TSEB-PT and ETLook algorithms, with ETa data derived from one year of in-situ measurements

from stations covering main worldwide climatic zones and plant functional types. In addition to assessing the performance of

the two ETa models driven by input forcing as described in Section 2, the statistical metrics were also computed for an ETa

dataset composed by the average of the TSEB-PT and ETLook estimates. This additional dataset is referred to as Ensemble ETa.

The statistical metrics used in the analysis were: bias, root mean squared error (RMSE) and coefficient of determination (r2).405

This comparison focused only on the variables that could be extracted from measurements at eddy covariance stations (ETa,

λE, H). Evaporation and transpiration were generated by the models but could not be contrasted against in situ observations.

3.1 Validation data collection and preparation

The search for eddy covariance sites was intended to collect data representing the largest possible diversity in climate regions

and plant functional types. Different eddy covariance networks and datasets were explored in search for validation data for410

recent years. The year 2020 was selected for this analysis considering the overall in situ data availability.

When building the reference database, the priority was given to datasets in which λE and H data had been corrected for

the energy balance closure (EBC) problem (Foken et al., 2011). A commonly applied procedure delivering corrected values

of λE and H is the ONEflux processing pipeline (Pastorello et al., 2020). Data generated by this procedure could be obtained

from the AmeriFlux (Novick et al., 2018), ICOS (Integrated Carbon Observations System - Heiskanen et al. (2022)) and415

OzFlux (Isaac, 2014) networks. In search for more diversity in the reference datasets, other networks/datasets were queried

even if the processing chain was not accounting for the EBC. Thus, data from the European Fluxes Database Cluster (EFDC

- https://www.europe-fluxdata.eu/, last accessed: 01/09/2025), l’observatoire AMMA-CATCH (Analyse Multidisciplinaire de
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Figure 4. Eddy covariance sites and networks used for quality assessment.

Figure 5. Number of eddy covariance sites grouped per PFT (left) and per climate region (right). (CRO: Cropland; CSH: Closed Shrubland;

CVM: Crop Vegetation Mosaic; DBF: Deciduous Broadleaved Forest; EBF: Evergreen Broadleaved Forest; ENF: Evergreen Needleleaved

Forest; GRA: Grassland; OSH: Open Shrubland; SAV: Savanna; URB: Urban; WET: Wetland; WSA: Woody Savanna) (A: Tropical; B: Dry;

C: Continental; D: Temperate).

la Mousson Africaine - Couplage de l’Atmosphère Tropicale et du Cycle Hydrologique -Galle et al. (2018); AMMA-CATCH

(1990)) and the AsiaFlux (Mizoguchi et al., 2009) networks were also included in the analysis.420
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Figure 4 shows the location of the eddy covariance sites considered in this study and the network/dataset the data were taken

from, while Figure 5 provides an overview of the representation of climate regions and plant functional types (PFT) in this set

of eddy covariance sites. Further details of the location, climate, PFT and network of each site can be found in Appendix B.

Figures 4 and 5 show that the available eddy covariance networks are not equally distributed across the globe which results

in imbalanced representativeness of climate regions and plant functional types. However, at least one station was located in425

all major climate zones and PFTs. Despite only 3 sites being outside of Europe, North America and Australia, there are other

sites which are located in similar climatic zones, e.g. tropics (northern Australia) as well as arid and semi-arid (Spain, southern

Australia and western US). Therefore, we believe that the validation should be representative also of the geographical areas for

which in-situ ET data is currently missing.

The data acquired from the AmeriFlux, ICOS and OzFlux networks was available at half-hourly and daily time steps and430

format aspects like variable naming, units, quality flags, etc. were uniform. Daily λE data were discarded if the value of the

quality flag was lower than 0.6 (i.e. less than 60% of sub-daily data was not measured or had a good quality gap filling) and/or

the value of λE was outside the realistic range. A dekadal ETa value was computed if the dekad was composed of at least 7

valid daily ETa values. The computation of ETa from λE and air temperature was conducted as follows:

lv = (2.501− 0.00237Ta)× 106 (14)435

ET = 3600× 24× λE

lv
(15)

where lv is the latent heat of vaporization, Ta is the average daily air temperature, λE is the daily average latent heat flux

and ET is the daily evapotranspiration in mm/day.

The data from other networks was delivered at half-hourly time step only. Therefore, an additional aggregation step needed

to be considered to obtain daily ETa values. In doing this, the half-hourly data were filtered on the basis of quality flag and440

occurrence within the realistic range. For each day, the number of valid timeslots between sunrise and sunset was computed

(the sunrise and sunset times change as function of geographic location and time of the year). Missing data during the day

were computed by linear interpolation if the number of valid timeslots during daytime was at least 50% of the total number of

timeslots in that period. Otherwise, the day was discarded. The criterion for aggregating the daily ETa values to dekadal values

was the same as indicated in the previous paragraph.445

The last preparatory step was matching the modelled and reference values on the basis of timeslot and location. This is a

straightforward step for the dekadal ETa values. The data at satellite overpass time (λE and H) were matched to the nearest

timeslot of the eddy covariance half-hourly datasets. The analysis for λE and H at satellite overpass time was conducted for

TSEB-PT only as the ETLook algorithm does not generate those variables.
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Table 8. Bias (mm/day), RMSE (mm/day), and r2 scores for dekadal ETa per model (all sites combined), and summary statistics at site level.

rBias and rRMSE are relative metrics (i.e., divided by mean measured ET).

Model N Bias RMSE rBias rRMSE r2

Summary scores at site level

Bias RMSE r2

min max min max mean St.Dev

TSEB-PT 3108 -0.12 0.88 -0.07 0.52 0.78 -1.19 1.41 0.28 1.77 0.76 0.25

ETLook 3108 -0.44 1.08 -0.26 0.64 0.78 -0.72 2.56 0.27 2.82 0.79 0.24

Ensemble 3108 -0.28 0.80 -0.16 0.47 0.84 -0.66 1.98 0.28 2.13 0.82 0.21

WaPOR 3108 0.12 0.85 0.07 0.50 0.81 -1.01 1.53 0.20 1.85 0.77 0.28

Figure 6. Taylor-plot general overview. The circle on the x-axis is the standard deviation of the eddy covariance towers measurements.

3.2 Validation results450

3.2.1 Dekadal ETa values

The procedure described in the previous section resulted in a dataset of 3108 records (104 sites) of dekadal ETa values obtained

from eddy covariance measurements. A first appraisal on the performance of the ETa models can be obtained from the statistical

scores shown in Table 8. A graphical representation of the performance of the models under consideration is presented in the

Taylor plot of Figure 6.455
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The points to be highlighted in these statistical scores are:

– The modelled ETa series under consideration exhibit high correlation with the reference dataset (r2 around or above 0.8).

– The RMSE of the Ensemble dataset is the lowest in the evaluation and the TSEB-PT yielded the lowest absolute bias.

– The bias values of ETLook, TSEB-PT and the Ensemble ETa are negative.

Around 78% of the data records used in calculating the scores of Table 8 and Figure 6 had been corrected for the EBC460

problem. The same analysis was conducted for the subset of data records composed only of EBC-corrected data. The results

were very similar to those presented above and are shown in Appendix C.

The plots of Figure 7 show a more detailed view of these results. The bias and r2 are represented as axes in plots showing

the values per site with indication of the climate region and PFT each site belongs to. The visual inspection of these plots

shows that in correspondence to the results presented above, the majority of study sites are located in the region of the highest465

correlation and bias values not exceeding the absolute value of 1 mm/day. The concentration of results within the region of

high correlation and low bias seems to be more pronounced in the Ensemble series. Moreover, the majority of sites in the

Continental and Temperate climate regions appear in the section of the plots with high correlation and low bias in all ETa

series; although various sites in temperate regions appear in the low correlation region of the plots too. Conversely, the models

performed less good in the Tropical and Dry regions.470

A complementary view on the model performance when grouping the sites per climate region is presented in the Taylor plots

of Figure 8. Those plots confirm that the highest performance of all models was exhibited in the sites of the Temperate and

Continental regions. It is important to note that the abundance of sites in these two climate regions is much higher than that

of the Tropical and Dry regions (see Figure 4). The plots of Figure 8 point at the Ensemble and TSEB-PT dekadal ETa as the

most suited options to best represent the different climate regions.475

Figure 7 also shows that the accuracy of dekadal ETa modelling can often be associated to the PFT. Figure 9 shows Taylor

plots with the performance of the models when grouped per PFT. Although the analysis per PFT can offer valuable insights on

the performance of the models, one has to be cautious as one PFT class can contain a large diversity of ecosystem conditions.

The CRO, GRA and WET plots of Figure 9 reveal that both models exhibited similar performance in the generation of

dekadal ETa values in those groups. The three classes together account for 42% of the evaluated sites spread across different480

climate regimes and represent a wide range of conditions. The Ensemble ETa series exhibits slightly better correlation scores.

In savannas (SAV, WSA) and shrublands (CSH, OSH), more pronounced differences between the TSEB-PT and ETLook

emerge. SAV sites (which are well represented in the dataset) show that TSEB-PT tends to underestimate the variability of the

fluxes, whereas it is generally overestimated by ETLook. These biases compensate each other in the Ensemble model, which

furthermore achieves a higher correlation than TSEB-PT and ETLook separately.485

This behaviour is even more pronounced in the forest sites (DBF, EBF, ENF): TSEB-PT underestimates the variability of

the flux (i.e. the amplitude of the seasonal cycle), whereas it is overestimated by ETLook. The difference between both models

can be largely attributed to the difference in transpiration, of which the value of ETLook can be almost double the value of

TSEB-PT, as illustrated in the plotted time series (Figure 10 and Figure 11).
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Figure 7. Bias and r2 at validation sites indicating the climate region and PFT for ETLook, TSEB-PT, WaPOR and the Ensemble dekadal

ETa series.

Figure 10 shows the time series of two EBF sites. These plots illustrate the significant difference amongst models’ results490

and show the high ETa values of ETLook, which cause the large error depicted in the Taylor plots for this group. Note that the

IT-Cp2 site (one of the examples in Figure 10) is the site with the largest error in the EBF class.

The sites in the DBF group are all located in the Temperate or Continental climate region. The DBF group, with 10 sites,

exhibited larger differences in the scores for TSEB-PT and ETLook. In the DBF class, the estimates of both models seemed

to complement each other as ETLook estimates correlated better with the reference dataset than TSEB-PT but the error of495

the latter was smaller. In this case, the Ensemble formula appears as a suitable option for generating estimates closer to the

reference ETa values. The Figure 11 shows examples of dekadal values in DBF (US-xST, DE-HoH) sites.

It should be noted that ETa of urban areas is produced even though neither of the two ET models was designed for this

particular land cover type. This is for consistency with other CLMS products. The URB plot in Figure 9 indicates that, as

expected, the TSEB-PT and ETLook output correlate poorly with the reference data in urban areas and the difference between500

the two models is substantial.
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Figure 8. Taylor plots on the performance of the dekadal ET from TSEB-PT, ETLook, the Ensemble dataset and WaPOR in 2020. Sites

grouped per Climate region. A: Tropical, B: Arid, C: Temperate, D: Continental.
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Figure 10. Dekadal ET, E and T as modelled by TSEB-PT and ETLook and the WaPOR product and dekadal ET from the eddy covariance

towers in two EBF sites: AU-Whr (Whroo) and IT-Cp2 (Castelporziano2) sites.
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Figure 11. Dekadal ET, E and T as modelled by TSEB-PT and ETLook and the WaPOR product and dekadal ET from the eddy covariance

towers in two DBF sites: US-xST (NEON-STEI) and DE-HoH ( Hohes Holz).
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Figure 12. Boxplots of r2 (left) and bias (right) values of LE and H at overpass time as modelled by the TSEB-PT model.

3.2.2 λE and H at satellite overpass time

Estimates of λE and H at satellite overpass time were generated by the TSEB-PT model only. This section provides an overview

of the goodness of fit of the modelled instantaneous λE and H estimates as compared with the values at the closest half-hourly

timeslot reported at the eddy covariance towers. The satellite overpass time, in local time, varied along the year for the different505

sites. For instance, the AU-Cum site registered values between 9:05 and 10:52 local time; US-Ton, between 10:03 and 11:52;

ES-LM1, between 11:27 and 13:13; etc.

The Figure 12 shows the range of r2 and bias values obtained for each PFT class. A number of aspects in this plot can be

connected to the analysis of dekadal ETa presented in the previous section. For instance, the low r2 of λE in the urban sites

and, to a certain degree, in the evergreen forest classes. It is also notable that the bias in λE is positive in the majority of the510

sites and corresponds to dominant negative bias in the H estimates.

The length of the boxes in the boxplots of Figure 12 suggests an important degree of variability in the correlation and error

of the modelled values amongst the sites of each PFT class. The differences in the time window at which satellite overpass

takes place and the large heterogeneity in ecosystem properties within each class can partly explain this variability.

The Figure 13 shows examples of the modelled λE and H at satellite overpass time in contrast to the corresponding eddy515

covariance values. The scatterplots illustrate the more pronounced negative bias in H in some sites as well as the poor estimation

of the fluxes in urban areas.
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Figure 13. Scatterplots of LE and H (Wm−2) as measured at the eddy covariance stations and as modelled by TSEB-PT at satellite

overpass time in BE-Lon (Lonzee) (CRO), ES-LM1 (Las Majadas) (SAV), US-xSB (Ordway-Swisher Biological Stations) (ENF), FR-Fon

(Fontainebleau) (DBF), AU-Rgf (Ridgefield) (CRO) and AT-Inn (Innsbruck) (URB).
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Figure 14. Number of study sites by the number of available modelled LE/H values at satellite overpass time in the year 2020.

A noteworthy feature of the λE/H modelled dataset is the number of actual values available. Figure 14 provides an overview

of the number of available values (regardless of the quality) generated by the TSEB-PT at satellite overpass time. The Figure

shows that most of the sites have less than 150 values in a year and only very few exceed 200. This is an important consideration520

towards the generation of operational λE and H products as the number of gaps can be high and highlights the importance of

robust gap-filling scheme for the production of dekadal ETa dataset.

4 Discussion

4.1 Comparison with WaPOR and OpenET ETa products

WaPOR global ETa dataset is the only existing operational and global ETa product with specifications very similar to the CLMS525

ETa. Furthermore, given the particular interest of FAO in the quality of the upcoming CLMS ETa product, WaPOR dekadal

ETa values (WaPOR Level 1 version 3 - https://data.apps.fao.org/catalog//iso/7f4a7339-d56e-4393-8712-a8ffeffe2731, last

accessed 04/08/2025) were extracted for the study sites and timeslots and included in the analysis presented in Table 8 and

Figures 6 - 11. Based on those figures, the accuracy of the CLMS ETa is on the same level as that of WaPOR ETa. While the

individual model runs of TSEB-PT or ETLook show poorer statistics than WaPOR, the Ensemble dataset has the best accuracy530

(apart from bias). It is also worth noting that the bias values of ETLook, TSEB-PT and the Ensemble ETa are negative whereas
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WaPOR exhibited a slightly positive bias. Looking at Figure 8 it can be seen that WaPOR has particularly poor performance at

the tropical sites, while it outperforms the two individual models (but not the Ensemble ETa) in Continental climate.

Another point worth noting is that WaPOR ETa is based on ETLook model and in all statistical measures it outperforms the

CLMS ETLook ETa. Since the ETLook model setup should be fairly similar (the operational production setup of WaPOR is535

not public although FAO has created equivalent open-source package which produces similar results when run with the same

input data), those differences can be attributed mainly to the input data. Here, three possible reasons appear most obvious:

– While both CLMS ETa and WaPOR ETa rely on DMS to improve the spatial resolution of LST, the original LST in

CLMS is acquired by SLSTR sensor on board Sentinel-3 satellite with 1 km spatial resolution, while the original LST in

WaPOR (version 3) is acquired by the VIIRS sensor on board of Suomi-NPP satellite with 375 m spatial resolution.540

– The CLMS ETa dataset was produced in NRT mode, meaning that forecast meteorological forcing were used and gap-

filling was performed using only preceding dates. On the other hand, WaPOR ETa is a reanalysis product which means

that reanalysis meteorological forcing was used and gap-filling was performed using both preceding and succeeding

dates.

– WaPOR ETLook implementation relies of some temporarily-static - spatially-distributed layers which parameterize the545

model. Those layers were used in CLMS ETLook implementation whenever available but there are still some layers

which were either provided too late during the study (e.g. dry bare soil surface albedo) or which are not publicly disclosed

(e.g. tenacity factor for plant soil moisture stress) in which case default constant values were used.

OpenET (Melton et al., 2022) is another dataset with which CLMS ETa can be compared. Although OpenET is produced

with much higher spatial (30 m) and temporal (daily) resolutions and only in the western United States, similarly to CLMS550

dataset it contains a product which is an average (ensemble) of individual ET models (6 in case of OpenET). In a recent

validation study, the RMSE of monthly ensemble product was between 12% and 30% lower than that of individual models

while r2 increased from 0.83 - 0.87 for individual models to 0.9 for ensemble (Volk et al., 2024). In our case the RMSE of

dekadal Ensemble product was 9% lower than of TSEB-PT ET and 26% lower than of ETLook ET, while r2 increased from

0.78 for individual models to 0.84 for Ensemble product. In another study, the daily mean Ensemble OpenET product had a555

RMSE of 0.96 mm/day, bias of -0.2 mm/day and r2 of 0.84 (Melton et al., 2022) which is very similar to the results presented

in Table 8 for the Ensemble dekadal ETa despite the increased uncertainty when validating 300 m product due to spatial-scale

mismatch between flux tower footprint and pixels size.

4.2 Spatial intercomparison

The validation assessment presented in Section 3 was based on the comparison of TSEB-PT and ETLook ETa estimates with560

measurements at eddy covariance towers; i.e. a point location analysis. However, the view of the spatial patterns in the ETa

calculation by the ETLook and TSEB-PT models can give interesting insights towards the design of an operational ETa product.
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Figure 15. Histograms of TSEB-PT (blue) and ETLook (orange) dekadal ET in a dekad in the vegetation growing season across different

10° lat/lon tiles. 2020.

The modelled data under analysis here were generated on a per-tile basis whereby the globe is divided in areas with 10°

lat/lon extent, as in other CLMS products. Without entering into detailed analyses of ETa spatial patterns (beyond the scope of

this study) simple inspection procedures across the tiles can deliver interesting information.565

For instance, Figure 15 shows histograms on the dekadal ETa values as modelled by ETLook and TSEB-PT for a number

of tiles. The histograms reflect the spread of ETa values in the middle of the vegetation growing season and are indicators of

the difference in the magnitude of ETa estimated by each model. The histograms of Figure 15 are only a small subset of the

different tiles on the globe and do not reflect the seasonal variation of ETa. Nevertheless, they already show very different

situations ranging from similar frequency distribution patterns in Australia and the northernmost tiles, through very clearly570

separated patterns in Congo and the southern United States, to the wider range of ETLook ETa values in the Iberian Peninsula

and Italy as compared to the narrower range in the estimates by TSEB-PT.
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Figure 16. Dekadal ETa (mm/day) across three 10° lat/lon tiles as modelled by ETLook (left column), TSEB-PT (center column) and the

WaPOR v3 (right column) product in the last dekad of May for panels A and C and the second dekad of July for panel B. 2020.

Although the sample is not large enough to extract solid conclusions, the difference in distribution patterns between models

seems to be larger in temperate and tropical regions (like in Africa and the southern United States) as compared to latitudes

further away from the equator.575

The visual inspection of the ETa values at tile level gives a complementary view to the histograms presented above. Figure

16 presents a small set of examples that allow the visual comparison of the dekadal ETa estimates by ETLook and TSEB-PT
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and the WaPOR product at tile level. These images confirm what was mentioned earlier concerning differences/similarities in

the output of ETLook and TSEB-PT. The panel A of Figure 16 illustrates the wider spread of ETa values pointed out earlier

which translates into regions of higher ETa in the ETLook estimations as compared to those of TSEB-PT.580

The examples in Figure 16 show as well that the number of missing data in the output maps of ETLook and TSEB-PT

is larger than in the WaPOR product. The reason for those gaps are the differences between NRT and reanalysis gap-filling

(see Section 4.1) but also the different model inputs and treatments of inland water and snow. For example, the CLMS TOC

reflectance product (principal input to ETa product) uses IDEPIX method for cloud-masking that it is known to frequently and

persistently mis-classify bright areas as potential clouds (Copernicus Land Monitoring Service, 2023). This explains the gaps585

seen in Figure 16-B in the desert areas. Regarding snow and inland water, neither TSEB-PT nor ETLook are designed to model

evaporation of those surfaces and therefore both are masked out in the CLMS product (e.g. 16-A for water and 16-C for snow).

WaPOR, on the other hand, estimates evaporation of those surfaces as a post-processing step.

4.3 Evaluation of CLMS ETa modelling framework components

Section 3 focused on the validation of the final CLMS ETa model outputs. During the development of the ETa modelling590

framework various design choices were made and intermediate products evaluated to justify those choices. In this section, we

briefly present this evaluation.

4.3.1 Biophysical traits, albedo and net shortwave radiation

The biophysical traits were obtained by random-forest inversion of PROSPECT-D+4SAIL RTM (Section 2.3). In order to

test the sensitivity and robustness of such inversion method, we ran an independent set of PROSPECT-D+4SAIL simulations595

to compare how the regression model predicts the biophysical traits. Random white noise was added to this test dataset,

considering that retrieved TOC have relative uncertainty of 10% (ρtest = ρProSAIL [1 +N (0,0.1))]). This is shown as an

example in Table 9.

A more computationally efficient alternative for the retrieval of LAI and fg (but not pigments used for albedo estimation)

would be to use the daily estimates of LAI and fraction of absorbed photosynthetically active radiation (fAPAR), which are600

internal CLMS datasets used to produce the 300 m dekadal biophysical CLMS product. In this case we could use a simple

relationship between fg , LAI and fAPAR (Fisher et al., 2008) in order to derive the fraction of LAI that is green (fg).

fg =
fAPAR

fIPAR
(16)

fIPAR=1− eK(θs)LAI (17)

where LAI is the total Leaf Area Index (LAI = gLAI
fg

), fIPAR is fraction of intercepted photosynthetically active radiation605

and K(θs) is the shortwave beam coefficient of extinction at solar zenith angle θs.

Since CLMS LAI product actually represents the green LAI (Copernicus Land Monitoring Service, 2022), and with fg and

total LAI unknown, an iterative procedure proposed by Guzinski et al. (2020) is performed to find the optimal value of fg based
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Table 9. Evaluation performance for the Random Forest hybrid inversion of the PROSPECT-D+4SAIL radiative transfer model. The "ob-

served" dataset corresponds to 40000 independent simulation of PROSPECT-D+4SAIL for a VZA=0°, SZA=37.5°, a standard atmosphere,

and a relative uncertainty of 10% in the TOC reflectance retrievals. Cab, Car, Ant, Cbrown, are respectively the leaf concentrations of chloro-

phyll a+b, carotenoids, anthocyanins and brown pigments; Cm and Cw are respectively the leaf dry matter and water contents; LAI is the

leaf area index and Leaf Angle is the Campbell (1990) mean leaf inclination angle. Physical units in the error metrics are consistent with

those on Table 4

Trait N bias RMSE r

Cab

40000

0.011 8.480 0.96

Car -0.013 4.477 0.90

Cm -0.000 0.004 0.92

Cw -0.000 0.008 0.92

Ant -0.068 4.617 0.93

Cbrown -0.002 0.232 0.93

LAI 0.013 0.592 0.97

Leaf Angle 0.020 6.436 0.93

on gLAI and fAPAR. An initial LAI is assumed equal to gLAI (i.e. fg = 1), from which fIPAR is computed from Eq. 17 and

then fg recalculated with Eq. 16. This process is repeated until the fg value converges between iterations.610

In order to evaluate whether both approaches provide consistent data, we ran the biophysical processor over sites included

in the ICOS WarmWinter2020 database (Warm Winter 2020 Team et al., 2022). These selected sites are listed in Table B3. We

thus compared both LAI and fg retrieved between 2019 and 2021 using the method described in Section 2.3 against the Fisher

et al. (2008) and Guzinski et al. (2020) LAI/fAPAR approach using the CLMS FAPAR (Copernicus Land Monitoring Service,

2017a) and LAI (Copernicus Land Monitoring Service, 2017b) global products at 300m, version 1. The density plots of Figure615

17 shows that overall the LAI products agree well, in particular at values lower than 2–3, with best agreement for green LAI

(gLAI). Nonetheless, the larger scatter at higher LAI (i.e. denser vegetation) is not of great concern, as over these very dense

canopies the interception (transmission) of radiation is already close to the maximum (minimum), i.e. near the light saturation,

and thus these uncertainties have a minimal effect on ETa modelling. It is worth noting these results do not evaluate whether

any of the two approaches is better than the other. Indeed, the CLMS gLAI has been intensively validated with a wide dataset620

of in situ LAI measurements (Copernicus Land Monitoring Service, 2025a) and thus it can be trusted with great confidence.

However, the fraction of LAI that is green (fg) shows larger scatter and with the point cloud in Figure 17 far from the

1:1 line. This deviation has indeed an effect on the comparison of total LAI with larger scatter and a slight positive bias

towards the total LAI derived from the CLMS LAI/fAPAR. In order to better understand the different behavior of fg , Figure

18 shows the timeseries for LAI, gLAI and fg over selected representative ICOS sites. These sites include both temperate625

and semi-arid conditions and a wide range of biomes: broadleaved and conifer forests, croplands, grasslands, savannas, and

orchards/vineyards.
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Figure 17. Density scatterplot intercomparison between the biophysical processor LAI, green LAI (gLAI) and fg and those derived from the

alternative use of CLMS LAI/FAPAR 300m global products, version 1.

These timeseries confirm that LAI trends are mostly in agreement, with only some bias present in very dense vegetation:

croplands during their peak development, broadleaved forests in summer and conifer forests. However, the behavior of fg

shows discrepancies in certain cases. For instance, we would expect that herbaceous croplands (Figure 18a) remain mostly630

green during the growing phase (spring) with fg values very close to 1 which then decrease during crop senescence in summer.

However, thefg data derived from the CLMS LAI/fAPAR products shows values significantly lower than one during spring,

and sometimes values close to 1 when LAI decreases during senescence. Another inconsistent behaviour was found in the

savanna site (Figure 18e), in which the CLMS LAI/fAPAR fg even shows an opposite trend as one would expect i.e. decrease

of fg in late spring reaching a minimum in summer where most of the grass layer in this site is dead and only the evergreen635

oak canopy remains green and then a re-greening with the first rains of autumn. In addition, the fg derived with the CLMS

LAI/fAPAR product seems to be also underestimated in the temperate grassland (Figure 18b) and evergreen forest (Figure

18d), as over these two temperate biomes the canopy should remain mostly green all year round.

PROSPECT-D model, through an emulator, was also used to derive leaf bihemispherical reflectances and transmittance

(Section 2.4). The evaluation of the performance of this emulator is shown in Figure 19. There is a larger scatter for the NIR640

reflectances and transmittances, likely due to the fact that we are intentionally excluding the PROSPECT-D leaf structural

parameter, that basically controls the multiple scattering within the leaf tissues, which is of a larger magnitude in the NIR

region than in the PAR. However, the uncertainties when deriving the reflectances and transmittances seem to be cancelled out

when computing the leaf absorptance and therefore the conversion from pigments to leaf spectra seems sufficiently robust.

To derive soil bihemispherical reflectance we converted narrowband reflectance values measured by Sentinel-3 satellites645

into broadband reflectance in PAR and NIR spectral regions using a linear regression approach (Section 2.4). We evaluated

the goodness of this approach by running an independent set of simulations and compared the retrieved broadbands using

the coefficients of Table 5. For both platforms, the evaluation confirms the robustness of conversion from the Sentinel-3 TOC
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Figure 18. Timeseries intercomparison between the LAI (in black), gLAI (in green) and fg (in green) products retrieved from the biophysical

processor (plain line) and those derived from the alternative use of CLMS LAI/fAPAR products (hollow circles).
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Figure 19. Emulator of PROSPECT-D leaf radiative transfer model for the retrieval of broadband leaf reflectance, transmittance and absorp-

tance factors.

reflectances to the broadband PAR, NIR and SW spectral regions, with negligible mean bias (≈0), very low RMSE and very

good correlation (≈1) (Figure 20).650

4.3.2 Land surface temperature sharpening

In the case of CLMS ETa product, the LST sharpening needs to be performed by a ratio of around 3 (i.e. from 1 km to

300 m). Because of this relatively small ratio, the sharpening could potentially be achieved with methods which are more

computationally efficient than DMS. Therefore, we also evaluated the performance of a classic and simple (and therefore

faster) sharpening method called TsHARP (Agam et al., 2007). It relies on finding a linear regression between the Normalized655

Difference Vegetation Index (NDVI) and LST. The regression is derived on the whole LST scene to be sharpened with NDVI

resampled to the LST spatial resolution. Afterwards, the linear regression is applied to NDVI at its native resolution to estimate
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Figure 20. Evaluation of the narrowband to broadband conversion for the estimated Sentinel-3A (top) and Sentinel-3B (bottom) coefficients

using the Liang (2001) method. These results are obtained after applying the coefficents in Table 5 to 40000 PROSPECT-D+4SAIL indepen-

dent simulations.

the representation of LST at this resolution. Finally, a bias correction step is applied to ensure the consistency of LST between

the original and sharpened maps.

The two LST sharpening methods were tested in a number of geographically distributed areas of interest (AOI) (Fig. 21 left660

panel) and across different seasons (images from at least four dates were sharpened at each AOI) to ensure a robust comparison.

SY_2_SYN___ (SYN) Sentinel-3 product was used as a proxy for CLMS TOC reflectance product since the latter was still

in production at the time this analysis was performed. The two products share the same spectral bands and spatial resolutions.

The DMS regression models are trained on the entire Sentinel-3 SYN 3-minute product data unit (PDU) (around 1400 km by

1200 km) as well as on subsets of 30 by 30 LST pixels in a moving window fashion. The evaluation of the sharpening methods665

was performed using the Sentinel-3 LST (as shown in Fig. 21 right panel) due to the lack of in situ LST data which could be

used to validate satellite LST with 300 m spatial resolution. The SLSTR LST product was first resampled from 1 km to 3 km
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Figure 21. Locations of areas of interest (left) and outline of the framework (right) used to evaluate DMS and TsHARP approaches for

sharpening SLSTR LST images.

Table 10. Accuracy statistics for thermal sharpening: coefficient of determination (r2), Root Mean Square Error (RMSE), Mean Absolute

Error (MAE), bias (modelled minus observed) and slope of the linear regression line between modelled and observed values. Model config-

urations are described in text.

Model r2 RMSE (K) MAE (K) Bias (K) Slope

TsHARP 0.93 0.85 0.59 -0.02 0.99

DMS - Reflectance 0.95 0.74 0.52 -0.02 1.00

DMS - WaPOR 0.95 0.75 0.53 -0.01 1.00

DMS - WaPOR selected 0.95 0.75 0.52 -0.01 1.00

and the SYN reflectance product was resampled from 300 m to 1 km, as was the ancillary data. The two sharpening methods

were then used to recreate the LST at 1 km resolution, and the resulting map was compared with the original LST product.

This evaluation framework assumes that there are no significant differences in relations between the explanatory variables and670

the LST when sharpening from 3 km to 1 km and when sharpening from 1 km to 300 m.

The results of the comparison are summarized in Table 10. At all sites, the DMS method produces more accurate sharpened

LST compared to TsHARP. The largest difference is at the Central Europe AOI where RMSE of DMS is up to 0.3 K lower than

that of TsHARP and Mean Absolute Error (MAE) is up to 0.24 K lower. Looking at all sites, the RMSE of DMS is around 0.1

K lower compared to TsHARP (12% difference) and MAE is around 0.06 K lower (10% difference). Bias is minimal for both675

methods because bias correction is incorporated in both of them. Both methods also have similar and very high r2, with DMS

being slightly better, and the slope of the linear regression between sharpened and original LST very close to 1.

Regarding the three sets of DMS explanatory variables (see Section 2.5 for details), the differences between them are

negligible. Looking at the details, there is no site in which "DMS - WaPOR" performs better than the other two configurations,

while "DMS - Reflectance" has slightly better performance at some sites and "DMS - WaPOR selected" at others. However,680
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the reduction in explanatory variables from 19 ("DMS - Reflectance") to 9 ("DMS - WaPOR selected") results in speed-up of

the execution by a factor of around 2.3.

Qualitative assessment of the sharpened LST maps reveals that, in some cases, when variability of NDVI is low, TsHARP

fails to find a meaningful relation between NDVI and LST (i.e. the linear regression has a slope close to 0). In such cases, the

resulting sharpened LST is mainly an output of the bias correction step and has a blurry appearance consistent with simple685

resampling of lower resolution LST to higher resolution. In those cases, the quantitative analysis might still result in good

accuracy statistics due to a small difference in spatial resolution between 3 km and 1 km LST. DMS is less sensitive to,

but not fully unaffected by, this issue because it relies on a range of spectral bands, indices, and DEM-based datasets. It is

also noticeable that, in some cases, when there is insufficient information in the spectral data, DMS relies too heavily on

DEM-based datasets, which can result in artifacts in the sharpened LST. One of the root causes of this issue could be the690

insufficient or incorrect atmospheric correction applied to SYN spectral bands. For operational production of CLMS ETa (and

for production of data validated in Section 3) the SYN product is replaced by CLMS TOC reflectance product. The latter has

shown improved agreement with in-situ measurements (Copernicus Land Monitoring Service, 2025c) and could therefore lead

to an improvement in LST sharpening in such cases.

4.3.3 Weather forcing and ETa gap-filling695

The suitability of the topographically corrected CAMS forecast data (Section 2.6) for modelling of actual evapotranspiration

was assessed by comparing modelled daily solar irradiance and reference ET against measurements from 45 EC flux towers

located in western Europe (France, Belgium, western Germany, Switzerland Spain, and northern Italy), United States and

Australia for the year 2020. Those towers represent various topographical conditions from flat and low-lying to mountainous

terrain as well as different climates, from arid to temperate. The statistical results of this comparison are shown in Fig. 22 and700

confirm the applicability of CAMS forecast for ETa modelling and suitability of the correction methods.

Apart from forcing the ET models, CAMS data was used for gap-filling of modelled ETa maps through the use of reference

ET and precipitation (PR) (Section 2.9). We evaluated three gap-filling approaches: ignoring rainfall (called GFETr - (Guzinski

et al., 2021)); taking rainfall into account as described in Guzinski et al. (2023) (called GFETr+PR); conservative modification

of GFETr+PR described in Section 2.9 (called GFETr+PR80). We also evaluated near real-time (NRT) gap-filling periods with705

different maximum durations: 15 days (as used by default in Sen-ET approach), 30 days and 60 days (as used in WaPOR during

reprocessing). Finally, a non-time-critical (NTC) gap-filling with a maximum duration of 60 days (i.e. up to 60 days before and

after target date) was also evaluated.

To evaluate the behaviour of the methods in diverse climates, we performed an analysis using in-situ ET measured at

geographically distributed ICOS stations (Table B3). The daily ET at ICOS stations was calculated by summing up good710

quality instantaneous ET at hourly or half-hourly timesteps. Dates on which more than two measurements were of poor quality

were ignored and no correction for lack of energy balance closure was performed. The determination of quality of ET data

was based on ICOS quality flags associated with each measurement. Reference ET and rainfall sums were calculated from
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Figure 22. Comparison between daily solar irradiance (SW-IN-DD panel in Wm2) and reference ET (ETR panel in mmday−1) modelled

with topograhically corrected CAMS forecast data and measured in 45 representative Eddy Covariance stations located in western Europe,

United States and Australia.

Figure 23. An example of gap-filled ET timeseries at Voulundgaard ICOS station in 2015. Maximum gap-filling window of 60 days was

used with, at left, gap-filling with rainfall not taken into account (method GFETr) and, at right, gap-filling with rainfall taken into account

using the best performing method (method GFETr+PR80). Most notable differences are in spring (March - April) and late summer (July -

August).

the stations’ meteorological measurements. Cloudy days were identified as those for which measured solar irradiance was less

than 80% of theoretical surface solar irradiance in clear-sky conditions.715

Table 11 presents the results on this evaluation. Statistics are calculated on daily basis and only for data points which were

gap-filled and for which the rainfall adjustment is relevant. Neglecting rainfall can introduce an overall negative bias (underes-
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Table 11. Accuracy statistics for gap-filling of evapotranspiration on cloudy days using ICOS in-situ data and different methods (described

in text) and maximum window sizes (in NRT mode apart from last rows).

Window size Method RMSE (mm day−1) Bias (mm day−1) r

15

GFETr 0.62 -0.17 0.86

GFETr+PR 0.59 -0.05 0.87

GFETr+PR80 0.59 -0.09 0.87

30

GFETr 0.63 -0.18 0.87

GFETr+PR 0.61 0.03 0.87

GFETr+PR80 0.59 -0.06 0.88

60

GFETr 0.63 -0.17 0.87

GFETr+PR 0.65 0.13 0.86

GFETr+PR80 0.58 -0.02 0.88

60 NTC

GFETr 0.56 -0.11 0.89

GFETr+PR 0.72 0.35 0.87

GFETr+PR80 0.54 0.04 0.90

timation) of up to -0.18 mm day−1 on wet, gap-filled dates. When rainfall is taken into account the introduced bias can become

negligible and this reduction in bias leads to a less significant reduction in introduced uncertainty. Method GFETr+PR per-

forms well with shorter window size but performance degrades significantly as window size increases and for largest windows720

the uncertainty is higher than for method GFETr. Method GFETr+PR80 results in lowest introduced bias and uncertainty with

60 days window size, chosen for the CLMS ETa processing chain. Finally, the NTC gap-filling performs better than NRT gap-

filling and with method GFETr+PR80 performing the best in this case. An example timeseries of ET gap-filled with methods

GFETr and GFETr+PR80 is shown in Figure 23.

4.4 Potential improvements to the CLMS ETa product725

The CLMS ETa product will enter operational phase before the end of 2025. Therefore, it is not feasible to introduce signif-

icant changes for the initial version of the product. However, like most CLMS products, ETa might undergo evolution and

reprocessing in the coming years and, therefore, it is worth to highlight some potential areas of improvement.

One of the main limitations in producing medium- and high spatial resolution ET products (below 1 km) is the lack of LST

observations with high spatio-temporal resolution, especially within the Copernicus Sentinel satellites. This situation should be730

resolved by the end of the decade when Land Surface Temperature Monitoring (LSTM) mission, with a primary objective of

frequent monitoring of field-scale ETa, will join the Copernicus constellation (Koetz et al., 2018). In the meantime, it might be

advantageous to make use of well established non-Copernicus sensors, such as VIIRS on board of Suomi-NPP satellite which

can provide daily observations of LST with spatial resolution of 375 m.

44

https://doi.org/10.5194/egusphere-2025-4342
Preprint. Discussion started: 23 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Another potential improvement would be to compute a temporal running mean of biophysical parameters and TOC re-735

flectance using the latest week of data. This should result in two benefits. Firstly, inverting the PROSPECT-D+4SAIL RTM

(see Section 2.3) is an ill-posed problem, meaning that multiple combinations of biophysical parameters can result in the same

reflectance. By taking a mean of multiple inversions, under the assumption that the biophysical conditions of vegetation do not

change significantly over short time periods, the robustness of this inversion can be improved. Secondly, this will allow the full

use of SLSTR swath with VZA below 35°by gap-filling the OLCI image on the eastern edge of the swath (see Section 2.2).740

Producing a reanalysis dataset, e.g. two months after the completion of NRT production, might also lead to improvements

in the accuracy of the CLMS ETa product. Firstly, because it would allow the use of ERA5 reanalysis meteorological data

(Hersbach et al., 2020) instead of CAMS forecast as ET model forcing. The former has improved accuracy and increased

spatial resolution compared to the latter and is therefore expected to result in more robust ET estimates. Secondly, gap-filling

could be performed using 60 days both preceding and succeeding the target date which will result in less cloud gaps in the final745

ETa maps but also in improved accuracy (compare two bottom rows of Table 11).

Finally, modelling of evaporation of inland water bodies (and potentially of snow) can be important for many applications,

such as water resources management or SDG reporting. Therefore, a post-processing step could be introduced during which

this flux could be estimated, e.g. using Penman model (Monteith and Unsworth, 2013) parameterized for water.

5 Conclusions750

A global and operational actual evapotranspiration product will be introduced to the portfolio of the Copernicus Land Moni-

toring Service by the end of 2025. This addition is motivated by a request from the Food and Agriculture Organization of the

United Nations but the new product will have a multitude of applications in water resources management, SDG reporting, food

security, forest management and other fields. The product is designed to have a 300 m spatial resolution, dekadal temporal

resolution, global extent and to be produced in near-real-time with 2-day delay (Table 1). As all other CLMS products, it will755

be distributed with a free and open license and will have guaranteed long-term continuity.

The product will be based almost exclusively of Copernicus data, ranging from imagery acquired by OLCI and SLSTR

sensors on board of Sentinel-3 satellites through meteorological forecast data provided by Copernicus Atmosphere Monitor-

ing Service to higher-level products such as land cover maps produced by Copernicus Land Monitoring Service (Table 3).

Those data undergo significant pre-processing to turn them into input forcing (Table 2) for two ET models: TSEB-PT and760

ETLook (Section 2). The input data and the pre-processing methods were selected to be applicable globally and evaluation was

performed to confirm that this is the case (Section 4.3).

A demonstration dataset of one year was produced using the prototype end-to-end processing chain for the CLMS ETa

product, and validated using measurements from 104 globally distributed eddy covariance stations (Section 3). Results of this

comparison are encouraging with overall best RMSE of 0.80 mm/day (for the ensemble TSEB-PT - ETLook ETa), bias of -0.12765

mm/day (for TSEB-PT ETa) and coefficient of determination of 0.84 (for the ensemble TSEB-PT - ETLook ETa). The CLMS

ETa prototype also compared favourably with the global WaPOR ETa maps produced by FAO, which it is meant to replace,
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and other higher-resolution ETa datasets (Section 4.1). The addition of ETa product in the CLMS portfolio should therefore

significantly enlarge the CLMS user community.

Code availability. The biophysical processor based on PROSPECTD+4SAIL described in Section 2.3 is available at https://github.com/hec770

tornieto/pyPro4Sail with the specific version used in this study being https://github.com/hectornieto/pypro4sail/releases/tag/v1.2 (Nieto,

2025).

The Data Mining Sharpener used to sharpen LST described in Section 2.5 is available at https://github.com/radosuav/pyDMS with the

specific version used in this study being https://github.com/radosuav/pyDMS/releases/tag/v1.2.

The code used to access and topographically correct meteorological forcings described in Section 2.6 is available at https://github.com775

/hectornieto/meteo_utils/ with the specific version used in this study being https://github.com/hectornieto/meteo_utils/releases/tag/v2.1.1

(Nieto et al., 2025b) .

The implementation of TSEB-PT model described in Section 2.8.1 is available at https://github.com/hectornieto/pyTSEB the specific

version used in this study being https://github.com/hectornieto/pyTSEB/releases/tag/v2.3 (Nieto et al., 2025a) .

The implementation of ETLook model described in Section 2.8.2 is available at https://bitbucket.org/cioapps/pywapor/ with the specific780

version used in this study being https://github.com/DHI-GRAS/pywapor/releases/tag/prototype.
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Appendix A: Estimation of canopy transmittance and reflectance

The direct-hemispherical spectral transmittance (τC,DIR,λ) at a given solar zenith angle (θS) is calculated following the equa-

tions of Campbell and Norman (1998) for a single layer canopy:

τC,DIR,λ (θS) =

(
ρ∗C,λ (θS)2− 1

)
exp

(
−√ζλκb (θS)LAI

)
(
ρ∗C,λρS,λ− 1

)
+ ρ∗C,λ (ψ)

(
ρ∗C,λ (θS)− ρS,λ

)
exp

(
−2

√
ζλκb (θS)LAI

) (A1)785

with λ being either the PAR or NIR. ρ∗C,λ (ψ) is the beam spectral reflection coefficient for a deep canopy with non-horizontal

leaves (see Eq. A2), ζλ is the leaf absorptivity, κb is the extinction coefficient for direct-beam radiation (per LAI unit), and ρS,λ

is the soil spectral reflectance. The multiple scattering between the soil and the canopy is accounted for in the ρ∗C,λ and ρS,λ

terms.

ρ∗C,λ (θS) =
2κb (θS)ρH

λ

κb (θS) + 1
(A2)790

ρH
λ = 1−√ζλ

1+
√

ζλ
is the reflectance factor for a canopy with horizontal leaves.

Finally, the canopy beam extinction κb (ψ) is calculated based on the ellipsoidal LADF of Campbell (1990):

κb (θS) =

√
χ2 + tan2 θS

χ+ 1.774(χ+ 1.182)−0.733 (A3)

Diffuse spectral transmittance (τC,DIF,λ) is calculated by numerically integrating κb over the hemisphere:

κd = 2

π∫

0

κb (ψ)sinψ cosψdψ (A4)795

and replacing κb by κd in Eq. A1.

Similarly the canopy direct spectral albedo is computed as:

ρC,DIR,λ (θS) =
ρ∗C,λ (θS) +

[
ρ∗C,λ(θS)−ρS,λ

ρ∗C,λ(θS)ρs,λ−1

]
exp

(
−2
√
ζλκb (θS)LAI

)

1 + ρ∗C,λ (θS) +
[

ρ∗C,λ(θS)−ρs,λ

ρ∗C,λ(θS)ρS,λ−1

]
exp

(
−2
√
ζλκb (θS)LAI

) (A5)

and the diffuse canopy albedo (ρC,DIF,λ) by replacing κb (θS) by κd

Appendix B: List of flux towers800

Tables B1 and B2 lists all the EC flux tower sites used to validate CLMS ETa datasets. The ICOS datasets used in the analysis

were the ETC L2 FLUXNET (ICOS RI et al., 2025) and the Warm Winter 2020 (ICOSww - Warm Winter 2020 Team et al.
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(2022)). AsiaFlux site is described in Meijide et al. (2017). The DOIs of AmeriFlux sites are listed below:

CA-DBB: 10.17190/AMF/1881565

US-ARM: 10.17190/AMF/1854366805

US-Bi1: 10.17190/AMF/1871134

US-Bi2: 10.17190/AMF/1871135

US-BZF: 10.17190/AMF/1881570

US-HB3: 10.17190/AMF/2229378

US-Jo1: 10.17190/AMF/1902833810

US-Me6: 10.17190/AMF/2204871

US-Mo1: 10.17190/AMF/2229382

US-Mo2: 10.17190/AMF/2229383

US-Mo3: 10.17190/AMF/2229384

US-ONA: 10.17190/AMF/1832163815

US-Rls: 10.17190/AMF/2229387

US-Ro4: 10.17190/AMF/1881589

US-Ro5: 10.17190/AMF/1818371

US-Ro6: 10.17190/AMF/1881590

US-Sne: 10.17190/AMF/1871144820

US-SRG: 10.17190/AMF/2204877

US-Ton: 10.17190/AMF/2204880

US-Tw4: 10.17190/AMF/2204881

US-Var: 10.17190/AMF/1993904

US-Whs: 10.17190/AMF/1984574825

US-Wkg: 10.17190/AMF/1984575

US-xAE: 10.17190/AMF/1985434

US-xDC: 10.17190/AMF/1985437

US-xDS: 10.17190/AMF/1985439

US-xJE: 10.17190/AMF/1985443830

US-xSB: 10.17190/AMF/1985451

US-xSE: 10.17190/AMF/1985452

US-xST: 10.17190/AMF/1985454

US-xTA: 10.17190/AMF/1985455

US-xWD: 10.17190/AMF/2229412835

Table B3 lists selected sites from ICOS WarmWinter2020 database which were used to evaluate biophysical modelling and

ET gap-filling approaches.
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Table B1. Geographical location, climate region (Köppen classification), plant functional type (PFT) and network/dataset of origin for EC

flux towers used for CLMS ETa model validation - part A.

Id Site Latitude Longitude Climate PFT Network

1 AT-Inn 47.2641 11.3858 Dfb URB EFDC

2 AT-Neu 47.1167 11.3175 Dfb GRA EFDC

3 AT-VnA 48.1818 16.3909 Dfb URB EFDC

4 AU-ASM -22.2828 133.2493 BWh SAV OzFlux

5 AU-Boy -32.4771 116.9386 Csa EBF OzFlux

6 AU-Cum -33.6152 150.7236 Cfa EBF OzFlux

7 AU-DaS -14.1592 131.3881 Aw SAV OzFlux

8 AU-Dry -15.2588 132.3706 Aw SAV OzFlux

9 AU-GWW -30.1913 120.6541 BWh SAV OzFlux

10 AU-Lit -13.1790 130.7945 Aw SAV OzFlux

11 AU-Rgf -32.5061 116.9668 Csa CRO OzFlux

12 AU-Stp -17.1507 133.3502 BSh GRA OzFlux

13 AU-Whr -36.6732 145.0294 BSk EBF OzFlux

14 AU-Wom -37.4222 144.0944 Cfb EBF OzFlux

15 BE-Lcr 51.1122 3.8504 Cfb DBF EFDC

16 BE-Lon 50.5516 4.7462 Cfb CRO ICOS

17 BE-Maa 50.9801 5.6319 Cfb CSH EFDC

18 CA-Cbo 44.3167 -79.9333 Dfb DBF AmeriFlux

19 CA-DB2 49.1190 -122.9951 Csb WET AmeriFlux

20 CA-DBB 49.1293 -122.9849 Csb WET AmeriFlux

21 CH-Aws 46.5832 9.7904 Dfc GRA EFDC

22 CH-Cha 47.2102 8.4104 Dfb GRA ICOSww

23 CH-Fru 47.1158 8.5378 Dfb GRA EFDC

24 CH-Oe2 47.2864 7.7338 Dfb CRO EFDC

25 CZ-BK1 49.5021 18.5369 Dfb ENF ICOSww

26 CZ-KrP 49.5733 15.0788 Dfb CRO ICOSww

27 CZ-RAJ 49.4437 16.6965 Dfb ENF ICOSww

28 CZ-wet 49.0247 14.7704 Dfb WET ICOSww

29 DE-BeR 52.4572 13.3158 Dfb URB EFDC

30 DE-Geb 51.0997 10.9146 Dfb CRO EFDC

31 DE-Gri 50.9500 13.5126 Dfb GRA ICOSww

32 DE-Hai 51.0792 10.4522 Dfb DBF ICOSww

33 DE-Hdn 53.8683 13.2685 Dfb CRO EFDC

34 DE-HoH 52.0853 11.2192 Dfb DBF ICOSww

35 DE-Kli 50.8931 13.5224 Dfb CRO ICOSww

36 DE-Obe 50.7867 13.7213 Dfb ENF ICOSww

37 DE-RuR 50.6219 6.3041 Dfb GRA ICOSww

38 DE-RuS 50.8659 6.4471 Cfb CRO ICOSww

39 DE-Tha 50.9626 13.5652 Dfb ENF ICOSww

40 DE-Zrk 53.8759 12.8890 Dfb WET EFDC

41 DK-Sor 57.2331 9.8446 Cfb DBF EFDC

42 ES-Abr 38.7018 -6.7859 Csa SAV ICOSww

43 ES-Cnd 39.2242 -0.9031 BSk EBF ICOSww

44 ES-LJu 37.0979 -2.9658 BSh OSH ICOSww

45 ES-LM1 39.9427 -5.7787 BSk SAV ICOSww

46 ES-LM2 39.9346 -5.7759 BSk SAV ICOSww

47 FI-Hyy 61.8474 24.2948 Dfc ENF ICOS

48 FI-Kmp 60.2029 24.9611 Dfb URB EFDC

49 FI-Let 60.6418 23.9595 Dfc ENF EFDC

50 FI-Sii 61.8327 24.1929 Dfc WET ICOS

51 FR-Bil 44.4937 -0.9561 Cfb ENF ICOS

52 FR-Fon 48.4764 2.7801 Cfb DBF ICOS

53 FR-Gri 48.8442 1.9519 Cfb CRO ICOSww

54 FR-Hes 48.6741 7.0647 Cfb DBF ICOSww

55 FR-Lam 47.3229 2.2841 Cfa CRO ICOSww

56 FR-LGt 44.7171 -0.7693 Cfb WET EFDC

57 FR-Mej 48.1184 -1.7963 Cfb GRA EFDC

58 IE-Cra 53.3231 -7.6418 Cfb WET ICOSww

59 IL-Yat 31.3450 35.0520 BSh ENF ICOSww

60 IT-BCi 40.5238 14.9574 Csa CRO ICOSww

61 IT-Cp2 41.7043 12.3573 Csa EBF ICOSww

62 IT-Lsn 45.7405 12.7503 Cfa OSH ICOSww
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Table B2. Geographical location, climate region (Köppen classification), plant functional type (PFT) and network/dataset of origin for EC

flux towers used for CLMS ETa model validation - part B.

Id Site Latitude Longitude Climate PFT Network

63 IT-OXm 43.7745 11.2552 Csa URB EFDC

64 IT-SR2 43.7320 10.2909 Csa ENF EFDC

65 IT-Tor 45.8444 7.5781 Dfb GRA ICOSww

66 JOP -1.6931 103.3914 Af CRO AsiaFlux

67 RAGOLA 14.4944 -16.4563 BSh GRA AMMA

68 RU-Fy2 56.4476 32.9019 Dfb ENF ICOSww

69 SE-Deg 64.1820 19.5565 Dfc WET ICOSww

70 SE-Nor 60.0865 17.4795 Dfb ENF ICOS

71 SE-Ros 64.1725 19.7380 Dfc ENF ICOSww

72 SE-Svb 64.2561 19.7745 Dfc ENF ICOS

73 UK-LBT 51.5215 -0.1389 Cfb URB EFDC

74 US-ARM 36.6058 -97.4888 Cfa CRO AmeriFlux

75 US-Bi1 38.0992 -121.4993 Csa CRO AmeriFlux

76 US-Bi2 38.1091 -121.5351 Csa CRO AmeriFlux

77 US-BZF 64.7013 -148.3121 Dfc WET AmeriFlux

78 US-HB3 33.3482 -79.2322 Cfa ENF AmeriFlux

79 US-Jo1 32.5820 -106.6350 BWk OSH AmeriFlux

80 US-Me6 44.3233 -121.6078 Dsb ENF AmeriFlux

81 US-Mo1 39.2298 -92.1167 Dfa CRO AmeriFlux

82 US-Mo2 38.9488 -91.9945 Dfa GRA AmeriFlux

83 US-Mo3 39.2322 -92.1493 Dfa CRO AmeriFlux

84 US-ONA 27.3836 -81.9509 Cfa GRA AmeriFlux

85 US-Rls 43.1439 -116.7356 BSk CSH AmeriFlux

86 US-Ro4 44.6781 -93.0723 Dfa GRA AmeriFlux

87 US-Ro5 44.6910 -93.0576 Dfa CRO AmeriFlux

88 US-Ro6 44.6946 -93.0578 Dfa CRO AmeriFlux

89 US-Sne 38.0369 -121.7547 Csa GRA AmeriFlux

90 US-SRG 31.7894 -110.8277 BSh GRA AmeriFlux

91 US-Ton 38.4309 -120.9660 Csa WSA AmeriFlux

92 US-Tw4 38.1027 -121.6413 Csa WET AmeriFlux

93 US-Var 38.4133 -120.9508 Csa GRA AmeriFlux

94 US-Whs 31.7438 -110.0522 BSk OSH AmeriFlux

95 US-Wkg 31.7365 -109.9419 BSk GRA AmeriFlux

96 US-xAE 35.4106 -99.0588 Cfa GRA AmeriFlux

97 US-xDC 47.1617 -99.1066 Dwb GRA AmeriFlux

98 US-xDS 28.1250 -81.4362 Cfa CVM AmeriFlux

99 US-xJE 31.1948 -84.4686 Cfa ENF AmeriFlux

100 US-xSB 29.6893 -81.9934 Cfa ENF AmeriFlux

101 US-xSE 38.8901 -76.5600 Cfa DBF AmeriFlux

102 US-xST 45.5089 -89.5864 Dfb DBF AmeriFlux

103 US-xTA 32.9505 -87.3933 Cfa ENF AmeriFlux

104 US-xWD 47.1282 -99.2414 Dwb GRA AmeriFlux

Appendix C: Statistical metrics and Taylor plot scores for dekadal ETa per model, when only sites with fluxes

corrected for the EBC problem (AmeriFlux, ICOS, OzFlux networks) were analyzed.

Table C1 and Figure C1 show validation of modelled dekadal ETa (similarly to Table 8 and Figure 6) but only against the flux840

towers for which ECB correction was applied.
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Table B3. Selected sites from ICOS WarmWinter2020 database (Warm Winter 2020 Team et al., 2022) used to evaluate biophysical modelling

and ET gap-filling approaches. In addition to geographical location the table shows climate region (Köppen classification) and plant functional

type (PFT) of each site.

Site Latitude Longitude Climate PFT

GF-Guy 5.2787 -52.9248 Af EBF

CD-Ygb 0.8144 24.5024 Af MF

IT-MBo 46.0146 11.0458 Dfc GRA

DK-Vng 56.0374 9.1607 Cfb CRO

ES-LM2 39.9345 -5.7758 Csa SAV

FR-Bil 44.4936 -0.9560 Cfb ENF

SE-Deg 64.1820 19.5565 Dfc WET

FR-Lam 43.4964 1.2378 Cfb CRO

CZ-Lnz 48.6815 16.9463 Dfb DBF

SE-Nor 60.0865 17.4795 Dfb ENF

ES-Agu 36.9393 -2.0340 Csa OSH

GL-Dsk 69.2534 -53.5141 ET OSH

JP-Bby 43.3229 141.8107 Cfa WET

IT-BCi 40.5237 14.9574 Cfa CRO

IL-Yat 31.3450 35.0519 BSh ENF

GL-ZaH 74.4733 -20.5508 ET GRA

JP-Ozm 34.5634 135.5334 Dfa URB

DE-Gri 50.9500 13.5125 Dfv GRA

NL-Loo 52.1664 5.7435 Cfb ENF

Table C1. Bias (mm/day), RMSE (mm/day), and r2 scores for dekadal ETa per model (all sites combined), and summary statistics at site

level. rBias and rRMSE are relative metrics (i.e., divided by mean measured ET).

Model N Bias RMSE rBias rRMSE r2

Summary scores at site level

Bias RMSE r2

min max min max mean St.Dev

TSEB-PT 2424 -0.07 0.88 -0.04 0.49 0.79 -1.04 1.39 0.28 2.24 0.78 0.25

ETLook 2424 -0.46 1.12 -0.25 0.63 0.78 -0.72 2.56 0.27 2.94 0.79 0.23

Ensemble 2424 -0.26 0.80 -0.15 0.45 0.85 -0.66 1.98 0.28 2.22 0.83 0.20

WaPOR 2424 0.12 0.88 0.07 0.49 0.81 -1.01 1.53 0.26 1.77 0.76 0.26
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Figure C1. Taylor-plot general overview. The circle on the x-axis is the standard deviation of the eddy covariance towers measurements.
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