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Highlights 11 

 The deviation of the ET simulation is smaller in savanna (RMSE=10.4 mm/month) than in the rainforest 12 

(RMSE=17.6 mm/month) 13 

 Different models vary greatly for Ei and Es simulations 14 

 The Ei part of models is too sensitive to temperature (17%) and radiation (12.5%) 15 

Abstract 16 

Although models that simulate actual ET have been widely used globally, their performance in tropical forests is 17 

unsatisfactory. The distribution of ET components is one of the key reasons. In this study, we evaluated the ability of 18 

three ET models (Forest-CEW, PML-V2, and PT-JPL) in a complex forest by analyzing their components. The data 19 

comes from seven ground-based eddy covariance flux towers in Brazil, which are part of the "Large Scale Biosphere-20 

Atmosphere Experiment in Amazonia" (LBA) project. Our study found that the Rଶ of Forest-CEW was 0.64, that of 21 

PT-JPL was 0.43, and that of PML-V2 was only 0.29. The average results of the model show that 22 
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T/ET=63.2%±16%, Ei/ET=32.3%±16%, and Es/ET=6%±5%. The model simulates better results in Savanna 23 

(RMSE=10.4 mm/month) than in the rainforest (RMSE=17.6 mm/month). Rn is the main driving variable of the 24 

model ET and T, with a sensitivity of 20%, temperature is the main driver of Ei, accounting for 17%, and LAI is the 25 

main driver of Es, but it produces a negative effect (-22.5%). Our analysis emphasizes the differences in the ability 26 

of existing models to simulate ET dynamics in complex forests. Improving the formulation of ET components, 27 

particularly the canopy interception part, holds significant potential for substantially enhancing the accuracy and 28 

reliability of these ET models. 29 

Keywords: evapotranspiration, transpiration, canopy interception, canopy interception, ET model 30 

1. Introduction 31 

Forest hydrological cycles are a core component of the terrestrial hydrological cycle, playing a crucial role in 32 

regulating energy balance and biogeochemical cycles (Bonan, 2008; Fisher et al., 2017). Forest evapotranspiration 33 

(ET) primarily consists of three components: vegetation transpiration (T), canopy interception evaporation (Ei), and 34 

soil evaporation (Es). The proportion of Ei and Es varies depending on the ecosystem type. In forests with dense 35 

vegetation, the canopy's shielding effect on radiation transmission significantly influences these proportions. Due to 36 

the complex and highly covered canopy structure, solar radiation attenuates while penetrating the canopy, resulting 37 

in insufficient energy reaching the ground surface (Duarte et al., 2021; Matsuo et al., 2021), thereby limiting soil 38 

moisture evaporation. Conversely, canopy interception accounts for a larger proportion in forests (Gu et al., 2018). 39 

During rainfall events, part of the precipitation is captured on leaves, branches, and trunks, which is subsequently 40 

returned to the atmosphere through evaporation. This portion constitutes 15-30% of the total ET (Lopes et al., 2020; 41 

Singh and Szeicz, 1979). This high ratio of canopy interception is more pronounced in tropical forests due to their 42 

denser and multilayered canopy structures (Kalácska et al., 2005). Transpiration (T) establishes the mechanism for 43 
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water transfer from soil to atmosphere and is a key process for understanding plant water use efficiency and vegetation 44 

dynamics over time and space. It is considered a crucial link in the terrestrial water balance (Schlesinger and Jasechko, 45 

2014). Additionally, T represents the largest water flux from land, but its quantification has a big uncertainty. 46 

Observational studies show that the global annual average T/ET is 0.61±0.15 (Schlesinger and Jasechko, 2014), but 47 

the results from some LSM models are high, at 0.70±0.09 (Fatichi and Pappas, 2017). 48 

ET monitoring is now widely carried out around the world. The eddy covariance flux tower technique quantifies 49 

energy (latent heat flux, LE) and gas exchanges between ecosystems by measuring the covariance between vertical 50 

wind speed and scalar fluctuations (Shuttleworth et al., 1984). The widespread application of this technique has 51 

significantly advanced our understanding of the seasonal and interannual variability of tropical forest ET. 52 

Furthermore, understanding the driving mechanisms of ET processes by environmental factors such as rainfall, 53 

radiation, and temperature is important in the refined application of ET models (Costa et al., 2010; da Rocha et al., 54 

2009; Fisher et al., 2009; Fisher et al., 2008; Gomis-Cebolla et al., 2019; Morillas et al., 2013). 55 

The ET model based on remote sensing remains the primary method for estimating large-scale ET fluxes, by 56 

combining the data from the EC flux site, the model was calibrated to greatly improve the accuracy of large-scale 57 

simulation. However, even if the total ET estimates are consistent, there are still significant differences in the 58 

components of ET (Miralles et al., 2016). Although the Sap Flow Method can effectively observe transient T, the 59 

difficulties in equipment installation and calibration make it challenging to cover large areas (Gao et al., 2022; Maes 60 

et al., 2020). Canopy interception is a very well-established study (Carlyle-Moses and Gash, 2011, Cuartas et al., 61 

2007), but these data are often scattered in different locations and are neither comprehensive nor complete. This 62 

hinders the calibration of ET components. Currently, it is difficult to evaluate the performance of ET model partitions 63 

using sufficient observational data, but we try to propose improvement methods by taking advantage of the 64 

differences between different models and the correspondence between models and physical processes. 65 
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We employed three process-based ET models (capable of independently separating transpiration and evaporation 66 

processes) across seven different types of Amazonian forests. These include four pristine tropical rainforests, two 67 

seasonal forests (one of which is flood-stressed), and one tropical savanna. Our goal is to provide the proportions and 68 

seasonality of different components of ET in the Amazon forest. In addition, we will analyze the mechanism and 69 

sensitivity of different models. We expect that these different ET models will provide a broad perspective for 70 

exploring the seasonality of ET and its components. 71 

2. Materials 72 

2.1. The study site and meteorological data 73 

The study site was in South America, and we used original flux data from the Large-Scale Biosphere Atmosphere 74 

Experiment in Amazonia (LBA) eddy covariance towers in the Brazil flux network. The LBA integrated data 75 

collected on nine observation towers in the Amazon of Brazil, including eddy covariance fluxes for carbon and energy, 76 

meteorological parameters, radiation, canopy temperature, humidity and CO2  profiles, and soil moisture and 77 

temperature profiles (Restrepo-Coupe et al., 2013). 78 

We selected data from 7 sites (Figure 1), including Manaus (K34), Santarém tropical moist forest towers (K67 79 

and K83), and Caxiuana (CAX) close to the city of Belém (Pará) in northeastern Brazil (Carswell et al., 2002), which 80 

were typical of tropical rainforests in the Amazon basin; Reserva Jarú (RJA) was a seasonal forest located in the 81 

southern Amazon (Kruijt et al., 2004); although remote sensing data showed that Pe de Gigante (PDG) was a tropical 82 

woodland savanna site, in reality it was mainly composed of closed shrubs and small trees (5 m tall), sparse tall trees 83 

(7-10 m tall), dense herbaceous, and to a lesser extent almost closed trees up to 10 m tall (Batalha, 1997; Rocha et 84 

al., 2002), and research indicates that the LAI in this region can reach 6 m2/m2 (Restrepo-Coupe et al., 2013); Rio 85 

Javaes-Bananal Island (BAN) was a seasonally flooded ecotone about 2 km east of the Javaezinho river, which was 86 
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consisted of semi-deciduous forests, high woodland savannahs with a canopy height of 18 m, and sparse shrubs 87 

(Borma et al., 2009). 88 

Table 1 89 

Site Information Table 90 

Site name 
（Shorthand） Lat/Lon 

Canopy 
height (m) 

Tower 
height (m) 

Biome type Reference 

Manaus 
(K34) 

2.61S/60.21W 30–35 50 
Tropical 

rainforest 

(Gomis-Cebolla et 
al., 2019; Restrepo-Coupe 

et al., 2013) 
Santarem 

(K67) 
2.85S/54.97W 35–40 63 

Tropical 
rainforest 

(Restrepo-Coupe et 
al., 2013) 

Santarem 
(K83) 

3.01S/54.58W 35–40 64 
Selectively 

logged tropical 
rainforest 

(Gomis-Cebolla et 
al., 2019; Restrepo-Coupe 

et al., 2013) 

Caxiuana 
(CAX) 

1.72S/51.53W 30–35 51.5 
Tropical 

rainforest 

(Gomis-Cebolla et 
al., 2019; Restrepo-Coupe 
et al., 2013), (Carswell et 

al., 2002) 

Reserva 
Jaru (RJA) 

10.08S/61.93
W 

30 60 
Tropical wet 

and dry forest 

(Gomis-Cebolla et 
al., 2019; Restrepo-Coupe 

et al., 2013) 
Rio 

Javaes-Bananal 
Island 

（BAN） 

9.82S/50.13W 18 42 
Seasonally 

flooded, forest-
savanna ecotone 

(Borma et al., 2009) 

Pe de 
Gigante 

（PDG） 

21.62S/47.63
W 

1–10 21 Savanna (Rocha et al., 2002) 

 91 

 92 

Fig. 1. Land cover of South America (a) along with the seasonal variations of precipitation, vapor pressure deficit (VPD), wind speed, temperature, net radiation 93 

https://doi.org/10.5194/egusphere-2025-4325
Preprint. Discussion started: 21 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

6 

 

(Rn), and leaf area index (LAI) at each site (b-h). The color of the lines in (b-h) corresponds to the color of the Y-axis values, and black vertical lines on the plot 94 

lines represent standard deviations. All Y-axes have the same scale. 95 

There are many definitions of seasonality in tropical forests, and here we define the onset of the dry season as 96 

two consecutive months of precipitation of less than 100 mm (Luo et al., 2024). Environmental variables at the K34, 97 

CAX, K67, and K83 sites near the Amazon basin exhibited similar seasonal characteristics. Notably, all 98 

environmental variables showed an increasing trend at the onset of the dry season and began to decline midway or 99 

towards the end of the dry season. Although the K67 and K83 sites were relatively close to each other, the wind speed 100 

at the K67 site was higher. 101 

The RJA site experienced abundant rainfall but also underwent a drier dry season with significant seasonal 102 

variation in precipitation. After entering the dry season, precipitation decreased by 64% and continued to decline to 103 

nearly no rainfall. During this period, environmental variables increased and then decreased after the dry season 104 

ended. Notably, the LAI at the RJA site was similar to that of the other four tropical rainforest sites. 105 

Remote sensing data indicated that the PDG site had a lower LAI and exhibited significant environmental 106 

fluctuations (with high standard deviations), showcasing pronounced seasonality. Upon entering the dry season, wind 107 

speed and VPD at the PDG site increased but started declining midway through the dry season. Unlike other sites, at 108 

the PDG site, temperature and net radiation (Rn) rapidly decreased during the dry season and rebounded midway, 109 

with LAI showing a similar but less variable trend. Despite reduced rainfall from March to May, temperature and Rn 110 

continued to decline. 111 

The BAN site featured a prolonged dry season. Precipitation decreased by 58% upon entering the dry season, 112 

followed by almost no rainfall for three subsequent months, gradually increasing afterward. During this period, VPD 113 

and wind speed displayed significant seasonal variation: they increased at the beginning of the dry season and 114 

weakened as precipitation recovered. Surprisingly, LAI at the BAN site showed almost no seasonal variation 115 
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throughout the dry season, and Rn showed a weak initial increase followed by a decline. Additionally, the BAN site 116 

experienced flooding from January to May each year, which might have impacted its ET (Fleischmann et al., 2023). 117 

2.2. Vegetation data 118 

The PML-V2 and PT-JPL models were originally designed for remote sensing, it requires two vegetation 119 

parameters, LAI and NDVI. LAI is using the Level-4 MODIS global Leaf Area Index (LAI) and Fraction of 120 

Photosynthetically Active Radiation (FPAR) product (MOD15A2H). This variable describe the dynamics of surface 121 

vegetation, and understanding how much rain will be intercepted by the vegetation canopy rather than falling to the 122 

ground. Normalized Difference Vegetation Index (NDVI) data is the Oak Ridge National Laboratory (ORNL) 123 

Distributed Active Archive Center (DAAC)’s product called “Global Vegetation Greenness (NDVI) from AVHRR 124 

GIMMS-3G+, 1981-2022” (Pinzon et al., 2023). NDVI is a spatial resolution of 0.0833 degree and global coverage 125 

from 1982 to 2022. NDVI is mainly used as an input to the PT-JPL model as a biophysical ability index to calculate 126 

the functional green leaf area fraction (Fisher et al., 2008). 127 

3. Methods 128 

We used three ET models: Forest-CEW, PML-V2, and PT-JPL, which can independently separate the two 129 

processes of transpiration and evaporation. Some of the models have been well applied and are considered to represent 130 

the expected average geographical patterns and seasonality (Melo et al., 2021; Miralles et al., 2016). Forest-CEW is 131 

a forest ecosystem process model we are currently developing. It simulates ecosystem vegetation dynamics by 132 

characterizing environmental biophysical and physiological processes. The aerodynamic part dealing with turbulent 133 

transport of matter and energy mainly references Campbell and Norman (Campbell and Norman, 1977), while aspects 134 

of radiation and energy balance are similar to the land-surface-transfer scheme (LSX) model (Pollard and Thompson, 135 

1995). ET in Forest-CEW primarily consists of two parts: canopy interception and T, where canopy interception of 136 
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precipitation is expressed as a function of rainfall and leaf area index (LAI). 137 

The PML-V2 and PT-JPL models are improvements based on the Penman-Monteith (PM) and Priestley-Taylor 138 

(PT) models (Penman and Keen, 1948; Priestley and Taylor, 1972). The PM model derives from the energy balance 139 

equation and not only includes solar and longwave radiation but also integrates factors such as temperature, humidity, 140 

and wind speed. As a simplified version of the PM model, PT is primarily driven by Rn since its aerodynamic 141 

component has been parameterized. Leuning and Fisher developed the Penman-Monteith-Leuning (PML) model and 142 

the Priestley-Taylor Jet Propulsion Lab (PT-JPL) model by integrating vegetation dynamics and meteorological 143 

factors into the models (Fisher et al., 2008; Zhang et al., 2010). 144 

3.1. Forest-CEW model 145 

Compared with the LSX model, Forest-CEW multiplies LAI by PAI to obtain the effective LAI and introduces 146 

a structural correction factor to adjust the interception coefficient. Evapotranspiration of Forest-CEW can be 147 

estimated by: 148 

𝐸𝑇 = 𝑇 + Ei                   (1) 149 

Transpiration (mm/hour) is assumed to occur only on the leaf surface, and the rate can be estimated by: 150 

𝑇 = 𝑓௦௧௥(1 − 𝑓௪௘௧)2𝐿𝐴𝐼ρ
௚ೡ௚ೞ൫௤ೞି௤೛൯

௚ೡା௚ೞ
              (2) 151 

Where LAI is the leaf area index (m2/m2) and ρ is the air density (kg/m3); gv is the vapor conductance of leaf 152 

or stem surface (m/s); gs is the stomatal conductance of gas (mol/m2/s); fstr is the water stress factor, which can be 153 

calculated by (Santos and Costa, 2004): 154 

𝑓௦௧௥ =
ଵି௘௫௣(ି௖ೞ೟ೝ஺ௐூ)

ଵି௘௫௣(ି௖ೞ೟ೝ)
                 (3) 155 

Where cstr is the water stress coefficient; here cstr=-5. AWI is the available water indicator and can be described 156 

as: 157 

𝐴𝑊𝐼 = ∑
௘௫௣(ି௖ೝ∙௜)

ି௘௫௣(ି௖ೝ∙௜)/௖ೝ

௡
௜ୀଵ                 (4) 158 
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Where n is the number of layers in which precipitation penetrates the soil; here n=4. cr is the root profile factor; 159 

here cr=1.5. 160 

The fraction of wet surface is the ratio of water content on the surface to the maximum amount of water that the 161 

surface can withhold: 162 

𝑓୵ୣ୲ = W୵ୣ୲/W୫ୟ୶                 (5) 163 

Assuming δw is the thickness of water film on the surface (m), here δw = 0.001, and ρw is the water density 164 

(kg/m3), then: 165 

𝑊௠௔௫ = 2𝐿𝐴𝐼𝛿௪𝜌௪                 (6) 166 

During a rainy period, the surface of an object intercepts water Ei (mm/hour) and the water content on wet 167 

surface Wwet (kg/m2) can be expressed as equations: 168 

Ei = 𝑓௣௥௘௖[1 − 𝑒𝑥𝑝(0.5𝐿𝐴𝐼 · 𝑃𝐴𝐼)]𝑃𝑟𝑒𝑐             (7) 169 

Where fprec is the structural factor for rain water interception; PAI is the plant area index (m2/m2); Prec is the 170 

precipitation (mm). 171 

3.2. PML-V2 model 172 

In PML-V2, ET is divided into transpiration (T), soil evaporation (Es) and canopy intercepted evaporation (Ei). 173 

The formula used are as follows: 174 

λ𝐸𝑇 = λ𝑇 + λ𝐸௦ + λ𝐸௜                 (8) 175 

λT =
௦஺೎ା஡௖೛

ஓ
VPD ∙ 𝐺௔ ∙ s + 1 + 𝐺௔/𝐺௖              (9) 176 

λ𝐸௦ =
௙∙௦∙஺ೞ

௦ାଵ
                   (10) 177 

𝜆𝐸௜ = ൜
𝑓௩𝑃                                     , 𝑃 < 𝑃௪௘௧

𝑓௩𝑃௪௘௧ + 𝑓ாோ(𝑃 − 𝑃௪௘௧), 𝑃 ≥ 𝑃௪௘௧
             (11) 178 

In the part of λT , where λ  is the volumetric latent heat of vaporization (MJ/kg) ; s=Δ/γ , Δ  is the slope of the 179 

saturation vapor pressure-temperature curve (kPa/C); γ is the psychrometric constant (kPa/C); ρ and cp respectively 180 
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denote the air density for a given air pressure (kg/m3)  and the specific heat of air (MJ/kg/C) ; VPD  is the vapor 181 

pressure deficit (kPa) ; Ac  and As  are respectively the net radiation for canopy and for soil (MJ/m2/d) , 182 

As=Rnexp(-0.61LAI) and Ac=Rn-As, in which LAI and Rn respectively represent the leaf area index (m2/m2) and 183 

the net radiation (MJ/m2/d) ; Ga  and Gc  respectively represent the aerodynamic conductance (m/s)  and canopy 184 

conductance (m/s), and were calculated using the formula: 185 

𝐺௔ =
୩మ௨೘

௟௡[(௭೘ିௗ)/௭೚೘]௟௡[(௭௠ିௗ)/௭೚ೡ]
               (12) 186 

𝐺௖ = 𝑚
௉భ

κ(௉మା௉ర)
ቀκ𝐿𝐴𝐼 + 𝑙𝑛

௉మା௉యା௉ర

௉మା௉య ୣ୶୮(κ௅஺ூ)ା௉ర
ቁ

ଵ

ଵା௏௉஽/஽ೌ
          (13) 187 

Where k=0.41  represents von Karman’s constant; zm  is the height at which wind speed and humidity are 188 

measured (m); um is the wind speed (m/s) at this height; d is the zero-plane displacement height (m); zom and zov 189 

refer to the roughness lengths for momentum and the water vapor transfer, defined as zom=0.123h and zov=0.1zom, 190 

where h is the canopy height (m). In calculating Gc, m is the stomatal conductance coefficient; κ is the extinction 191 

coefficient for PAR; Da is the water vapor pressure deficit of the air (kPa) (Gan and Liu, 2020). P1, P2, P3, and P4 are 192 

calculated as follows: 193 

𝑃ଵ = 𝐴௠β𝐼଴η, 𝑃ଶ = 𝐴௠β𝐼଴, 𝑃ଷ = 𝐴௠η𝐶௔, 𝑃ସ = β𝐼଴η𝐶௔           (14) 194 

Where 𝐴௠ = 0.5𝑉௠ ; 𝑉௠ =
௏೘,మఱ ୣ୶୮[௔(Taିଶହ)]

ଵାୣ୶୮[௕(Taିସଵ)]
 ; in Vm , Vm,25  is the maximum catalytic capacity of Rubisco per 195 

unit leaf area at 25 °C (μmol/m2/s); Ta is the air temperature (˚C); a=0.031 and b=0.115 are temperature coefficients 196 

(Li et al., 2023; Zhang et al., 2019). β [µmol/CO2/(µmol/PAR)] and α [µmol/m2/s/(µmol/m2/s)] are initial slopes of 197 

the light and CO2 response curve to assimilation rate, respectively. I0 represents photosynthetically active radiation 198 

(PAR) (µmol/m2/s); Ca represents CO2 concentration (µmol/mol). 199 

In the part of λEs, f is the soil evaporation fraction that varies from 0 to 1. It is a function of the accumulated 200 

precipitation and soil equilibrium evaporation over a 32-day time step (Morillas et al., 2013; Zhang et al., 2010) and 201 

is calculated by: 202 
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𝑓 = min ൬
∑ ௉ಿ

೙సభ

∑ ா೐೜ೞ
ಿ
೙సభ

, 1൰                 (15) 203 

Where 𝐸௘௤௦ =
௦஺ೞ

(ଵା௦)
 represents the average equilibrium evaporation rate (mm/d) at the soil surface (Li et al., 204 

2023); N=32 is the time step. 205 

In the part of λEi , fv  is the fractional area covered by intercepting leaves and fER  is the ratio of average 206 

evaporation rate over average precipitation intensity storms; P  and Pwet  are respectively the daily precipitation 207 

(mm/d) and reference precipitation threshold of wet canopy (mm/d). fv, fER and Pwet are the same as c, 𝐸௖
തതത and PG

'  in 208 

the Gash model, which will be given later. 209 

3.3. PT-JPL model 210 

The equations are as follows: 211 

λ𝐸𝑇 = λ𝑇 + λ𝐸௦ + λ𝐸௜                 (16) 212 

λ𝑇 = (1 − 𝑓௪௘௧)𝑓௚𝑓௧𝑓௠α
Δ

Δାஓ
𝑅௡௖               (17) 213 

λEୱ = [𝑓୵ୣ୲ + 𝑓ୱ୫(1 − f୵ୣ୲)]α
Δ

Δାஓ
(R୬ୱ − G)            (18) 214 

λ𝐸௜ = 𝑓௪௘௧α
Δ

Δାஓ
𝑅௡௖                 (19) 215 

Where Rnc and Rns are the same as Ac and As in PML-V2; fwet is relative surface wetness, fwet=RH4 and RH is 216 

relative humidity. fg is green canopy fraction, 𝑓୥ =
୤ఽౌఽ౎

௙಺ುಲೃ
; where fAPAR and fIPAR are the fraction of PAR absorbed by 217 

green vegetation cover and the fraction of PAR intercepted by total vegetation cover, fAPAR=m1SAVI+b1 (Gao et al., 218 

2000) and fIPAR=m2NDVI+b2 (Fisher et al., 2008); NDVI and SAVI are the normalized difference vegetation index 219 

and the soil adjusted vegetation index, SAVI=0.45·NDVI+0.132 (Gomis-Cebolla et al., 2019). 220 

𝑓௧ = exp ቈ− ൬
೘்ೌೣି ೚்೛೟

೚்೛೟
൰

ଶ

቉                (20) 221 

Where ft  is the green canopy fraction; Tmax  and Topt  are the maximum and optimum temperatures for plant 222 

growth (℃) 223 

𝑓୫ =
௙ఽౌఽ౎

௙಺ುಲೃ೘ೌೣ
, 𝑓௦௠ = R𝐻௏௉஽                (21) 224 
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Where fm  and fsm  represent the water supply constraints for plant transpiration and the soil evaporation, 225 

respectively; VPD is the same as in PML-V2. 226 

3.4. Model calibration 227 

The model calibration was performed using the Bayesian optimization method. Bayesian optimization is a 228 

probabilistic model-based approach that efficiently finds the optimal solution in complex, high-dimensional, and 229 

computationally expensive parameter spaces. We constructed a Gaussian process as a surrogate model to guide the 230 

next step of the search, thus minimizing the number of trials required to find the optimal solution. When the specified 231 

accuracy and iteration count are reached, the algorithm outputs the optimal parameter combination and the value of 232 

the objective function. The calibrated model parameters are shown in Table 2. The parameters involved in the model 233 

are summarized in the supplementary materials. 234 

Table 2  235 

The optimized parameters of the models. 236 

Model Parameter Unit Value 

Forest-CEW fprec - 0.53 

gs mol/m2/s 9.7 

    

PML-V2 κ - 0.5 

β µmol/CO2/(µmol/PAR) 0.09 

η µmol/m2/s/(µmol/m2/s) 0.09 

𝑉𝑚,25 μmol/m2/s 15.8 

m - 16.5 

    

PT-JPL Topt °C 24.3 

m1 - 0.59 

m2 - 0.2 

 237 
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 238 

Fig. 2. (a) shows the model calibration result. The yellow dashed line represents the PML-V2 model, the red line represents the PT-JPL model, the blue line 239 

represents the Forest-CEW model, the black dashed line indicates the average results of the three models, and the black solid line represents the observed values; 240 

(b) shows the linear regression results of the observed and simulated values; (c) displays the statistical performance of the model as represented by a Taylor diagram. 241 

This study used data from the K34 site for model calibration and the remaining six sites for model validation, 242 

and the optimization objective of the ET model is to minimize the root mean square error (RMSE) between the 243 

simulated ET and observed ET. Figure 2 presents the results of model calibration, showing small differences among 244 

the results simulated by the three models, but all models underestimated the ET values, particularly in the periods of 245 

higher precipitation. Importantly, the models were able to capture the seasonality of ET well, with the model averages 246 

showing a coefficient of determination of up to 0.71 compared to the measured ET. 247 

4. Results 248 

4.1 Models performance  249 
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 250 

Fig. 3. The simulation results of different models throughout the year, during the dry season (d-f) and wet season (g-h). The black dashed line represents the 1:1 251 

line, and the red solid line represents the linear regression result. 252 

The simulated time scale of the three ET models is daily, and subsequent analyses are aggregated to a monthly 253 

scale. Figure 3 shows the daily results of the different models simulating ET and comparing them to the observed ET. 254 

Obviously, the performance of the three models is comparable overall, but the PML-V2 appears to have a larger error 255 

than the other two. The simulation is easier in the dry season than in the wet season. 256 
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 257 

Fig. 4. (a-e) shows the true color RGB images (from NASA Land Processes Distributed Active Archive Center) and simulation results of each station. Gray shaded 258 

areas indicate dry seasons, solid black lines represent observed ET values, and dashed black lines denote model averages; (f) provids a statistical summary of the 259 

models' seasonality against observed values. Blue-edged markers denote negative correlations, while black-edged markers indicate positive correlations. Black-260 

filled triangles represent aggregated data from all sites, with different triangle orientations indicating different models. 261 
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To better display the geographical features around the study area, we used satellite images from MODIS/Terra 262 

Surface Reflectance 8-Day L3 Global 500m SIN Grid V061; however, because the data is relatively old, the resolution 263 

is only 500 km. From the average results of the model, the simulation deviation values for the K67, K83, and BAN 264 

sites are large, especially for the BAN site, with an RMSE as 23.7914 mm/month. Besides the BAN site shows that 265 

the model average can capture the seasonality of ET well, and PT-JPL shows good results in K67 and K83, with 266 

correlation coefficients of 0.83 and 0.79 with the observed values. However, PML-V2 showed a negative correlation 267 

with the observed values at the K67 and K83 sites, and PT-JPL at the BAN site. We summarized the simulation results 268 

for all sites to observe the overall performance of the models (Figure 4 f black triangle markings), and found that the 269 

deviations from the observed values were relatively close for the three models, with an RMSE of 20.1674 270 

mm/month for Forest-CEW, 22.4564 mm/month for PML-V2, and 17.8966 mm/month for PT-JPL. However, in 271 

terms of consistency with the observed values, Forest-CEW outperformed the other two models, with a correlation 272 

coefficient of 0.64, while PML-V2 only reached 0.29, and PT-JPL was 0.43. 273 

We observed that the tropical rainforest sites near the Amazon river (CAX, K67, and K83) exhibited similar 274 

seasonality (Figure 4 a-e). Generally, ET displayed a unimodal trend, increasing initially and then decreasing. During 275 

the dry season, ET increased at the K67 and K83 sites. Although CAX did not experience a monitored dry season, 276 

the site received less precipitation from June to October, and ET also showed a similar increasing trend. At the RJA 277 

site, ET remained stable throughout the year without significant seasonal variation between the dry and wet seasons. 278 

PDG, located in an area with limited rainfall and a seven-month dry season, experienced almost no precipitation 279 

during its driest months. Observational data showed that ET at the PDG site exhibited significant seasonal variability, 280 

sharply declining by 65% at the start of the dry season and markedly rebounding in mid-dry season, closely matching 281 

the seasonal precipitation patterns. While BAN’s ET seasonality was similar to PDG’s, displaying a decrease-then-282 

increase trend during the dry season, the magnitude of change was smaller. Additionally, the seasonal changes in 283 
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environmental drivers at BAN were opposite to those at PDG. 284 

4.2 Proportionality, seasonality and variability of ET components 285 

Figure 5 shows the annual totals of canopy interception, transpiration, and soil evaporation at each site, with 286 

three bar charts at each site representing the results of the Forest-CEW, PML-V2, and PT-JPL models. Overall, the 287 

simulation results of Forest-CEW were lower than those of PT-JPL and PML-V2. We found that at the BAN and PDG 288 

sites with lower vegetation coverage (average LAI of 3.3 m²/m² ), only the PT-JPL model showed an increased 289 

proportion of soil evaporation. By comparing dry and wet season data, we observed that the proportion of T showed 290 

little difference between the dry and wet seasons. However, due to reduced precipitation, the proportion of Ei 291 

decreased during the dry season. 292 
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 293 

Fig. 5. (a-c) describe the ET components simulated by different models at each site, with three bar graphs per site representing Forest-CEW, PML-V2, and PT-JPL 294 

models, respectively. Light-colored bars represent canopy interception evaporation, medium-colored bars represent soil evaporation, and dark-colored bars represent 295 

vegetation transpiration. (d-i) shows the seasonal variations of transpiration, canopy interception, and soil evaporation, with the gray shading indicating the dry 296 

season and the error bars representing standard deviations. 297 

We presented the trends in T, Ei, and Es, and it is clear that except for the PDG station, the T at other stations 298 

exhibits consistent seasonality, increasing at the beginning of the dry season and then decreasing in the middle or at 299 

the end. In contrast, Ei shows the opposite seasonality, starting to decline at the onset of the dry season, and exhibits 300 

a large standard deviation at the CAX, K67, and RJA stations, indicating that different models simulate the Ei process 301 
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differently. Overall, Es shows a seasonal variation of first increasing and then decreasing, and it is noteworthy that 302 

the large standard deviation at the PDG station indicates that the simulation results of the PML-V2 and PT-JPL models 303 

differ. 304 

 305 

Fig. 6. (a-d) depict the variability of ET and T across different forest types. Gray triangle markers represent site-specific ET, gray circles represent site-specific 306 

T, and gray vertical lines indicate model standard deviations. Solid black lines denote average ET, and dashed black lines denote average T. Red solid lines represent 307 

the trend in the variation of ET during the first half-year, red dashed lines depict the trend in the variation of T during the first half-year, blue solid lines represent 308 

the trend in the variation of ET during the second half-year, and blue dashed lines represent the trend in the variation of T during the second half-year. 309 

Figure 6 compares the variability of T and ET. The gray triangle represents the simulated ET of the site, and the 310 

error bar indicates the standard deviation of the three models. In addition, we consider the first half and the second 311 

half of the year separately based on the trends of ET and T, provide a trend line through linear regression, and use the 312 

slope of the linear regression as a quantification of the consistency between ET and T. The results show that only in 313 

tropical rainforests do T and ET both exhibit an increase-then-decrease trend, with the slope difference between the 314 

two not exceeding 1.5. At the BAN site, T and ET changed in completely opposite patterns, T slightly decreased early 315 

in the month, then sharply increased until August before plunging again, while ET gradually declined from early in 316 

the month until June, then rapidly decreased until September before surging again. At the RJA site, T showed a strong 317 

unimodal trend, peaking in August, while ET fluctuated minimally except for a slight increase in October. At the 318 
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PDG site, although T and ET followed the same trend, the amplitude of T change was much smaller than that of ET. 319 

From September to November, ET surged, while T only showed a slight increase. In addition, this figure reveals the 320 

differences between different models, and the standard deviation error bar shows that the variability in BAN, RJA 321 

and PDG is much greater than in rainforests. 322 

 323 

Fig. 7. (a) and (b) respectively show the proportions of T and Ei in ET along with their changing trends; different colors represent different models, and vertical 324 

lines indicate the standard deviation of different sites. 325 

Figure 7 averages the sites, showing the changes in the three models T and Ei. During the wet season, the canopy 326 

intercepts more rain, but cloud cover leads to a decrease in net radiation (Rn), and the water film covering the leaf 327 

surface after the rain hinders transpiration. In the dry season, when precipitation decreases, the water intercepted by 328 

the canopy decreases or even disappears, while Rn and VPD increase, resulting in an increase in transpiration. 329 
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 330 

Fig. 8. (a-d) shows the variability of the simulation of ET and its components between different models, where rain forests are the average results of CAX, 331 

K67 and K83. Forest-CEW did not design Es, so (d) shows the result of PML-V2 and PT-JPL. 332 

We quantified the simulation differences for ET and its components between different models by Coefficients 333 

of Variation (CV) at Figure 8. Obviously, the difference between Ei (33.4%) and Es (55%) is much greater than that 334 

between ET (14.9%) and T (17.6%). In addition, the simulation difference of the model for the dry season Ei at the 335 

RJA site is much greater than that in the wet season, and the same is true for the dry season Es at the BAN and PDG 336 

stations. Although Es accounts for only 10% of total ET, this part of the contribution will increase in forests with low 337 

LAI. 338 
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5. Discussion 339 

5.1 Relationship between the unique characteristics of the sites and the ET 340 

The various sites in the Amazon rainforest have unique characteristics due to differences in their geographical 341 

locations, vegetation types, and climatic conditions. Here, we attempt to analyze the characteristics of ET and its 342 

components in conjunction with the unique environments of each site. Manaus is located in the heart of the Amazon 343 

River and is primarily covered by tropical rainforests, boasting rich biodiversity. The climate is typically humid 344 

tropical, and ET can remain high due to abundant precipitation. K67 and K83 are also located near the Amazon River, 345 

significantly influenced by the Atlantic Ocean, with distinct wet and dry seasons and substantial annual precipitation. 346 

Although both sites are situated in tropical humid forests near Santarém, there may be slight differences in local 347 

vegetation types and canopy structures. As shown in Figure 1, K83 has a higher LAI, indicating it may have denser 348 

or taller trees, allowing for greater water interception and enhanced transpiration on the leaf surface. 349 

Caxiuana is primarily characterized by lowland tropical rainforests with a complex multi-layered canopy 350 

structure. The higher LAI and increased precipitation at the CAX site result in relatively smooth seasonal variations 351 

of Ei. Overall, during the early dry season, precipitation decreases for CAX, K67, and K83, Rn increases, and the 352 

higher evaporation demand raises ET, enhancing Rn's control over ET. Reserva Jarú is mainly composed of evergreen 353 

broadleaf forests with high tree density and good vegetation cover. Despite the short dry season in RJA, precipitation 354 

drops to almost none after entering the dry season, yet the forest does not experience drought stress, as the abundant 355 

rainfall during the wet season allows the vegetation roots to extract water from deep soil (da Rocha et al., 2004). 356 

The vegetation in PDG is characterized by sparse grasses and shrubs, which results in a generally low LAI. This 357 

lower LAI means that there is a reduced effective leaf surface area available for transpiration. The savanna's 358 

predominantly shallow root systems, coupled with significantly decreased rainfall during the dry season, limit the 359 
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plants' ability to access deep soil water. As surface soil water depletes, plants struggle to maintain high levels of 360 

transpiration, leading to a decrease in transpiration rates. Unlike dense broadleaf forests with their lush canopies, 361 

savanna plants may close their stomata due to intense radiation during the dry season, further inhibiting transpiration 362 

as a mechanism to conserve internal water. Moreover, the sparseness of the vegetation allows more radiation to 363 

penetrate through the canopy to the ground surface. Combined with higher temperatures, stronger wind speeds, and 364 

lower air humidity typical of the dry season, these conditions accelerate evaporation from the soil surface, indicating 365 

an increased proportion of soil evaporation within the total ET. 366 

The BAN site is a seasonally flooded forest-savanna ecotone, but it exhibits very different environmental 367 

variables from PDG. During the extended and arid dry season at BAN, precipitation drops sharply and Rn increases 368 

as clouds diminish. Despite the increase in other environmental variables, ET begins to weaken. This pattern is a 369 

clear response characteristic of tropical savanna ecosystems, associated with the dry season's increased radiation and 370 

temperature. It occurs because this period typically features higher cloud cover and cooler temperatures, common in 371 

the transition zone between the Amazon rainforest and the Brazilian Cerrado climate regions (da Rocha et al., 2009b). 372 

It is worth noting that during the model evaluation phase (Fig. 4. d), the model did not capture the seasonality of ET 373 

well at the BAN site, which increased the risk associated with the results at the BAN site. Seasonal flooding could 374 

be one such factor (Fleischmann et al., 2023), but a more detailed explanation requires further investigation. 375 

5.2 Improving the Ei module is important for ET partitioning 376 
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 377 

Fig. 9. (a, b) shows the influence of environmental variables on ET and T, evaluating variables including temperature (Temp), vapor pressure deficit (VPD), wind 378 

speed (WS), precipitation (Prec), net radiation (Rn), and leaf area index (LAI). The table colors indicate Pearson correlation values, with left-hand side colors 379 

representing sampling periods (all seasons, dry season, and wet season); * indicates significant correlation at P<0.05; ** at P<0.01; *** at P<0.001. 380 

We analyze the environmental drivers of ET and T’s seasonality through a simple relevance. Figure 9 shows the 381 

three factors most consistently correlated with ET across all three models: temperature, net radiation (Rn), and leaf 382 

area index (LAI). There is a close relationship between temperature and Rn; higher Rn typically leads to an increase 383 

in surface and near-surface air temperatures because more energy is absorbed and converted into heat. Additionally, 384 

higher VPD indicates drier air, which increases the intensity of plant T and exacerbates water loss (Grossiord et al., 385 

2020). 386 

By separating dry and wet season data, we found that Rn and temperature are key factors controlling the 387 

seasonality of ET. Many studies support this conclusion, especially in humid regions (Costa et al., 2010; da Rocha et 388 

al., 2009; Fisher et al., 2009; Restrepo-Coupe et al., 2021). What is more, a comprehensive study indicated that LAI 389 

and growth stages collectively account for 43% of the variation in global T/ET data sets (Wei et al., 2017). However, 390 

environmental factors such as Rn, VPD and water are also significant drivers (Ghimire et al., 2022; Kühnhammer et 391 
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al., 2023; Pieruschka et al., 2010). We do not fully understand the water stress impact from groundwater storage 392 

(Zhao et al., 2022), the dynamics of this part are unknown to us, but we have a very good understanding of the 393 

dynamics of environmental variables, and atmospheric demand has a significant impact on vegetation function 394 

(Novick et al., 2016).  395 

VPD becomes the primary driver of T, and it is significantly negatively correlated with precipitation (Figure 9). 396 

In the absence of water stress, stomatal conductance regulates water vapor diffusion by controlling stomatal opening 397 

and closing, thereby determining the intensity of T (Wu et al., 2020). However, to reduce water loss, plants regulate 398 

T by closing stomata, particularly under high VPD conditions (Pieruschka et al., 2010). Studies have shown that there 399 

is no linear relationship between LAI and T (Gao et al., 2022); although high LAI means more leaves participate in 400 

T, leaf overlap may reduce the photosynthetic and T capacity of lower-layer leaves. Precipitation shows a significant 401 

negative correlation with T, as increased precipitation reduces VPD, decreasing the driving force for water vapor 402 

diffusion from leaves to the atmosphere, thereby lowering the rate of T. Moreover, precipitation is often accompanied 403 

by low light and cloud cover, reducing both photosynthesis and T demand. Additionally, after precipitation, plant 404 

roots may temporarily close stomata due to oxygen shortage to protect themselves (Sauter, 2013). 405 
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 406 

Fig. 10 Simulation results of ET and its components after a 20% increase (decrease) in a single input variable. Sensitivity is defined as (changed the input −407 

unchanged)/unchanged, and black vertical lines mark the standard deviation of multiple models. 408 

The seasonality of ET components simulated by the model at these sites seems to be explained by ecological 409 

mechanisms, but the model needs to be analyzed in more detail. We performed sensitivity analyses for the input 410 

variables of the three models, increasing (decreasing) a variable by 20% each time to observe its effect on the 411 

simulation results of ET and its components. As shown in Figure 10 a, consistent with the results studied by previous 412 

analysis, the primary sensitive input for ET is Rn, followed by LAI. In contrast to the linear regression results, all 413 

models demonstrated (with a small standard deviation) that the sensitive input for T is Rn, followed by VPD. In 414 

addition, a positive perturbation (negative perturbation) is applied to the temperature, but the result is the opposite 415 

for T. 416 
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Too sensitive to temperature and radiation in Ei simulations, which may be very different from the actual 417 

situation. After changing the temperature by 20%, the total amount of EI changes by more than 15%. Temperature 418 

and radiation are involved in canopy interception because evaporation rates are calculated, which is an important part 419 

of simulating Ei dynamics, but should be limited. In fact, the total amount of canopy interception evaporation will 420 

only be affected by two factors, the amount of precipitation and the density of canopy leaves, and other environmental 421 

factors just affect the evaporation rate. 422 

 423 

Fig. 11. (a) shows the multi-year averaged value of cumulative precipitation, evapotranspiration, and simulated canopy interception. (b) depicts canopy interception 424 

rates (interception/precipitation) simulated by different models across various sites, with different line types representing different models; the cyan bar graph 425 

indicates mean annual precipitation (MAP) for each site. 426 

Combining two independent Ei models (See supplementary materials for details), we calculated the canopy 427 

interception evaporation data for these stations, and we divided the annual total canopy interception evaporation by 428 

the total annual precipitation at each station to obtain the canopy interception rate (Figure 11). We used the average 429 

of the Gash and Rutter models as the average Ei to evaluate the simulation of the other three ET models for this part. 430 

We found that the average canopy interception rate in the Amazon forest was 18% (±2.4), with Ei accounting for 31% 431 

(±4.2) of total ET. Overall, Forest-CEW underestimated the mean Ei by 12.4%, while the simulation results of the 432 

remaining models showed little difference. Site-specific analysis indicated that Forest-CEW underestimated Ei at the 433 

tropical rainforest sites CAX and K67; PT-JPL severely underestimated Ei at the BAN and PDG sites while 434 
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overestimating it in the seasonal forest at RJA. Since the Ei calculation module in PML-V2 approximates the Gash 435 

model, its simulations at various sites closely matched the average levels of Rutter and Gash. 436 

3.4 Model mechanisms and limitations 437 

Different models have varying sensitivities to inputs (Talsma et al., 2018). We try to explain the reasons for this 438 

by analyzing the components of the model, and the Forest-CEW model relates canopy interception with LAI and 439 

precipitation through a simple linear relationship; The PML-v2 model distinguishes between the process of maximum 440 

water holding capacity on the leaf surface under rainfall events and the drying rate of the canopy during the rainfall 441 

interval; The PT-JPL model cleverly depicts canopy wetting through RH and canopy radiation. The difference 442 

between the Penman-Monteith and Priestley-Taylor models usually depends on the parameterization of the α in the 443 

Priestley-Taylor equation and the resistance factor in the Penman-Monteith equation (Talsma et al., 2018). But PT-444 

JPL's use of RH instead of precipitation to describe canopy humidity may underestimate Ei after heavy rain, because 445 

RH is not that sensitive. Due the Forest-CEW did not design the Es module, Figure 10 d shows the results of the other 446 

two models. In line with the reality, the Es results of positive perturbation (negative perturbation) applied to LAI are 447 

reversed, because the denser the canopy leaves, the less precipitation can penetrate to the surface. Moreover, the large 448 

standard deviations of VPD and other environmental variables indicate that the designs of the two models are 449 

incorrect. 450 

From a more detailed perspective, tropical rainforests possess a complex multi-layered canopy structure, and 451 

microclimatic conditions such as local wind speed, relative humidity, and solar radiation can influence the drying rate 452 

of the canopy. The age composition of canopy leaves can also have a significant impact, as older leaves with higher 453 

lignification contribute to more runoff (Chavana-Bryant et al., 2017). Studies have shown that trees exhibit more 454 

complex transpiration activities and that eddy flux towers are difficult to measure (Fisher et al., 2007). More 455 

importantly, in addition to the interception and evaporation of precipitation during the dry and wet seasons, leaf 456 
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surfaces can also experience water condensation due to fog or temperature differences between day and night. 457 

Frequent persistent dense fog is an important source of water input for vegetation (Liu et al., 2010). Dense fog not 458 

only causes water to adhere to vegetation but also directly supplies water to plant leaves (Eller et al., 2016). 459 

Furthermore, the water film generated by dense fog covers the leaf surface, inhibiting stomatal respiration on the 460 

leaves, which in turn affects the evapotranspiration of the forest canopy. In different forests, the frequency and 461 

duration of leaf wetness can vary greatly due to environmental and topographical differences. Although this process 462 

is rarely studied, it is important to note that it can serve as an explanation for the inadequacies of the model. 463 

The impact of climate extremes on the model remains unclear. Climate systems exhibit complex variability, and 464 

when multi-year averages are taken, the impacts of short-term extreme climatic events or anomalous years may be 465 

smoothed out (Hegerl et al., 2006). Additionally, the water supply limitations for plant T still need consideration (Li 466 

et al., 2023). In arid or semi-arid regions and areas with deep-rooted vegetation, soil water or groundwater storage 467 

might contribute more to vegetation evaporation than precipitation. In these regions, during periods of insufficient 468 

dry season precipitation, vegetation relies on deep soil water or groundwater to supplement ET, and stem water 469 

storage can also alleviate drought stress. However, in other regions, plants may experience water stress due to 470 

prolonged drought, and the occurrence and coping mechanisms for such stress still require further research. It is 471 

noteworthy that an improved version of the ET model addressing soil water constraints has been actively promoted 472 

(Purdy et al., 2018), which will greatly assist in tackling climate change and hydrodynamics. 473 

6. Conclusions 474 

In this study, we simulated and analyzed ET and its components at 7 flux tower sites in Amazon. First of all, 475 

there is still a certain deviation between the simulated value of the ET model in the Amazon forest and the observed 476 

value, and the simulation ability of the dry season is much stronger than that of the wet season. The Forest-CEW Rଶ 477 
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was 0.64, the PT-JPL was 0.43, and the PML-V2 was only 0.29, but the average results of the three models captured 478 

the approximate seasonality. ET in the Amazon forest exhibits strong seasonal variation controlled by Rn, while 479 

seasonality in T is mainly controlled by VPD. Second, the models CV of EI and ES indicates that the model has 480 

serious problems with the allocation of these two parts, and the proportion of Ei is much larger than that of Es in 481 

complex tropical forests, and improving Ei will improve the ET model 482 

The sensitivity analysis of the model to the input variables showed that Rn was the main driving variable of ET 483 

and T of the model, with a sensitivity of 20%, temperature was the main driver of Ei, accounting for 17%, and LAI 484 

was the main driver of Es, but it produced negative effects. Different ET models characterize Ei differently, but the 485 

sensitivity of this module to the input variables differs from real-world conditions. Future improvements to the ET 486 

model should take into account more refined canopy interception. This seasonal analysis of ET and its components 487 

provides a window into the mechanisms underlying vegetation in the Amazon, suggesting that seasonal responses to 488 

environmental drivers are complex and diverse. 489 
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