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Abstract 24 

Accurate PV power production modelling requires precise knowledge of the distribution of solar 25 

irradiance among its direct and diffuse components. Since this information is rarely available, this 26 
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requirement can be addressed through the use of diffuse fraction models. In this study, we try to 27 

quantify the errors in PV modelling when measurements of the diffuse solar irradiance are not 28 

available. For this purpose, we use total and diffuse solar irradiance data obtained from ground-29 

based measurements of BSRN to simulate the PV electric output using GSEE. We have chosen five 30 

sites in Europe and North Africa, with different prevailing conditions, where BSRN measurements are 31 

available. GSEE incorporates an implementation of the Boland-Ridley-Lauret (BRL) diffuse fraction 32 

model, along with a Climate Data Interface that enables simulations across different time scales. 33 

We evaluate the capability of BRL in providing accurate estimations of the diffuse fraction under 34 

diverse atmospheric conditions, with particular attention on the presence of clouds and aerosols 35 

and assess the extent to which its associated errors propagate to energy production modelling. 36 

Furthermore, we compare GSEE outputs when using CAMS radiation time-series as input instead of 37 

ground-based measurements, to quantify the impact of the CAMS radiation product uncertainties in 38 

PV modelling.  39 

Keywords 40 

Solar energy modelling; CAMS radiation; PV power modelling; aerosol; dust; solar radiation 41 

1. Introduction 42 

Decarbonizing the power sector in a sustainable manner is pivotal in the effort to mitigate climate 43 

change (Edenhofer et al., 2011; Owusu and Asumadu-Sarkodie, 2016; IPCC, 2022) and the large-44 

scale deployment of Solar Energy offers significant prospects toward this objective (Kakran et al., 45 

2024). The available solar energy is a variable source, fluctuating across different timescales with a 46 

unique solar-resource profile over individual locations (McMahan et al., 2013). Therefore, accurate 47 

solar energy forecasting and resource assessment is crucial for minimizing the risk in selecting 48 

project location, designing the appropriate solar-energy conversion technology, and integrating new 49 

sources of solar based power generation into the electricity grid (Stoffel, 2013), while short-term, 50 

intra-hour forecasts are critical for power plant operations, grid-balancing, real-time unit 51 

dispatching, automatic generation control, and trading (Pedro et al., 2017). 52 

 Extending solar irradiance forecasting to derive PV power forecasts is essential in solar energy 53 

applications. PV power modelling can be achieved through the following additional steps to solar 54 

irradiance forecasting: (i) decomposing Global Horizontal Irradiance (GHI) into Diffuse Horizontal 55 

Irradiance (DHI) and Direct Normal Irradiance (DNI); (ii) calculating the plane-of-array irradiance 56 
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incident on the surface of PV planes, whether static or mounted on a solar tracking system, and (iii) 57 

simulating the PV power production primarily based on the in-plane irradiance (Blanc et al., 2017). 58 

The scarcity of concurrent measurements of both solar irradiance components, coupled with the 59 

complexity of their theoretical computation, has driven the development of numerous empirical 60 

models for estimating the diffuse fraction (ratio of the diffuse-to-global solar radiation). A seminal 61 

contribution in this area was made by Liu and Jordan (1960), who established a correlation between 62 

the diffuse fraction and the clearness or cloudiness index (ratio of the global-to-extraterrestrial 63 

radiation). These models predominantly rely on the clearness index as the principal predictor. They 64 

are generally classified into single-predictor models and multi-predictor models, with the latter 65 

incorporating additional astronomical variables for enhanced precision (Paulescu and Blaga, 2019). 66 

Typically, these models are expressed as polynomial equations, ranging from the 1st to the 4th degree, 67 

that link the diffuse fraction to the clearness index 𝐷𝐹 = 𝑓(𝑐𝑙𝑒𝑎𝑟𝑛𝑒𝑠𝑠 𝑖𝑛𝑑𝑒𝑥, ∗ 𝑝𝑎𝑟𝑎𝑚𝑠 ) (Jacovides 68 

et al., 2006). Boland et al. (2001) proposed the use of a logistic function instead of linear or simple 69 

nonlinear functions of the clearness index.  Ridley et al. (2010) developed a multiple-predictor 70 

logistic model, known as the Boland-Ridley-Lauret (BRL), which combines simplicity and reliable 71 

performance across both the Northern and Southern Hemispheres. Τhe BRL model extends Boland’s 72 

approach by adopting the hourly clearness index as the principal predictor and introducing the 73 

following additional parameters: apparent solar time, daily clearness index, solar altitude, and a 74 

measure of the persistence of global radiation level.  In the implementation of the BRL included in 75 

the GSEE, the users set as input only the hourly clearness. Moreover, this implementation adopts the 76 

updated parameters proposed by Lauret et al. (2013), which derived using data from nine worldwide 77 

locations covering a variety of climates and environments across Europe, Africa, Australia and Asia. 78 

While the existing models consider all-sky conditions, in solar energy modelling it is critical to focus 79 

on cloud-free skies, where energy production is maximized. Under such conditions, aerosols 80 

become the primary parameter influencing the distribution of solar irradiance among its 81 

components. (e.g., Blaga et al., 2024). Specifically, the BRL model accounts for aerosols indirectly 82 

through the clearness index, which is indicative of the overall atmospheric attenuation of solar 83 

radiation. 84 

In regions dominated by abundant sunshine, such as the Mediterranean and Middle East, which are 85 

favorable for solar based power generation, the attenuation of solar irradiance is strongly influenced 86 

by aerosols, and particularly desert dust aerosols. Several studies highlighted the impact of desert 87 
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dust aerosol in the downwelling solar irradiance and the energy production in these regions 88 

(Fountoulakis et al., 2021; Papachristopoulou et al., 2022; Kosmopoulos et al., 2018; Kouklaki et al., 89 

2023). The significance of considering the effect of aerosols in short-term solar irradiance forecasting 90 

and nowcasting is emphasized by Kazantzidis et al. (2017), Raptis et al. (2023) and 91 

Papachristopoulou et al. (2024). 92 

The Global Solar Energy Estimator (GSEE; Pfenninger and Staffell, 2016) is a widely used open access 93 

model for simulating PV power output, designed for rapid calculations and ease of use. It comes with 94 

an implementation of the BRL diffuse fraction model (Ridley et al., 2010; Lauret et al., 2013).  95 

While PV power modelling is essential for linking solar resources to energy production, the existing 96 

literature does not adequately address its reliability under diverse atmospheric conditions. To the 97 

best of our knowledge, the existing literature does not include studies that explicitly address the 98 

uncertainties in PV energy production modeling associated with the partitioning of solar radiation 99 

into its direct and diffuse components at the model input. In this study, we supply GSEE with input 100 

data from ground-based measurements as well as from the Copernicus Atmospheric Monitoring 101 

Service (CAMS), aiming to investigate differences in PV power output simulations, which arise from 102 

providing only GHI as input radiation data. At the outset, we focus on evaluating the reliability of BRL 103 

under diverse atmospheric conditions, with particular attention to the dependence of its accuracy 104 

on the presence of clouds and aerosols. To further explore this, we conduct a sensitivity analysis 105 

using radiative transfer model (RTM) simulations under cloud-free skies. Following these analyses, 106 

we assess the extent to which the associated uncertainties in the estimation of the diffuse fraction 107 

spread to the power generation over hourly intervals. This step involves simulating PV plants with 108 

varying configurations. GSEE is also effective for analyzing trends and variability in solar based power 109 

generation through its climate interface submodule (e.g., Hou et al., 2021), where the BRL model is 110 

integrated within the internal processing chain The accuracy of the climate interface in estimating 111 

the total daily PV power output is also evaluated in this study. 112 

 113 

2. Data and Methodology 114 

2.1 Global Solar Energy Estimator (GSEE)  115 

The modelling of the PV power output is conducted using the version 0.3.1 of GSEE (Pfenninger and 116 

Staffell, 2016). The model features functions for simulating a complete PV system, incorporating 117 
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characteristics and specifications such as location, installed capacity, technology, tracking (fixed, 1-118 

axis, 2-axis), tilt angle, and orientation.  119 

The user provides as input time-series data of solar radiation, and optionally, ambient air 120 

temperature and surface albedo. Specifically, the model requires GHI and, when available, the 121 

Diffuse Fraction. If the diffuse component is not provided, the provided implementation of the BRL 122 

diffuse fraction model (Ridley et al., 2010; Lauret et al., 2013) is employed to estimate it, relying only 123 

on time-series of the hourly clearness index and the geographical coordinates. While in the single-124 

site application of the GSEE model with hourly time resolution the user has the option to adjust the 125 

input and select alternative diffuse fraction models implemented by external libraries, e.g., pvlib 126 

(Anderson et al., 2023), the climate data interface automatically invokes the BRL model as part of the 127 

internal processing workflow. GSEE utilizes the provided information for the distribution of the 128 

irradiance components and applies trigonometric calculations to determine the total solar 129 

irradiance incident on the panel’s inclined plane. More precisely, for the plane-of -array irradiance 130 

calculation a GSEE includes the submodule “trigon” (transposition model), which is based on 131 

trigonometric formulations, that account of the surface albedo, thereby including the ground-132 

reflected component of solar radiation. However, the transposition model is integrated within the 133 

GSEE internal algorithms, so it cannot be modified by the user. 134 

After solar irradiance the most significant parameter regarding energy production is air temperature 135 

(e.g., Dubey et al., 2013). If temperature is not provided by the user, the model assumes a default 136 

value of 20 °C. In this study, temperature was used as input only in the simulations with BSRN data, 137 

as it is provided alongside radiation measurements. A surface albedo value of 0.3 considered by 138 

default from the model, introduces some uncertainty in our simulations, which however is estimated 139 

to be small. Under cloudless conditions, a 10% difference in surface albedo changes the GHI by ~1% 140 

for SZA < 75°. Differences are larger under cloudy conditions (~ 10% difference in GHI for a 10% 141 

difference in surface albedo). Nevertheless, surface albedo at the selected sites is generally low and 142 

relatively invariant throughout the year (even at the most northern site of Lindenberg there is only a 143 

limited number of days with increased surface albedo due to snow cover). 144 

The available options for the panel type are crystalline silicon (c-Si) and Cadmium Telluride (CdTe), 145 

where the power output is modeled based on the relative PV performance model described by Huld 146 

et al. (2010). For fixed panels, a built-in latitude dependent function for the optimal tilt is also 147 

included. 148 
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Moreover, GSEE includes a Climate Data Interface submodule that enables the processing of gridded 149 

climate datasets, with varying temporal resolutions, ranging from hourly to annual. Within the 150 

context of this submodule, the use of BRL serves as part of the resampling and upsampling 151 

processes applied to input climate datasets with daily resolution. For processing data with lower-152 

than-daily resolutions, it incorporates the use of Probability Density Functions (PDFs), which 153 

describe the probability with which a day with a certain amount of radiation occurs within a month 154 

(GSEE, 2026). This methodology accounts for the non-linear distribution of mean monthly radiation 155 

across individual days, ensuring a more representative temporal disaggregation. The processes 156 

applied to the mean daily irradiance are described in detail in Section 3.4. 157 

For the purposes of this study, we simulated solar plants with capacity of 1 kWp, and for both 158 

available technologies. The simulations with c-Si technology, considered as default by the model, 159 

are presented in detail the following sections. The results of the simulations with CdTe technology 160 

are provided in the supplement, and are not thoroughly discussed, since they are very similar to the 161 

results for the c-Si technology. Regarding the mounting approach, the solar plants were either static 162 

and oriented to the south or equipped with a 2-axis solar tracking system. In the case of fixed panels, 163 

we selected the optimal tilt angle relying on the latitude dependent built-in function. 164 

The input parameters defining the characteristics of the simulated PV plants are summarized in Table 165 

1.  166 

Table 1. Input parameters defining the characteristics of the simulated PV plants 167 

Capacity Mounting Approach Technology 

1 kWp Fixed 2-axis tracking c-Si CdTe 

Orientation: 

south 

Tilt Angle: f(latitude) 

built-in function for 

optimal tilt 

 168 

2.2 Ground-based measurements 169 

We supplied GSEE with ground-based irradiance as well as ambient temperature measurements 170 

collected from five stations of the Baseline Surface Radiation Network (BSRN; Driemel et al., 2018). 171 

Moreover, information about aerosols was retrieved from co-located stations of the Aerosol Robotic 172 

Network (AERONET; Holben et al., 1998; Dubovik et al., 2000).  173 
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Information for the stations utilized for this study is summarized in Table 2, and their geographical 174 

location is depicted in Figure 1. 175 

 176 

Table 2. Detailed information about the location of the ground-based stations used in this study. 177 

 STATION  Latitude [° N] Longitude [° E] Elevation [m] 

Carpentras (CAR) 44.08 5.06 100 

Cener (CNR) 42.82 -1.60 471 

Izaña (IZA) 28.31 -16.50 2373 

Lindenberg (LIN) 52.21 14.12 125 

Tamanrasset (TAM) 22.79 5.53  1385  

 178 

 179 
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Figure 1. Locations of the BSRN and co-located AERONET stations that are used in the current 180 

study 181 

 182 

BSRN station-to-archive files were accessed and manipulated using the SolarData v1.1 R package 183 

(Yang, 2019), and the BSRN-recommended quality check (QC) tests (Long and Dutton, 2010) applied 184 

to the collected data. Some data gaps arose due to measurements removed during the QC 185 

procedure. Although these data gaps are, in most cases, shorter than 2-3 hours, they may affect the 186 

BRL performance throughout the corresponding days. Consequently, days affected by such data 187 

gaps excluded from the analysis. We retrieved data for 2017, with 1-minute temporal resolution. We 188 

used GHI, DHI, and Temperature as inputs to the GSEE model. Initially, the data were resampled to 189 

hourly and mean hourly values of GHI and DHI are calculated. Then, the simulations were conducted 190 

using either GHI and DHI, or only GHI along with the deployment of BRL. The input to BRL consists of 191 

hourly clearness index, derived by dividing GHI measurements with the solar radiation incident on a 192 

horizontal plane at the Top of the Atmosphere (TOA) above the examined location. Subsequently, the 193 

1-min timeseries resampled also to a daily resolution and transformed into three-dimensional 194 

arrays, 𝐺𝐻𝐼 = 𝑓(𝑡𝑖𝑚𝑒, 𝑙𝑎𝑡, 𝑙𝑜𝑛), where the spatial dimensions of each dataset corresponded to a 195 

unique point defined by the coordinates of the associated station. Simulations with the daily time-196 

resolved dataset were performed using the Climate Data Interface. 197 

Representing cloudiness is a challenging task that requires several observations. For this purpose, 198 

aiming to obtain an indicative measure of the intra-hour cloudiness conditions we adopted the 199 

following formulation.  Specifically, measurements of Direct Normal Irradiance (DNI) were utilized to 200 

obtain information for cloudiness relying on the conditions stated by WMO (2021), according to 201 

which sunshine duration is the total period where DNI exceeds 120 𝑊 𝑚2⁄ . Alternative approaches 202 

such as the Cloud Modification Factor, require estimates of the clear sky irradiance, which 203 

introduces additional uncertainty.  For the purpose of this analysis, we introduced a solar visibility 204 

(SV) parameter. Specifically, we assigned the value 0 when sun was obscured and the value 1 when 205 

visible. Aiming to describe the mean intra-hour cloudiness conditions, we considered the sky as 206 

cloud-free, cloudy, and partly cloudy based on the mean SV for the entire corresponding hour as 207 

follows: 208 
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〈𝑆𝑉〉ℎ𝑜𝑢𝑟 : {

1 𝑐𝑙𝑜𝑢𝑑 − 𝑓𝑟𝑒𝑒
∈ (0,1) 𝑝𝑎𝑟𝑡𝑙𝑦 𝑐𝑙𝑜𝑢𝑑𝑦
0 𝑐𝑙𝑜𝑢𝑑𝑦

 209 

For aerosol information, we accessed the AERONET Version 3 (V3) (Giles et al., 2019) and retrieved 210 

level 2.0 data (from direct sun measurements) for Aerosol Optical Depth at 500nm (𝐴𝑂𝐷500), which 211 

serves as a representative measure of the aerosol load; Ångström Exponent between 440 and 870 212 

nm wavelengths (𝛢𝛦440−870), where values near 0 correspond to coarse dust particles and values 213 

around 2 to fine (e.g., smoke) particles (Dubovik et al., 2002); and Fine Mode Fraction at 500nm 214 

(𝐹𝑀𝐹500) obtained from the Spectral Deconvolution Algorithm (SDA) retrievals, to distinguish aerosol 215 

into fine and coarse mode. The data were resampled at hourly intervals and a mean hourly value 216 

calculated. After, the hourly mean values divided into clusters based on𝐴𝑂𝐷500, reflecting different 217 

levels of aerosol load and allowing us to quantify their impact on solar energy production. To 218 

investigate the impact related exclusively to aerosols, we included only hours with cloud-free sky 219 

conditions. The clusters are defined in detail as follows: 220 

• 𝐴𝑂𝐷500 ≤ 0.05: Low aerosol load 221 

• 0.05 < 𝐴𝑂𝐷500 ≤ 0.15: Moderate aerosol load 222 

• 0.15 < 𝐴𝑂𝐷500 ≤ 0.3: High aerosol load 223 

• 𝐴𝑂𝐷500 > 0.3: Very high aerosol load 224 

To evaluate the performance of the Climate Interface over daily intervals, we defined the sunny 225 

(cloudless) days using the condition: 〈𝑆𝑉〉𝑑𝑎𝑦 ≥ 0.9. Next, to characterize the average aerosol 226 

conditions on sunny days, we applied the following classification: 227 

• 〈𝐴𝑂𝐷500〉𝑑𝑎𝑦 ≤ 0.05: very-low aerosol  228 

• 〈𝐴𝑂𝐷500〉𝑑𝑎𝑦 > 0.05: aerosol-laden 229 

Detailed comparisons of the energy production over hourly and daily integrals under the various 230 

predefined sky conditions are provided in the supplement through evaluation metrics. 231 

The selected locations have quite different atmospheric conditions regarding cloudiness and 232 

aerosols. Additionally, they vary in altitude. A brief overview of the prevailing conditions derived from 233 

the ground-based data is provided on the supplement. Regarding cloudiness, it is notable that in 234 

Lindenberg the sky is generally overcast, whereas in southern locations sunshine dominates. In 235 

terms of aerosols, very high aerosol loads occur more frequently in Tamanrasset. As for aerosol type, 236 
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there is considerable variation among the examined locations: Carpentras, Cener, and Lindenberg 237 

are primarily influenced by fine mode aerosols, while Tamanrasset and Izaña are mostly affected by 238 

coarse mode aerosols. 239 

For investigating the impact of desert dust aerosol in solar based power generation, Tamanrasset 240 

serves as a representative and exceptional case because it is in a region with important sources of 241 

Saharan dust aerosols (Faid et al., 2012). Meanwhile, Izaña, located in subtropical North Atlantic, is 242 

a high mountain station within the free troposphere, affected mineral dust when the Saharan Air 243 

Layer top exceeds the station height, especially through August to October (Toledano et al., 2018; 244 

Cuevas et al., 2019). Due to its high altitude, Izaña avoids contamination from local or regional 245 

sources (Barreto et al. 2022). The Canary Islands, where Izaña is located, are influenced by extreme 246 

dust events that cause a significant decrease in PV power generation (Canadillas-Ramallo et al., 247 

2022). In South Europe, which is also affected by the transport of Saharan dust across the 248 

Mediterranean, aerosol types exhibit a mixture as a result of simultaneous local pollution and low 249 

concentration of mineral dust (Logothetis et al., 2020). 250 

2.3 Copernicus Atmospheric Monitoring Service (CAMS) 251 

We retrieved data from the CAMS radiation service (Schroedter-Homscheidt et al., 2022; Qu et al., 252 

2017), from the solar radiation time-series product (CAMS, 2020). The CAMS solar radiation service 253 

provides historical estimates for global solar radiation, along with its components, from 2004 to 254 

present. These values are provided with a frequency as fine as 1-minute. In this study, we used the 255 

hourly time-series of GHI and DHI for all-sky conditions, setting the input coordinates to match the 256 

locations of the BSRN stations. The solar radiation time-series product (CAMS, 2020) performs 257 

interpolations integrated in its internal algorithm and provides time-series for the coordinates and 258 

the altitude of a single-site location. We compared the solar energy production derived from the use 259 

of CAMS data with that derived from the use of ground-based measurements from BSRN. 260 

2.4 Radiative Transfer Model (RTM) 261 

We performed Radiative Transfer (RT) simulations aiming to further assess the uncertainties in 262 

estimating the diffuse fraction arising from the effect of aerosols. The simulations were conducted 263 

using libRadtran (Emde et al., 2016; Mayer and Kylling, 2005), a widely used software package, 264 

allowing the computation of radiances, irradiances, and actinic fluxes. A sensitivity analysis was 265 

performed by comparing the diffuse irradiance calculated from libRadtran with the estimations of 266 
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BRL. This analysis examines the dependence of the aerosol-related discrepancy as function of Solar 267 

Zenith Angle (SZA) and latitude, considering the effect of parameters such as surface albedo and 268 

altitude. 269 

To conduct aerosol parameterizations, we considered the default aerosol extinction profile (Shettle, 270 

1989) and set asymmetry factor (gg) to 0.7, while varying the Single Scattering Albedo (SSA) and the 271 

Ångström Exponent (AE), and defining 𝐴𝑂𝐷500  by adjusting the value of the parameter-b in 272 

Ångström’s law (Ångström, 1929) as follows: 273 

𝜏𝜆 = 𝑏 ∙ 𝜆
−𝑎 → 𝐴𝑂𝐷500 = 𝑏 ∙ (0.5 𝜇𝑚)

−𝐴𝐸(1) 274 

The standard aerosol profiles (Anderson et al., 1986) were used for all sites. According to 275 

Fountoulakis et al. (2022), using a more accurate vertical distribution of aerosols in the troposphere 276 

would have a negligible effect in the GHI and DHI at the Earth’s surface. 277 

Table 3 illustrates the libRadtran settings used in this study. 278 

Table 3. LibRadtran inputs 279 

Parameter Input 

Atmospheric profile Mid-latitude summer (April-September)/mid-latitude winter (October - 

March) (Anderson et al., 1986) 

Extraterrestrial 

spectrum 

(Kato et al. 1999) 

 

Datetime date and time input accompanied by project location coordinates 

Altitude 0.1/2 km 

Surface albedo 0.2 / 0.8 

Number of streams 6 

RT solver sdisort (Buras et al., 2011) 

AE 0 – 2 with step 1 

SSA 0.7, 0.9, 1.0 

gg 0.7 

TOC (Total Ozone 

Column) 

300 DU 

 Integrated Water Vapor 15 mm 
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 280 

3. Results 281 

3.1 Performance verification of the BRL diffuse fraction model 282 

The performance of BRL was evaluated by comparing the actual diffuse fraction, obtained directly 283 

from resampled to hourly BSRN ground-based measurements, with that derived using BRL.As a first 284 

step, to isolate the influence of SZA from that associated with the atmospheric conditions, the 285 

difference in diffuse fraction (DF) between the observed and the one estimated using BRL as a 286 

function of SZA is presented in Figure 2. The atmospheric conditions are represented separately for 287 

both all-sky and cloud-free sky conditions and are grouped into clusters, as outlined in Section 2.2. 288 

The patterns reflecting the differences under the distinct sky conditions indicate an additional 289 

dependency on SZA, which becomes apparent approximately at SZA between 60° and 70°.  In most 290 

cases, there is an almost constant displacement with respect to y=0 below 60°, as well as a change 291 

in  behavior when SZA exceeds this value. Izaña presents a special case, as the station is located at 292 

a very high altitude. At such high altitudes the contribution of the diffuse component to the total 293 

irradiance is significantly smaller relative to lower altitude sites, which seems to be captured more 294 

accurately by BRL at high SZAs. We must also note that (i) at Izaña, the actual diffuse irradiance may 295 

experience an additional enhancement due to the contribution of adjacent lower-lying clouds – an 296 

effect that is not accounted for in the diffuse fraction model, and (ii) during dust events the site is 297 

usually inside – and not under – the dust layer, which results in more complex interactions between 298 

dust and solar radiation relative to lower altitude sites. Defining an exact limit (for the lower altitude 299 

sites), where the behavior is changing, is challenging; therefore, 60° was selected for practical 300 

energy-related applications, focusing on periods with meaningful energy contribution, and is 301 

supported by the sensitivity analysis (Section 3.2) under clear-sky conditions. Concerning the same 302 

grouped atmospheric conditions, Figure 3 illustrates the comparison between the observed and the 303 

estimated diffuse fraction for 𝑆𝑍𝐴 ≤ 60°. This approach allows us to examine BRL performance after 304 

eliminating the influence of SZA, thereby providing a more comprehensive view of its reliability. 305 
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 306 

Figure 2. Difference between the diffuse fraction estimated by the ground-based measurements 307 

and by using the BRL model as a function of SZA under diverse atmospheric conditions: (top) 308 

classification with respect to cloudiness and (bottom) classification with respect to aerosol optical 309 

depth 310 

 311 
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Figure 3. Comparison of the diffuse fraction estimated using BRL with that estimated by the 312 

ground-based measurements under diverse atmospheric conditions for SZA < 60°: (top) 313 

classification with respect to cloudiness and (bottom) classification with respect to aerosol optical 314 

depth 315 

 316 

From Figure 3, a distinct dependency of BRL's reliability on the atmospheric conditions can be 317 

observed. Under all-sky conditions, the presence of clouds has a notable impact on the model’s 318 

performance. Partly cloudy conditions result in greater dispersion of the values from the identity line 319 

respectively, likely due to the complexity of such sky scenes. Under overcast conditions, where the 320 

sky can be considered homogeneous and isotropic, the model in most cases performs slightly better.  321 

However, the limitations of the DNI-based classification methodology, related to the complexity of 322 

the cloud scenes, the spatiotemporal variability during the hourly periods, and the 3D variability of 323 

cloud properties, would require additional observational tools for a more detailed investigation. More 324 

specifically, the vast majority of overcast cases where the BRL diffuse fraction is below 0.8 while the 325 

observed is close to 1 correspond to periods involving rapid transitions between partly cloudy and 326 

overcast skies, occurring either during the hour itself or immediately before or after it. Furthermore, 327 

a limited number of cases identified during intense dust events at Tamanrasset and Izana, where the 328 

reduction of DNI was so pronounced that the applied DNI-based criterion classified these conditions 329 

as overcast. However, these cases are not further investigated, as the energy production levels during 330 

such periods are very low. 331 

Under cloud-free skies, BRL tends to underestimate, and this bias becomes more pronounced as 332 

aerosol load increases. Aiming to highlight this dependency, Figure 4 shows the difference between 333 

the estimated and the observed diffuse fraction as function of 𝐴𝑂𝐷500, emphasizing also the extent 334 

to which it is related to the aerosol type by providing 𝐹𝑀𝐹500. A decrease for increasing 𝐴𝑂𝐷500  is 335 

evident across all cases. In Tamanrasset and Izaña, associated with the influence of Saharan dust, 336 

the coarse mode dominates, and a more distinct and well-defined curve is depicted compared to 337 

other sites. 338 

It is important to clarify that for assessing the impact of aerosols we have assumed entirely cloud-339 

free conditions. However, the criterion applied based on DNI does not fully guarantee the absence of 340 

small, scattered clouds within the sky dome. Such clouds could induce slight enhancements in DHI. 341 
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A more rigorous assessment of the impact associated exclusively with aerosols could be achieved 342 

by integrating images from ground-based co-located all-sky cameras. On the other hand, the 343 

presence of aerosols even under cloudy scenes, introduces an additional uncertainty which is 344 

difficult to investigate accurately. 345 

 346 

Figure 4. Difference between the estimated using BRL and the diffuse fraction estimated by the 347 

ground-based measurements as function of 𝐴𝑂𝐷500  and 𝐹𝑀𝐹500  348 

 349 

3.2 Sensitivity analysis of the BRL performance under cloud-free sky conditions from RT 350 

simulations 351 

The uncertainties in estimating diffuse fraction under cloud-free sky conditions, as discussed in 352 

section 3.1, are further investigated. We performed RT simulations using libRadtran to calculate GHI 353 

and DHI under various aerosol scenarios. The resulting GHI values were then used as input to BRL to 354 

estimate the diffuse fraction, which was subsequently compared to the diffuse fraction derived 355 

directly from the ratio of DHI to GHI computed by libRadtran. 356 

To ensure a comprehensive analysis, we considered three representative latitudes (25°, 35° and 45°). 357 

Since BRL requires an hourly time-series of GHI as input, the analysis was conducted for the summer 358 

solstice. On this day, a sufficient number of hourly values are available, corresponding to a wide 359 

range of SZA values, allowing for a robust assessment of the methodology. The sensitivity analysis 360 

was performed for surface albedo values of 0.2 and 0.8 as well as for altitudes of 0.1 and 2 km. For 361 

aerosol parameterization, we examined completely clear-sky conditions as a reference, alongside 362 

scenarios with 𝐴𝑂𝐷500  values of 0.2, 0.6, and 1, while varying the SSA and AE. Specifically, the 363 

scenarios included SSA values of 0.7, 0.9 and 1, combined with AE values of 0, 1 and 2. The results 364 
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of this sensitivity analysis for an albedo of 0.2 are provided in Figure 5, while the results for an albedo 365 

of 0.8 are included in the supplement (Figure S1).  366 

The results confirm that BRL performs well under clear sky conditions and for SZA below 60°, while 367 

the incorporation of aerosols in the sky scene introduces larger uncertainties. In all scenarios, we 368 

observe that lower values of AE correspond to higher uncertainties. Moreover, when SSA is 0.9 or 1 369 

BRL gradually tends to underestimate the diffuse fraction as aerosol load increases. Instead, when 370 

SSA is 0.7, BRL exhibits a different behavior, shifting toward an overestimation of the diffuse fraction 371 

at high aerosol loads. 372 

The findings of this sensitivity analysis are consistent with the evaluated BRL performance from 373 

ground-based measurements presented in section 3.1, especially at SZA smaller than 60° - 70°, and 374 

underscore the role of aerosol in the accuracy of diffuse fraction estimations. Differences between 375 

the results shown in Figures 2 and 5 at SZA between 60° - 80° can be due to a number of site-related 376 

reasons. For example, enhancement of the diffuse component due to scattering by underlying 377 

atmospheric layers and clouds in the case of Izaña may compensate the observed overestimation of 378 

the diffuse fraction by BRL. Concerning the impact related to AE and SSA, we confirm that the higher 379 

underestimations observed for Tamanrasset and Izaña are associated with the optical properties of 380 

desert dust aerosol particles. While AE and SSA alone are not sufficient to fully characterize the 381 

aerosol type, they serve as strong indicators, aligning with the classification framework of Dubovik et 382 

al. (2002). The same comparison for albedo 0.8 (Figure S1 in the supplement) reveals a significant 383 

broadening of the discrepancies. Moreover, we observe the presence of a systematic error, even 384 

under clear sky conditions.  385 

The resulting differences were practically identical across the three selected latitudes, indicating 386 

that the BRL model is largely independent of latitude and can therefore be considered as a reliable 387 

solution over a wide range of latitudes. Furthermore, the effect of altitude was found to be small. 388 

Finally, the outcomes of this analysis highlight potential inconsistencies arising from aerosols with 389 

different optical properties. Although the updated parameters of the BRL’s model (as implemented 390 

in the GSEE model) reported by Lauret et al. (2013) were derived using data from nine worldwide 391 

locations, encompassing a broad range of sky conditions that capture a fully representative set of 392 

optical properties remain challenging. 393 
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 394 

Figure 5. Difference between the diffuse fraction derived directly from the computations of DHI and 395 

GHI using libRadtran and the one estimated by applying BRL to the libRadtran-computed GHI 396 

 397 

 398 
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3.3 Analysis of the differences in energy production using hourly integrals within the modelling of PV 399 

plants 400 

Uncertainties in estimating the diffuse fraction influence the calculation of the total irradiance 401 

received by an inclined panel’s surface, thereby affecting the accuracy of the PV power simulations. 402 

In this section, we employ the main submodule of GSEE, used for modelling the electric output from 403 

a PV panel, aiming to assess the extent to which these uncertainties propagate to the estimation of 404 

the hourly power production. We analyze discrepancies arising from using only GHI from BSRN as 405 

input radiation data to the model, instead of both DHI and GHI. More specifically, we compare the 406 

total energy produced per hour per unit, expressed in watt-hours (Wh), per unit of nominal power 407 

(kWp). The energy production is evaluated for both fixed panels and 2-axis tracking systems. 408 

The results of this comparison for c-Si based technology PV panels for different atmospheric 409 

conditions are presented in Figure 6, illustrating the impact of cloudiness, and in Figure 7, 410 

demonstrating the effect of aerosols. The corresponding results for CdTe technology are provided in 411 

the supplement (Figures S2 and S3 respectively). In the modelling of 2-axis solar tracking systems, 412 

where the panel is continuously adjusted to maintain a perpendicular orientation to incoming solar 413 

radiation, the system becomes more sensitive to uncertainties in the estimation of the diffuse 414 

fraction, leading to more significant differences in energy production. Specifically, the contribution 415 

of the direct irradiance is maximized in such systems, as the panel exploits the entirety of the 416 

available direct irradiance. On the other hand, in the simulation of static panels, the contributions of 417 

direct and diffuse components are more evenly distributed, making the impact of diffuse fraction 418 

uncertainties less pronounced in energy production. 419 

Regarding the uncertainties related to the atmospheric conditions, from Figure 6 we confirm that the 420 

highest dispersion occurs in partly cloudy conditions, while from Figure 7, where we examine cloud-421 

free conditions, we note that further improvement achieved as aerosol load decreases. Under totally 422 

overcast skies the energy production is extremely low, rendering errors practically negligible. 423 

Moreover, accuracy is influenced by aerosols, where a gradual decline in accuracy is detected as 424 

aerosol load increases. However, assessing the extent of aerosol loading impact is complex, 425 

depending on the interaction of solar radiation with particles of varying optical properties, as 426 

extensively analyzed in the previous sections. This effect becomes particularly evident in cases of 427 

high aerosol loading, where a noticeable offset is observed, while under certain conditions, the 428 

associated uncertainty is comparable to that found in partly cloudy conditions. 429 
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 430 

Figure 6. Comparison of the estimated hourly PV power generation between simulations performed 431 

using GSEE with input data consisting of either only GHI or both GHI and DHI under varying 432 

cloudiness conditions: (top) fixed panels (bottom) 2-axis tracking systems 433 

 434 
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Figure 7. Comparison of the estimated hourly PV power generation between simulations performed 435 

using GSEE with input data consisting of either only GHI or both GHI and DHI under varying aerosol 436 

conditions: (top) fixed panels (bottom) 2-axis tracking systems 437 

The PV systems considered in this study have a nominal capacity of 1 kWp. The PV model applies a 438 

default system loss factor of 10%. This effectively limits the maximum achievable power output to 439 

approximately 90% of the nominal capacity (i.e., around 900 W/kWp). This effect becomes apparent 440 

at the Izaña site due to its low latitude combined with its specific geographical and atmospheric 441 

conditions, which lead to high irradiance levels. As a result, the simulated PV output in some cases 442 

appears capped around 900 Wh/kWp per hour when only GHI is used. 443 

Additionally, Tables 4 and 5 present the validation results for Carpentras and Tamanrasset, selected 444 

as representative locations that encompass a wide variety of sky conditions. Validation results for 445 

the remaining stations are available in the supplement (Tables S1-S3). All the evaluation metrics 446 

correspond to simulations of PV panels with c-Si technology. 447 

Table 4. Evaluation metrics for GSEE performance within hourly intervals in Carpentras, comparing 448 

simulations with diffuse fraction from measurements and from the BRL model 449 

STATION: Carpentras fixed panels 2-axis tracking 

RMSE 

(Wh/kWp/hour) 

MAE 

(Wh/kWp/hour) 

rMBE 

(%)  

RMSE 

(Wh/kWp/hour) 

MAE 

(Wh/kWp/hour) 

rMBE 

(%)  

All-Sky scenes 12.6 6.6 0.8 20.8 12.5 1.2 

All-Sky 

scenes 

(cloudiness) 

cloud-free  9.2 4.6 0.4 14.8 8.7 0.5 

partly cloudy  19.5 12.5 2.3 32.5 23.9 3.8 

cloudy (overcast)  5.8 3.0 2.0 10.5 6.1 4.6 

Cloudless-

Sky scenes 

(aerosol 

load) 

low  4.7 3.4 -0.4 9.5 7.5 -0.8 

moderate  4.3 2.2 0.1 7.8 4.7 0.0 

high  6.4 4.0 0.6 11.0 7.8 0.9 

very high  14.9 10.2 1.6 22.7 17.2 2.6 

 450 

Table 5. Evaluation metrics for GSEE performance within hourly intervals in Tamanrasset, 451 

comparing simulations with diffuse fraction from measurements and from the BRL model. 452 

STATION: Tamanrasset fixed panels 2-axis tracking 

RMSE 

(Wh/kWp/hour) 

MAE 

(Wh/kWp/hour) 

rMBE 

(%)  

RMSE 

(Wh/kWp/hour) 

MAE 

(Wh/kWp/hour) 

rMBE 

(%)  

All-Sky scenes 13.6 9.3 1.0 40.4 27.8 3.8 
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All-Sky 

scenes 

(cloudiness) 

cloud-free  11.5 8.0 0.8 35.3 23.4 2.9 

partly cloudy  20.1 15.0 2.0 56.1 45.7 8.1 

cloudy (overcast)  8.4 5.2 -0.1 45.3 30.1 11.2 

Cloudless-

Sky scenes 

(aerosol 

load) 

low  3.2 2.0 0.2 6.6 4.0 0.3 

moderate  5.4 4.6 0.6 13.0 10.5 1.2 

high  12.5 11.7 1.6 30.1 27.4 3.4 

very high  18.0 16.2 1.9 57.0 49.2 6.8 

 453 

Based on the calculated statistical indices, the Root Mean Square Error (RMSE) values for fixed 454 

panels range from 4.7 Wh/kWp/hour (clear sky) to 19.5 Wh/kWp/hour (partly cloudy) in Carpentras, 455 

and from 3.2 to 20.1 Wh/kWp/hour in Tamanrasset. Under very high aerosol loading, RMSE reaches 456 

14.9 and 18.0 Wh/kWp/hour, respectively. For 2-axis tracking systems, RMSE values vary 457 

significantly, ranging from 9.5 to 32.5 Wh/kWp/hour in Carpentras and from 6.6 to 56.1 Wh/kWp/hour 458 

in Tamanrasset, with peaks of 22.7 and 57.0 Wh/kWp/hour under very high aerosol loading 459 

conditions. Similarly, the Mean Absolut Error (MAE) values are generally lower for fixed panels (3.4-460 

12.5 Wh/kWp//hour in Carpentras, 2.0-15.0 in Tamanrasset) and substantially higher for 2-axis 461 

tracking (7.5-23.9 and 4.0-45.7 Wh/kWp/hour, respectively). Notably in Tamanrasset, MAE values 462 

under very high aerosol loading exceed those observed under partly cloudy conditions, with values 463 

increasing from 15.0 to 16.2 Wh/kWp/hour for fixed panels and from 45.7 to 49.2 Wh/kWp/hour for 464 

2-axis tracking systems. Regarding the relative mean bias (rMBE), this remains mostly within ± 4.6% 465 

for fixed panels but can reach up to 11.2% for 2-axis tracking, particularly in aerosol-laden 466 

conditions. 467 

 468 

3.4 Estimating total daily PV power output using the Climate Interface 469 

Validation of the estimated daily energy production using the Climate Interface is achieved by 470 

comparing the estimates with the results obtained from the direct summation of the hourly 471 

simulations with input both GHI and DHI. 472 

The Climate Interface generates the hourly profile of GHI for each day as a sinusoidal function. Then, 473 

the BRL is applied to the hourly time-series, and the hourly power generation is computed. Finally, 474 

these values are summed up to provide an estimate of the total daily output power. As shown in Fig. 475 

8, which illustrates the differences between the Climate Interface estimates and the sums of the 476 

hourly simulations, this approach introduces a variability throughout the year. Furthermore, Figure 477 
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S6 in the supplement presents the percentage differences between the two approaches, using the 478 

latter as the reference.  479 

 480 

Figure 8. Time-series of the differences between the daily PV output estimated using the climate 481 

interface and the corresponding daily sums from hourly simulations. 482 

 483 

The time-series represent the centered 30-day moving average. To ensure that the values are 484 

representative of the reference period, we have applied all conditions requiring at least 20 days of 485 

available data within each 30-days interval. In Tamanrasset and Izaña, especially during the summer 486 

months, there are significant data gaps on several days, often occurring around solar noon. 487 

More precisely, from Fig. 8, we observe that within the modelling of PV plants with fixed panels, there 488 

is a tendency to overestimate in winter, with deviations of approximately 0.3 kWh/kWp/day, and to 489 

slightly underestimate in summer, where deviations are around 0.1 kWh/kWp/day. In contrast, for 2-490 

axis solar tracking systems, the resulting deviations are significantly larger, with a general tendency 491 

toward overestimation that peaks during summer, reaching approximately 1.75 kWh/kWp/day. The 492 

percentage differences span from -10 to 20 % for fixed panels and from -5 to 35 % for 2-axis tracking 493 

systems. 494 
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The variability in the percentage difference between the daily PV output estimated using the climate 495 

interface and the corresponding daily sums is mainly a function of the minimum SZA, while 496 

especially in the case of modeling for 2-axits tracking systems, the variation is also influenced by 497 

aerosol loading, with differences tending to increase as aerosol load rises (Figures S4 and S5 in the 498 

supplement). 499 

Additional validation results are provided in the supplement (Tables S4-S8). Indicatively, for 500 

Carpentras and Tamanrasset, representative results are discussed below.  For fixed panels, RMSE is 501 

minimized at 0.18 kWh/kWp/day under very-low aerosol conditions, compared to the overall 0.22 502 

kWh/kWp/day for Carpentras. In Tamanrasset, the lowest RMSE is observed at 0.15 kWh/kWp/day 503 

under very low aerosol conditions, while the overall reaches 0.24. In the case of 2-axis tracking, a 504 

significant increase is observed from low-aerosol to aerosol-laden conditions, ranging from 0.82 to 505 

1.28 kWh/kWp/day in Carpentras and from 0.66 to 1.37 in Tamanrasset. Similar widening trends are 506 

also evident in the MAE values across different aerosol loading conditions. The computed statistical 507 

indices confirm that the differences are minimized under sunny and nearly aerosol-free sky 508 

conditions. Comparing the performance on low-aerosol days to that on aerosol-laden, we conclude 509 

that, particularly in the case of modelling 2-axis tracking systems, errors increase significantly. In 510 

Tamanrasset, in particular, the errors are more than double. 511 

3.5 Evaluation of the reliability of using the CAMS solar radiation time-series product in modelling 512 

PV power potential 513 

The aim of this section is to inspect the reliability of using the CAMS solar radiation time-series 514 

product in modelling the PV power potential adapted to a certain location. A review of the existing 515 

literature indicates a lack of studies directly examining the accuracy of using CAMS data for 516 

assessing PV power potential. This is addressed by comparing the output power obtained from using 517 

CAMS solar radiation data with that calculated using ground-based measurements. The analysis 518 

focuses on the capability of CAMS to provide accurate estimates of both GHI as well as its individual 519 

components.  520 

In this section, we have excluded Izaña, because, due to its high altitude – as indicated through a 521 

personal communication with Yves-Marie Saint-Drenan (2025) – comparable results would require 522 

adjusting the measurements to the elevation of the stations, which is a complicated process and 523 

beyond the scope of this study. 524 
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The CAMS-based diffuse fraction, compared to the observed, is presented in Figure 9 under different 525 

prevailing conditions. We observe that the calculation of the diffuse component is subject to 526 

significant uncertainty. Cloudiness is the primary uncertainty source, particularly under partly cloudy 527 

conditions. Additionally, notable discrepancies related to aerosols emerge only in cases of very high 528 

aerosol loading. 529 

 530 

 531 

Figure 9. Comparison of the CAMS-based diffuse fraction estimated using BRL with the actual one 532 

under diverse atmospheric conditions 533 

 534 

In Fig. 10 we provide density scatter plots comparing the CAMS-based PV output power with that 535 

computed from the ground-based BSRN data, aiming to illustrate how the uncertainty in the diffuse 536 

component estimates propagate to the calculation of power generation. Notably, there is a much 537 

greater dispersion from the y=x line in the case of simulating PV plants with 2-axis tracking system, 538 
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compared to that within the modelling of fixed panels. This outcome is attributed to the increased 539 

sensitivity of the 2-axis tracking systems to the partitioning of global irradiance into its components. 540 

Nevertheless, correlation coefficients are in all cases better than 0.9.  541 

Additional evaluation metrics are provided in the supplement (Tables S9-S12). Indicatively, we 542 

observe that under cloudless conditions, for fixed panels, RMSE ranges between 25.0 to 42.3 543 

Wh/kWp/hour in Carpentras and 16.6 and 31.0 Wh/kWp/hour in Tamanrasset, with variations linked 544 

to aerosol loading. Similarly, MAE ranges from 20.0 to 36.9 Wh/kWp/hour in Carpentras and 11.9 to 545 

22.9 Wh/kWp/hour in Tamanrasset. For 2-axis systems, RMSE and MAE follow similar trend, ranging 546 

from 28.8 to 49.9 Wh/kWp/hour and 22.3 to 44.1 Wh/kWp/hour, respectively, in Carpentras, and from 547 

20.8 to 48.0 Wh/kWp/hour and 15.3 to 35.5 Wh/kWp/hour, respectively, in Tamanrasset. Conversely, 548 

under cloudy conditions the errors are significantly increasing. In Carpentras, as well as in Cener, 549 

and Lindenberg (according to the corresponding tables in the supplement) the errors peak under 550 

partly cloudy conditions, with RMSE reaching up to 94.2 Wh/kWp/hour in Carpentras. However, in 551 

Tamanrasset, the highest errors occur under overcast conditions, where RMSE and MAE for 2-axis 552 

solar tracking systems reach 210.7 and 151.6 Wh/kWp/hour, respectively. This exception can be 553 

interpreted through Figure 15, which illustrates that in the rare overcast scenes in Tamanrasset, 554 

CAMS occasionally reports low diffuse fraction values instead of values close to 1, suggesting that 555 

CAMS did not accurately represent cloudiness in these cases.  556 

 557 
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 558 

Figure 10. Overview of the reliability of the CAMS-based PV power simulations 559 

 560 

4. Conclusions 561 

Τhe optimal approach to include solar radiation information to PV power models such as GSEE is to 562 

use actual in-situ measurements of global and diffuse solar irradiance. Since measurements of the 563 

diffuse component are rarely available, it is common to use measurements of the GHI (if available) 564 

and retrieve the diffuse component using a model such as BRL. In the absence of in-situ 565 

measurements, other options include the use of datasets such as CAMS or even a radiative transfer 566 

model, provided that atmospheric inputs such as clearness index, aerosol optical depth (AOD), and 567 

other aerosol properties are available. This study evaluated these options and their implications for 568 

PV modelling accuracy. 569 

The results highlighted the importance of having precise information for the distribution of solar 570 

irradiance among its components in PV power modelling. The implementation of the BRL diffuse 571 
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fraction within GSEE serves as a practical, and under certain conditions, reliable solution to the 572 

absence of detailed information for each component separately. Moreover, the integrated Climate 573 

Data Interface submodule offers valuable prospects for investigating fluctuations in the solar PV 574 

power generation across various timescales. In this context, the use of BRL has a key contribution 575 

alongside the other computational procedures in processing climate datasets. Previous studies on 576 

PV power modelling approaches have not examined their reliability under diverse atmospheric 577 

conditions, including the effects associated with cloudiness, aerosol loading, as well as aerosol 578 

optical properties. 579 

The evaluation of the BRL’s performance revealed a dependency of its reliability on the prevailing sky 580 

conditions. BRL has excellent accuracy under totally clear sky scenes and still performs well for 581 

cloudless scenes with moderate aerosol loading. In general, its accuracy is inversely proportional to 582 

the complexity of the cloud scene. However, the model systematically underestimates the diffuse 583 

fraction under high-loading conditions, such as during dust events. The discrepancies arising from 584 

diffuse fraction estimation propagate to PV power generation and become particularly pronounced 585 

in the modelling of 2-axis tracking systems. Indicatively, MAE under cloud-free scenes with moderate 586 

aerosol loading, ranges between 2.2 to 6.6 Wh/kWp/hour for fixed panels and 4.7 to 15.0 587 

Wh/kWp/hour for 2-axis tracking systems. Under partly cloudy conditions, where the cloud scene is 588 

more complex, the MAE increases substantially, ranging from 12.4 to 25.8 Wh/kWp/hour for fixed 589 

panels and from 23.5 to 55.1 Wh/kWp/hour for 2-axis tracking systems. Moreover, during intense dust 590 

events, MAE can reach up to 49.2 Wh/kWp/hour in Tamanrasset, which is comparable to that 591 

computed under partly cloudy conditions. Overall, the rMBE remains within the ±5%, with the 592 

exception of a limited cases under overcast conditions. The same analysis applied to CdTe panels 593 

yielded similar results, with minor differences. 594 

Aiming to provide an indicative assessment of the financial impacts of the effect of desert dust 595 

aerosols, we assume that the statistical indices calculated for Tamanrasset are representative of a 596 

large-scale solar farm located in the Sahara region, with 500 MW installed PV capacity and systems 597 

equipped with 2-axis solar tracking system. For this hypothetical solar farm, according to the value 598 

of the Mean Absolute Error (MAE) on Table 4 for very high aerosol loading, we estimate that the 599 

produced energy is 0.0492 [𝑘𝑊ℎ 𝑘𝑊𝑝 ℎ𝑜𝑢𝑟⁄⁄ ] × 500 × 103 [𝑘𝑊𝑝] = 24600 [𝑘𝑊ℎ ℎ𝑜𝑢𝑟⁄ ] 600 
𝑠𝑢𝑝𝑝𝑜𝑠𝑖𝑛𝑔 12 𝑠𝑢𝑛𝑙𝑖𝑔ℎ𝑡 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦
⇒                              ~295200 [𝑘𝑊ℎ 𝑑𝑎𝑦⁄ ] less than the expected from the PV power 601 

simulations. According to the global average auction prices for selling produced energy back to the 602 
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grid in  2021 (IRENA, 2026), the overestimations are  equivalent to a financial loss of 603 

0.039 [𝑈𝑆𝐷 𝑘𝑊ℎ⁄ ] × 295200[𝑘𝑊ℎ 𝑑𝑎𝑦⁄ ]  ≈ 11,500 𝑈𝑆𝐷 𝑑𝑎𝑦⁄ . Therefore, site assessments that do 604 

not correctly account for the distribution of surface solar irradiance in the sky under desert dust 605 

aerosol conditions may overestimate financial performance and the annual financial deficit could be 606 

accumulated to hundreds of thousands of US dollars per year. 607 

Comparing the range of computed errors, we observe that the errors arising from employing CAMS 608 

rather than using ground-based measurements, even when the diffuse fraction is not provided, are 609 

higher across the overwhelming majority of the considered sky conditions. More specifically, 610 

regarding the overall performance, MAE when using CAMS ranges between 33.7 and 46.1 611 

Wh/kWp/hour, while with ground-based GHI measurements, MAE remains below 10 Wh/kWp/hour 612 

within the modelling of systems with fixed panels and can reach up to 27.8 Wh/kWp/hour within the 613 

modelling of 2-axis tracking systems. This outcome highlights the value of ground-based 614 

measurements.  615 

To sum up, achieving the highest quality PV power simulations necessitates high-quality, concurrent 616 

measurements of solar irradiance components. In absence of this, the submodules included in the 617 

GSEE package enable reliable simulations under the vast majority of prevailing sky conditions. CAMS 618 

serves as a valuable data source for PV power modelling, but it cannot fully replace the precision and 619 

reliability of using ground-based measurements. The integration of aerosol correction within the BRL 620 

model opens new possibilities for further improvements in the modelling of solar energy systems. A 621 

more comprehensive assessment would require measured PV output data; however, acquiring 622 

simultaneous direct and diffuse irradiance measurements at the same location as the solar farms 623 

remains challenging. 624 
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