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Abstract 24 

Accurate PV power production modelling requires precise knowledge of the distribution of solar 25 

irradiance among its direct and diffuse components. Since this information is rarely available, this 26 
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requirement can be addressed through the use of diffuse fraction models. In this study, we try to 27 

quantify the errors in PV modelling when measurements of the diffuse solar irradiance are not 28 

available. For this purpose, we use total and diffuse solar irradiance data obtained from ground-29 

based measurements of BSRN to simulate the PV electric output using GSEE. We have chosen five 30 

sites in Europe and North Africa, with different prevailing conditions, where BSRN measurements are 31 

available. GSEE incorporates an implementation of the Boland-Ridley-Lauret (BRL) diffuse fraction 32 

model, along with a Climate Data Interface that enables simulations across different time scales. 33 

We evaluate the capability of BRL in providing accurate estimations of the diffuse fraction under 34 

diverse atmospheric conditions, with particular attention on the presence of clouds and aerosols 35 

and assess the extent to which its associated errors propagate to energy production modelling. 36 

Furthermore, we compare GSEE outputs when using CAMS radiation time-series as input instead of 37 

ground-based measurements, to quantify the impact of the CAMS radiation product uncertainties in 38 

PV modelling.  39 

Keywords 40 

Solar energy modelling; CAMS radiation; PV power modelling; aerosol; dust; solar radiation 41 

1. Introduction 42 

Decarbonizing the power sector in a sustainable manner is pivotal in the effort to mitigate climate 43 

change (Edenhofer et al., 2011; Owusu & Asumadu-Sarkodie, 2016; IPCC, 2023) and the large-scale 44 

deployment of Solar Energy offers significant prospects toward this objective (Kakran et al., 2024). 45 

The available solar energy is a variable source, fluctuating across different timescales with a unique 46 

solar-resource profile over individual locations (McMahan et al., 2013). Therefore, accurate solar 47 

energy forecasting and resource assessment is crucial for minimizing the risk in selecting project 48 

location, designing the appropriate solar-energy conversion technology, and integrating new sources 49 

of solar based power generation into the electricity grid (Stoffel, 2013), while short-term, intra-hour 50 

forecasts are critical for power plant operations, grid-balancing, real-time unit dispatching, 51 

automatic generation control, and trading (Pedro et al., 2017). 52 

For practical reasons, it is critical to extend Extending solar irradiance forecasting to encompass 53 

methods linked to solar-based power generation.derive PV power forecasts is essential in solar 54 

energy applications. PV power modelling can be derivedachieved through the following additional 55 

steps to solar irradiance forecasting: (i) decomposing Global Horizontal Irradiance (GHI) into Diffuse 56 
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Horizontal Irradiance (DHI) and Direct Normal Irradiance (DNI)); (ii) calculating the plane-of-array 57 

irradiance incident on the surface of PV planes, whether static or mounted on a solar tracking 58 

system, and (iii) simulating the PV power production primarily based on the in-plane irradiance 59 

(Blanc et al., 2017). 60 

The scarcity of concurrent measurements of both solar irradiance components, coupled with the 61 

complexity of their theoretical computation, has driven the development of numerous empirical 62 

models for estimating the diffuse fraction (ratio of the diffuse-to-global solar radiation). A seminal 63 

contribution in this area was made by Liu and Jordan (1960), who established a correlation between 64 

the diffuse fraction and the clearness or cloudiness index (ratio of the global-to-extraterrestrial 65 

radiation). These models predominantly rely on the clearness index as the principal predictor. They 66 

are generally classified into single-predictor models and multi-predictor models, with the latter 67 

incorporating additional astronomical variables for enhanced precision (Paulescu & Blaga, 2019). 68 

Typically, these models are expressed as polynomial equations, ranging from the 1st to the 4th degree, 69 

that link the diffuse fraction to the clearness index (Jacovides et al., 2006).𝐷𝐹 = 𝑓(𝑐𝑙𝑒𝑎𝑟𝑛𝑒𝑠𝑠 𝑖𝑛𝑑𝑒𝑥,70 

∗ 𝑝𝑎𝑟𝑎𝑚𝑠 ) (Jacovides et al., 2006). Boland et al. (2001) proposed the use of a logistic function 71 

instead of linear or simple nonlinear functions of the clearness index.  Ridley et al. (2010) developed 72 

a multiple-predictor logistic model, known as the Boland-Ridley-Lauret (BRL), which combines 73 

simplicity and reliable performance across both the Northern and Southern Hemispheres. Τhe BRL 74 

model extends Boland’s approach by adopting the hourly clearness index as the principal predictor 75 

and introducing the following additional parameters: apparent solar time, daily clearness index, solar 76 

altitude, and a measure of the persistence of global radiation level.  In the implementation of the BRL 77 

included in the GSEE, the users set as input only the hourly clearness. Moreover, this implementation 78 

adopts the updated parameters proposed by Lauret et al. (2013), which derived using data from nine 79 

worldwide locations covering a variety of climates and environments across Europe, Africa, Australia 80 

and Asia. While the existing models consider all-sky conditions, in solar energy modelling it is critical 81 

to focus on cloud-free skies, where energy production is maximized. Under such conditions, 82 

aerosols become the primary parameter influencing the distribution of solar irradiance among its 83 

components. (e.g., Blaga et al., 2024). Specifically, the BRL model accounts for aerosols indirectly 84 

through the clearness index, which is indicative of the overall atmospheric attenuation of solar 85 

radiation. 86 
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RegionsIn regions dominated by abundant sunshine, such as the Mediterranean and Middle East, 87 

which are favorable for solar based power generation, the attenuation of solar irradiance is strongly 88 

influenced by aerosols, and particularly desert dust aerosols. Several studies highlighted the impact 89 

of desert dust aerosol in the downwelling solar irradiance and the energy production in these regions 90 

(Fountoulakis et al., 2021; Papachristopoulou et al., 2022).; Kosmopoulos et al., 2018; Kouklaki et 91 

al., 2023). The significance of considering the effect of aerosols in short-term solar irradiance 92 

forecasting and nowcasting is emphasized by Kazantzidis et al. (2017), Raptis et al. (2023) and 93 

Papachristopoulou et al. (2024). 94 

The Global Solar Energy Estimator (GSEE; Pfenninger & Staffell, 2016) is a widely used open access 95 

model for simulating PV power output, designed for rapid calculations and ease of use,. It comes 96 

with an implementation of the BRL diffuse fraction model (Ridley et al., 2010; Lauret et al., 2013).  97 

While PV power modelling is essential for linking solar resources to energy production, the existing 98 

literature does not adequately address its reliability under diverse atmospheric conditions. To the 99 

best of our knowledge, the existing literature does not include studies that explicitly address the 100 

uncertainties in PV energy production modeling associated with the partitioning of solar radiation 101 

into its direct and diffuse components at the model input. In this study, we supply GSEE with input 102 

data from ground-based measurements as well as from the Copernicus Atmospheric Monitoring 103 

Service (CAMS), aiming to investigate differences in PV power output simulations, which arise from 104 

providing only GHI as input radiation data. At the outset, we focus on evaluating the reliability of BRL 105 

under diverse atmospheric conditions, with particular attention to the dependence of its accuracy 106 

on the presence of clouds and aerosols. To further explore this, we conduct a sensitivity analysis 107 

using radiative transfer model (RTM) simulations under cloud-free skies. Following these analyses, 108 

we assess the extent to which the associated uncertainties in the estimation of the diffuse fraction 109 

spread to the power generation over hourly intervals. This step involves simulating PV plants with 110 

varying configurations.  111 

GSEE is also effective for analyzing trends and variability in solar based power generation through its 112 

climate interface submodule (e.g., Hou et al., 2021).), where the BRL model is integrated within the 113 

internal processing chain The accuracy of the climate interface in estimating the total daily PV power 114 

output is also evaluated in this study.  115 

 116 
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2. Data and Methodology 117 

2.1 Global Solar Energy Estimator (GSEE)  118 

The modelling of the PV power output is conducted using the version 0.3.1 of GSEE (Pfenninger & 119 

Staffell, 2016). The model features functions for simulating a complete PV system, incorporating 120 

characteristics and specifications such as location, installed capacity, technology, tracking (fixed, 1-121 

axis, 2-axis), tilt angle, and orientation.  122 

The user provides as input time-series data of solar radiation, and optionally, ambient air 123 

temperature and surface albedo. Specifically, the model requires GHI and, when available, the 124 

Diffuse Fraction. If the diffuse component is not provided, the provided implementation of the BRL 125 

diffuse fraction model (Ridley et al., 2010; Lauret et al., 2013) is employed to estimate it, relying only 126 

on time-series of the hourly clearness index and the geographical coordinates. While in the single-127 

site application of the GSEE model with hourly time resolution the user has the option to adjust the 128 

input and select alternative diffuse fraction models implemented by external libraries, e.g., pvlib 129 

(Anderson et al., 2013), the climate data interface automatically invokes the BRL model as part of the 130 

internal processing workflow. GSEE utilizes the provided information for the distribution of the 131 

irradiance components and applies trigonometric calculations to determine the total solar 132 

irradiance incident on the panel’s inclined plane. More precisely, for the plane-of -array irradiance 133 

calculation a GSEE includes the submodule “trigon” (transposition model), which is based on 134 

trigonometric formulations, that account of the surface albedo, thereby including the ground-135 

reflected component of solar radiation. However, the transposition model is integrated within the 136 

GSEE internal algorithms, so it cannot be modified by the user. 137 

After solar irradiance the most significant parameter regarding energy production is air temperature 138 

(e.g., Dubey et al., 2013). If temperature is not provided by the user, the model assumes a default 139 

value of 20 °C. In this study, temperature was used as input only in the simulations with BSRN data, 140 

as it is provided alongside actinometricradiation measurements. A surface albedo value of 0.3 141 

considered by default from the model, introduces some uncertainty in our simulations., which 142 

however is estimated to be small. Under cloudless conditions, a 10% difference in surface albedo 143 

changes the GHI by ~1% for SZA < 75°. Differences are larger under cloudy conditions (~ 10% 144 

difference in GHI for a 10% difference in surface albedo). Nevertheless, surface albedo at the 145 

selected sites is generally low and relatively invariant throughout the year (even at the most northern 146 
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site of Lindenberg there is only a limited number of days with increased surface albedo due to snow 147 

cover). 148 

The available options for the panel type are crystalline silicon (c-Si) and Cadmium Telluride (CdTe), 149 

where the power output is modeled based on the relative PV performance model described by Huld 150 

et al. (2010). For fixed panels, a built-in latitude dependent function for the optimal tilt is also 151 

included. 152 

Moreover, GSEE includes a Climate Data Interface submodule that enables the processing of gridded 153 

climate datasets, with varying temporal resolutions, ranging from hourly to annual. Within the 154 

context of this submodule, the use of BRL serves as part of the resampling and upsampling 155 

processes applied to input climate datasets with daily resolution. For processing data with lower-156 

than-daily resolutions, it incorporates the use of Probability Density Functions (PDFs), which 157 

describe the probability with which a day with a certain amount of radiation occurs within a month 158 

(Renewables Ninja, n.d.). This methodology accounts for the non-linear distribution of mean monthly 159 

radiation across individual days, ensuring a more representative temporal disaggregation. The 160 

processes applied to the mean daily irradiance are described in detail in Section 3.4. 161 

For the purposes of this study, we simulated solar plants with capacity of 1 kWp, and for both 162 

available technologies. The simulations with c-Si technology, considered as default by the model, 163 

are presented detailed in detail the following sections. The results of the simulations with CdTe 164 

technology are provided in the supplement, and are not thoroughly discussed, since they are very 165 

similar to the results for the c-Si technology. Regarding the mounting approach, the solar plants were 166 

either static and oriented to the south or equipped with a 2-axis solar tracking system. In the case of 167 

fixed panels, we selected the optimal tilt angle relying on the latitude dependent built-in function. 168 

The input parameters defining the characteristics of the simulated PV plants are summarized in Table 169 

1.  170 

Table 1. Input parameters defining the characteristics of the simulated PV plants 171 

Capacity Mounting Approach Technology 

1 kWp Fixed 2-axis tracking c-Si CdTe 
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Orientation: 

south 

Tilt Angle: f(latitude) 

built-in function for 

optimal tilt 

 172 

2.2 Ground-based measurements 173 

We supplied GSEE with ground-based irradiance as well as ambient temperature measurements 174 

collected from five stations of the Baseline Surface Radiation Network (BSRN; Driemel et al., 2018). 175 

Moreover, information about aerosols was retrieved from co-located stations of the Aerosol Robotic 176 

Network (AERONET; Holben et al., 1998; Dubovik et al., 2000).  177 

Information for the stations utilized for this study is summarized in Table 2, and their geographical 178 

location is depicted in Figure 1. 179 

 180 

Table 2. Detailed information about the location of the ground-based stations used in this study. 181 

 STATION  Latitude [° N] Longitude [° E] Elevation [m] 

Carpentras (CAR) 44.08 5.06 100 

Cener (CNR) 42.82 -1.60 471 

Izaña (IZA) 28.31 -16.50 2373 

Lindenberg (LIN) 52.21 14.12 125 

Tamanrasset (TAM) 22.79 5.53  1385  

 182 
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 183 

Figure 1. Locations of the BSRN and co-located AERONET stations that are used in the current 184 

study 185 

 186 

BSRN station-to-archive files were accessed and manipulated using the SolarData v1.1 R package 187 

(Yang, 2019), and the BSRN-recommended quality check (QC) tests (Long & Dutton, 2010) applied 188 

to the collected data. Some data gaps arose due to measurements removed during the QC 189 

procedure. Although these data gaps are, in most cases, shorter than 2-3 hours, they may affect the 190 

BRL performance throughout the corresponding days. Consequently, days affected by such data 191 

gaps excluded from the analysis. We retrieved data for 2017, with 1-minute temporal resolution. We 192 

used GHI, DHI, and Temperature as inputs to the GSEE model. Initially, the data were resampled to 193 

hourly, and and mean hourly values of GHI and DHI are calculated. Then, the simulations were 194 

conducted using either GHI and DHI, or only GHI along with the deployment of BRL. The input to BRL 195 

consists of hourly clearness index, derived by dividing GHI measurements with the solar radiation 196 
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incident on a horizontal plane at the Top of the Atmosphere (TOA) above the examined location. 197 

Subsequently, the 1-min timeseries resampled also to a daily resolution and transformed into three-198 

dimensional arrays, 𝐺𝐻𝐼 = 𝑓(𝑡𝑖𝑚𝑒, 𝑙𝑎𝑡, 𝑙𝑜𝑛), where the spatial dimensions of each dataset 199 

corresponded to a unique point defined by the coordinates of the associated station. Simulations 200 

with the daily time-resolved dataset were performed using the Climate Data Interface. 201 

MeasurementsRepresenting cloudiness is a challenging task that requires several observations. For 202 

this purpose, aiming to obtain an indicative measure of the intra-hour cloudiness conditions we 203 

adopted the following formulation.  Specifically, measurements of Direct Normal Irradiance (DNI) 204 

were utilized to obtain information for cloudiness relying on the conditions stated by WMO (2021), 205 

according to which sunshine duration is the total period where DNI exceeds 120 𝑊 𝑚2⁄ . Alternative 206 

approaches such as the Cloud Modification Factor, require estimates of the clear sky irradiance, 207 

which introduces additional uncertainty.  For the purpose of this analysis, we introduced a solar 208 

visibility (SV) parameter. Specifically, we assigned the value 0 when sun was obscured and the value 209 

1 when visible.  Aiming to describe the mean intra-hour cloudiness conditions, we considered the 210 

sky as cloud-free, cloudy, and partly cloudy based on the mean SV for the entire corresponding hour 211 

as follows: 212 

〈𝑆𝑉〉ℎ𝑜𝑢𝑟 : {

1 𝑐𝑙𝑜𝑢𝑑 − 𝑓𝑟𝑒𝑒
∈ (0,1) 𝑝𝑎𝑟𝑡𝑙𝑦 𝑐𝑙𝑜𝑢𝑑𝑦
0 𝑐𝑙𝑜𝑢𝑑𝑦

 213 

For aerosol information, we accessed the AERONET Version 3 (V3) (Giles et al., 2019) and retrieved 214 

level 2.0 data (from direct sun measurements) for Aerosol Optical Depth at 500nm (𝐴𝑂𝐷500), which 215 

serves as a representative measure of the aerosol load; Ångström Exponent between 440 and 870 216 

nm wavelengths (𝛢𝛦440−870), where values near 0 correspond to coarse dust particles and values 217 

around 2 to fine (e.g., smoke) particles (Dubovik et al., 2002); and Fine Mode Fraction at 500nm 218 

(𝐹𝑀𝐹500) obtained from the Spectral Deconvolution Algorithm (SDA) retrievals, to distinguish aerosol 219 

into fine and coarse mode. The data were resampled at hourly intervals and a mean hourly value 220 

calculated. After, the hourly mean values divided into clusters regarding 𝐴𝑂based on𝐴𝑂𝐷500, 221 

reflecting different levels of aerosol load and allowing us to quantify their impact on solar energy 222 

production. To investigate the impact related exclusively to aerosols, we included only hours with 223 

cloud-free sky conditions. The clusters are defined in detail as follows: 224 

• 𝐴𝑂𝐷500 ≤ 0.05: Low aerosol load 225 
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• 0.05 < 𝐴𝑂𝐷500 ≤ 0.15: Moderate aerosol load 226 

• 0.15 < 𝐴𝑂𝐷500 ≤ 0.3: High aerosol load 227 

• 𝐴𝑂𝐷500 > 0.3: Very high aerosol load 228 

To evaluate the performance of the Climate Interface over daily intervals, we defined the sunny 229 

(cloudless) days using the condition: 〈𝑆𝑉〉𝑑𝑎𝑦 ≥ 0.9. Next, to characterize the average aerosol 230 

conditions on sunny days, we applied the following classification: 231 

• 〈𝐴𝑂𝐷500〉𝑑𝑎𝑦 ≤ 0.05: very-low aerosol  232 

• 〈𝐴𝑂𝐷500〉𝑑𝑎𝑦 > 0.05: aerosol-laden 233 

Detailed comparisons of the energy production over hourly and daily integrals c under the various 234 

predefined sky conditions are provided in the supplement through evaluation metrics. 235 

The selected locations have quite different atmospheric conditions regarding cloudiness and 236 

aerosols. Additionally, they vary in altitude. A brief overview of the prevailing conditions derived from 237 

the ground-based data is provided on the supplement. Regarding cloudiness, it is notable that in 238 

Lindenberg the sky is generally overcast, whereas in southern locations sunshine dominates. In 239 

terms of aerosols, very high aerosol loads occur more frequently in Tamanrasset. As for aerosol type, 240 

there is considerable variation among the examined locations: Carpentras, Cener, and Lindenberg 241 

are primarily influenced by fine mode aerosols, while Tamanrasset and Izaña are mostly affected by 242 

coarse mode aerosols. 243 

For investigating the impact of desert dust aerosol in solar based power generation, Tamanrasset 244 

serves as a representative and exceptional case because it is in a region with important sources of 245 

Saharan dust aerosols (Faid et al., 2012). Meanwhile, Izaña, located in subtropical North Atlantic, is 246 

a high mountain station within the free troposphere, affected my mineral dust when the Saharan Air 247 

Layer top exceeds the station height, especially through August to October (Toledano et al., 2018; 248 

Cuevas et al., 2018). Due to its high altitude, Izaña avoids contamination from local or regional 249 

sources (Barreto et al. 2022). The Canary Islands, where Izaña is located, are influenced by extreme 250 

dust events that cause a significant decrease in PV power generation (Canadillas-Ramallo et al., 251 

2021). In South Europe, which is also affected by the transport of Saharan dust across the 252 

Mediterranean, aerosol types exhibit a mixture as a result of simultaneous local pollution and low 253 

concentration of mineral dust (Logothetis et al., 2020). 254 
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2.3 Copernicus Atmospheric Monitoring Service (CAMS) 255 

We retrieved data from the CAMS radiation service (Schroedter-Homscheidt et al., 2022; Qu et al., 256 

2017), from the solar radiation time-series product (CAMS, 2020). The CAMS solar radiation service 257 

provides historical estimates for global solar radiation, along with its components, from 2004 to 258 

present. These values are provided with a frequency as fine as 1-minute. In this study, we used the 259 

hourly time-series of GHI and DHI for all-sky conditions, setting the input coordinates to match the 260 

locations of the BSRN stations. The solar radiation time-series product (CAMS, 2020) performs 261 

interpolations integrated in its internal algorithm and provides time-series for the coordinates and 262 

the altitude of a single-site location. We compared the solar energy production derived from the use 263 

of CAMS data with that derived from the use of ground-based measurements from BSRN. 264 

2.4 Radiative Transfer Model (RTM) 265 

We performed Radiative Transfer (RT) simulations aiming to further assess the uncertainties in 266 

estimating the diffuse fraction arising from the effect of aerosols. The simulations were conducted 267 

using libRadtran (Emde et al., 2016; Mayer & Kylling, 2005), a widely used software package, allowing 268 

the computation of radiances, irradiances, and actinic fluxes. A sensitivity analysis was performed 269 

by comparing the diffuse irradiance calculated from libRadtran with the estimations of BRL. This 270 

analysis examines the dependence of the aerosol-related discrepancy as function of Solar Zenith 271 

Angle (SZA) and latitude, considering the effect of parameters such as surface albedo and altitude. 272 

To conduct aerosol parameterizations, we considered the default aerosol extinction profile (Shettle, 273 

1989) and set asymmetry factor (gg) to 0.7, while varying the Single Scattering Albedo (SSA) and the 274 

Ångström Exponent (AE), and defining 𝐴𝑂𝐷500  by adjusting the value of the parameter-b in 275 

Ångström’s law (Ångström, 1929) as follows: 276 

𝜏𝜆 = 𝑏 ∙ 𝜆
−𝑎 → 𝐴𝑂𝐷500 = 𝑏 ∙ (0.5 𝜇𝑚)

−𝐴𝐸  277 

The standard aerosol profiles (Anderson et al., 1986) were used for all sites. According to 278 

Fountoulakis et al. (2022), using a more accurate vertical distribution of aerosols in the troposphere 279 

would have a negligible effect in the GHI and DHI at the Earth’s surface. 280 

Table 3 illustrates the libRadtran settings used in this study. 281 

Table 3. LibRadtran inputs 282 
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Parameter Input 

Atmospheric profile Mid-latitude summer (April-September)/mid-latitude winter (October - 

March) (Anderson et al., 1986) 

Extraterrestrial 

spectrum 

(Kato et al. 1999) 

 

SZADatetime with step 90°date and time input accompanied by project location 

coordinates 

Altitude 0.1/2 km 

Surface albedo 0.2 / 0.8 

Number of streams 6 

RT solver sdisort (Buras et al., 2011) 

AE 0 – 2 with step 1 

SSA 0.7, 0.9, 1.0 

gg 0.7 

TOC (Total Ozone 

Column) 

300 DU 

 Integrated Water 

vaporVapor 

15 mm 

 283 

3. Results 284 

3.1 Performance verification of the BRL diffuse fraction model 285 

The performance of BRL was evaluated by comparing the actual diffuse fraction, obtained directly 286 

from resampled to hourly BSRN ground-based measurements, with that derived using BRL. 287 

InitiallyAs a first step, to isolate the influence of SZA from that associated with the atmospheric 288 

conditions, the difference in diffuse fraction (DF) between the observed and the one estimated using 289 

BRL as a function of SZA is presented in Figure 2. The atmospheric conditions are represented 290 

separately for both all-sky and cloud-free sky conditions and are grouped into clusters, as outlined 291 

in Section 2.2. The patterns reflecting the differences under the distinct sky conditions indicate an 292 

additional dependency on SZA, which becomes apparent approximately beyond 60°.at SZA between 293 

60° and 70°.  In most cases, there is an almost constant displacement with respect to y=0 below 60°, 294 
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as well as a negative trendchange in  behavior when SZA exceeds this value. Izaña presents a special 295 

case, as the station is located at a very high altitude, with adjacent clouds occasionally being 296 

situated at a. At such high altitudes the contribution of the diffuse component to the total irradiance 297 

is significantly smaller relative to lower elevation than the station itself. As a resultaltitude sites, 298 

which seems to be captured more accurately by BRL at high SZAs. We must also note that (i) at Izaña, 299 

the actual diffuse irradiance experiencesmay experience an additional enhancement due to the 300 

contribution of these adjacent lower-lying clouds – an effect that is not accounted for in the diffuse 301 

fraction model, and (ii) during dust events the site is usually inside – and not under – the dust layer, 302 

which results in more complex interactions between dust and solar radiation relative to lower 303 

altitude sites. Defining an exact limit (for the lower altitude sites), where the behavior is changing, is 304 

challenging; therefore, 60° was selected for practical energy-related applications, focusing on 305 

periods with meaningful energy contribution, and is supported by the sensitivity analysis (Section 306 

3.2) under clear-sky conditions. Concerning the same grouped atmospheric conditions, Figure 3 307 

illustrates the comparison between the observed and the estimated diffuse fraction for 𝑆𝑍𝐴 ≤ 60°. 308 

This approach allows us to examine BRL performance after eliminating the influence of SZA, thereby 309 

providing a more comprehensive view of its reliability. 310 

 311 

Figure 2. Difference between the observed and the diffuse fraction estimated by the ground-based 312 

measurements and by using the BRL diffuse fractionmodel as a function of SZA under diverse 313 
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atmospheric conditions: (top) classification with respect to cloudiness and (bottom) classification 314 

with respect to aerosol optical depth 315 

 316 

Figure 3. Comparison of the diffuse fraction estimated using BRL with the actual one calculated 317 

directly fromthat estimated by the ground-based measurements under diverse atmospheric 318 

conditions for SZA < 60°: (top) classification with respect to cloudiness and (bottom) classification 319 

with respect to aerosol optical depth 320 

 321 

From Figure 3, a distinct dependency of BRL's reliability on the atmospheric conditions can be 322 

observed. Under all-sky conditions, the presence of clouds has a notable impact on the 323 

modelmodel’s performance. Partly cloudy conditions result in greater dispersion of the values from 324 

the identity line respectively, likely due to the complexity of such sky scenes. Under overcast 325 

conditions, where the sky can be considered homogeneous and isotropic, the model performs 326 

slightly better. in most cases performs slightly better.  However, the limitations of the DNI-based 327 

classification methodology, related to the complexity of the cloud scenes, the spatiotemporal 328 

variability during the hourly periods, and the 3D variability of cloud properties, would require 329 

additional observational tools for a more detailed investigation. More specifically, the vast majority 330 

of overcast cases where the BRL diffuse fraction is below 0.8 while the observed is close to 1 331 
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correspond to periods involving rapid transitions between partly cloudy and overcast skies, occurring 332 

either during the hour itself or immediately before or after it. Furthermore, a limited number of cases 333 

identified during intense dust events at Tamanrasset and Izana, where the reduction of DNI was so 334 

pronounced that the applied DNI-based criterion classified these conditions as overcast. However, 335 

these cases are not further investigated, as the energy production levels during such periods are very 336 

low. 337 

Under cloud-free skies, BRL tends to underestimate, and this bias becomes more pronounced as 338 

aerosol load increases. Aiming to highlight this dependency, Figure 4 shows the difference between 339 

the estimated and the observed diffuse fraction as function of 𝐴𝑂𝐷500, emphasizing also the extent 340 

to which it is related to the aerosol type by providing 𝐹𝑀𝐹500. A negative trendA decrease for 341 

increasing 𝐴𝑂𝐷500 is evident across all cases. In Tamanrasset and Izaña, associated with the 342 

influence of Saharan dust, the coarse mode dominates, and a more distinct and well-defined curve 343 

is depicted.  compared to other sites. 344 

It is important to clarify that for assessing the impact of aerosols we have assumed entirely cloud-345 

free conditions. However, the criterion applied based on DNI does not fully guarantee the absence of 346 

small, scattered clouds within the sky dome. Such clouds could induce slight enhancements in DHI. 347 

A more rigorous assessment of the impact associated exclusively with aerosols could be achieved 348 

by integrating images from ground-based co-located all-sky cameras. On the other hand, the 349 

presence of aerosols even under cloudy scenes, introduces an additional uncertainty which is 350 

difficult to investigate accurately. 351 

 352 

Figure 4. Difference between the estimated using BRL and actual diffusethediffuse fraction 353 

estimated by the ground-based measurements as function of 𝐴𝑂𝐷500  and 𝐹𝑀𝐹500  354 

 355 
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3.2 Sensitivity analysis of the BRL performance under cloud-free sky conditions from RT 356 

simulations 357 

The uncertainties in estimating diffuse fraction under cloud-free sky conditions, as discussed in 358 

section 3.1, are further investigated. We performed RT simulations using libRadtran to calculate GHI 359 

and DHI under various aerosol scenarios. The resulting GHI values were then used as input to BRL to 360 

estimate the diffuse fraction, which was subsequently compared to the diffuse fraction derived 361 

directly from the ratio of DHI to GHI computed by libRadtran. 362 

To ensure a comprehensive analysis, we considered three representative latitudes (25°, 35° and 45°). 363 

Since BRL requires an hourly time-series of GHI as input, the analysis was conducted for the summer 364 

solstice. On this day, a sufficient number of hourly values are available, corresponding to a wide 365 

range of SZA values, allowing for a robust assessment of the methodology. The sensitivity analysis 366 

was performed for surface albedo values of 0.2 and 0.8 as well as for altitudes of 0, .1 and 2 km. For 367 

aerosol parameterization, we examined completely clear-sky conditions as a reference, alongside 368 

scenarios with 𝐴𝑂𝐷500  values of 0.2, 0.6, and 1, while varying the SSA and AE. Specifically, the 369 

scenarios included SSA values of 0.7, 0.9 and 1, combined with AE values of 0, 1 and 2. The results 370 

of this sensitivity analysis for an albedo of 0.2 are provided in Figure 5, while the results for an albedo 371 

of 0.8 are included in the supplement (Figure S1).  372 

The results confirm that BRL performs well under clear sky conditions and for SZA below 60°, while 373 

the incorporation of aerosols in the sky scene introduces larger uncertainties. In all scenarios, we 374 

observe that lower values of AE correspond to higher uncertainties. Moreover, regarding SSA, when 375 

SSA is 0.9 or 1 BRL gradually tends to underestimate the diffuse fraction as aerosol load increases. 376 

Instead, when SSA is 0.7, BRL exhibits a different behavior, shifting toward an overestimation of the 377 

diffuse fraction at high aerosol loads. 378 

The findings of this sensitivity analysis are consistent with the evaluated BRL performance from 379 

ground-based measurements presented in section 3.1, especially at SZA smaller than 60° - 70°, and 380 

underscore the role of aerosol in the accuracy of diffuse fraction estimations. Differences between 381 

the results shown in Figures 2 and 5 at SZA between 60° - 80° can be due to a number of site-related 382 

reasons. For example, enhancement of the diffuse component due to scattering by underlying 383 

atmospheric layers and clouds in the case of Izaña may compensate the observed overestimation of 384 

the diffuse fraction by BRL. Concerning the impact related to AE and SSA, we confirm that the higher 385 
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underestimations observed for Tamanrasset and Izaña are associated with the optical properties of 386 

desert dust aerosol particles. While AE and SSA alone are not sufficient to fully characterize the 387 

aerosol type, they serve as strong indicators, aligning with the classification framework of Dubovik et 388 

al. (2002). The same comparison for albedo 0.8 (Figure S1 in the supplement) reveals a significant 389 

broadening of the discrepancies. Moreover, we observe the presence of a systematic error, even 390 

under clear sky conditions.  391 

The resulting differences were practically identical across the three selected latitudes, indicating 392 

that the BRL model is largely independent of latitude and can therefore be considered as a reliable 393 

solution over a wide range of latitudes. Furthermore, the effect of altitude was found to be small. 394 

Finally, the outcomes of this analysis highlight potential inconsistencies arising from aerosols with 395 

different optical properties. Although the updated parameters of the BRL’s model (as implemented 396 

in the GSEE model) reported by Lauret et al. (2013) were derived using data from nine worldwide 397 

locations, encompassing a broad range of sky conditions that capture a fully representative set of 398 

optical properties remain challenging. 399 
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 400 

Figure 5. Difference between the diffuse fraction derived directly from the computations of DHI and 401 

GHI using libRadtran and the one estimated by applying BRL to the libRadtran-computed GHI 402 

 403 

 404 
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3.3 Analysis of the differences in energy production using hourly integrals within the modelling of PV 405 

plants 406 

Uncertainties in estimating the diffuse fraction influence the calculation of the total irradiance 407 

received by an inclined panel’s surface, thereby affecting the accuracy of the PV power simulations. 408 

In this section, we employ the main submodule of GSEE, used for modelling the electric output from 409 

a PV panel, aiming to assess the extent to which these uncertainties propagate to the estimation of 410 

the hourly power production. We analyze discrepancies arising from using only GHI from BSRN as 411 

input radiation data to the model, instead of both DHI and GHI. More specifically, we compare the 412 

total energy produced per hour per unit, expressed in watt-hours (Wh), per unit of nominal power 413 

(kWp). The energy production is evaluated for both fixed panels and 2-axis tracking systems. 414 

The results of this comparison for c-Si based technology PV panels for different atmospheric 415 

conditions are presented in Figure 6, illustrating the impact of cloudiness, and in Figure 7, 416 

demonstrating the effect of aerosols. The corresponding results for CdTe technology are provided in 417 

the supplement (Figures S2 and S3 respectively). In the modelling of 2-axis solar tracking systems, 418 

where the panel is continuously adjusted to maintain a perpendicular orientation to incoming solar 419 

radiation, the system becomes more sensitive to uncertainties in the estimation of the diffuse 420 

fraction, leading to more significant differences in energy production. Specifically, the contribution 421 

of the direct irradiance is maximized in such systems, as the panel exploits the entirety of the 422 

available direct irradiance. On the other hand, in the simulation of static panels, the contributions of 423 

direct and diffuse components are more evenly distributed, making the impact of diffuse fraction 424 

uncertainties less pronounced in energy production. 425 

Regarding the uncertainties related to the atmospheric conditions, from Figure 6 we confirm that the 426 

highest dispersion occurs in partly cloudy conditions, while from Figure 7, where we examine cloud-427 

free conditions, we note that further improvement achieved as aerosol load decreases. Under totally 428 

overcast skies the energy production is extremely low, rendering errors practically negligible. 429 

Moreover, accuracy is influenced by aerosols, where a gradual decline in accuracy is detected as 430 

aerosol load increases. However, assessing the extent of aerosol loading impact is complex, 431 

depending on the interaction of solar radiation with particles of varying optical properties, as 432 

extensively analyzed in the previous sections. This effect becomes particularly evident in cases of 433 

high aerosol loading, where a noticeable offset is observed, while under certain conditions, the 434 

associated uncertainty is comparable to that found in partly cloudy conditions. 435 



20 
 

 436 

Figure 6. Comparison of the estimated hourly PV power generation between simulations performed 437 

using GSEE with input data consisting of either only GHI or both GHI and DHI under varying 438 

cloudiness conditions: (top) fixed panels (bottom) 2-axis tracking systems 439 

 440 
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Figure 7. Comparison of the estimated hourly PV power generation between simulations performed 441 

using GSEE with input data consisting of either only GHI or both GHI and DHI under varying aerosol 442 

conditions: (top) fixed panels (bottom) 2-axis tracking systems 443 

The PV systems considered in this study have a nominal capacity of 1 kWp. The PV model applies a 444 

default system loss factor of 10%. This effectively limits the maximum achievable power output to 445 

approximately 90% of the nominal capacity (i.e., around 900 W/kWp). This effect becomes apparent 446 

at the Izaña site due to its low latitude combined with its specific geographical and atmospheric 447 

conditions, which lead to high irradiance levels. As a result, the simulated PV output in some cases 448 

appears capped around 900 Wh/kWp per hour when only GHI is used. 449 

Additionally, Tables S1-S5 in the supplement,4 and 5 present the validation results, including 450 

computed  for Carpentras and Tamanrasset, selected as representative locations that encompass a 451 

wide variety of sky conditions. Validation results for the remaining stations are available in the 452 

supplement (Tables S1-S3). All the evaluation metrics that quantify the errors. All the computations 453 

correspond to simulations of PV panels with c-Si technology. 454 

Table 4. Evaluation metrics for GSEE performance within hourly intervals in Carpentras, comparing 455 

simulations with diffuse fraction from measurements and from the BRL model 456 

STATION: Carpentras fixed panels 2-axis tracking 

RMSE 

(Wh/kWp/hour) 

MAE 

(Wh/kWp/hour) 

rMBE 

(%)  

RMSE 

(Wh/kWp/hour) 

MAE 

(Wh/kWp/hour) 

rMBE 

(%)  

All-Sky scenes 12.6 6.6 0.8 20.8 12.5 1.2 

All-Sky 

scenes 

(cloudiness) 

cloud-free  9.2 4.6 0.4 14.8 8.7 0.5 

partly cloudy  19.5 12.5 2.3 32.5 23.9 3.8 

cloudy (overcast)  5.8 3.0 2.0 10.5 6.1 4.6 

Cloudless-

Sky scenes 

(aerosol 

load) 

low  4.7 3.4 -0.4 9.5 7.5 -0.8 

moderate  4.3 2.2 0.1 7.8 4.7 0.0 

high  6.4 4.0 0.6 11.0 7.8 0.9 

very high  14.9 10.2 1.6 22.7 17.2 2.6 

 457 

Table 5. Evaluation metrics for GSEE performance within hourly intervals in Tamanrasset, 458 

comparing simulations with diffuse fraction from measurements and from the BRL model. 459 

STATION: Tamanrasset fixed panels 2-axis tracking 

RMSE 

(Wh/kWp/hour) 

MAE 

(Wh/kWp/hour) 

rMBE 

(%)  

RMSE 

(Wh/kWp/hour) 

MAE 

(Wh/kWp/hour) 

rMBE 

(%)  
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All-Sky scenes 13.6 9.3 1.0 40.4 27.8 3.8 

All-Sky 

scenes 

(cloudiness) 

cloud-free  11.5 8.0 0.8 35.3 23.4 2.9 

partly cloudy  20.1 15.0 2.0 56.1 45.7 8.1 

cloudy (overcast)  8.4 5.2 -0.1 45.3 30.1 11.2 

Cloudless-

Sky scenes 

(aerosol 

load) 

low  3.2 2.0 0.2 6.6 4.0 0.3 

moderate  5.4 4.6 0.6 13.0 10.5 1.2 

high  12.5 11.7 1.6 30.1 27.4 3.4 

very high  18.0 16.2 1.9 57.0 49.2 6.8 

 460 

Based on the calculated statistical indices, the Root Mean Square Error (RMSE) values for fixed 461 

panels range from 4.7 Wh/kWp/hour (clear sky) to 19.5 Wh/kWp/hour (partly cloudy) in Carpentras, 462 

and from 3.2 to 20.1 Wh/kWp/hour in Tamanrasset. Under very high aerosol loading, RMSE reaches 463 

14.9 and 18.0 Wh/kWp/hour, respectively. For 2-axis tracking systems, RMSE values vary 464 

significantly, ranging from 9.5 to 32.5 Wh/kWp/hour in Carpentras and from 6.6 to 56.1 Wh/kWp/hour 465 

in Tamanrasset, with peaks of 22.7 and 57.0 Wh/kWp/hour under very high aerosol loading 466 

conditions. Similarly, the Mean Absolut Error (MAE) values are generally lower for fixed panels (3.4-467 

12.5 Wh/kWp//hour in Carpentras, 2.0-15.0 in Tamanrasset) and substantially higher for 2-axis 468 

tracking (7.5-23.9 and 4.0-45.7 Wh/kWp/hour, respectively). Notably in Tamanrasset, MAE values 469 

under very high aerosol loading exceed those observed under partly cloudy conditions, with values 470 

increasing from 15.0 to 16.2 Wh/kWp/hour for fixed panels and from 45.7 to 49.2 Wh/kWp/hour for 471 

2-axis tracking systems. Regarding the relative mean bias (rMBE), this remains mostly within ± 4.6% 472 

for fixed panels but can reach up to 11.2% for 2-axis tracking, particularly in aerosol-laden 473 

conditions. 474 

 475 

3.4 Estimating total daily PV power output using the Climate Interface 476 

Validation of the estimated daily energy production using the Climate Interface is achieved by 477 

comparing the estimates with the results obtained from the direct summation of the hourly 478 

simulations with input both GHI and DHI. 479 

The Climate Interface generates the hourly profile of GHI for each day as a sinusoidal function. Then, 480 

the BRL is applied to the hourly time-series, and the hourly power generation is computed. Finally, 481 

these values are summed up to provide an estimate of the total daily output power. As shown in 482 

FigureFig. 8, which illustrates the differences between the Climate Interface estimates and the sums 483 
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of the hourly simulations, this approach introduces a variability throughout the year. Furthermore, 484 

Figure S6 in the supplement presents the percentage differences between the two approaches, using 485 

the latter as the reference.  486 

 487 

Figure 8. Time-series of the differences between the daily PV output estimated using the climate 488 

interface and the corresponding daily sums from hourly simulations. 489 

 490 

The time-series represent the centered 30-day moving average. To ensure that the values are 491 

representative of the reference period, we have applied all conditions requiring at least 20 days of 492 

available data within each 30-days interval. In Tamanrasset and Izaña, especially during the summer 493 

months, there are significant data gaps on several days, often occurring around solar noon.  494 

More precisely, from FigureFig. 8, we observe that within the modelling of PV plants with fixed panels, 495 

there is a tendency to overestimate in winter, with deviations of approximately 0.3 kWh/kWp/day,  and 496 

to slightly underestimate in summer, where deviations are around 0.1 kWh/kWp/day. In contrast, for 497 

2-axis solar tracking systems, the resulting deviations are significantly larger, with a general tendency 498 

toward overestimation that peaks during summer, reaching approximately 1.75 kWh/kWp/day. The 499 
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percentage differences span from -10 to 20 % for fixed panels and from -5 to 35 % for 2-axis tracking 500 

systems. 501 

The variability in the percentage difference between the daily PV output estimated using the climate 502 

interface and the corresponding daily sums is mainly a function of the minimum SZA, while 503 

especially in the case of modeling for 2-axits tracking systems, the variation is also influenced by 504 

aerosol loading, with differences tending to increase as aerosol load rises (Figures S4 and S5 in the 505 

supplement). 506 

Additional validation results are provided in the supplement (Tables S6-S10).S4-S8). Indicatively, for 507 

Carpentras and Tamanrasset, representative results are discussed below.  For fixed panels, RMSE is 508 

minimized at 0.18 kWh/kWp/day under very-low aerosol conditions, compared to the overall 0.22 509 

kWh/kWp/day for Carpentras. In Tamanrasset, the lowest RMSE is observed at 0.15 kWh/kWp/day 510 

under very low aerosol conditions, while the overall reaches 0.24. In the case of 2-axis tracking, a 511 

significant increase is observed from low-aerosol to aerosol-laden conditions, ranging from 0.82 to 512 

1.28 kWh/kWp/day in Carpentras and from 0.66 to 1.37 in Tamanrasset. Similar widening trends are 513 

also evident in the MAE values across different aerosol loading conditions. The computed statistical 514 

indices confirm that the differences are minimized under sunny and nearly aerosol-free sky 515 

conditions. Comparing the performance on low-aerosol days to that on aerosol-laden, we conclude 516 

that, particularly in the case of modelling 2-axis tracking systems, errors increase significantly. In 517 

Tamanrasset, in particular, the errors are more than double. 518 

3.5 Evaluation of the reliability of using the CAMS solar radiation time-series product in modelling 519 

PV power potential 520 

The aim of this section is to inspect the reliability of using the CAMS solar radiation time-series 521 

product in modelling the PV power potential adapted to a certain location,. A review of the existing 522 

literature indicates a lack of studies directly examining the accuracy of using CAMS data for 523 

assessing PV power potential. This is addressed by comparing the output power obtained from using 524 

CAMS solar radiation data with that calculated using ground-based measurements. The analysis 525 

focuses on the capability of CAMS to provide accurate estimates of both GHI as well as its individual 526 

components.  527 

In this section, we have excluded Izaña, because, due to its high altitude – as indicated through a 528 

personal communication with Yves-Marie Saint-Drenan (2025) – comparable results would require 529 
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adjusting the measurements to the elevation of the stations, which is a complicated process and 530 

beyond the scope of this study. 531 

The CAMS-based diffuse fraction, compared to the observed, is presented in Figure 9 under different 532 

prevailing conditions. We observe that the calculation of the diffuse component is subject to 533 

significant uncertainty. Cloudiness is the primary uncertainty source, particularly under partly cloudy 534 

conditions. Additionally, notable discrepancies related to aerosols emerge only in cases of very high 535 

aerosol loading. 536 

 537 

 538 

Figure 9. Comparison of the CAMS-based diffuse fraction estimated using BRL with the actual one 539 

under diverse atmospheric conditions 540 

 541 

In FigureFig. 10 we provide density scatter plots comparing the CAMS-based PV output power with 542 

that computed from the ground-based BSRN data, aiming to illustrate how the uncertainty in the 543 
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diffuse component estimates propagate to the calculation of power generation. Notably, there is a 544 

much greater dispersion from the y=x line in the case of simulating PV plants with 2-axis tracking 545 

system, compared to that within the modelling of fixed panels. This outcome is attributed to the 546 

increased sensitivity of the 2-axis tracking systems to the partitioning of global irradiance into its 547 

components. Nevertheless, correlation coefficients are in all cases better than 0.9. Additional 548 

evaluation metrics are provided in the supplement (Tables S11-S14). 549 

Additional evaluation metrics are provided in the supplement (Tables S9-S12). Indicatively, we 550 

observe that under cloudless conditions, for fixed panels, RMSE ranges between 25.0 to 42.3 551 

Wh/kWp/hour in Carpentras and 16.6 and 31.0 Wh/kWp/hour in Tamanrasset, with variations linked 552 

to aerosol loading. Similarly, MAE ranges from 20.0 to 36.9 Wh/kWp/hour in Carpentras and 11.9 to 553 

22.9 Wh/kWp/hour in Tamanrasset. For 2-axis systems, RMSE and MAE follow similar trend, ranging 554 

from 28.8 to 49.9 Wh/kWp/hour and 22.3 to 44.1 Wh/kWp/hour, respectively, in Carpentras, and from 555 

20.8 to 48.0 Wh/kWp/hour and 15.3 to 35.5 Wh/kWp/hour, respectively, in Tamanrasset. Conversely, 556 

under cloudy conditions the errors are significantly increasing. In Carpentras, as well as in Cener, 557 

and Lindenberg (according to the corresponding tables in the supplement) the errors peak under 558 

partly cloudy conditions, with RMSE reaching up to 94.2 Wh/kWp/hour in Carpentras. However, in 559 

Tamanrasset, the highest errors occur under overcast conditions, where RMSE and MAE for 2-axis 560 

solar tracking systems reach 210.7 and 151.6 Wh/kWp/hour, respectively. This exception can be 561 

interpreted through Figure 15, which illustrates that in the rare overcast scenes in Tamanrasset, 562 

CAMS occasionally reports low diffuse fraction values instead of values close to 1, suggesting that 563 

CAMS did not accurately represent cloudiness in these cases.  564 

 565 
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 566 

Figure 10. Overview of the reliability of the CAMS-based PV power simulations 567 

 568 

4. Conclusions 569 

This study evaluated different solar radiation information that is commonly used for PV power 570 

modelling, and their implications for PV modelling accuracy. Τhe optimal approach to include solar 571 

radiation information to PV power models such as GSEE is to use actual in-situ measurements of 572 

global and diffuse solar irradiance. Since measurements of the diffuse component are rarely 573 

available, it is common to use measurements of the GHI (if available) and retrieve the diffuse 574 

component using a model such as BRL. In the absence of in-situ measurements, other options 575 

include the use of datasets such as CAMS or even a radiative transfer model, provided that 576 

atmospheric inputs such as clearness index, aerosol optical depth (AOD), and other aerosol 577 

properties are available. This study evaluated these options and their implications for PV modelling 578 

accuracy. 579 
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The results highlighted the importance of having precise information for the distribution of solar 580 

irradiance among its components in PV power modelling. The implementation of the BRL diffuse 581 

fraction within GSEE serves as a practical, and under certain conditions, reliable solution to the 582 

absence of detailed information for each component separately. Moreover, the integrated Climate 583 

Data Interface submodule offers valuable prospects for investigating fluctuations in the solar PV 584 

power generation across various timescales. In this context, the use of BRL has a key contribution 585 

alongside the other computational procedures in processing climate datasets. Previous studies on 586 

PV power modelling approaches have not examined their reliability under diverse atmospheric 587 

conditions, including the effects associated with cloudiness, aerosol loading, as well as aerosol 588 

optical properties. 589 

The evaluation of the BRL’s performance revealed a dependency of its reliability on the prevailing sky 590 

conditions. As a result, discrepancies arising from inconsistencies in diffuse fraction estimation 591 

propagate to PV power generation. Within the modelling of PV plants equipped with 2-axis solar 592 

tracking system, the deviations are much more pronounced relative to optimally inclined panels. BRL 593 

has excellent accuracy under totally clear sky scenes and still performs well for cloudless scenes 594 

with moderate aerosol loading. In general, its accuracy is inversely proportional to the complexity of 595 

the cloud scene. However, the model systematically underestimates the diffuse fraction under high-596 

loading conditions, such as during dust events. Under such circumstances, this bias can potentially 597 

lead to significant overestimation of power generation by up to 49.2 Wh/kWp/hourThe discrepancies 598 

arising from diffuse fraction estimation propagate to PV power generation and become particularly 599 

pronounced in the modelling of 2-axis tracking systems. Indicatively, MAE under cloud-free scenes 600 

with moderate aerosol loading, ranges between 2.2 to 6.6 Wh/kWp/hour for fixed panels and 4.7 to 601 

15.0 Wh/kWp/hour for 2-axis tracking systems. Under partly cloudy conditions, where the cloud 602 

scene is more complex, the MAE increases substantially, ranging from 12.4 to 25.8 Wh/kWp/hour for 603 

fixed panels and from 23.5 to 55.1 Wh/kWp/hour for 2-axis tracking systems. Moreover, during 604 

intense dust events, MAE can reach up to 49.2 Wh/kWp/hour in Tamanrasset, which is comparable 605 

to that computed under partly cloudy conditions. Overall, the rMBE remains within the ±5%, with the 606 

exception of a limited cases under overcast conditions. The same analysis applied to CdTe panels 607 

yielded similar results, with minor differences. 608 

Aiming to provide an indicative assessment of the financial impacts of the effect of desert dust 609 

aerosols, we assume that the statistical indices calculated for Tamanrasset are representative of a 610 



29 
 

large-scale solar farm located in the Sahara region, with 500 MW installed PV capacity and systems 611 

equipped with 2-axis solar tracking system. For this hypothetical solar farm, according to the value 612 

of the Mean Absolute Error (MAE) on Table 4 for very high aerosol loading, we estimate that the 613 

produced energy is 0.0492 [𝑘𝑊ℎ 𝑘𝑊𝑝 ℎ𝑜𝑢𝑟⁄⁄ ] × 500 × 103 [𝑘𝑊𝑝] = 24600 [𝑘𝑊ℎ ℎ𝑜𝑢𝑟⁄ ] 614 
𝑠𝑢𝑝𝑝𝑜𝑠𝑖𝑛𝑔 12 𝑠𝑢𝑛𝑙𝑖𝑔ℎ𝑡 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦
⇒                              ~295200 [𝑘𝑊ℎ 𝑑𝑎𝑦⁄ ] less than the expected from the PV power 615 

simulations. According to the global average auction prices for selling produced energy back to the 616 

grid in  2021 (IRENA, n.d.), the overestimations are  equivalent to a financial loss of 617 

0.039 [𝑈𝑆𝐷 𝑘𝑊ℎ⁄ ] × 295200[𝑘𝑊ℎ 𝑑𝑎𝑦⁄ ]  ≈ 11,500 𝑈𝑆𝐷 𝑑𝑎𝑦⁄ . Therefore, site assessments that do 618 

not correctly account for the impactdistribution of surface solar irradiance in the sky under desert 619 

dust aerosolsaerosol conditions may overestimate financial performance and the annual financial 620 

deficit could be accumulated to hundreds of thousands of US dollars per year. 621 

Comparing the range of computed errors, we observe that the errors arising from employing CAMS 622 

rather than using ground-based measurements, even when the diffuse fraction is not provided, are 623 

higher across the overwhelming majority of the considered sky conditions. More specifically, 624 

regarding the overall performance, MAE when using CAMS ranges between 33.7 and 46.1 625 

Wh/kWp/hour, while with ground-based GHI measurements, MAE remains below 10 Wh/kWp/hour 626 

within the modelling of systems with fixed panels and can reach up to 27.8 Wh/kWp/hour within the 627 

modelling of 2-axis tracking systems. This outcome highlights the value of ground-based 628 

measurements.  629 

To sum up, achieving the highest quality PV power simulations necessitates high-quality, concurrent 630 

measurements of solar irradiance components. In absence of this, the submodules included in the 631 

GSEE package enable reliable simulations under the vast majority of prevailing sky conditions. CAMS 632 

serves as a valuable data source for PV power modelling, but it cannot fully replace the precision and 633 

reliability of using ground-based measurements. The integration of aerosol correction within the BRL 634 

model opens new possibilities for further improvements in the modelling of solar energy systems. A 635 

more comprehensive assessment would require measured PV output data; however, acquiring 636 

simultaneous direct and diffuse irradiance measurements at the same location as the solar farms 637 

remains challenging. 638 

 639 
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request from the authors. 645 

Author Contributions 646 

Conceptualization: NP and IF; Data curation: NP and KP; Formal analysis: NP; Funding acquisition: 647 

CZ; Investigation: NP; Methodology: NP, IF, SK, AK and AG; Project administration: CZ; Resources: SP, 648 

KP and LD; Software: NP; Supervision: IF; Validation: NP, IF and SP; Visualization: NP; Writing – 649 

original draft: NP; Writing – review & editing: all authors  650 

Funding 651 

This work has been supported by the action titled “Support for upgrading the operation of the 652 

National Network for Climate Change (CLIMPACT II)”, funded by the Public Investment Program of 653 

Greece, General Secretary of Research and Technology/Ministry of Development and Investments. 654 

Part of this work was also supported by the COST Action Harmonia (CA21119) supported by COST 655 

(European Cooperation in Science and Technology). This work was partially funded by the 656 

Copernicus Climate Change Service under contracts C3S2 _461-1_GR (Seasonal to decadal 657 

predictions for national renewable energy management). 658 

Acknowledgments 659 

We thank the teams of the AERONET for ground measurements and maintenance, and CAMS for the 660 

data production and distribution. We would like to thank the five site instrument operators and 661 

technical staff of the BSRN network stations who made the ground-based measurements feasible. 662 

A. Gkikas, J. Kapsomenakis, and C.S. Zerefos also acknowledge “CAMS2_82 Project: Evaluation and 663 

Quality Control (EQC) of global products.” 664 

References 665 

Anderson, G., Clough, S., Kneizys, F., Chetwynd, J., & Shettle, E. (1986). AFGL atmospheric 666 

constituent profiles (0-120 km) (Tech. Rep. AFGL-TR-86-0110). Air Force Geophysics Laboratory, 667 

Hanscom Air Force Base. 668 

https://bsrn.awi.de/
https://aeronet.gsfc.nasa.gov/
https://ads.atmosphere.copernicus.eu/


31 
 

Anderson, K. S., Hansen, C. W., Holmgren, W. F., Jensen, A. R., Mikofski, M. A., & Driesse, A. 669 

(2023). pvlib python: 2023 project update. Journal of Open Source Software, 8(92), Article 5994. 670 

https://doi.org/10.21105/joss.05994 671 

Ångström, A. (1929). On the atmospheric transmission of sun radiation and on dust in the 672 

air. Geografiska Annaler, 11(2), 156–166. https://doi.org/10.1080/20014422.1929.11880498 673 

Barreto, Á., García, R. D., Guirado-Fuentes, C., Cuevas, E., Almansa, A. F., Milford, C., Toledano, 674 

C., Expósito, F. J., Díaz, J. P., & León-Luis, S. F. (2022). Aerosol characterisation in the 675 

subtropical eastern North Atlantic region using long-term AERONET 676 

measurements. Atmospheric Chemistry and Physics, 22(17), 11105–11124. 677 

https://doi.org/10.5194/acp-22-11105-2022  678 

Blaga, R., Mares, O., Paulescu, E., Boata, R., Sabadus, A., Hategan, S.-M., Calinoiu, D., Stefu, 679 

N., & Paulescu, M. (2024). Diffuse fraction as a tool for exploring the sensitivity of parametric 680 

clear-sky models to changing aerosol conditions. Solar Energy (Phoenix, Ariz.), 277(112731), 681 

112731. https://doi.org/10.1016/j.solener.2024.112731  682 

Blanc, P., Remund, J., & Vallance, L. (2017). Short-term solar power forecasting based on 683 

satellite images. In Renewable Energy Forecasting (pp. 179–198). Elsevier. 684 

Boland, J. W., Scott, L., & Luther, M. (2001). Modelling the diffuse fraction of global solar 685 

radiation on a horizontal surface. Environmetrics, 12(2), 103–116. https://doi.org/10.1002/1099-686 

095X(200103)12:2<103::AID-ENV447>3.0.CO;2-2 687 

Buras, R., Dowling, T., & Emde, C. (2011). New secondary-scattering correction in DISORT with 688 

increased efficiency for forward scattering. Journal of Quantitative Spectroscopy & Radiative 689 

Transfer, 112(12), 2028–2034. https://doi.org/10.1016/j.jqsrt.2011.03.019  690 

Cañadillas-Ramallo, D., Moutaoikil, A., Shephard, L. E., & Guerrero-Lemus, R. (2022). The 691 

influence of extreme dust events in the current and future 100% renewable power scenarios in 692 

Tenerife. Renewable Energy, 184, 948–959. https://doi.org/10.1016/j.renene.2021.12.013  693 

Copernicus Atmosphere Monitoring Service. (2020). CAMS solar radiation time-series. 694 

Copernicus Atmosphere Monitoring Service (CAMS) Atmosphere Data Store. 695 

https://doi.org/10.24381/5cab0912  696 

https://doi.org/10.5194/acp-22-11105-2022
https://doi.org/10.1016/j.solener.2024.112731
https://doi.org/10.1016/j.jqsrt.2011.03.019
https://doi.org/10.1016/j.renene.2021.12.013
https://doi.org/10.24381/5cab0912


32 
 

Cuevas, E., Romero-Campos, P. M., Kouremeti, N., Kazadzis, S., Räisänen, P., García, R. D., 697 

Barreto, A., Guirado-Fuentes, C., Ramos, R., Toledano, C., Almansa, F., & Gröbner, J. (2019). 698 

Aerosol optical depth comparison between GAW-PFR and AERONET-Cimel radiometers from 699 

long-term (2005–2015) 1 min synchronous measurements. Atmospheric Measurement 700 

Techniques, 12(8), 4309–4337. https://doi.org/10.5194/amt-12-4309-2019  701 

Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, 702 

T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., 703 

Kustov, V., Long, C. N., Longenecker, D., … König-Langlo, G. (2018). Baseline Surface Radiation 704 

Network (BSRN): structure and data description (1992–2017). Earth System Science 705 

Data, 10(3), 1491–1501. https://doi.org/10.5194/essd-10-1491-2018  706 

Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) 707 

efficiency and its effect on PV production in the world – A review. Energy Procedia, 33, 311–321. 708 

https://doi.org/10.1016/j.egypro.2013.05.072  709 

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., & Slutsker, I. 710 

(2002). Variability of absorption and optical properties of key aerosol types observed in 711 

worldwide locations. Journal of the Atmospheric Sciences, 59(3), 590–608. 712 

https://doi.org/10.1175/1520-0469(2002)059<0590:voaaop>2.0.co;2  713 

Dubovik, O., & King, M. D. (2000). A flexible inversion algorithm for retrieval of aerosol optical 714 

properties from Sun and sky radiance measurements. Journal of Geophysical 715 

Research, 105(D16), 20673–20696. https://doi.org/10.1029/2000jd900282  716 

Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Kadner, S., Zwickel, T., Eickemeier, P., 717 

Hansen, G., Schlomer, S., & Von Stechow, C. (Eds.). (2011). Renewable energy sources and 718 

climate change mitigation: Special report of the intergovernmental panel on climate change. 719 

Cambridge University Press. 720 

Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, 721 

B., Pause, C., Dowling, T., & Bugliaro, L. (2016). The libRadtran software package for radiative 722 

transfer calculations (version 2.0.1). Geoscientific Model Development, 9(5), 1647–1672. 723 

https://doi.org/10.5194/gmd-9-1647-2016 724 

https://doi.org/10.5194/amt-12-4309-2019
https://doi.org/10.5194/essd-10-1491-2018
https://doi.org/10.1016/j.egypro.2013.05.072
https://doi.org/10.1175/1520-0469(2002)059%3c0590:voaaop%3e2.0.co;2
https://doi.org/10.1029/2000jd900282
https://doi.org/10.5194/gmd-9-1647-2016


33 
 

Faid, A., Smara, Y., Caselles, V., & Khireddine, A. (2012). Evaluation of the Saharan aerosol 725 

impact on solar radiation over the Tamanrasset area, Algeria. International Journal of Advanced 726 

Research in Engineering and Technology, 3(1), 24–32. 727 

Fountoulakis, I., Kosmopoulos, P., Papachristopoulou, K., Raptis, I.-P., Mamouri, R.-E., Nisantzi, 728 

A., Gkikas, A., Witthuhn, J., Bley, S., Moustaka, A., Buehl, J., Seifert, P., Hadjimitsis, D. G., 729 

Kontoes, C., & Kazadzis, S. (2021). Effects of aerosols and clouds on the levels of surface solar 730 

radiation and solar energy in Cyprus. Remote Sensing, 13(12), 2319. 731 

https://doi.org/10.3390/rs13122319  732 

Fountoulakis, I., Papachristopoulou, K., Proestakis, E., Amiridis, V., Kontoes, C., & Kazadzis, S. 733 

(2022). Effect of aerosol vertical distribution on the modeling of solar radiation. Remote 734 

Sensing, 14(5), 1143. https://doi.org/10.3390/rs14051143 735 

Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, 736 

B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., & Lyapustin, A. I. (2019). 737 

Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated 738 

near-real-time quality control algorithm with improved cloud screening for Sun photometer 739 

aerosol optical depth (AOD) measurements. Atmospheric Measurement Techniques, 12(1), 740 

169–209. https://doi.org/10.5194/amt-12-169-2019  741 

Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., 742 

Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., & Smirnov, A. (1998). AERONET—A 743 

federated instrument network and data archive for aerosol characterization. Remote Sensing of 744 

Environment, 66(1), 1–16. https://doi.org/10.1016/s0034-4257(98)00031-5  745 

Hou, X., Wild, M., Folini, D., Kazadzis, S., & Wohland, J. (2021). Climate change impacts on solar 746 

power generation and its spatial variability in Europe based on CMIP6. Earth System 747 

Dynamics, 12(4), 1099–1113. https://doi.org/10.5194/esd-12-1099-2021  748 

Huld, T., Gottschalg, R., Beyer, H. G., & Topič, M. (2010). Mapping the performance of PV 749 

modules, effects of module type and data averaging. Solar Energy (Phoenix, Ariz.), 84(2), 324–750 

338. https://doi.org/10.1016/j.solener.2009.12.002  751 

Intergovernmental Panel on Climate Change (IPCC). (2023). Climate change 2022 – impacts, 752 

adaptation and vulnerability: Working group II contribution to the sixth assessment report of the 753 

https://doi.org/10.3390/rs13122319
https://doi.org/10.5194/amt-12-169-2019
https://doi.org/10.1016/s0034-4257(98)00031-5
https://doi.org/10.5194/esd-12-1099-2021
https://doi.org/10.1016/j.solener.2009.12.002


34 
 

intergovernmental panel on climate change. Cambridge University Press. 754 

https://doi.org/10.1017/9781009325844 755 

Jacovides, C. P., Tymvios, F. S., Assimakopoulos, V. D., & Kaltsounides, N. A. (2006). 756 

Comparative study of various correlations in estimating hourly diffuse fraction of global solar 757 

radiation. Renewable Energy, 31(15), 2492–2504. https://doi.org/10.1016/j.renene.2005.11.009  758 

Kakran, S., Rathore, J. S., Sidhu, A., & Kumar, A. (2024). Solar energy advances and CO2 759 

emissions: A comparative review of leading nations’ path to sustainable future. Journal of 760 

Cleaner Production, 475(143598), 143598. https://doi.org/10.1016/j.jclepro.2024.143598 761 

Kato, S., Ackerman, T. P., Mather, J. H., & Clothiaux, E. E. (1999). The k-distribution method and 762 

correlated-k approximation for a shortwave radiative transfer model. Journal of Quantitative 763 

Spectroscopy & Radiative Transfer, 62(1), 109–121. https://doi.org/10.1016/s0022-764 

4073(98)00075-2  765 

Kazantzidis, A., Tzoumanikas, P., Blanc, P., Massip, P., Wilbert, S., & Ramirez-Santigosa, L. 766 

(2017). Short-term forecasting based on all-sky cameras. In Renewable Energy Forecasting (pp. 767 

153–178). Elsevier. 768 

Kosmopoulos, P., Kazadzis, S., El-Askary, H., Taylor, M., Gkikas, A., Proestakis, E., Kontoes, C., & 769 

El-Khayat, M. (2018). Earth-Observation-based estimation and forecasting of particulate matter 770 

impact on solar energy in Egypt. Remote Sensing, 10(12), 1870. 771 

https://doi.org/10.3390/rs10121870 772 

Kouklaki, D., Kazadzis, S., Raptis, I.-P., Papachristopoulou, K., Fountoulakis, I., & Eleftheratos, 773 

K. (2023). Photovoltaic spectral responsivity and efficiency under different aerosol 774 

conditions. Energies, 16(18), 6644. https://doi.org/10.3390/en16186644 775 

 776 

 777 

Lauret, P., Boland, J., & Ridley, B. (2013). Bayesian statistical analysis applied to solar radiation 778 

modelling. Renewable Energy, 49, 124–127. https://doi.org/10.1016/j.renene.2012.01.049  779 

https://doi.org/10.1017/9781009325844
https://doi.org/10.1016/j.renene.2005.11.009
https://doi.org/10.1016/j.jclepro.2024.143598
https://doi.org/10.1016/s0022-4073(98)00075-2
https://doi.org/10.1016/s0022-4073(98)00075-2
https://doi.org/10.3390/rs10121870
https://doi.org/10.3390/en16186644
https://doi.org/10.1016/j.renene.2012.01.049


35 
 

Liu, B. Y. H., & Jordan, R. C. (1960). The interrelationship and characteristic distribution of 780 

direct, diffuse and total solar radiation. Solar Energy (Phoenix, Ariz.), 4(3), 1–19. 781 

https://doi.org/10.1016/0038-092x(60)90062-1  782 

Logothetis, S.-A., Salamalikis, V., & Kazantzidis, A. (2020). Aerosol classification in Europe, 783 

Middle East, North Africa and Arabian Peninsula based on AERONET Version 3. Atmospheric 784 

Research, 239(104893), 104893. https://doi.org/10.1016/j.atmosres.2020.104893  785 

Long, C., & Dutton, E. (2010). BSRN Global Network recommended QC tests, V2.x. 786 

https://epic.awi.de/id/eprint/30083/1/BSRN_recommended_QC_tests_V2.pdf  787 

Mayer, B., & Kylling, A. (2005). Technical note: The libRadtran software package for radiative 788 

transfer calculations - description and examples of use. Atmospheric Chemistry and 789 

Physics, 5(7), 1855–1877. https://doi.org/10.5194/acp-5-1855-2005  790 

McMahan, A. C., Grover, C. N., & Vignola, F. E. (2013). Evaluation of resource risk in solar-791 

project financing. In Solar Energy Forecasting and Resource Assessment (pp. 81–95). Elsevier. 792 

Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, 793 

sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. 794 

https://doi.org/10.1080/23311916.2016.1167990  795 

Papachristopoulou, K., Fountoulakis, I., Bais, A. F., Psiloglou, B. E., Papadimitriou, N., Raptis, I.-796 

P., Kazantzidis, A., Kontoes, C., Hatzaki, M., & Kazadzis, S. (2024). Effects of clouds and 797 

aerosols on downwelling surface solar irradiance nowcasting and short-term 798 

forecasting. Atmospheric Measurement Techniques, 17(7), 1851–1877. 799 

https://doi.org/10.5194/amt-17-1851-2024  800 

Papachristopoulou, K., Fountoulakis, I., Gkikas, A., Kosmopoulos, P. G., Nastos, P. T., Hatzaki, 801 

M., & Kazadzis, S. (2022). 15-year analysis of direct effects of total and dust aerosols in solar 802 

radiation/energy over the Mediterranean Basin. Remote Sensing, 14(7), 1535. 803 

https://doi.org/10.3390/rs14071535  804 

Paulescu, E., & Blaga, R. (2019). A simple and reliable empirical model with two predictors for 805 

estimating 1-minute diffuse fraction. Solar Energy (Phoenix, Ariz.), 180, 75–84. 806 

https://doi.org/10.1016/j.solener.2019.01.029  807 

https://doi.org/10.1016/0038-092x(60)90062-1
https://doi.org/10.1016/j.atmosres.2020.104893
https://epic.awi.de/id/eprint/30083/1/BSRN_recommended_QC_tests_V2.pdf
https://doi.org/10.5194/acp-5-1855-2005
https://doi.org/10.1080/23311916.2016.1167990
https://doi.org/10.5194/amt-17-1851-2024
https://doi.org/10.3390/rs14071535
https://doi.org/10.1016/j.solener.2019.01.029


36 
 

Pedro, H. T. C., Inman, R. H., & Coimbra, C. F. M. (2017). Mathematical methods for optimized 808 

solar forecasting. In Renewable Energy Forecasting (pp. 111–152). Elsevier. 809 

Pfenninger, S., & Staffell, I. (2016). Long-term patterns of European PV output using 30 years of 810 

validated hourly reanalysis and satellite data. Energy (Oxford, England), 114, 1251–1265. 811 

https://doi.org/10.1016/j.energy.2016.08.060  812 

Raptis, I.-P., Kazadzis, S., Fountoulakis, I., Papachristopoulou, K., Kouklaki, D., Psiloglou, B. E., 813 

Kazantzidis, A., Benetatos, C., Papadimitriou, N., & Eleftheratos, K. (2023). Evaluation of the 814 

solar energy nowcasting system (SENSE) during a 12-months intensive measurement campaign 815 

in Athens, Greece. Energies, 16(14), 5361. https://doi.org/10.3390/en16145361  816 

 817 

Qu, Z., Oumbe, A., Blanc, P., Espinar, B., Gesell, G., Gschwind, B., Klüser, L., Lefèvre, M., 818 

Saboret, L., Schroedter-Homscheidt, M., & Wald, L. (2017). Fast radiative transfer 819 

parameterisation for assessing the surface solar irradiance: The Heliosat-4 820 

method. Meteorologische Zeitschrift, 26(1), 33–57. https://doi.org/10.1127/metz/2016/0781  821 

Renewables Ninja. (n.d.). Climate data interface. GSEE Documentation. 822 

https://gsee.readthedocs.io/en/latest/climatedata-interface/ 823 

Ridley, B., Boland, J., & Lauret, P. (2010). Modelling of diffuse solar fraction with multiple 824 

predictors. Renewable Energy, 35(2), 478–483. https://doi.org/10.1016/j.renene.2009.07.018  825 

Schroedter-Homscheidt, M., Azam, F., Betcke, J., Hanrieder, N., Lefèvre, M., Saboret, L., & 826 

Saint-Drenan, Y. -M. (2022). Surface solar irradiation retrieval from MSG/SEVIRI based on 827 

APOLLO Next Generation and HELIOSAT-4 methods. Meteorologische Zeitschrift, 31(6), 455–828 

476. https://doi.org/10.1127/metz/2022/1132  829 

Shettle, E. (1989). Models of aerosols, clouds, and precipitation for atmospheric propagation 830 

studies. In Atmospheric propagation in the UV, visible, IR and mm-region and related system 831 

aspects (AGARD Conference Proceedings No. 454). NATO Advisory Group for Aerospace 832 

Research and Development. 833 

Stoffel, T. (2013). Terms and Definitions. In Solar Energy Forecasting and Resource 834 

Assessment (pp. 1–19). Elsevier. 835 

https://doi.org/10.1016/j.energy.2016.08.060
https://doi.org/10.3390/en16145361
https://doi.org/10.1127/metz/2016/0781
https://gsee.readthedocs.io/en/latest/climatedata-interface/
https://doi.org/10.1016/j.renene.2009.07.018
https://doi.org/10.1127/metz/2022/1132


37 
 

Toledano, C., González, R., Fuertes, D., Cuevas, E., Eck, T. F., Kazadzis, S., Kouremeti, N., 836 

Gröbner, J., Goloub, P., Blarel, L., Román, R., Barreto, Á., Berjón, A., Holben, B. N., & Cachorro, 837 

V. E. (2018). Assessment of Sun photometer Langley calibration at the high-elevation sites 838 

Mauna Loa and Izaña. Atmospheric Chemistry and Physics, 18(19), 14555–14567. 839 

https://doi.org/10.5194/acp-18-14555-2018  840 

WMO. (2021). Guide to instruments and methods of observation (WMO-No. 8). 841 

https://library.wmo.int/doc_num.php?explnum_id=57838  842 

Yang, D. (2019). SolarData package update v1.1: R functions for easy access of Baseline 843 

Surface Radiation Network (BSRN). Solar Energy (Phoenix, Ariz.), 188, 970–975. 844 

https://doi.org/10.1016/j.solener.2019.05.068 845 

 846 

 847 

 848 

 849 

https://doi.org/10.5194/acp-18-14555-2018
https://library.wmo.int/doc_num.php?explnum_id=57838
https://doi.org/10.1016/j.solener.2019.05.068

