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Abstract. Immersion freezing, initiated by ice-nucleating particles (INPs) in supercooled aqueous droplets, plays an important

role in the formation of ice crystals within clouds. The efficiency of immersion freezing depends strongly on INP composition

and, crucially, on the mixing state—how chemical species are distributed across the particle population. Here, we quantify the

impact of aerosol mixing state on immersion freezing using a combined theoretical and particle-resolved modeling approach.

We derive analytical expressions for the frozen fraction of internally and externally mixed INP populations based on classical5

nucleation theory, showing that the frozen fraction is sensitive to whether ice-active species are present in all particles or

only in a subset of the population. We introduce a multi-species immersion freezing scheme into the particle-resolved model

PartMC, using the water activity-based immersion freezing model (ABIFM) to compute freezing probabilities for mixed-

composition particles. To improve computational efficiency, we implement a Binned Tau-Leaping algorithm and demonstrate

an order-of-magnitude speedup with minimal accuracy loss. Simulations confirm the theoretical prediction that internally10

mixed populations yield higher frozen fractions than externally mixed ones under otherwise identical conditions. Sensitivity

analyses across particle size, species type, and cooling condition reveal that the mixing state effect is most pronounced when

small amounts of highly efficient INPs are mixed with less efficient materials. These findings underscore the need to represent

aerosol mixing state explicitly in models of heterogeneous ice nucleation to reduce uncertainty in cloud-phase partitioning.

1 Introduction15

Atmospheric aerosols are complex mixtures of different chemical species, a characteristic driven by their diverse sources and

aging processes during transport. This phenomenon has been extensively studied through both field and laboratory observations

(e.g., Andreae and Crutzen, 1997; Murphy and Thomson, 1997; Rudich, 2003; Zhang et al., 2007; Baustian et al., 2012; Laskin

et al., 2016; Hodshire et al., 2019; Laskin et al., 2019; Lata et al., 2021; Shao et al., 2022). Aerosol mixing state varies along

a spectrum from externally mixed to internally mixed populations. In an external mixture, each particle consists of a single20

chemical species, whereas in an internal mixture, all particles share the same composition (Winkler, 1973). The mixing state
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of aerosols impacts their climate-relevant properties including cloud condensation nuclei (CCN) activity (Deng et al., 2013;

Ren et al., 2018; Wang et al., 2018; Rejano et al., 2024) and aerosol optical properties (e.g., Lesins et al., 2002; Ma et al.,

2011, 2012; Liu and Mishchenko, 2018; Stevens and Dastoor, 2019; Zheng et al., 2021). However, its impact on heterogeneous

ice nucleation remains comparatively underexplored, a gap that this study aims to address.25

Ice nucleating particles (INPs) are aerosol particles that facilitate ice crystal formation by lowering the energy barrier for ice

nucleation (Pruppacher and Klett, 1979; Knopf and Alpert, 2023). This process allows ice to form at higher temperatures than

would be possible through homogeneous nucleation. INPs play a critical role in mixed-phase clouds by altering the water-to-ice

content ratio, thereby influencing both cloud glaciation and precipitation formation (Pruppacher and Klett, 1979; Lohmann,

2002; Ansmann et al., 2008; Kanji et al., 2017; Storelvmo, 2017). This modulation of the water-to-ice content ratio also affects30

radiative transfer within mixed-phase clouds (McCoy et al., 2014a, b, 2016; Murray et al., 2021), which is a key factor in

regulating the Earth’s radiative balance.

Numerous studies highlight the importance of aerosol chemical composition in heterogeneous ice nucleation (e.g., Möhler

et al., 2008; Phillips et al., 2008; Knopf et al., 2018; Joghataei et al., 2020). The chemical and physical properties of aerosol

species, such as their surface structure, surface chemistry, and hydrophilicity or hydrophobicity, strongly influence their effec-35

tiveness as INPs (Diehl and Mitra, 1998; Zuberi et al., 2002; Knopf et al., 2014; Fitzner et al., 2015; Bi et al., 2016; Wang

et al., 2016; Kiselev et al., 2017; Yang et al., 2018). Different species exhibit highly variable heterogeneous ice nucleation

rates, spanning several orders of magnitude under identical environmental conditions (Diehl and Mitra, 1998; Murray et al.,

2012; Knopf and Alpert, 2013; Kanji et al., 2017; Knopf et al., 2018; Wagner et al., 2021). Since the mixing state determines

how chemical species with varying ice nucleation efficiencies are distributed within an aerosol population, it plays a crucial40

role in the overall frozen fraction of INPs. Figure 1 illustrates this effect by comparing two groups of INPs of the same size,

each featuring two surface species: gray represents a highly efficient ice nucleating species (“good nucleator”), while green

denotes a less effective ice nucleating species (“bad nucleator”). The group on the left represents an external mixture, where

each particle consists of a single species, whereas the group on the right is an internal mixture, with both species present in

each particle. During cooling, assuming the INPs are immersed in water, in case of the external mixture, only the particles that45

contain the good nucleator will transition to ice. In contrast, in the internal mixture, the presence of the good nucleator in all

particles enables the entire population to freeze. This mechanism results in a 50% difference in ice formation, underscoring the

significant impact of aerosol mixing state on ice crystal formation.

Several studies have investigated the INP mixing state impact on ice nucleation, with most focusing on changes due to

chemical ageing, particularly through the coating process (Kanji et al., 2017; Knopf et al., 2018). Laboratory studies have shown50

that when dust particles are coated with organic material or sulfuric acid, their effectiveness as INPs is significantly reduced

(Möhler et al., 2008; Sullivan et al., 2010; Kanji et al., 2017; Stevens and Dastoor, 2019). Xue et al. (2024) experimentally

quantified the relative errors in contact angle measurements for sea salt particles with different mixing state during deposition

ice nucleation. Their findings suggest that both the particle composition and mixing state influence the ice-nucleating abilities

of marine aerosols. Similarly, Spichtinger and Cziczo (2010) used box model simulations to examine differences in deposition55

freezing between internally and externally mixed INPs in cirrus clouds. The study found that the contrast in freezing ability

2

https://doi.org/10.5194/egusphere-2025-4326
Preprint. Discussion started: 24 September 2025
c© Author(s) 2025. CC BY 4.0 License.



between these two mixing states was more pronounced than the difference between size-dependent and size-independent

nucleation threshold assumptions.

Two general approaches are commonly used to describe heterogeneous ice nucleation in atmospheric models: the singular

approach (Hoose and Möhler, 2012; Niedermeier et al., 2015; Shima et al., 2020; Abade and Albuquerque, 2024) and the60

time-dependent approach (Fletcher, 1958, 1959, 1962; Koop et al., 2000; Knopf and Alpert, 2013; Alpert and Knopf, 2016;

Knopf and Alpert, 2023), the latter based on classical nucleation theory (CNT). The singular approach assumes that each

particle freezes at a characteristic temperature, independent of time, while the time-dependent formulation treats freezing as

a stochastic process governed by a temperature-dependent nucleation rate. Both frameworks are simplifications of a more

complex reality, and ongoing research continues to evaluate their respective merits. Notably, Arabas et al. (2025) conducted a65

systematic comparison and found that the CNT-based approach yields more robust results across a range of cooling conditions,

particularly when laboratory-derived nucleation parameters are applied in dynamic atmospheric simulations. In this study, we

adopt the CNT-based, time-dependent framework to describe immersion freezing, both for its theoretical grounding and its

compatibility with our particle-resolved modeling strategy. A full implementation of both approaches is beyond the scope of

this work.70

While previous studies have explored the effect of mixing state on ice nucleation, significant gaps remain in understanding

the specific mechanisms by which mixing state alters the INP efficiency, defined here as the fraction of particles that nucleate

ice for a given temperature. Moreover, there has been a notable lack of quantitative investigations isolating the mixing state

impact on freezing behavior. In many prior studies, changes in mixing state due to chemical aging or coating processes were

accompanied by variations in the total surface area of different species, making it difficult to determine the direct influence of75

mixing state itself. To date, no particle-resolved modeling studies have been systematically quantified effect of mixing state

while controlling for other factors.

To address this gap, we first develop a theoretical framework based on classical nucleation theory to quantify the sensitivity

of the frozen fraction to the INPs’ mixing state during the immersion freezing process. Next, we design and implement particle-

resolved immersion freezing simulations within the Particle-resolved Monte Carlo Model (PartMC, Riemer et al. (2009)). This80

approach provides a precise and flexible representation of various mixing state, allowing us to verify our theoretical framework

and quantitatively demonstrate how the frozen fraction varies as a function of INP mixing state.

2 Classical nucleation theory for mixed particles

Following classical nucleation theory, heterogeneous ice nucleation occurs when the first nucleation event on the surface of an

ice nucleus triggers the entire particle to freeze. These events are stochastic Poisson processes (Pruppacher and Klett, 1979;85

Koop et al., 1997; Leonard and Im, 1999; Consiglio et al., 2023; Knopf and Alpert, 2023). The probability of ice nucleation

within a small time step ∆t assuming a constant nucleation rate λ is given by

Pfrz(∆t) = 1− e−λ∆t, (1)
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Inefficient speciesEfficient species

External mixture Internal mixture

Figure 1. An example highlighting how mixing states affect the amount of ice formation. The top panel shows the INPs given at initial

stage, with 50% of the INPs effective at freezing (gray) and 50% ineffective (green), distributed as both external and internal mixtures. The

bottom panel displays the result after a certain duration, where the effective INPs in the internal mixture have induced a more widespread ice

formation, as represented by the hexagons, compared to the external mixture.

where λ (unit: s−1) depends on the size and material of the ice nucleus, as well as ambient conditions, including temperature,

vapor pressure, and the properties of solutions in cases where an INP is immersed in a droplet. If λ varies over time, the90

probability over a period t becomes

Pfrz(t) = 1− e−
´ t
0 λ(τ)dτ , (2)

as described by Koop et al. (1997); Leonard and Im (1999); Consiglio et al. (2023), and detailed in appendix A1. Since classical

nucleation theory assumes that nucleation events occur randomly on the nucleus surface, λ is proportional to the surface area.

This leads to the definition of the heterogeneous nucleation rate coefficient Jhet (unit: m−2s−1), which quantifies the expected95

number of nucleation events per unit surface area per unit time. For an INP of surface area Sp, the relationship is

λ = Jhet ·Sp. (3)

The heterogeneous nucleation rate coefficient Jhet depends on environmental conditions and the inherent properties of the

INP. If the surface comprises regions with differing nucleation efficiencies—that is, some parts actively nucleate ice while

others do not— Eq. (3) can be extended to an integral over the entire surface area:100

λ =
‹

S

Jhet(r) · dS, (4)

where the vector r indicates a specific point on INP surface. This equation forms the foundation for simulating multi-species

ice nucleation per particle. In particle-resolved models, the state of a particle is described by the amounts of its constituent

species. The surface area occupied by each species can be determined with assumptions about the particle morphology. Using
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this information, the freezing probability within ∆t for a droplet containing such an INP can be expressed as105

Pfrz(∆t) = 1− e−J̄het·Sp·∆t, (5)

where

J̄het =
1
Sp

Ns∑

i=1

(Si · J (i)
het ) =

Ns∑

i=1

wi · J (i)
het , (6)

is the surface area weighted mean of the nucleation rate coefficient among all Ns species on the surface of the immersed INP, Si

is the immersed surface area covered by the ith species, Sp is the total immersed surface area, and wi = Si/Sp is the immersed110

surface ratio of the ith species. Similarly, the freezing probability within the time range t in the Eq. (2) can be written as

Pfrz(t) = 1− e−Sp
´ t
0 J̄het(T (τ))·dτ . (7)

For convenience, we define Φi, for each species as

Φi(t) =
ˆ t

0

J
(i)
het (T (τ))dτ, (8)

so that Eq. (7) can be simplified as115

Pfrz(t) = 1− exp

[
−Sp ·

Ns∑

i=1

wiΦi(t)

]
. (9)

The value of Φi describes the freezing ability of the ith species under a specific cooling condition. To analyze the impact of the

mixing state factor on ice production, other variables affecting the amount of ice production, such as cooling rate and duration,

must be controlled. Thus, under the same cooling conditions but varying mixing states, Φi serves as a fixed descriptor for a

species’ freezing capability. Additionally, Eq. (9) provides a simplified form of Eq. (7) for the theoretical analysis discussed in120

the following sections.

3 Sensitivity of immersion freezing to aerosol mixing state

In Section 2, Eq. (9) introduced the calculation of freezing probabilities for individual multi-species INPs. Building on this, this

section examines the macroscopic frozen fraction of a multi-species INP population emphasizing the impact of mixing state

on the frozen fraction. The goal is to quantify the sensitivity of the frozen fraction to aerosol mixing state during immersion125

freezing. The analysis focuses on monodisperse particles, with the impact on polydisperse particles left for future studies.

Even when two INP populations share the same particle count, particle sizes, and species surface area, and experience the

same cooling rate, their frozen fractions can differ due to differences in mixing state. For a given scenario, we define this

sensitivity as:

Sensitivity =
f (max)

frz − f (min)
frz

f (max)
frz

· 100%. (10)130
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Here, f (max)
frz and f (min)

frz are the maximum and minimum frozen fraction values across all mixing states for the given scenario.

The mixing state that produces the highest frozen fraction is referred to as the most efficient mixing state, while the one

resulting in the minimum frozen fraction is termed the least efficient mixing state. The magnitude of sensitivity can also be

viewed as an upper bound of the relative error in frozen fraction calculations caused by uncertainties in the mixing state.

Here, we present a theorem regarding the most and least efficient mixing states for monodisperse INPs.135

Theorem 1. For monodisperse INP populations, the internal mixture is the most efficient mixing state, while the external

mixture is the least efficient mixing state.

The proof is shown in Appendix D. Therefore, we have f (max)
frz = f (int)

frz , and f (min)
frz = f (ext)

frz , where f (int)
frz and f (ext)

frz are the frozen

fractions corresponding to internal and external mixtures, respectively. As shown in Eq. (10), the sensitivity of monodisperse

INPs depends entirely on the frozen fractions of internal and external mixture, emphasizing the need to study their differences.140

It should be emphasized that Theorem 1 is only valid when internal and external mixtures of a monodisperse particle

population are compared. While our framework can be applied to polydisperse populations (as discussed in Section 5.3), the

distinction between internal and external mixtures is only meaningful within a single size bin—that is, mixing state comparisons

are made between particles of the same size, not across different sizes.

Section 3.1 derives theoretical expressions for the frozen fraction of internal and external mixtures and offers physical in-145

sights to explain these differences. Section 3.2 examines how sensitivity is influenced by variations in species types, temperature

profiles, INP sizes, and species’ total surface area ratios.

3.1 Evaluating frozen fractions for internal and external mixtures

Consider an internally mixed, monodisperse INP population composed of multiple species, with Np particles, each immersed

in a supercooled droplet. By the Law of Large Numbers, the expected frozen fraction ffrz equals the arithmetic average of the150

freezing probabilities of all INP,

ffrz =
1

Np

Np∑

j=1

Pfrz,j , (11)

where Pfrz,j is the freezing probability of the jth INP as expressed in Eq. (9).

Let Ns denote the number of species present in the population, and wi = Si/Sp represent the surface area ratio of the ith

species, where Si is the area covered by species i and Sp is the total INP surface area.155

For the externally-mixed case, the following applies. Since each particle contains only one species, the whole INP population

can be conceptualized as a collection of multiple modes, with each mode representing a different species. The unfrozen fraction

of the whole INP population after time t can be written

f (ext)
unf =

Ns∑

i=1

wi · f (i)
unf , (12)

where wi is the ratio of the total surface area of INPs in the ith mode relative to the total surface area across all INPs and f
(i)
unf160

is the unfrozen fraction for droplets containing single-species monodisperse INPs, whose surface is 100% covered by the ith
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species (for a detailed derivation, see Appendix A2). The frozen fraction is therefore

f (ext)
frz = 1−

Ns∑

i=1

wi · f (i)
unf = 1−

Ns∑

i=1

wi ·
(
1− f

(i)
frz

)
, (13)

In contrast, for the internally-mixed case the unfrozen fraction f (int)
unf can be expressed as

f (int)
unf =

Ns∏

i=1

[
f

(i)
unf

]wi

. (14)165

Thus, this leads us to an expression that captures the relationship between the frozen fraction of droplets containing multi-

species INPs and single-species INPs,

f (int)
frz = 1−

Ns∏

i=1

(
1− f

(i)
frz

)wi

, (15)

where f (int)
frz and f

(i)
frz represent the frozen fraction of droplets containing internally mixed and single-species monodisperse

INPs (for detailed derivation, see Appendix A3). Eq. (14) implies that for monodisperse INPs, the internal mixture’s unfrozen170

fraction is a weighted geometric mean of the single-species counterparts’ unfrozen fractions, weighted by the species surface

ratio. A mathematical description similar to Eqs. (13) and (15) is also discussed in Broadley et al. (2012).

To recap, Eqs. (13) and (15) explain the differences in ice nucleation between external and internal mixtures, which is

mathematically reflected in the difference between the arithmetic and geometric means. The sensitivity of the frozen fraction

to the INP mixing state becomes more pronounced when species have diverse freezing efficiencies (i.e., different f
(i)
unf ).175

Despite having the same total surface area covered by a species in both the internal and the external mixture scenario,

the difference in ice formation between internal and external mixtures arises because each INP freezes its droplet only once,

regardless of its nucleation rate. In external mixtures (Fig. 1, left), the efficient freezing species (“good nucleator”) only covers

half of the INPs, so only half of the INPs are highly effective. Once these INPs freeze their droplets, any further nucleation

events occurring within these already frozen droplets, though predicted by the theoretical probability model, do not lead to180

the formation of new ice, rendering the high efficiency of the good nucleators redundant. The remaining half consists of less

effective species (“bad nucleator”), leading to fewer freezing events. In contrast, internal mixtures distribute the good nucleator

across all INPs, increasing the probability of new nucleation events on unfrozen droplets and maximizing freezing efficiency.

To illustrate the results derived so far, Fig. 2 compares frozen fractions for internally-mixed and externally-mixed monodis-

perse INPs populations consisting of two species, species A and B. We assume that the species each cover 50% of the total185

INP surface area. Species A nucleates ice very efficiently with the same Jhet as Fe2O3, while the Jhet ratio of species B to A is

varied (shown on the x-axis). All frozen fractions are calculated using Eqs. (9), (11), (13), and (15).

Figure 2a shows the frozen fractions for internal and external mixtures after being exposed to a constant temperature for 20

min, where the temperatures varies from −14 ◦C to −23 ◦C. As expected, the differences are more pronounced at small Jhet

ratios, where the two species’ freezing efficiencies differ strongly. Concurrently, at lower temperatures, the Jhet disparity has a190

larger impact, whereas at higher temperatures, the frozen fractions for both mixtures become nearly identical. Figure 2b shows
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(a) (b)

Figure 2. Frozen fractions comparing internally and externally mixed INPs after being exposed to a constant temperature for a certain time

tfreeze. (a) Frozen fraction is evaluated for different temperatures with tfreeze = 20 min. (b) Frozen fraction is evaluated for different tfreeze

at a fixed temperature of −23 ◦C.

the frozen fractions over durations from 1 to 20 minutes at −23 ◦C. Longer durations show more pronounced differences

at small Jhet ratios, whereas shorter durations yield negligible differences. The results in both panels show a similar pattern,

because lower temperatures and longer durations both lead to higher Φ values, which is the parameter that appears in Eq. (9).

Since temperature and duration are combined in Φ, we will use Φ as a simpler parameter to represent freezing ability, avoiding195

complex cooling condition with varying temperature profiles.

3.2 Frozen fraction’s sensitivity to mixing state

In the previous section, we suggested that using the Φ value simplifies the classification of cooling condition with varying

temperature and duration. For example, the condition with a brief duration at low temperatures and those with longer durations

at higher temperatures can be considered equivalent if they share the same Φ value. In this section, we continue using the200

model from Fig. 2 and analyze the effects of INP size and the total surface area fraction of each species on sensitivity of frozen

fraction to mixing state.

Figure 3 introduces a sensitivity map for monodisperse INPs with dry diameter of 1 µm, and a surface ratio of two hypothet-

ical species A and B of 50%. The x and y-axis are analogous to Fig. 2 but using Φ instead of Jhet for the reasons stated above.

Each data point in the sensitivity map represents the sensitivity value defined by Eq. (10) for a scenario involving species A205

and B, with typical Φ values denoted as ΦA and ΦB, respectively.

For reference, some atmospherically relevant examples of species combinations A and B are highlighted as horizontal dashed

lines and aligned solid dots. For example, the combination of Fe2O3 and illite is represented by the green solid dot aligned with

the gray dashed line. The Φ values for each species marked in Fig. 3 are calculated for a scenario with a constant temperature

of−33 ◦C and a duration of 10 minutes, using Eq. (8). The Jhet values for each species are computed using the Water Activity-210

Based Immersion Freezing Model (Knopf and Alpert, 2013), which is explained in more detail in Section 4.2. In Fig. 3, there
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Regime 1

Regime 3

Regime 2

Regime 4

Figure 3. Sensitivity map for particles with a dry diameter of 1 µm, where species A and B are present in a 50:50 ratio. The Φ values for

Fe2O3, Al2O3, fungal spores, and dust representing species A are marked by gray, blue, brown, and black horizontal dashed lines, respectively.

The sky blue, brown, black, red, and green solid dots along each horizontal line represent the corresponding Φ ratios of pahokee peat, fungal

spores, dust, kaolinite, and illite as species B in combination with each species A, respectively. Parameters for ice nucleation calculation are

derived from Knopf and Alpert (2013).

are three regimes where uncertainties are negligible, labeled as regimes 1 to 3, and marked with red, green, and sky blue boxes,

respectively.

Regime 1 represents the scenarios where two species have freezing efficiency close to each other, which results in negligible

sensitivity, as discussed in Fig. 2. To explain the small sensitivities in Regimes 2 and 3, we use a simple mathematical analysis.215

Based on Eq. (9), the unfrozen fraction of monodisperse INPs covered by single species of A or B can be formulated as

f (A)
unf = exp(−SpΦA) and f (B)

unf = exp(−SpΦB), where the Sp = πD2
p is the dry surface area of each immersed INP. Therefore,

based on Eqs. (12) and (14), the unfrozen fraction of internal external mixture, denoted as f (int)
unf , can be expressed as

f (int)
unf = exp

[
−1

2
Sp · (ΦA + ΦB)

]
, (16)

while the unfrozen fraction of external mixture, denoted as f (ext)
unf , can be expressed as220

f (ext)
unf =

1
2
· [exp(−SpΦA) + exp(−SpΦB)] . (17)

In the Regime 2, both species A and B have a relatively small Φ value of less than 107 cm-2, where the product of Sp and Φ is

less than the order of 10-1, resulting in

f (int)
unf ≈ f (ext)

unf ≈ 1− 1
2
Sp · (ΦA + ΦB) , (18)

9
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(a) (b) (c)

Figure 4. Same as Fig. 3 but with different dry diameter of INPs. (a): 0.1 µm; (b): 1.0 µm;(c): 10 µm.

which explains the small frozen fraction difference between internal and external mixtures in this case. This result is consistent225

with Fig. 2 for the conditions of higher temperature and shorter duration time.

In Regime 3, both species A and B have a large Φ value, larger than 108 cm-2, with the product of Sp and Φ being larger than

the order of 100, resulting in

f (int)
unf ≈ f (ext)

unf ≈ 0. (19)

This indicates a frozen fraction of nearly 100% for both internal and external mixtures, again resulting in a small difference230

between the two mixing states.

Regime 4 is where the sensitivity to mixing state is significant. In this regime, the good nucleator (species A) is efficient at

freezing, and a large disparity in freezing efficiency exists between the good nucleator and the bad nucleator (species B). There

are several examples of species combinations that fall into Regime 4, such as Fe2O3 mixed with illite (34.1% of sensitivity),

Fe2O3 mixed with kaolinite (29.0%), Al2O3 mixed with illite (33.7%), and dust mixed with Pahokee Peat (12.2%), among235

others.

Figure 4 presents the same sensitivity map as Fig. 3 but for varying INP sizes, ranging from Accumulation mode (Dp =

0.1 µm) to coarse mode (Dp = 10 µm). The pattern in the figure exhibits a vertical shift with changes in INP size: as the INP

size decreases, the pattern shifts upward. In the case of smaller INPs (panels a, b), the immersed surface area of each INP is

small, making it difficult for even efficient species to trigger multiple ice nucleation events on the same particle. As a result,240

Regime 2 dominates the entire sensitivity map. Conversely, for larger INPs with larger immersed surfaces, inefficient species

can trigger multiple ice nucleation events, leading to the disappearance of Regime 2 and the dominance of Regimes 1, 3, and

4.

Figure 5 shows the same sensitivity map as Fig. 3, but for varying immersed surface ratios of species A and B. When the

total immersed surface ratio of the efficient ice nucleating species (species A) is small (Figure 5a), the sensitivity increases245

across the entire map, especially in Regime 4, where the maximum sensitivity reaches 90%. In contrast, as the total immersed

surface ratio of the efficient ice nucleating species increases, the sensitivity decreases accordingly. Once the surface ratio of

species A is 90%, the maximum sensitivity is reduced to only 10%. These results indicate that when a mixed-INP population

10
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(a) (b) (c)

Figure 5. Same as Fig. 3 but with different total immersed surface ratio of species A (i.e., SA/(SA + SB)). (a): 0.1; (b): 0.5; (c): 0.9.

contains a small proportion of highly efficient species, the influence of the mixing state becomes significant, and failure to

accurately estimate the mixing state can lead to high error in the frozen fraction calculation.250

4 Numerical implementation to particle-resolved model

Section 2 presented the immersion freezing probability for an individual mixed particle, while Section 3 analyzed the sensi-

tivity of the frozen fraction to the mixing state of INPs. Starting from this section, we extend the theoretical framework by

implementing it within the particle-resolved aerosol model (PartMC). We perform immersion freezing simulations for both

single-species and multi-species INPs to confirm the results from Section 3 and further investigate the influence of INP mixing255

state on the frozen fraction. Section 4.1 focuses on the algorithm design for particle-resolved immersion freezing simulations,

while Section 4.2 presents the simulation setup and results.

4.1 The Particle-resolved Monte-Carlo Model (PartMC)

The particle-resolved Monte Carlo (PartMC) model (Riemer et al., 2009) is a box model for simulating the evolution of

aerosol particles in the atmosphere. The volume of interest contains a large quantity of discrete computational particles. Each260

computational particle represents a sample of real particles with identical properties (DeVille et al., 2011, 2019).

Each computational particle is assumed to be a sphere, and is represented by a vector that contains the masses of the species

comprising that particle, i.e., the jth particle is described as µj = (µj
1,µ

j
2, . . . ,µ

j
Ns

), where µj
i is the mass of the ith species in

the jth particle (i ∈ [1,Ns]), and Ns is the total number of species. Other characteristics of a particle such as the volume of each

species, the total mass and the wet diameter (the diameter of the whole particle, including water and dissolved and insoluble265

aerosol material) and dry diameter (the diameter excluding water) can be derived from its mass vector.

PartMC encompasses multiple physical aerosol processes, including emission of primary aerosols, dilution with background

air, coagulation (Riemer et al., 2009), and condensation of water vapor to simulate cloud formation (Ching et al., 2012). Gas-

particle partitioning is included when PartMC is coupled with MOSAIC (Zaveri et al., 2008). During these processes, the

evolution of the mass of each species in a particle is tracked. This feature makes PartMC a valuable tool for investigating the270
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impact of mixing state on the aerosol population and on climate-relevant properties of the aerosol. The PartMC has been used

in several particle-resolved studies, e.g., Kaiser et al. (2011) used PartMC-MOSAIC to simulate the heterogeneous oxidation

process on soot particles and derived the half-lives parameter of surface-bound PAHs for large-scale model. Tian et al. (2014)

used it to investigate the chemical evolution of aerosols in a ship plume and its impact on CCN properties, Curtis et al.

(2017) coupled PartMC-MOSAIC with WRF model to study the vertical distribution of aerosol mixing state during turbulent275

diffusion and dry deposition within the planetary boundary layer, Hughes et al. (2018) used the mixing state simulation result

from PartMC to train the machine learning model for the global estimation of aerosol mixing state distribution, Yao et al.

(2022) provided a systematic quantification of mixing state impact on aerosol optical properties based on the PartMC model

simulation.

So far, PartMC has not yet been applied to questions related to heterogeneous ice nucleation. In this study, we extended280

PartMC by including the process of immersion freezing based on classical nucleation theory. Several parameterizations can

be used to calculate the heterogeneous nucleation rate coefficient Jhet (Fletcher, 1958, 1959, 1962; Pruppacher and Klett,

1979; Phillips et al., 2008; Hoose and Möhler, 2012; Knopf and Alpert, 2013). Following Arabas et al. (2025), we will use the

activity-based immersion freezing model (ABIFM) proposed by Knopf and Alpert (2013).

4.2 The water activity-based immersion freezing model (ABIFM) for Jhet calculation285

The water activity-based immersion freezing model (ABIFM), proposed by Knopf and Alpert (2013), is a useful tool for the

estimation of heterogeneous ice nucleation rate Jhet in immersion freezing simulations. Following their study, when an INP

is immersed in an aqueous solution, the rate coefficient Jhet can be determined by the difference of solution water activity aw

and the water activity in equilibrium with ice aice
w . For an aerosol particle in equilibrium with ambient relative humidity, the

numerical value of water activity equals the 100% of humidity (Koop et al., 2000). The parameterization of Jhet is290

log10 Jhet = m · (aw− aice
w ) + c, (20)

where, m and c are the ABIFM parameters for a specific aerosol species. Knopf and Alpert (2013) derived the value of m and

c for ten different species fitted from experimental data, such as Fe2O3, Al2O3, fungal spores, dust, 1-Nonadecanol, kaolinite,

illite, Leonardite, and Pahokee Peat.

Combining Eqs. (5), (6), and (20), the immersion freezing probability of a supercooled droplet containing one INP with295

multiple species can be formulated as





Pfrz = 1− exp
[
−∑Ns

i=1(wi · J (i)
het ) ·Sp ·∆t

]
;

log10 Jhet = mi · (aw− aice
w ) + ci;

aw = RH
100 ≈ 1; aice

w = eice
s (T )
es(T ) ; wi = Si

Sp
,

(21)

and the descriptions of each variable used in the Eq. (21) are listed in the Table (1).

To use Eq. (21) to calculate the immersion freezing probability of a single droplet with a multi-species insoluble INP, the

immersed surface area that each species contributes must be known. However, in PartMC each particle is characterized by300
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Table 1. Parameters in Eq. (21)

Symbol Description

J
(i)
het Heterogeneous freezing rate coefficients of the ith species.

Si Immersed surface area of ith species.

Sp The total immersed surface area of the INP.

∆t Time interval.

aw Water activity of the droplet in which the INP is immersed.

aice
w Water activity in equilibrium with ice.

RH Relative humidity with respect to water.

es Saturated vapor pressure with respect to water.

eice
s Saturated vapor pressure with respect to ice.

mi, ci ABIFM parameters of ith species.

Ns The total number of species covering the surface of the INP.

the masses of each species, and a detailed description of the particle’s morphology is not tracked, and therefore appropriate

assumptions need to be made. Here, we assume that the volume ratio of the species equals their surface area ratio, and that all

surfaces on the insoluble INP are immersed in water.

The ice nucleation rate coefficient, J
(i)
het , is determined by the difference between of aw and aice

w , along with the parameters

mi and ci. Assuming the droplet remains in equilibrium with the ambient conditions and the INP it contains is insoluble,305

hence there is no solute present, the value of aw is equal to 1. The value of aice
w is determined by the ratio of the saturated vapor

pressure with respect to ice to the saturated vapor pressure with respect to water. As temperature is the only variable that affects

these terms, aice
w is thus determined by temperature. The values of mi and ci for a specific species are obtained from Knopf and

Alpert (2013).

4.3 The implementation to the PartMC model310

This section introduces the immersion freezing simulation algorithms that we developed and implemented for the PartMC

model. Simulating immersion freezing of a computational particle at a given temperature involves the following five steps (also

shown in algorithm 1):

#1: Check whether the particle has an insoluble component.

#2: Assess whether the temperature is below 0 ◦C and if that particle is immersed in water.315

#3: If a particle meets the above criteria, calculate the freezing probability Pfrz using Eq. (21).

#4: Determine whether that particle will freeze at this time step using a stochastic method based on Pfrz.

#5: If that particle coagulates with another frozen particle, it will also freeze.

In Step 4, if a computational particle is frozen, we assume that all real particles it represents are also frozen. Regarding Step

5, we assume that when an ice particle collides with a supercooled droplet and coalesces into a single particle, the supercooled320
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Algorithm 1 Immersion freezing algorithm for one particle

1: Given a particle p

2: if p is soluble then

3: # The current version of PartMC does not support ice nucleation for soluble particles.

4: state(p)← unfrozen

5: Return

6: end if

7: if T > 0 ◦C then

8: state(p)← unfrozen

9: Return

10: end if

11: if p isn’t immersed in water then

12: state(p)← unfrozen

13: Return

14: end if

15: if state(p) == frozen then

16: state(p)← frozen

17: Return

18: end if

19: Compute freezing probability Pfrz

20: if randUnif()≤ Pfrz then

21: state(p)← frozen

22: Return

23: end if

24: if state(p) == unfrozen then

25: if p coagulates with a frozen particle then

26: state(p)← frozen

27: end if

28: end if

29: Return
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water will undergo instantaneous freezing. Algorithm 1 outlines the process for determining the freezing state of an individual

particle. The function randUnif() creates a random number that is uniformly distributed between 0 and 1, and the function

state(p) returns “frozen” or “unfrozen”, showing the current phase state of particle p. To apply this in a particle-resolved

model, it is equally important to develop a particle-looping algorithm that applies algorithm 1 to each particle for the entire

population, which we will address next.325

Denoting the complete set of particles as P, we define a subset of particles, π as a part of P (π ⊆ P ), consisting of particles

that contain an insoluble core and sufficient water to satisfy the conditions necessary for immersion freezing. A straightforward

algorithm to simulate immersion freezing in each time step of the PartMC model consists of iterating over all particles in π

and determining the freezing state for each particle one-by-one. In this paper, we refer to this method as “Naive Algorithm”

(shown in algorithm 2).330

In the initial stage of PartMC simulation, the state of the particles needs to be set to “unfrozen”. Then, in each time step, the

PartMC model runs the algorithm 1 to update the phase state of each particle.

Algorithm 2 Naive Algorithm

1: for p ∈ π do

2: Execute Algorithm 1 for p

3: end for

Curtis et al. (2016) proved the accuracy of this type of algorithm. However, the naive algorithm’s efficiency is low when the

average freezing probability Pfrz is much less than 1. This is because it iterates through each particle, irrespective of how many

actually freeze. In such scenarios, the model expends most of its time examining “unfrozen” particles one by one, only to find335

that the majority remains unfrozen. This process results in an inefficient use of computational resources and time.

To optimize the use of computational resources and time, we apply the Binned Tau-Leaping Algorithm (Michelotti et al.,

2013; Curtis et al., 2016). This approach offers both efficiency and accuracy for stochastic particle-resolved simulations. In this

approach, particles are categorized into several bins based on their size. Within each bin, the tau-leaping method is employed

to enhance computational efficiency. Additionally, a secondary selection process is implemented to ensure that the algorithm340

accurately reflects the freezing probability associated with each particle. In this study, we have integrated the Binned Tau-

Leaping Algorithm into the PartMC model to update the phase-state of particles in each timestep, detailed in algorithm 3.

We still use π to represent the set of particles that meets the prerequisite of immersion freezing. If the number of bins in

PartMC is Nbin, define πi (i ∈ [1,Nbin]) is the ith bin set, and π = π1 ∪π2 ∪ . . .∪πNbin , the details of the algorithm is as follow

The function randGeom(P max
i ) returns a random number that follows the geometric distribution with a parameter of P max

i .345

The |πi| refers the number of elements in πi. Lines 2–9 is the tau-leaping process among the particles in the ith bin. P max
i

signifies the upper bound of the freezing probability in the ith bin, a limit that the freezing probabilities of all particles within

this bin should not exceed. Practically, in this algorithm, P max
i is calculated by considering the largest particle in the ith bin and

assuming it to consist of the most efficient ice nucleation species.
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Algorithm 3 Binned Tau-Leaping Algorithm

1: for i = 1, 2, . . . , Nbin do

2: compute the max probability of ith bin: P max
i

3: k← |πi| − 1

4: loop

5: k← k− randGeom(P max
i )

6: if k ≤ 0 then

7: break out of the loop

8: end if

9: select the kth particle in πi : pπi
k

10: if state(pπi
k ) == frozen then

11: continue loop

12: end if

13: compute the freezing probability of the pπi
k : P πi

frz,k

14: if randUnif()≤ P πi
frz,k/P max

i then

15: state(pπi
k )← frozen

16: end if

17: end loop

18: end for

Instead of checking all particles, the algorithm selects a subset of particles and bypasses the rest to enhance computational350

efficiency. The “jump length,” which is the number of particles skipped between two selected particles, follows a geometric

distribution with a parameter P max
i . In this sampling method, each particle in πi has a P max

i probability of being selected.

Lines 13–16 detail the secondary selection process, in which each chosen unfrozen particle has a probability of Pπi

frz,k / P max
i

to transition into a frozen state. After Tau-Leaping and secondary selection, the final probability for each unfrozen particles to

become ice, P final
k , is:355

P final
k = P max

i ·
Pπi

frz,k

P max
i

= Pπi

frz,k (22)

which matches its inherent freezing probability. This attribute guarantees the precision of the Binned Tau-Leaping Algorithm,

thus, at every timestep, the probability of an unfrozen particle being selected by the algorithm to change its phase state is

always equal to its theoretical freezing probability as computed by the ABIFM method. A detailed proof of the algorithm’s

efficiency and exactness is provided by Curtis et al. (2016). Our runtime tests demonstrate that the accelerated algorithm360

reduces the runtime by 87.26% on average, corresponding to a 7.85× speedup, as shown in Fig. E1. The simulated frozen

fractions returned by both algorithms are consistent, with RMSE less than 0.1% and R2 > 0.99, as presented in Fig. E2. For

details discussion on the efficiency and exactness of algorithms in PartMC run instances, please see Appendix E.
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It is crucial to recognize that the method of grouping particles into bins and the approach used to calculate the P max
i for each

bin can significantly influence the algorithm’s efficiency. If there is a large variance in the selection probability of particles365

within the same bin—meaning the upper bound value, P max
i , is substantially higher than the selection probabilities for the

majority of particles in that bin, the algorithm’s efficiency is reduced. This scenario occurs when factors other than particle

size affect their selection probability. In the context of immersion freezing simulations for single-species or internally-mixed

INP populations, variation in freezing probabilities are solely due to size differences, as all INPs have the same composition

and are exposed to the same environmental conditions. However, for INP populations with differences in composition within370

a size range, P max
i is calculated based on the assumption that the largest particle in the ith bin is covered by the most efficient

species. This can lead to a large overestimation for INPs only covered by less efficient species within that bin. A potential

solution to this issue is to group INPs by both size and ice nucleation efficiency. This bin structure would ensure that P max
i does

not excessively exceed the probabilities of most particles in the bin, potentially enhancing the algorithm’s overall efficiency.

However, maintaining a two-dimensional bin structure would come with additional computational cost.375

In algorithm 3, we omit the handling of the case where an unfrozen particle coagulates with a frozen particle (i.e., Lines

24–28 in algorithm 1). In the actual implementation of the PartMC model, this case is handled in the coagulation subroutine

rather than in the immersion freezing subroutine.

The study in this section serves as an illustration of the application of the Binned Tau-Leaping Algorithm (Michelotti et al.,

2013; Curtis et al., 2016) to accelerate particle-resolved aerosol simulations. For simulations of other physical processes that380

involve iteratively looping through particles and stochastically selecting some particles based on a size-related probability, the

Binned Tau-Leaping Algorithm offers a promising approach for significantly reducing computational time.

5 Particle-resolved simulations of immersion freezing

This section presents the immersion freezing simulation results obtained using the PartMC model (Version 2.7.0), incorporating

the algorithms developed in Section 4, alongside the theoretical results derived from the formulas described in Section 3. The385

objective is to illustrate variations in freezing behavior among internally and externally mixed INPs from a model simulation

perspective, thereby validating the theoretical framework outlined in Section 3. Additionally, this section includes results for

monodisperse INPs with intermediate mixing states, demonstrating how the frozen fraction varies with the χ index of the

mixed INP population—an aspect that cannot be analytically quantified using the current theoretical framework.

5.1 Simulation settings and model assumptions390

PartMC, equipped with the multi-species ABIFM algorithm, is able to simulate the changes in ice number concentration Ñfrz,

and frozen fraction ffrz over time given a prescribed temperature profile. In this study, we conducted eight immersion freezing

simulation experiments: four populations of droplets were subjected to isothermal freezing conditions, and four to a constant

cooling rate freezing conditions, respectively, listed in Table (2).
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Table 2. PartMC experiment cases

100% illite 100% Fe2O3 External Internal

constant temperature (−20 ◦C) 1 2 3 4

constant cooling rate (−2 ◦C min−1) 5 6 7 8

The INP populations are shown schematically in the left panel of Fig. 6. Group 1 consists solely of illite, while group 2 is395

exclusively made up of Fe2O3. In group 3, half of the particles are composed entirely of illite, and the other half entirely of

Fe2O3, representing an external mixture. Group 4 features each particle with an even split of illite and Fe2O3 on its surface,

constituting an internal mixture. Noting that in both the external and internal mixtures, the total surface area ratio between the

two species is 50:50. All four groups of INPs share the same log-normal size distribution, with a geometric mean dry diameter

of 1 µm and a log-geometric standard deviation of 0.5, shown in the right panel of Fig. 6. Specifically, for the external mixture400

case (Group 3), we assigned identical size distributions for Fe2O3 and illite particles, that is, within each size bin, the particle

population comprises a 50:50 ratio of pure Fe2O3 to pure illite particles by number concentration. It is important to note that

the population in our simulation is not monodisperse, whereas the theoretical framework presented in Section 3 is formulated

for a monodisperse INP population.

The initial condition of each simulation consists of an INPs number concentration of 100 cm−3. All INPs were already405

immersed in water (one INP per droplet) and none of the INPs was frozen. We set the initial relative humidity with respect

to water at 100% to prevent evaporation of the droplets. We used 10 000 computational particles to represent the total number

concentration of aerosols, with each computational particle representing 0.01 cm−3 aerosols sharing the same size and chemical

composition.

In the isothermal experiments, the temperature was maintained at −20 ◦C for a duration of 10 minutes. Under the constant410

cooling rate freezing conditions, the temperature was reduced from −10 ◦C to −30 ◦C at a constant rate of 2 ◦C min−1 over

a period of 10 minutes, i.e., T (t) =−10 ◦C− 2 ◦C min−1 · t. The time interval ∆t is set to 1 s. Within each interval from

t to t + ∆t, the temperature is assumed to remain constant at T (t). Furthermore, the simulations were limited to immersion

freezing only; emissions, dilution, and coagulation were excluded from the model.

To summarize, the assumptions in the PartMC immersion freezing simulations are: (1) All INPs are spheres, the surface area415

is computed by the dry diameter of INP as Sp = πD2
p . (2) Each droplets contains only one INP. (3) The volume ratio of each

species of mixed particles equals their surface ratio.

5.2 Simulation Results

As an example, Fig. 7 presents the results of Case 6 (all INPs consist of Fe2O3 and are exposed to a constant cooling rate

of 2 ◦C min−1), displaying the simulated frozen fraction and comparing it with the analytical results using Eq. (B12). As the420

temperature drops from −10 ◦C to −30 ◦C, more and more of INPs activate and the frozen fraction increases (green dots).

The simulation results are confirmed with the analytical solution using Eq. (B12) in Appendix B.
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100% illite 100% Fe2O3

External (50:50) Internal (50:50)

)𝐷!" = 1µ𝑚
log#$𝜎 = 0.5

Figure 6. Model settings. Left panel: Schematic of particle mixing state for the four scenarios. The color green denotes illite, gray indicates

Fe2O3, and blue represents the supercooled droplets that all INPs are immersed in. In both the external and internal mixtures, the total surface

area ratio between the two species is 50:50. Right panel: size distribution of INPs represented by their number concentration density (cm−3).

The geometric mean dry diameter (D̄pg) is 1 µm and the log-geometric standard deviation (log10 σ) is 0.5.

The size distributions of activated INPs at 2, 5, and 9 minutes are depicted in blue in panels (a), (b), and (c) of Fig. 7,

respectively. Ice crystal formation begins in droplets containing larger INPs, which are capable of activating and freezing at

higher temperatures and after shorter times. Conversely, smaller INPs require more time and lower temperatures to initiate425

freezing, resulting in some remaining unfrozen droplets until the end. The number concentration density function for activated

INPs, analytically derived from Eq. (B10) and depicted by the black solid line in subplots (a), (b), and (c), closely aligns with

the histogram representing activated INPs as predicted by the PartMC model.

Figure 8 shows the simulation results for the frozen fraction for all eight cases listed in Table (2). Panel (a) illustrated Cases

1–4 conducted at a constant temperature of−20 ◦C, while panel (b) shows Cases 5-8, where the temperature decreased steadily430

from −10 ◦C to −30 ◦C.

In the constant-temperature cases, the ice nucleation rate for an INP remains constant, so the frozen fraction increases over

time because more time allows for more nucleation events. However, the rate of this increase slows down as fewer unfrozen

droplets remain available to freeze. In scenarios with a constant cooling rate, both the frozen fraction and its rate of increase

increase over time. This is because the ice nucleation rate rises as the temperature continues to drop, accelerating the freezing435

process.

Regardless of the temperature profile, INPs composed entirely of Fe2O3 consistently exhibit the highest frozen fraction.

Conversely, INPs made solely of illite display the lowest frozen fraction, with internal and external mixtures of these two

species falling in between.
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temperature

theoretical
theoretical theoretical

Figure 7. Comparison of model results from case 6 in Table (2) with theoretical predictions. Upper panel: Snapshots of number concentration

density distribution of unfrozen (green) and frozen droplets (blue) at specific times indicated by the blue dashed lines in the lower panel. The

black solid line depicts the theoretical size distribution of activated INPs calculated using Eq. (B10). Lower panel: temperature profile (red

line) and time evolution of frozen fraction from 20 realizations (green dots: the average; green shading: the minimum-maximum range), and

the theoretical frozen fraction calculated using Eq. (B12) (black line).

Fe2O3 is a highly effective freezing agent, with an ice nucleation rate coefficient of 3.5× 104 cm−2s−1 at −20 ◦C, as per440

the ABIFM method shown in Eq. (20). In contrast, illite exhibits a significantly lower coefficient of only 0.098 cm−2s−1 at the

same temperature. This means that Fe2O3’s ice nucleation rate coefficient is orders of magnitude larger than that of illite. The

substantial disparity in the freezing behavior of different species causes the large variations in their respective frozen fractions.

Our model results also highlight the distinctions in frozen fraction between internally and externally mixed INPs. Internally

mixed INPs, comprising 50% Fe2O3 and 50% illite by surface area, exhibit a frozen fraction of 41% in the constant temperature445

scenario at the end of the simulation, and 61% in the constant cooling scenario. In contrast, externally mixed INPs, with an

equal number of pure Fe2O3 and pure illite INPs, show a lower frozen fraction of 26% in the constant temperature simulation,

and 36% in the simulation with decreasing temperature. Even though the total surface area of the INPs is the same for both

species, and the cooling condition is consistent across both groups with different mixing states, a significant disparity in the

frozen fraction is observed between internal and external mixtures. These results verify the main conclusion in Section 3 and450

underscore the importance of the mixing state as a critical factor influencing the quantity of ice formation.

Figure 9 presents another view of the comparison of frozen fraction results between analytical calculations and PartMC

simulations for all eight cases listed in Table 1. Generally, the model’s results closely align with the theoretical values, with

an RMSE of less than 1% and a correlation coefficient exceeding 0.9999, except for Case 1. The discrepancy in Case 1 arises
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100% Fe2O3  (2)

100% illite  (1)

Internal  (4)
External  (3)

100% Fe2O3  (6)

100% illite  (5)

Internal  (8)
External  (7)

Figure 8. Simulated frozen fraction for Cases 1–8. (a) isothermal freezing conditions, Cases 1-4. (b) constant cooling rate freezing conditions,

Cases 5–8. Solid lines represent the average frozen fraction from 20 repeated simulations for each scenario, and the shaded areas denote the

range between the maximum and minimum values.
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Figure 9. Simulated frozen fraction from an ensemble mean of 20 repeated PartMC simulations and analytical results for the eight cases

listed in Table (2) (Cases 1–8). Each plot corresponds to one case and depicts the average frozen fraction values from the simulations against

the theoretical predictions. The red dashed line represents the 1:1 line between the simulated and theoretical values.

from the discreteness of computational particles in the PartMC simulation. In this case, the frozen fraction is extremely low, on455

the order of 10−3%, and with only 10 000 computational particles in the PartMC model, accurately predicting frozen fractions
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Figure 10. Schematic diagram of different aerosol mixing states described by various χ indices, where green and gray represent two different

aerosol species.

below 0.01% becomes challenging. Increasing the number of computational particles could address this issue. The results in

this section demonstrate the implementation of the immersion freezing algorithm for multi-species INPs in PartMC, verified

against the analytical solution.

5.3 Immersion freezing simulations for INPs with intermediate mixing state460

According to Theorem 1, for monodisperse particles, the frozen fractions of internally-mixed and externally-mixed INPs define

the upper and lower bounds, and any intermediate mixing state will result in frozen fractions in between these two extremes. In

this section, we will use PartMC to confirm this conclusion quantitatively, and discuss its applicability to polydisperse particles.

We use the χ index based on surface area as a metric to quantify the mixing state of INPs. Originally proposed by Riemer

and West (2013), the χ index was designed to characterize the mixing state of an aerosol population, ranging from internally465

to externally mixed, based on species’ mass fractions. In our study, we modify this definition by replacing mass fraction with

surface area fraction for each species to better account for the ice nucleation properties of INPs (see details in Appendix F).

Figure 10 illustrates the aerosol mixing states as characterized by the χ index (with respect to surface), where χ = 0% signifies

an external mixture and χ = 100% indicates an internal mixture. Values of χ ranging between 0% and 100% denote interme-

diate mixtures, representing a continuum between external and internal mixing states. This conceptual framework is essential470

for comprehending the diverse nature of atmospheric aerosols and their varying properties.

Although Theorem 1 is formally derived for a monodisperse INP population, it can be reasonably extended to polydisperse

populations, provided that the surface area ratio of species is specified within each size bin. When this condition is met, the
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Figure 11. Schematic figure demonstrating the applicability of Theorem 1 to polydisperse INPs. Panels (a)–(c) depict the mixing states

within 5-bin samples, where particles share the same size within each bin but differ in size across bins. Panel (a) represents an internal

mixture, while panels (b) and (c) represent external mixtures. All three panels share the same size distribution, and the total surface area ratio

between species A (gray) and B (green) is 50:50. In panels (a) and (b), the surface area ratio between species A and B is also 50:50 within

each bin; however, this ratio does not hold for the INPs shown in panel (c).

polydisperse population can be treated as a collection of monodisperse subpopulations, allowing Theorem 1 to be applied

to each bin individually. Under these assumptions, the internal mixture remains the most efficient one—since every particle475

within each bin exhibits the highest available ice nucleation efficiency—while the external mixture is the least efficient, as

fewer particles possess the highly active nucleating surface. Figure 11 illustrates an applicability example of Theorem 1. The

polydisperse INP populations shown in panels (a)–(c) share the same size distribution and an identical total surface area ratio of

50:50 between species A (gray) and B (green). Panel (a) shows an internal mixture, while panels (b) and (c) represent external

mixtures. Theorem 1 is applicable to the efficiency comparison between panels (a) and (b), since each bin corresponding to480

the same INP size has the same species surface area ratio (50:50) in both cases. However, Theorem 1 is not applicable to

the comparison between panels (a) and (c), because the species surface area ratio within individual bins differs. For example,

while the first bin in panel (a) has a 50:50 ratio, it is 100:0 in panel (c). Similarly, other bins exhibit inconsistent ratios between

panels (a) and (c), despite having the same total surface area ratio (50:50) when aggregated across all bins. Following PartMC

simulation results illustrate how the frozen fraction varies with the mixing state index (χ) for a polydisperse INP population,485

while maintaining a 50:50 surface area ratio of Fe2O3 and illite particles in each bin.
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Figure 12. Time series of frozen fraction for immersed INPs with specific mixing state under a (a): isothermal freezing conditions with

−20 ◦C and (b): constant cooling rate freezing conditions from −10 ◦C to −30 ◦C within 10 minutes. Each line corresponds to a specific

mixing state of INPs, identified by varying values of the mixing state index χ, which ranges from 0% (purely external mixture) to 100%

(purely internal mixture).

We initialized the model with a series of INP populations characterized by varying intermediate mixing states, with the χ

value for INPs in each bin were set to 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% for each respective simulation

case respectively. All populations shared the same size distribution, as illustrated in the right panel of Fig. 6, and had a same

number concentration of 100 cm-3. Each INP population was divided into 100 size bins, within which the total surface ratio is490

composed of 50% Fe2O3 and 50% illite. The method we used to construct an intermediate mixing states with a specific χ in

each bin is detailed in Appendix G.

Two types of simulation were conducted for each of the nine INP populations with intermediate mixing states. One is the

isothermal scenario, with a constant temperature of −20 ◦C for 10 minutes, the same as Cases 1–4; the other involves a

constant cooling rate of −2 ◦C min-1 over 10 minutes, the same as Cases 5–8. All model assumptions are the same as those in495

Section 5.1, so that the isothermal simulations for intermediate mixing state INPs are comparable to Cases 3 (external mixture)

and 4 (internal mixture), and constant cooling rate simulations are comparable to Cases 7 (external mixture) and 8 (internal

mixture).
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The time series of simulated frozen fraction for all intermediate mixing state cases are shown in Fig. 12, with the upper panel

representing the isothermal experiments and the lower panel representing the constant cooling experiments. Cases 3 and 4 are500

also shown in the upper panel as references for external and internal mixtures in the constant temperature scenario, marked as

χ=0% and χ=100%, respectively. Similarly, results from Cases 7 and 8 are shown in the lower panel as references for external

and internal mixtures in the constant cooling scenario. Regardless of whether the scenario involves constant temperature or

constant cooling rate, the frozen fractions of intermediate-mixed INPs fall between those of internally and externally mixed

INPs, ordered according to the χ value.505

The frozen fractions of the internal and external mixtures set the upper and lower bounds for the frozen fraction of the

intermediate mixing state, respectively. This confirms the argument made in Theorem 1. In cases where the mixing state is

unknown, assuming the INP population is in an internal mixture during simulations would lead to the largest error in the frozen

fraction estimation if the actual state is an external mixture. All other intermediate mixing states would result in smaller errors.

The uncertainty mentioned here can be quantified by the sensitivity defined by Eq. (10), which describes the maximum range510

of the “mixing state effect” on the frozen fraction.

6 Discussion and Conclusion

This study developed a theoretical and modeling framework to quantify how aerosol mixing state influences immersion freez-

ing. We derived analytical expressions linking the frozen fraction to particle composition and mixing state, showing that in-

ternally mixed populations yield systematically higher ice fractions than externally mixed ones under identical environmental515

conditions.

We implemented a multi-species immersion freezing scheme in the particle-resolved model PartMC, using the ABIFM

parameterization for heterogeneous nucleation rates. To improve computational efficiency, we incorporated a Binned Tau-

Leaping algorithm, which achieved nearly an order-of-magnitude speedup while preserving accuracy. Simulations validated

the theoretical results and quantified the influence of particle size, species type, and surface coverage on freezing behavior.520

It is important to note that this study exclusively adopts the time-dependent description of immersion freezing based on

classical nucleation theory (CNT). While there is ongoing debate in the community regarding the relative merits of the CNT-

based (stochastic) and singular (threshold-based) approaches, we focus here on CNT to avoid additional complexity and to

build on a physical framework. Recent comparative evaluations, both in context of laboratory studies (e.g., Szakáll et al.,

2021) and model development (e.g., Arabas et al., 2025), suggest that CNT offers greater robustness, also in light of capturing525

multiple-component aerosol materials. Nevertheless, we acknowledge that neither approach may fully capture the true nature

of atmospheric ice nucleation, and future work could explore extensions of this framework to include singular formulations.

The PartMC model calculates the surface area of INPs based on their dry diameter, assuming that the particles are spherical.

However, real atmospheric aerosols exhibit a wide range of shapes and surface textures (e.g., Dick et al., 1998; Chou et al.,

2008; Adachi et al., 2010; Valsan et al., 2016; Conny and Buseck, 2024), which challenges the validity of this simplifying530

assumption. Even particles that appear approximately spherical may have complex surface features—such as folds, pits, or
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protrusions—that lead to underestimation of their true surface area when diameter alone is used. Accurately representing the

ice-nucleating potential of such particles in atmospheric models therefore requires a more realistic estimation of surface area

(Alpert and Knopf, 2016; Knopf et al., 2020). One approach is to compute a surface-area-equivalent diameter, which can then

be used as model input to reduce biases in ice nucleation predictions arising from the spherical assumption.535

The current algorithm is designed to simulate immersion freezing in particles composed entirely of insoluble species, such

as illite, kaolinite, Fe2O3, and Al2O3. Its applicability becomes limited, however, when particles contain soluble components,

requiring a more nuanced treatment. If a particle is fully soluble, it dissolves completely upon droplet formation, leaving no

solid surface to initiate immersion freezing. In such cases, only homogeneous nucleation is expected. For mixed particles

containing both soluble and insoluble components, the soluble fraction dissolves into the droplet, altering its water activity aw,540

which then deviates from that of pure water (aw = 1; see Eq. (20)). This shift must be quantified based on the ratio of soluble

material to water volume (Berkemeier et al., 2016; Charnawskas et al., 2017; Knopf et al., 2018). The remaining insoluble core

can still act as an INP, but its surface area may differ significantly from that of the original particle, requiring recalculation

based on the volume of the insoluble fraction. Additionally, certain species—such as 1-nonadecanol—can act as surfactants,

forming films on the droplet surface and increasing the effective ice-nucleating area. To account for these complexities, the545

model will need to be expanded in future work to include the effects of solubility, water activity, and surfactant behavior on ice

nucleation.

The theoretical investigation revealed that the fundamental difference in the unfrozen fraction between internally and exter-

nally mixed INPs is mathematically equivalent to the difference between the surface area-weighted geometric and arithmetic

means of the frozen fractions that each species would exhibit if it individually dominated the INPs. Under identical envi-550

ronmental conditions, internally mixed monodisperse INP populations exhibit the highest frozen fraction, whereas externally

mixed populations exhibit the lowest, with all other intermediate mixing states falling within this range. A systematic analysis

of the sensitivity map reveals that in INP populations composed of multiple species, the impact of the mixing state becomes

significant when there is a species with very high freezing efficiency that differs markedly from the other species, especially

when this species occupies only a small fraction of the total surface area. These insights highlight the profound impact of the555

mixing state on ice formation processes, particularly when INPs comprise materials with notably diverse freezing characteris-

tics. This research emphasizes the importance of considering the mixing state of INPs to enhance the precision of ice nucleation

predictions in mixed-phase cloud environments.

The particle-resolved simulation results of immersion freezing using the PartMC model demonstrated a robust representation

of the immersion freezing process, well-supported by theoretical predictions. Further analysis highlighted the superiority of the560

Binned Tau-leaping algorithm over the naive algorithm, both in terms of efficiency and precision, for predicting INPs’ freezing

behavior. The simulated frozen fraction results showed excellent agreement with theoretical calculations, providing successful

verification of the frozen fraction equation proposed in this study. Significant distinctions were observed in PartMC simulations

between single-species and multi-species INPs, as well as between INPs in internal and external mixtures. Simulations of

intermediate mixed INPs confirmed that, for monodisperse INP populations (or INPs within the same bin), internal and external565

mixtures represent two extreme cases that define the upper and lower bounds for other mixing states. This finding is consistent
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with the theoretical conclusions presented earlier. Furthermore, the results quantitatively demonstrated that the frozen fraction

increases with the χ index of two-species INPs, providing a illustration of how the mixing state influences the frozen fraction

of mixed INPs.

With the advancement of single-particle analytical techniques capable of identifying surface chemical composition (e.g.,570

Knopf et al., 2014; Laskin et al., 2016; Knopf et al., 2018, 2021; Lata et al., 2021; Alpert et al., 2022; Knopf et al., 2023; Xue

et al., 2024), the model developed here is well suited to incorporate such detailed particle-level information, enabling more

accurate predictions of immersion freezing and, ultimately, improved estimates of ice crystal number concentrations.

Code and data availability. The data used to reproduce the figures are available at https://doi.org/10.13012/B2IDB-6849781_V1 (Tang et

al., 2025). The PartMC v2.8.0, modified to include immersion freezing, is available at https://github.com/tangwhiap/partmc/tree/imf (West575

et al., 2025). PyPartMC v2.0.0 is archived at https://zenodo.org/records/17113809 (D’Aquino et al., 2024), where the Jupyter notebook for

reproducing numerical simulations and figures in section 5 is provided at examples/immersion_freezing.ipynb.

Appendix A: Derivation details

A1 Derivation of the single-particle freezing probability: equation (2)

The immersion freezing probability of supercooled droplet can be decreased by the Poisson model (Pruppacher and Klett,580

1979; Koop et al., 1997), the probability of N ice nucleation triggering events occurring within time ∆t is

P (N,∆t) =
1

N !
· (λt)N · e−λ∆t, (A1)

where λ represents the ice nucleation rate (unit: s−1). Therefore, the probability of N ≥ 1 events occuring during ∆t is

Pfrz(∆t) = P (N ≥ 1,∆t) = 1−P (N = 0,∆t) = 1− e−λ∆t, (A2)

which is also the freezing probability of a particle within the time interval ∆t, shown in Eq. (1).585

Let us divide the total cooling time, denoted as t, into h discrete time intervals ∆t. Thus, we have

t = h ·∆t. (A3)

If a droplet remains unfrozen until the time t, it was unfrozen throughout each time interval. On the other hand, if it freezes

at any time point, it will remain frozen for the remainder of the simulation, as the melting process is not considered. Here, we

regard the ice nucleation rate as a function of time, denoted by λ(τ), and the probability of a droplet remaining unfrozen from590

t1 to t2 is denoted by Punf(t1, t2). The probability of a droplet remaining unfrozen from 0 to t, denoted by Punf(0, t), can be
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formulated as

Punf(0, t) = Punf(0,∆t) ·Punf(∆t,2∆t) ·Punf(2∆t,3∆t) · ... ·Punf((h− 1)∆t,h∆t) (A4)

= exp[−λ(0) ·∆t] · exp[−λ(∆t) ·∆t] · exp[−λ(2∆t) ·∆t]· (A5)

... · exp[λ((h− 1)∆t) ·∆t] = e−[∑h−1
k=0 λ(k∆t)·∆t]. (A6)595

Considering the limits ∆t→ 0 and h→∞, the unfrozen probability Punf(0, t) will involve the time integration of λ:

Punf(0, t) = lim
∆t→0,h→+∞

e−[∑h−1
k=0 λ(k∆t)∆t] = e−

´ t
0 λ(τ)dτ . (A7)

Therefore, the probability of freezing from t = 0 to t is

Pfrz(0, t) = 1− e−
´ t
0 λ(τ)dτ , (A8)

where Pfrz(0, t) is, for simplicity, denoted as Pfrz(t) in Eq. (2).600

A2 Derivation of the frozen fraction equation for monodisperse INPs with external mixture: equation (13)

An externally mixed monodisperse INP population can be conceptualized as a collection of multiple modes, with each mode

representing particles composed of a single species. Let us define wi as the ratio of the total surface area covered by the ith

species relative to the total surface area across all INPs

wi =

∑Np
j=1 S

(i)
j∑Np

j=1 Spj

, (A9)605

where, Spj
is the immersed surface area of the jth particle, and S

(i)
j denotes the area covered by the ith species on the jth

particle. For a monodisperse INP population, all INPs are assumed to have the same immersed surface area, Spj
= Sp. As each

INP is covered by a single species, these ratios are determined purely by the numbers of INPs within each mode. Thus, the

total surface area ratio of ith species equals the fraction of INPs that covered by the ith species:

wi =

∑Np
j=1 S

(i)
j∑Np

j=1 Spj

=
N

(i)
p Sp

NpSp
=

N
(i)
p

Np
(A10)610

where N
(i)
p is the total number of the ith mode particle. The overall number of unfrozen particles is the sum of the number of

unfrozen particles from all modes

Nunf =
Ns∑

i=1

N
(i)
unf , (A11)

where N
(i)
unf is the number of unfrozen particles for the mode consisting of INPs covered by the ith species. Following the

definition of unfrozen fraction, and incorporating Eqs. (A10) and (A11), the unfrozen fraction is given by615

f (ext)
unf =

Nunf

Np
=

1
Np

·
Ns∑

i=1

N
(i)
unf =

1
Np

·
Ns∑

i=1

N (i)
p · f (i)

unf =
Ns∑

i=1

wi · f (i)
unf , (A12)
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where f
(i)
unf denotes the unfrozen fraction of INPs in the ith mode. The Eq. (A12) is the same as Eq. (12) in the Section 3.1.

Since f (ext)
frz = 1− f (ext)

unf and f
(i)
frz = 1− f

(i)
unf , there is

f (ext)
frz = 1−

Ns∑

i=1

wi · f (i)
unf = 1−

Ns∑

i=1

wi ·
(
1− f

(i)
frz

)
, (A13)

which is the Eq. (13) shown in Section 3.1.620

A3 Derivation of the frozen fraction equation for monodisperse INPs with internal mixture: equation (15)

For an INP immersed in a supercooled droplet, composed of multiple species, let the total number of species be Ns, with

wi = Si/S denoting the surface covering ratio of the ith species, where Si is the area covered by the ith species and S is the

total surface area of the INP. Assuming the temperature remains below 0 ◦C, based on Eq. (9), the probability of the droplet

remaining unfrozen after time t is625

Punf(t) = 1−Pfrz(t) = e−Sp·
∑Ns

i=1 wiΦi(t). (A14)

Denoting P
(i)
unf = e−Sp·Φi(t) the droplet’s unfrozen probability for an INP of the same size but with its surface 100% covered

by the ith species, we obtain

P
(i)
unf = 1−P

(i)
frz = e−Sp·Φi(t),∀i ∈ [1,Ns] . (A15)

Combining Eq. (A14) and Eq. (A15) gives:630

Punf = 1−Pfrz = e−Sp·
∑Ns

i=1 wi·Φi(t) =
Ns∏

i=1

[
e−Sp·Φi(t)

]wi

=
Ns∏

i=1

[
P

(i)
unf

]wi

. (A16)

For an internally mixed population of monodisperse INPs, each INP has the same size and the ratio of surface covered by each

species. Therefore, the freezing probabilities are the same for each INP (same for the unfrozen probabilities). Based on the

Law of Large Numbers, the unfrozen fraction equals the unfrozen probability of each droplet,

funf = Punf. (A17)635

The same also applies for monodisperse INPs covered by a single species i:

f
(i)
unf = P

(i)
unf ,∀i ∈ [1,Ns] . (A18)

Substituting Eqs. (A17) and (A18) to Eq. (A16), we have:

f (int)
unf =

Ns∏

i=1

[
f

(i)
unf

]wi

, (A19)

the same as Eq. (14) in Section 3.1. Since f (int)
frz = 1− f (int)

unf and f
(i)
frz = 1− f

(i)
unf , there is640

f (int)
frz = 1−

Ns∏

i=1

[
1− f

(i)
frz

]wi

, (A20)

which is equal to Eq. (15) shown in Section 3.1.
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Appendix B: Ice number concentration for single-mode polydisperse INP population

Equation (9) outlines the freezing probability for an individual droplet. In this appendix, we derive equations that describe

the ice crystal number concentration and the frozen fraction for a collection of single-mode INPs immersed in supercooled645

droplets, subject to a specific temperature profile. A “mode” in this context refers to a group of particles whose sizes follow a

specified distribution, and all particles within the mode have the same composition.

Assuming that each droplet contains only one INP, and each INP is spherical. The surface area of each INP, Sp, can be

calculated by

Sp = πD2
p . (B1)650

It is also assumed that no ice formation occurs at the initial time. Additionally, we maintain the temperature below 0 ◦C

throughout the simulation to prevent melting. Moreover, we assume that all INPs contain the same species types and their

surface coverage for all INPs is identical (i.e., single-species and internally mixed INPs with respect to surface), in order to

satisfy the definition of the single-mode particles.

For monodisperse INPs, given that the size and surface fractions of species are uniform across all INPs, all droplets have the655

same freezing probability at any given time. According to the Law of Large Numbers, the expected value of the frozen fraction

is equivalent to the freezing probability of each individual droplet

ffrz(t)≡ Pfrz(t). (B2)

Consequently, the ice number concentration can be expressed as

Ñfrz(t) = Ñt · ffrz(t) = Ñt ·Pfrz(t). (B3)660

In the case of polydisperse INPs, the freezing probability of each droplet varies depending on the diameter of the contained

INP, denoted as Pfrz(t,Dp). Combining Eq. (9) and Eq. (B1), we have

Pfrz(t, Dp) = 1− e−πD2
p ·Φ̄(t). (B4)

where Φ̄(t) represents the time integrated surface area-weighted mean of the ice nucleation rate coefficient, given by

Φ̄(t) =
ˆ t

0

J̄het(T (τ))dτ =
ˆ t

0

Ns∑

i=1

wi · J (i)
het (T (τ))dτ

=
Ns∑

i=1

wi ·
(
ˆ t

0

J
(i)
het (T (τ))dτ

)
=

Ns∑

i=1

wi ·Φi(t), (B5)665

Herein, we define the size distribution density function nN(lnDp) to represent the size distribution of INPs. Analogous to

the Eq. (B3), the size distribution density function for “activated” INPs (those that cause the freezing of droplet in which they

are immersed) can be expressed as

nfrz(t, lnDp) = nN(lnDp) ·Pfrz(t, Dp) = nN(lnDp) · (1− e−πD2
p ·Φ̄(t)). (B6)
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Consequently, the ice crystal number concentration, which is the aggregate of the numbers of “activated” INPs across all sizes,670

can be calculated as follows

Ñfrz(t) =
ˆ +∞

−∞
nfrz(t, lnDp) · dlnDp = Ñt−

ˆ +∞

−∞
nN(t, lnDp) · e−πD2

p ·Φ̄(t)d lnDp, (B7)

and the frozen fraction can be derived by

ffrz = Ñfrz(t)/Ñt = 1− 1
Ñt
·
ˆ +∞

−∞
nN(t, lnDp) · e−πD2

p ·Φ̄(t)d lnDp. (B8)

In the PartMC simulations mentioned in section 5, the INPs are assumed to be log-normally distributed, with a specific geo-675

metric mean diameter D̄pg, geometric standard deviation σg, and a total number concentration Ñt. The size distribution density

function is given by:

nN(lnDp) =
Ñt√

2π · lnσg
e
− (lnDp−lnD̄pg)2

2ln2σg . (B9)

Upon substituting Eq. (B9) to the Eq. (B6), the resultant size distribution density function for the activated INPs is

nfrz(t, lnDp) =
Ñt√

2π · lnσg
e
− (lnDp−lnD̄pg)2

2ln2σg · (1− e−πD2
p ·Φ̄(t)). (B10)680

Similarly, by inserting Eq. (B9) into Eq. (B7), we derive the expression for the ice crystal number concentration as

Ñfrz(t) = Ñt−
Ñt√

2π · lnσg
·
ˆ +∞

−∞
exp

[
− (lnDp− lnD̄pg)

2

2ln2σg
−πD2

p · Φ̄(t)

]
d lnDp. (B11)

Further, by applying Eq. (B9) to Eq. (B8), the expression for the frozen fraction is established as

ffrz(t) = 1− 1√
2π · lnσg

·
ˆ +∞

−∞
exp

[
− (lnDp− lnD̄pg)

2

2ln2σg
−πD2

p · Φ̄(t)

]
d lnDp. (B12)

Equations (B11),(B12), combined with Eqs. (B5) and (20), relate the metrics of immersion freezing to the INP size distribu-685

tion parameters, the chemical composition of INPs, and the temperature profile, which are input parameters for PartMC. The

ice crystal number concentrations and frozen fractions, as determined by Eqs. (B11) and (B12), are thus analytical solutions

for scenarios where the INP population contains either a single species or multiple species in an internal mixture.

Equations (B11),(B12) provide the framework for verifying the expected ice crystal number concentration and frozen frac-

tion for all simulations conducted in Section 5.1 (shown in Table 2), except Cases 3 and 7 (because these involve two modes690

of INPs). The cases differ in the species combinations and temperature profiles. For instance, in Case 1, where the temperature

remains constant at −20 ◦C and the INPs consist solely of illite, the Φ̄ in Eqs. (B11) and (B12) is

Φ̄(t) = Φillite(t) = J illite
het (−20 ◦C) · t. (B13)

In Case 6, a linear temperature decrease (2 Kmin−1) is applied and only Fe2O3, Φ̄ is present. Therefore Φ̄ is

Φ̄(t) = ΦFe2O3(t) =
ˆ t

0

JFe2O3
het (T (τ))dτ, (B14)695
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where, T (τ) follows is the linear temperature profile. Similarly, for Case 8, which involves an internal mixture of 50% illite

and 50% Fe2O3, Φ̄ is

Φ̄(t) =
1
2
(Φillite + ΦFe2O3) =

1
2

ˆ t

0

J illite
het (T (τ)) + JFe2O3

het (T (τ))dτ. (B15)

The expressions for calculating the ice crystal number concentration and frozen fraction in external mixture scenarios,

particularly pertaining to Cases 3 and 7, will be discussed in Appendix C in detail.700

Appendix C: Ice number concentration for multi-modal polydisperse INP population

In PartMC, a particle population can consist of multiple modes. For each mode, its size distribution, species type and mass

ratio, as well as number concentration are independently specified. Assuming that the total number of modes that form a group

of INPs is Nm, and the size distribution density function for the INPs in the xth mode is nx, the size distribution density

function for the entire INPs population is the sum of the density function across all modes, and the aggregate of the number705

concentrations from all modes equals the total number concentration of the entire INP group.

nN =
Nm∑

x=1

nx, (C1)

Ñt =
Nm∑

x=1

Ñ
(x)
t . (C2)

By substituting Eq. (C1) into Eq. (B6), and defining Φ̄x(t) as the weighted mean of the ice nucleation rate coefficient for the710

chemical components in the xth mode, we derive a general formula for the size distribution density function of activated INPs

in a population with multiple modes

nfrz(t, lnDp) =
Nx∑

x=1

nx(t, lnDp) · (1− e−πD2
p ·Φ̄x(t)). (C3)

Similarly, we can derive formulas for both the ice crystal number concentration and the frozen fraction for an INP population

with multiple modes by substituting Eq. (C3) into Eq. (B7) and Eq. (B8),715

Ñfrz (t) = Ñt−
Nx∑

x=1

ˆ +∞

−∞
nx(t, lnDp) · e−πD2

p ·Φ̄x(t)d lnDp; (C4)

ffrz(t) = 1− 1
Ñt
·

Nx∑

x=1

ˆ +∞

−∞
nx(t, lnDp) · e−πD2

p ·Φ̄x(t)d lnDp. (C5)
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Assuming that the size of INPs in the xth mode follows a log-normal distribution, characterized by a number concentration

Ñ
(x)
t , a geometric mean diameter D̄pgx, and a geometric standard deviation σgx, the size distribution density function for this720

mode is then given by

nx(t, lnDp) =
Ñ

(x)
t√

2π · lnσgx

e
− (lnDp−lnD̄pgx)2

2ln2σgx . (C6)

Consequently, upon applying the assumption of a log-normal distribution for each mode, the calculations for ice crystal number

concentration and frozen fraction are obtained by substituting Eq. (C6) into Eqs. (C4) and (C5), respectively.

Ñfrz(t) = Ñt−
Nm∑

x=1

Ñ
(x)
t√

2π · lnσgx

·
ˆ +∞

−∞
exp

[
− (lnDp− lnD̄pgx)2

2ln2σgx

−πD2
p · Φ̄x(t)

]
d lnDp; (C7)725

ffrz(t) = 1− 1
Ñt

Nm∑

x=1

Ñ
(x)
t√

2π · lnσgx

·
ˆ +∞

−∞
exp

[
− (lnDp− lnD̄pgx)2

2ln2σgx

−πD2
p · Φ̄x(t)

]
d lnDp. (C8)

Based on the predefined parameters for the Cases 3 and 7, an externally mixed INP population in the PartMC model, composed

of 50% illite and 50% Fe2O3, is created by establishing two modes. Each mode has an identical number concentration and

size distribution, but differs in composition: one mode consists entirely of illite, while the other is composed solely of Fe2O3.730

Therefore, by establishing the parameters

Ñ
(1)
t = Ñ

(2)
t =

1
2
· Ñt; (C9)

D̄pg1 = D̄pg2 = D̄pg; (C10)

735

σg1 = σg2 = σg. (C11)

and substituting Eq. (C9)–Eq. (C11) into Eq. (C7) and Eq. (C8), we derive formulas representing the ice crystal number

concentration and frozen fraction for the Case 3 and 7 as

Ñfrz(t) = Ñt−
1
2

{
Ñt√

2π · lnσg
·
ˆ +∞

−∞
exp

[
− (lnDp− lnD̄pg)2

2(lnσg)2
−πD2

p ·Φillite(T (t))
]
d lnDp

+
Ñt√

2π · lnσg
·
ˆ +∞

−∞
exp

[
− (lnDp− lnD̄pg)2

2(lnσg)2
−πD2

p ·ΦFe2O3(T (t))
]
d lnDp

}
; (C12)

ffrz(t) = 1− 1
2

{
1√

2π · lnσg
·
ˆ +∞

−∞
exp

[
− (lnDp− lnD̄pg)2

2(lnσg)2
−πD2

p ·Φillite(T (t))
]
d lnDp

+
1√

2π · lnσg
·
ˆ +∞

−∞
exp

[
− (lnDp− lnD̄pg)2

2(lnσg)2
−πD2

p ·ΦFe2O3(T (t))
]
d lnDp

}
. (C13)740
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Table D1. Particle surface and surface fraction definitions and notations.

Symbol Meaning

Ns Number of species

Np Number of particles in population

i Index of species, i = 1,2, ...,Ns

j Index of particles, j = 1,2, ...,Np

Dp Dry diameter of particles (for monodisperse population)

S
(i)
j Surface area of species i on the surface of particle j

Spj

∑Ns
i=1 S

(i)
j , total surface area of particle j

S(i) ∑Np
j=1 S

(i)
j , total surface area of species i in population

St
∑Np

j=1 Spj
(or

∑Ns
i=1 S(i)), total surface area of population

w
(i)
j

S
(i)
j

Spj
, surface fraction of species i on the surface of particle j

wj
Spj

St
, surface fraction of particle j in population

w(i) S(i)

St
, surface fraction of species i in population

Φi The Φ value of species i (defined by Eq. (8))

The terms Φillite(T (t)) and ΦFe2O3(T (t)) refer to the time integration of the ice nucleation rate coefficient of illite and Fe2O3,

respectively.

Equations (C12) and (C13) provide the general formulas applicable to Cases 3 and 7, which differ in their respective tem-

perature profiles, T (t).

Appendix D: Proof of Theorem 1745

The symbols used in this proof are listed in the Table D1.

Based on the definitions in Table D1, there are:

Ns∑

i=1

w
(i)
j = 1, for ∀j ∈ [1,Np] (D1)

Np∑

j=1

Spj
w

(i)
j =

Np∑

j=1

πD2
pw

(i)
j = S(i), for ∀i ∈ [1,Ns] (D2)750

0≤ w
(i)
j ≤ 1, for ∀i ∈ [1,Ns],∀j ∈ [1,Np]. (D3)

A series of w
(i)
j must satisfies Eqs. (D1), (D2), and (D3) to represent a meaningful mixing state.
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Here are the assumptions in this proof: First: S(i), i = 1,2, ...,Ns are constants, and satisfying
∑Ns

i=1 S(i) = πD2
pNp to make

sure the sum of each species’ total surface equals the sum of particle’s surface. Second: For each species i (i = 1,2, ...,Ns),755
S(i)

πD2
p

is an integer to make sure each species covers an integer number of particle in the external mixture. Third: Assume

Φ1 ̸= Φ2 ̸= ... ̸= ΦNs to avoid some mathematical complexity, if two species do have the same Φ value, just regard them as the

same species, which would not affect our result.

We divide the proof of Theorem 1 into two parts — Theorem 1A and Theorem 1B — which demonstrate that the internal

mixture is the most efficient mixing state and the external mixture is the least efficient, respectively.760

Theorem 1A. For monodisperse INP populations, the internal mixture is the most efficient mixing state.

Proof. The topic of the most efficient mixing state in terms of frozen fraction can be converted to an optimization problem:

optimization 1

max
w

(i)
j ∈[0,1]

1− 1
Np

Np∑

j=1

exp

(
−πD2

p

Ns∑

i=1

w
(i)
j Φi

)
(D4)

s.t.

Ns∑

i=1

w
(i)
j = 1 (D5)765

Np∑

j=1

w
(i)
j =

S(i)

πD2
p

(D6)

Define f (max)
frz as the maximum solution of optimization 1. Since exp

(
−πD2

p ·
∑Ns

i=1 w
(i)
j Φi

)
= Punf,j , combining with

Eq. (D2), there is:

Np∏

j=1

Punf,j =
Np∏

j=1

exp

(
−πD2

p

Ns∑

i=1

w
(i)
j Φi

)
= exp


−πD2

p

Np∑

j=1

Ns∑

i=1

w
(i)
j Φi


 (D7)

= exp


−

Ns∑

i=1

Φi ·


πD2

p ·
Ns∑

j=1

w
(i)
j




= exp

(
−

Ns∑

i=1

S(i)Φi

)
= constant. (D8)770

We therefore define a constant:

K = exp

(
−

Ns∑

i=1

S(i)Φi

)
, (D9)

we can propose another optimization problem:

optimization 2

max
Punf,j∈[0,1]

1− 1
Np

Np∑

j=1

Punf,j (D10)775
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s.t.

Np∏

j=1

Punf,j =K (D11)

and define f∗frz is the solution of this problem. It is worth noting that since there are

1− 1
Np

Np∑

j=1

exp

(
−πD2

p

Ns∑

i=1

w
(i)
j Φi

)
≡ 1− 1

Np

Np∑

j=1

Punf,j , (D12)

780

Np∑

j=1

w
(i)
j =

S(i)

πD2
p
⇔

Np∏

j=1

Punf,j =K, (D13)

the optimization 2 only lost the constraint of Eq. (D5) , therefore, there is

f∗frz ≥ f (max)
frz . (D14)

Now, we solve optimization 2, using the Lagrange multiplier, define

L
(
Punf,1,Punf,2, ...,Punf,Np

)
= 1− 1

Np

Np∑

j=1

Punf,j + λ




Np∏

j=1

Punf,j −K


 , (D15)785

and define P ∗unf,1,P
∗
unf,2, ...,P

∗
unf,Np

,λ∗ is the solution that maximize the function L. There are

∂L

∂Punf,j

∣∣∣∣
Punf,j=P∗unf,j

=− 1
Np

+ λ∗
Np∏

j′=1,j′ ̸=j

P ∗unf,j′ = 0, for ∀j ∈ [1,Np], (D16)

∂L

∂λ

∣∣∣∣
λ=λ∗

=
Np∏

j′=1

P ∗unf,j′ −K = 0. (D17)

Substitute Eq. (D17) into Eq. (D16) for each j ∈ [1,Np], we have790

− 1
Np

+ λ∗ · K
P ∗unf,j

= 0⇔ P ∗unf,j = Npλ
∗ · K for ∀j ∈ [1,Np]. (D18)

Substitute Eq. (D18) into Eq. (D17), we have

(Npλ
∗ · K)Np =K⇔ λ∗ =

1
Np

· K
1

Np
−1

. (D19)

Substitute Eq. (D19) into Eq. (D18), we have

P ∗unf,j =K
1

Np = exp


− 1

Np

Np∑

i=1

S(i)Φi


 , for ∀j ∈ [1,Np]. (D20)795
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Therefore, when each particle has the same unfrozen (or freezing) probability, the Eq. (D10) in optimization 2 reach the

maximum, where

f∗frz = 1−
Np∑

j=1

P ∗unf,j = 1− exp

(
− 1

Np

Ns∑

i=1

S(i)Φi

)
. (D21)

For the internal mixture, which, defined in Riemer and West (2013), satisfies

w
(i)
j =

S(i)

πD2
pNp

for ∀j ∈ [1,Np],∀i ∈ [1,Ns]. (D22)800

Define the frozen fraction of internal mixture is f (int)
frz , there is

f (int)
frz = 1− 1

Np

Np∑

j=1

exp

(
−πD2

p ·
Ns∑

i=1

w
(i)
j Φi

)

= 1− 1
Np

Np∑

j=1

exp

(
−πD2

p ·
Ns∑

i=1

S(i)

πD2
pNp

·Φi

)
= 1− exp

(
− 1

Np

Ns∑

i=1

S(i)Φi

)
,

(D23)

therefore, f (int)
frz = f∗frz. In addition, since the internal mixture shown in Eq. (D22) satisfies the constraints in optimization 1

(Eqs. (D5) and (D6)), thus, there must be

f (int)
frz = f∗frz ≤ f (max)

frz , (D24)805

combining Eq. (D14), we have:

f (int)
frz = f∗frz = f (max)

frz . (D25)

Therefore, the internal mixture is the most efficient mixing state for monodisperse particle population.

Theorem 1B. For monodisperse INP populations, the external mixture is the least efficient mixing state.

Proof. According to the definition of external mixture in Riemer and West (2013), there is810

External mixture⇔ w
(i)
j = 0 or 1,

Ns∑

i=1

w
(i)
j = 1, for ∀i ∈ [1,Ns],∀j ∈ [1,Np].

Define the frozen fraction of external mixture is denoted as f (ext)
frz , based on Eq. (12), we have

f (ext)
frz = 1−

Ns∑

i=1

w(i)Punf,j = 1−
Ns∑

i=1

S(i)

πD2
pNp

· exp
(
−πD2

pΦi

)
. (D26)

We prove the theorem 1B by contradiction. Assuming a mixing state of monodisperse particle population, described by w̃
(i)
j ,

i = 1,2, ...,Ns, j = 1,2, ...,Np, is the least efficient mixing state but is not the external mixture. Define the frozen fraction815

f̃frz = 1− 1
Np

Np∑

j=1

exp

(
−πD2

p

Ns∑

i=1

w̃
(i)
j Φi

)
. (D27)

37

https://doi.org/10.5194/egusphere-2025-4326
Preprint. Discussion started: 24 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Since it is different with external mixture, there must be

∃i ∈ [1,Ns],∃j ∈ [1,Np],0 < w̃
(i)
j < 1,

in other words, define the set M̃ix =
{

i
∣∣∣∃j ∈ [1,Np],0 < w̃

(i)
j < 1

}
, there must be M̃ix ̸= ∅. Define i0 = arg min

i∈M̃ix

Φi, there is

∃jA ∈ [1,Np],0 < w̃
(i0)
jA

< 1, by the definition of M̃ix. According to the assumption of Si0
πD2

p
is an integer, there must be ∃jB ∈820

[1,Np], jB ̸= jA, and 0 < w̃
(i0)
jB

< 1, otherwise,
Np∑

j=1,j ̸=jA

w̃
(i0)
j must be an integer and Si0

πD2
p

=
∑Np

j=1 w̃
(i0)
j ·πD2

p

πD2
p

=
∑Np

j=1 w̃
(i0)
j =

w̃
(i0)
jA

+
Np∑

j=1,j ̸=jA

w̃
(i0)
j would not be an integer.

We assume Punf,jA
≥ Punf,jB

, if not, we can just switch the index of jA and jB for these two particles. Now, we look at

the particle jA and jB , define AjA
=
{

i
∣∣∣w̃(i)

jA
> 0, i ∈ [1,Ns]

}
, AjB

=
{

i
∣∣∣w̃(i)

jB
> 0, i ∈ [1,Ns]

}
, are the set of species index

that particle A and B contains, respectively. Since 0 < w̃
(i0)
jA

< 1 and
Ns∑
i=1

w̃
(i)
jA

= 1, for ∀iA ∈AjA
, there is 0 < w̃

(iA)
jA

< 1,825

therefore, for ∀iA ∈AjA
, iA ∈ M̃ix, and there is Φi0 < ΦiA

according to the definition of i0. Similarly, there also be ∀iB ∈AjB
,

iB ∈ M̃ix, and Φi0 < ΦiB
. This implies that, when we define

Φ̄(i ̸=i0)
jA

=
1

Ns∑
i=1,i̸=i0

w̃
(i)
jA

Ns∑

i=1,i̸=i0

w̃
(i)
jA

Φi, (D28)

there must be Φi0 < Φ̄(i ̸=i0)
jA

.

Now, we construct a new mixing state, described as ŵ
(i)
j , i = 1,2, ...,Ns, j = 1,2, ..,Np, such that830

ŵ
(i)
j =





w̃
(i0)
jA

+ δw, j = jA, i = i0;

w̃
(i)
jA
− δw · w̃

(i)
jA

Ns∑
i′=1,i′ ̸=i0

w̃
(i)
jA

, j = jA, i ̸= i0;

w̃
(i0)
jB

− δw, j = jB , i = i0;

w̃
(i)
jB

+ δw · w̃
(i)
jA

Ns∑
i′=1,i′ ̸=i0

w̃
(i)
jA

, j = jB , i ̸= i0;

w̃
(i)
j , j ̸= jA, j ̸= jB ,

(D29)

where δw = min
{

w̃
(i0)
jA

,1− w̃
(i0)
jA

, w̃
(i0)
jB

,1− w̃
(i0)
jB

}
(satisfies 0 < δw < 1). Noting that there are

∑Ns
i=1 ŵ

(i)
j =

∑Ns
i=1 w̃

(i)
j =

1, for ∀j ∈ [1,Np],
∑Np

j=1 ŵ
(i)
j =

∑Np
j=1 w̃

(i)
j = S(i)

πD2
p

, for ∀i ∈ [1,Ns], and 0≤ w̃
(i)
j ≤ 1 for ∀i ∈ [1,Ns], ∀j ∈ [1,Np], which

indicates Eq. (D29) represent a meaningful mixing state (satisfying Eqs. (D1), (D2), and (D3)).

Define835

P̂unf,j = exp

(
−πD2

p ·
Ns∑

i=1

ŵ
(i)
j Φi

)
(D30)
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is the unfrozen probability of jth particle in the mixing state represented by ŵ
(i)
j , define

P̃unf,j = exp

(
−πD2

p ·
Ns∑

i=1

w̃
(i)
j Φi

)
(D31)

is the unfrozen probability of jth particle in the mixing state represented by w̃
(i)
j . Substituting Eqs. (D29) and (D28) into

Eq. (D30) and combining with Eq. (D31), there is840

P̂unf,j =





P̃unf,jA
· exp

[
πD2

pδw ·
(
Φ̄(i ̸=i0)

jA
−Φi0

)]
, j = jA;

P̃unf,jB
· exp

[
−πD2

pδw ·
(
Φ̄(i ̸=i0)

jA
−Φi0

)]
, j = jB ;

P̃unf,j , j ̸= jA, j ̸= jB .

(D32)

Therefore, according to Eq. (D32), we have

P̂unf,jA
+ P̂unf,jB

− P̃unf,jA
− P̃unf,jB

= P̃unf,jA
·
(
eδϕ− 1

)
− P̃unf,jB

·
(
1− e−δϕ

)
, (D33)

where δϕ = πD2
pδw ·

(
Φ̄(i ̸=i0)

jA
−Φi0

)
. Nothing that since Φi0 < Φ̄(i ̸=i0)

jA
, there is δϕ > 0, thus, eδϕ−1 > 0 and 1− e−δϕ > 0.

Since P̃unf,jA
≥ P̃unf,jB

, there is845

P̂unf,jA
+ P̂unf,jB

− P̃unf,jA
− P̃unf,jB

= P̃unf,jA
·
(
eδϕ− 1

)
− P̃unf,jB

·
(
1− e−δϕ

)

≥ P̃unf,jB
·
(
eδϕ− 1

)
− P̃unf,jB

·
(
1− e−δϕ

)

= P̃unf,jB
·
(
eδϕ + e−δϕ− 2

)
> 0,

(D34)

therefore, we have

P̂unf,jA
+ P̂unf,jB

> P̃unf,jA
+ P̃unf,jB

. (D35)

The frozen fraction of the new mixing state represented by Eq. (D29) is

f̂frz = 1− 1
Np


P̂unf,jA

+ P̂unf,jB
+

Np∑

j=1,j ̸=jA,j ̸=jB

P̂unf,j




< 1− 1
Np


P̃unf,jA

+ P̃unf,jB
+

Np∑

j=1,j ̸=jA,j ̸=jB

P̃unf,j




= 1− 1
Np

Np∑

j=1

P̃unf,j = f̃frz.

(D36)850

This implies the mixing state represented by ŵ
(i)
j in Eq. (D29) has a smaller frozen fraction than the mixing state represented

by w̃
(i)
j , which conflicts with the least efficient mixing state assumption. We thus prove that for monodisperse INP population,

any mixing state other than the external mixture cannot be the least efficient mixing state, because we can always construct

another mixing state using Eq. (D29), which always has a lower frozen fraction. Therefore, the external mixture is the least

efficient mixing state for monodisperse INPs.855
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Figure E1. Runtime reductions for naive and accelerated algorithms. Panel (a) shows the running times of the naive (blue) and accelerated

(orange) algorithms across eight different experiments. Panel (b) depicts the percentage of time reduction achieved by the accelerated algo-

rithm in each run. Error bars represent the standard deviation of run times, indicating variability in simulation times across 20 trials.

Appendix E: Efficiency and exactness of the accelerated algorithm

In this appendix, the terms “naive algorithm” and “accelerated algorithm” refer to algorithm 2 and algorithm 3 in section 4.3,

respectively. Figure E1 compares the run time and efficiency gains for the naive and accelerated algorithms for the eight cases

listed in Table 2. The performance metrics were obtained from 20 independent trials for each case, evaluating both algorithms

separately. The run times reflect exclusively the immersion freezing process. Other aspects such as model initialization, file860

input/output operations, and simulations of other physical processes are excluded from this evaluation. All tests were conducted

on a single core of the Keeling computer cluster at the University of Illinois at Urbana-Champaign.

The accelerated algorithm reduces the run time on average by 87.26%, which is equivalent to a x7.85 speed up.

In the context of the tau-leaping algorithm, when the simulation involves particles with less effective INPs, the majority of

these INPs are bypassed during the tau-leaping steps. This suggests that the accelerated algorithm is more efficient in simulating865

the freezing process of particles with lower-efficiency INPs. However, since each particle can only undergo one freezing event

before melting, and if the temperature remains below 0 ◦C, both the naive and accelerated algorithms will only account for

particles that remain unfrozen. Particles containing more effective INPs exhibit a higher freezing ratio, resulting in fewer

unfrozen particles. Consequently, as the algorithm iterates over a diminishing pool of unfrozen particles, the computational
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Figure E2. Average frozen fraction at 10-second intervals from eight experiments as obtained by the naive and accelerated algorithms. Each

data point is the mean of 20 trials per experiment, showing the precision of the accelerated algorithm in simulating the freezing process. The

red dashed line represents a one-to-one correlation. The inset boxplot illustrates the maximum, 75th percentile, median, 25th percentile, and

minimum of the ffrz differences between the accelerated and naive algorithms.

running time is reduced. Thus, simulating the freezing of particles with highly efficient INPs can lead to run-time efficiencies870

in this manner. These competing effects may partially account for the insignificant variations in run time reduction observed

across different INP groups, as shown in the panel b of Fig. E1.

Figure E2 presents a comparison of the frozen fraction results simulated by the naive and accelerated algorithms. The

outcomes from both algorithms are closely aligned, with a correlation coefficient exceeding 0.999 and a mean square root error

(RMSE) of just 0.098 (expressed as a percentage). These minor discrepancies are entirely justifiable, considering the inherent875

stochastic variance expected from random algorithms and underscore the robustness of the accelerated algorithm.

The method of grouping particles into bins and the approach used to calculate the P max
i for each bin can significantly

influence the algorithm’s efficiency. If there is a large variance in the selection probability of particles within the same bin—

meaning the upper bound value, P max
i , is substantially higher than the selection probabilities for the majority of particles in

that bin, the algorithm’s efficiency decreases. This scenario occurs when factors other than particle size affect their selection880

probability.

In the context of immersion freezing simulations for single-species INPs, variation in freezing probabilities are solely due to

size differences, as all INPs are of the same species and are exposed to the same environmental conditions. The PartMC model

groups particles by size, ensuring that INPs within the same bin are similarly sized and, therefore, have comparable freezing
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probabilities. However, for externally mixed INP collections, such as Cases 3 and 7, to make sure P max
i is the upper bound of885

the freezing probability within the ith bin, it is calculated by P max
i = 1−exp

(
−S

(max)
p,i · J (max)

het ·∆t
)

, where S
(max)
p,i is the surface

area of the largest particle over that bin, J (max)
het is the ice nucleation rate coefficient of the most efficient species, and ∆t is the

time interval during the simulation. This can lead to a large overestimation of the real freezing probability for INPs only covered

by less efficient species within that bin. In the Cases 3 and 7, the algorithm selects many illite particles using the maximum

freezing probability of Fe2O3 particle during tau-leaping, and then rejects most of them in the secondary selection. For example,890

in case 7 at 600 s, where the temperature is−30 ◦C, the ice nucleating rate coefficients are J
(Fe2O3)
het = 7.85×109 m−2 s−1 and

J
(illite)
het = 1.42× 107 m−2 s−1. Consider the ith bin containing particles with dry diameters ranging from 1 µm to 1.1 µm, and

assume ∆t = 1 s. The maximum freezing probability in this bin is P max
i = 0.0294. However, the actual freezing probability for

illite particles of 1 µm diameter is only 4.48×10−5—656 times smaller than P max
i . This implies that, out of 100,000 unfrozen

computational particles, the tau-leaping algorithm would initially select approximately 2940 particles, yet only 4 to 5 particles895

would remain after the secondary selection. This inefficient process increases the run time and results in a relatively lower run

time reduction, as shown in Fig. E1. Even so, in Case 3 and Case 7, the binned tau-leaping algorithm still saved over 80% of

computation time on average compared to the naive algorithm. Using the binned tau-leaping algorithm remains a better choice.

A potential solution to this issue is to group INPs by both size and modes, where we assume aerosols are internally mixed within

each mode. This bin structure ensures that particles within each bin are of the same species and similar size, Consequently, the900

P max
i would not excessively exceed the probabilities of most particles in the bin, potentially enhancing the algorithm’s overall

efficiency. However, maintaining a two-dimensional bin structure would come with additional computational cost.

Appendix F: Definition of χ index with respect to surface

The definition of χ index with respect to species surface is defined in Table F1, while the mathematical signs are defined in

Table D1. Definition is similar to that of Riemer and West (2013), the only difference is using the surface ratio in stead of the905

mass fraction.

Appendix G: Method for generating the INP population with specific mixing state

The objective of this method is to generate an INP population in which particles within each size bin exhibit an intermediate

mixing state defined by a prescribed χ value. We begin by initializing two separate INP populations composed entirely of pure

Fe2O3 and pure illite, respectively, both sharing the same size distribution. By combining these two populations, we obtain an910

externally mixed INP population with χ = 0%.

Next, we divide the combined population into 100 size bins. Within each bin, we iteratively introduce mixing as follows:

two particles (e.g., particles j1 and j2) are randomly selected, and a surface area Se is randomly generated from a uniform

distribution between 0 and < min
{

Spj1
,Spj2

}
. We then exchange this surface area between the two particles, assuming that

the species surface ratio of the transferred surface segment from particle j1 to particle j2 is the same as species surface ratio of915
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Table F1. Definitions of aerosol mixing entropies, particle diversities, and mixing state index. In these definitions we take 0ln0 = 0 and

00 = 1. The definition and naming of the quantities are based on Riemer and West (2013).

Quantity Name Meaning

Hj =
∑Ns

i=1−w
(i)
j lnw

(i)
j mixing entropy of particle j Shannon entropy of species distribution

within particle j

Hα =
∑Np

j=1 wjHj average particle mixing entropy average Shannon entropy per particle

Hγ =
∑Ns

i=1−w(i) lnw(i) population bulk mixing entropy Shannon entropy of species distribution

within population

Dj = eHj =∏Ns
i=1

(
w

(i)
j

)−w
(i)
j

particle diversity of particle j effective number of species in particle j

Dα = eHα =
∏Np

j=1 (Dj)
wj average particle (alpha) species diversity average effective number of species

in each particle

Dγ = eHγ =∏Ns
i=1

(
w(i)

)−w(i)
bulk population (gamma) species diversity effective number of species in the pop-

ulation

Dβ =
Dγ

Dα
inter-particle (beta) diversity amount of population species diversity

due to inter-particle diversity

χ = Dα−1
Dγ−1

mixing state index degree to which population is exter-

nally mixed (χ = 0%) versus internally

mixed (χ=100%)

particle j1, and the species surface ratio of the transferred surface segment from particle j2 to particle j1 is the same as species

surface ratio of particle j2.

This exchange process incrementally increases the degree of mixing within the bin, and consequently, the χ value. The

selection and exchange steps are repeated until the χ value of the bin reaches the prescribed target. This procedure is applied

independently across all bins, ensuring that particles within each bin attain the desired intermediate mixing state characterized920

by the specified χ.

Algorithm G1 summarizes the procedure described above. The mixing state is represented by a two-dimensional array

M [1 : Ns,1 : Np], where M [i, j] denotes the fractional surface area of the jth particle covered by the ith species. Particle sizes

are stored in a surface area array Sp[1 : Np], where Sp[j] corresponds to the surface area of the jth particle. The prescribed

mixing state is defined by the target χ value, denoted as χobj.925

Author contributions. WT led the conceptualization, implemented the modeling framework, conducted the simulations, and wrote the first
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Algorithm G1 Random surface exchange method (method of initializing an intermediate mixing state)

1: Initializing an INP population π with external mixture, each type of INP has the same size distribution

2: Grouping π to Nbin number of bins, π1,π2, ...,πNbin .

3: for k = 1, 2, . . . , Nbin do

4: loop

5: Randomly select j1, j2 ∈ πi

6: r = randUnif()

7: Se = r ·min{Sp[j1],Sp[j2]}
8: M [:, j1] = M [:, j1] +

1
Sp[j1]

{−Se ·M [:, j1] + Se ·M [:, j2]}
9: M [:, j2] = M [:, j2] +

1
Sp[j2]

{−Se ·M [:, j2] + Se ·M [:, j1]}
10: Calculate χk for πk.

11: if χk ≥ χobj then

12: break

13: end if

14: end loop

15: end for
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