

1 **Seasonal variability, sources, and parameterization of ice-nucleating particles in the**
2 **Rocky Mountain region: Importance of soil dust and biological contributions**

3

4 **Ruichen Zhou, Russell Perkins, Drew Juergensen, Kevin Barry, Kelton Ayars, Oren Dutton,**
5 **Paul DeMott, Sonia Kreidenweis**

6 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523,
7 USA

8

9 Corresponding author: Russell Perkins (rperkins@colostate.edu)

10

11

12 Abstract

13 Atmospheric ice-nucleating particles (INPs) significantly influence cloud microphysics and
14 aerosol-cloud interactions. Understanding INPs in mountain regions is important for predicting
15 impacts on regional clouds and precipitation. In this study, we conducted comprehensive
16 measurements of immersion-freezing INPs at Mt. Crested Butte in the Rocky Mountains from
17 September 2021 to June 2023 as part of the Surface Atmosphere Integrated Field Laboratory (SAIL)
18 campaign. The average number concentration of INPs active at $-20\text{ }^{\circ}\text{C}$ was 2 L^{-1} , with distinct
19 seasonal variation characterized by high summer concentrations and low winter concentrations.
20 Aerosol sources were resolved, and INP concentrations were correlated with a coarse dust aerosol
21 type, which dominates PM_{10} in this region. Calculating IN active surface site densities (n_s) further
22 supporting the primary contribution from coarse dust to INPs. Treatment with H_2O_2 indicated
23 substantial contributions (91% on average) from organic INPs across all activation temperatures,
24 suggesting that supermicron organic-containing soil dust dominates the INPs in this region. Heat-
25 labile INPs, likely biological in origin, were identified as dominant at $>-15\text{ }^{\circ}\text{C}$ through heat
26 treatment of samples and showed significantly lower contributions in winter (~96% reduction).
27 Parameterizations based on n_s for the INPs observed in this mountainous region were developed,
28 which effectively reproduced measured INP concentrations, particularly when accounting for
29 seasonal differences. This study provides the first long-term, comprehensive characterization of
30 INPs for the Upper Colorado River Basin region and offers a parameterization potentially useful
31 for predicting INPs in other remote continental regions.

32 **1. Introduction**

33 Atmospheric aerosols play critical roles in forming clouds, and inadequate understanding of
34 aerosol-cloud interactions presents one of the largest uncertainties in predicting global climate
35 (IPCC, 2022; Seinfeld et al., 2016). The subset of aerosol particles that serves as ice-nucleating
36 particles (INPs) can trigger heterogeneous freezing of cloud water droplets, allowing them to
37 freeze above the homogeneous freezing temperature (approximately -38°C) (Hoose and Möhler,
38 2012). Among the mechanisms of heterogeneous freezing, this immersion freezing process is
39 considered the most important process for mixed-phase clouds, which are common at midlatitudes
40 in all seasons (Kanji et al., 2017; De Boer et al., 2011). These INPs are responsible for a significant
41 proportion of initial cloud ice phase formation, thus impacting the Earth's radiative balance and
42 precipitation (Lohmann and Feichter, 2005; Kanji et al., 2017; Burrows et al., 2022). Although
43 INPs are increasingly a focus of study, the sources and abundances of INPs are not well
44 characterized for many regions.

45 Various aerosol sources have been found to contribute to INPs, including natural and
46 anthropogenic sources (Kanji et al., 2017). Atmospheric mineral dust particles are considered a
47 dominant contributor of INPs throughout much of the troposphere (Murray et al., 2012; Hoose and
48 Möhler, 2012), and they produce high INP concentrations in a mass or surface area basis at
49 temperatures lower than -15°C (Atkinson et al., 2013; Kiselev et al., 2017). Mineral INPs are
50 inorganic components that are lofted from rock or soil and can undergo long range transport to
51 remote areas (Knippertz and Stuut, 2014). In contrast, soil dusts from agricultural or grazed fields
52 (arable soils) were suggested to contribute 25% of the global dust burden (Ginoux et al., 2012),
53 and were found to initiate ice nucleation at temperatures as high as -6°C (Garcia et al., 2012;
54 O'Sullivan et al., 2014). Organics in arable soil dust are suggested as the main contributors to their

55 ice nucleating ability (Tobo et al., 2014; Hill et al., 2016). Biomass burning aerosols and fly ash
56 also contribute to INP populations and have received increasing attention under global warming
57 and the accompanying more frequent and intense wildfires (Prenni et al., 2012; McCluskey et al.,
58 2014; Umo et al., 2015). Biomass burning aerosols typically present lower ice nucleating ability,
59 defined as the IN active surface site density for ice nucleation on particle surfaces (i.e., INP
60 concentration/aerosol surface area concentration), compared to dust particles, while atmospheric
61 aging can potentially enhance their ice nucleating ability (Jahl et al., 2021). Biogenic aerosols,
62 such as primary biological particles composed of bacteria, pollen, fungal spores, and their
63 fragments, were identified in the 1970s as important INP sources (Vali and Schnell, 2024; Schnell
64 and Vali, 2024). They typically can activate ice formation at a warmer temperature than other INPs
65 listed above and thus may control first ice formation in clouds (Pratt et al., 2009; Creamean et al.,
66 2013; Tobo et al., 2013). Besides these INP sources, marine aerosol (Wilson et al., 2015;
67 McCluskey et al., 2018b), secondary organic aerosol, and fuel-combustion aerosols can contribute
68 to INPs (Kanji et al., 2017).

69 To estimate INPs for use in numerical cloud models, early parameterizations were typically based
70 on empirical relationships between INPs and temperature or supersaturation alone (Bigg, 1953;
71 Meyers et al., 1992). These parameterizations could show large biases compared to field
72 observations. DeMott et al. (2010) proposed a widely used parameterization based on temperature
73 and number concentrations of particles larger than 0.5 μm in diameter, which has been applied in
74 global and regional models due to its convenience and independence from detailed aerosol
75 composition (Miltenberger et al., 2018; Storelvmo et al., 2011; Burrows et al., 2022). However,
76 recent studies highlight the need for more physically based and source-specific parameterizations
77 (Burrows et al., 2022; Shi and Liu, 2019; DeMott et al., 2015). Laboratory and field studies have

78 shown that different aerosol types (e.g., mineral dust, biological particles, marine aerosols) exhibit
79 distinct ice-nucleating efficiencies (Hoose and Möhler, 2012; Kanji et al., 2017). Parameterizations
80 based on the ice-nucleating IN active surface site density ($n_s(T)$) have been developed for various
81 aerosol types under immersion freezing conditions (Niemand et al., 2012; DeMott et al., 2015;
82 Harrison et al., 2019; McCluskey et al., 2018a; Umo et al., 2015; Schill et al., 2020; Tobo et al.,
83 2014; O'Sullivan et al., 2014). Further field observations and laboratory studies are needed to
84 improve these parameterizations and reduce uncertainties in INP predictions.

85 Mountainous regions, covering approximately one-quarter of the global land surface, play a critical
86 role in regional and global hydrological and climatic systems. Importantly, they are sources of
87 freshwater supporting nearly half of the world's population (Viviroli et al., 2007). Cloud and
88 precipitation formation in mountainous areas are strongly influenced by aerosol–cloud interactions
89 (Lynn et al., 2007). The presence, variability, and sources of INPs in mountain areas can
90 significantly affect cloud phase, lifetime, and precipitation efficiency (Creamean et al., 2013; Lynn
91 et al., 2007). However, INP observations in mountain environments, especially for long-term
92 continuous measurements, are limited (Lacher et al., 2018; Sun et al., 2024; Conen et al., 2015),
93 hampering our understanding of INP major sources, seasonal variation, and the influence of
94 complex mountain terrain on their vertical distribution. Improved understanding of INPs in
95 mountainous regions is essential for better representation of clouds and precipitation formation in
96 weather and climate models, and for predicting future changes in water availability under global
97 climate change regimes.

98 The Surface Atmosphere Integrated Field Laboratory (SAIL) Campaign, conducted from
99 September 2021 to June 2023 in the Upper Colorado River Basin of the Rocky Mountains,
100 included aims to improve understanding of how aerosols, particularly long-range transported dust

101 and wildfire smoke, affect the surface energy and water balance through their impacts on cloud,
102 precipitation, and surface albedo, and how these effects vary by season (Feldman et al., 2023).
103 This campaign provided a unique opportunity to investigate INPs in the Colorado Rocky
104 Mountains over a nearly two-year period. This study presents comprehensive measurements of
105 immersion-freezing INPs, including their seasonal and temperature-dependent variability, as well
106 as associations with aerosol sources. We further explore different INP compositional types,
107 biological/heat-labile, other organic, and inorganic INPs, and their inter-relationships, highlighting
108 the importance of organic INPs. A parametrization method is proposed for INPs in this region that
109 reproduces the observed two-year INP concentration record.

110

111 **2. Methods**

112 **2.1 Sampling site and sample collection**

113 The SAIL campaign deployed the Department of Energy Atmospheric Radiation Measurement
114 (DOE ARM) Mobile Facility 2 (AMF-2) at the East River Watershed, which is located near Crested
115 Butte and Gothic, Colorado (Feldman et al., 2023). This mountainous region, with elevations
116 ranging from ~2440 to 4350 m above sea level, is characterized by complex terrain, a deep seasonal
117 snowpack, and pronounced hydrometeorological gradients. The region experiences strong
118 seasonal contrasts, with cold snowy winter and warm summers influenced by convective activity
119 associated with the North American monsoon (Feldman et al., 2023).

120 For INP analyses, aerosol filter samples were collected by DOE ARM technicians through the INP
121 Mentor Program approximately every three days from September 2021 to June 2023, with each
122 sampling period lasting about 24 hours, as described in the instrument handbook (Creamean et al.,

123 2024) and repeated briefly here. Aerosols were collected on two 47 mm Nuclepore polycarbonate
124 filters (0.2 μm pore size) at flow rates in the range of 10–18 lpm, with total sampling volumes of
125 approximately 15000 to 25000 L. For computing atmospheric concentrations in this study, the
126 sampling volume was corrected to standard temperature (273.15 K) and pressure (101.3 kPa). Prior
127 to sampling, the filters were cleaned using 10% H_2O_2 and deionized (DI) water to remove organic
128 and biological residues, then stored in sterile Petri dishes. For the first month (September 2021) of
129 the campaign, samples were collected at the M1 site (38°57'22.35"N, 106°59'16.66"W at 2885 m
130 MSL). From October 2021 to June 2023, samples were collected at the S2 site (38°53'52.66"N,
131 106°56'35.21"W at 3137 m MSL). The distance between M1 and S2 sites is about 8 km. The
132 possible difference in INP concentrations at M1 in the first month is not addressed here, since this
133 study is aimed at representing the INPs in this region, and there was no significant change in INP
134 concentrations when moving from the M1 to the S2 site. All samples were stored at $-20\text{ }^{\circ}\text{C}$ after
135 collection, during shipment, and until the analysis in the laboratory.

136

137 **2.2 Laboratory Ice Spectrometer analysis of filter-collected particles**

138 The immersion freezing ability of particles collected on filters was quantified using the Colorado
139 State University (CSU) Ice Nucleation Spectrometer (INS), following established procedures
140 (McCluskey et al., 2017; Hiranuma et al., 2015; Barry et al., 2021a), which are the same methods
141 used by the DOE ARM INP Mentor Program (Creamean et al., 2024). The INP Mentor Program
142 analyzed many of the samples from the SAIL campaign. Our analysis was used to fill gaps in time
143 for the Mentor Program samples, and provide additional heat and hydrogen peroxide treatments,
144 described below. Our data on these samples is provided within the Mentor Program data product
145 (Shi et al., 2025). Briefly, exposed filters were mixed with 10 mL of filtered deionized water in a

146 centrifuge tube, then rotated for 20 minutes using an end-over-end shaker to resuspend the particles.
147 Aliquots of the resuspension solution were pipetted into a 96-well PCR tray and cooled at a rate
148 of $0.33\text{ }^{\circ}\text{C min}^{-1}$ from room temperature to $-30\text{ }^{\circ}\text{C}$ in the CSU INS. The number of frozen wells
149 was recorded at $0.5\text{ }^{\circ}\text{C}$ intervals. Cumulative INP concentrations as a function of temperature
150 ($n_{INPs}(T)$, INPs per liter of air) were calculated based on the method of Vali (1971) using:

151

$$n_{INPs}(T) = \ln\left(\frac{N_0}{N_0 - N(T)}\right) \times \frac{V_w}{V_c} \times \frac{1}{V_a}$$

152 where N_0 is the total number of wells containing aliquots, $N(T)$ is the cumulative number of wells
153 frozen at temperature T , V_w is the volume of water used for particle resuspension, V_c is the aliquot
154 volume added to each well, and V_a is the total sampled air volume. Counting uncertainties were
155 estimated using binomial confidence intervals (Agresti and Coull, 1998). Field blank filters were
156 collected every month by briefly exposing them at the sampling site for several seconds before
157 storage. Before calculating INP concentrations, the average number of INPs versus temperature
158 per blank filters was subtracted from the calculated number of INPs versus temperature per sample
159 filter, to account for potential contamination during sampling and handling, as well as any residual
160 contamination on the filters after cleaning.

161 To further characterize the types of INPs, portions of the suspended aerosol solution were subjected
162 to heat and hydrogen peroxide (H_2O_2) treatments, followed by freezing analysis of aliquots of these
163 portions. For heat treatment, the solution was heated to $95\text{ }^{\circ}\text{C}$ for 21 min before measurement. This
164 process inactivates the biological INPs by denaturation of proteins and removes heat-labile INPs
165 (O'Sullivan et al., 2014; Tobo et al., 2014; Hill et al., 2016). In total, 43 samples were exposed to
166 $95\text{ }^{\circ}\text{C}$ heat treatment, and their temperature spectra are shown in Figure S1. In the peroxide
167 treatment, 30% H_2O_2 was added to the solution to make a final concentration of 10%, and the

168 mixture was heated at 95 °C for 21 min under UVB light to digest organics (Suski et al., 2018),
169 and the INPs remaining were presumed to be inorganic. A total of 34 samples underwent H₂O₂
170 treatment, with their temperature spectra shown in Figure S2. By comparing untreated (base), heat-
171 treated, and H₂O₂-treated results, INPs were categorized into biological/heat-labile, other organic,
172 and inorganic types. Daily et al. (2022) found that some minerals also showed reduced immersion-
173 freezing activity after heat treatment; however, SAIL samples showed some difference with the
174 behaviors they reported. For minerals with initial active temperatures > -10 °C, IN active surface
175 site density either decreased at all measured temperatures (Arizona Test Dust (ATD) and Fluka
176 Quartz) or was not sensitive to wet heating (K-feldspar) (Daily et al., 2022), differing from some
177 spectra of SAIL samples that only showed decreases at warm temperatures and almost no change
178 at temperatures < -18 °C (Figure S1). This suggests that mineral INPs have limited contributions
179 to the decreases of INP concentrations after heat treatment in the SAIL samples.

180 There were eight ground-based sites within 55 km of the SAIL sampling locations conducted
181 orographic cloud seeding operations by North American Weather Consultants Inc., targeting
182 precipitation enhancement. To the best of our knowledge, these seeding stations combusted
183 solutions in a propane flame, producing particles containing silver iodide (AgI) and other inorganic
184 salts that served as seeding aerosols. These seeding activities occurred in specific storm situations
185 during winter and early spring and strongly impacted our INP observations. The measured
186 concentrations of INPs active at temperatures from -7.5 °C to -27.5 °C for a total of 113 24-hour
187 samples are shown in Figure S3. Since this work focuses on investigating the natural or background
188 INPs in the Rocky Mountain region, samples collected on days that overlapped with artificial cloud
189 seeding activities, as recorded in their logbook (data provided by North American Weather
190 Consultants Inc.), are highlighted in Figure S3 and excluded from the discussion below. Cloud

191 seeding activities last less than 24 hours, typically 4-8 hours, and are unlikely to affect the
192 subsequent sample collected 3 days later. Also, eight samples collected during winter exhibited
193 distinct INPs spectra from other samples, but highly similar to the INP spectrum of Snomax®, a
194 commercial non-living bacterial INP product used in snowmaking (Figure S4a). Furthermore, *P.*
195 *syringae*, the bacterium type in Snomax, was identified in some of these samples based on qPCR
196 analysis (Supplement Text S2, Figure S4b). These samples are highly suspected to have been
197 affected by snowmaking activities during wintertime, associated with the location of sampling site
198 within a ski resort at Crested Butte. Therefore, these samples, along with those affected by cloud
199 seeding activities, were excluded from the subsequent discussion to better understand the
200 characteristics of natural INPs in the Rocky Mountain region.

201

202 **2.3 Source apportionment**

203 To investigate aerosol sources in the SAIL region, source apportionment was performed using
204 positive matrix factorization (PMF). PMF is a receptor model that decomposes an observation
205 matrix into factor profiles and their corresponding contributions related to emission sources and/or
206 atmospheric processes, providing a quantitative assessment of source influences (Paatero and
207 Tapper, 1994). Data from the Interagency Monitoring of Protected Visual Environments
208 (IMPROVE) site at White River, located approximately 30 km north of the SAIL campaign site,
209 were used for PMF analysis. The IMPROVE network (Malm et al., 1994) has collected 24-hour
210 aerosol filter samples every three days over several decades at this site, providing a valuable dataset
211 to understand aerosol sources and their long-term variability in the region. In the IMPROVE
212 program, elemental analysis was performed on the Teflon filters using X-ray fluorescence (XRF),
213 anions were analyzed using ion chromatography (IC), elemental carbon (EC) and organic carbon

214 (OC) were analyzed using a carbon analyzer (Hand, 2023). Chemical concentrations in the PM_{2.5}
215 fraction of nineteen elements (Al, As, Br, Ca, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Se, Si, Ti, V,
216 and Zn), along with nitrate, sulfate, elemental carbon (EC), organic carbon (OC), and calculated
217 coarse mass concentrations (PM₁₀–PM_{2.5} mass concentrations), from January 2014 to April 2024
218 were used as input for the PMF analysis performed using EPA PMF 5.0 (Norris et al., 2014).
219 IMPROVE species concentrations were reported based on local conditions.

220 A five-factor solution was selected as the optimal solution based on the Q/Q_{exp} value and
221 interpretation of the physical meanings of the factors (Brown et al., 2015). The corresponding
222 factor profiles and time series are shown in Figures S5 and S6. These factors were identified, based
223 on chemical signatures and previous literature, as coarse dust, fine dust, biomass burning, sulfate-
224 dominated, and nitrate-dominated sources. Coarse and fine dusts had high contributions from Al,
225 Ca, Fe, Mg, and Si, which are the main components of mineral dust (Liu and Hopke, 2003). Coarse
226 dust explained more than 90% of the coarse mass (> PM_{2.5}), while there was no contribution from
227 coarse mass in the fine dust factor. The biomass burning factor was strongly associated with
228 organic and elemental carbon, which are mainly from combustion processes, and K, a tracer of
229 biomass burning (Hopke et al., 2020). The other two factors are dominated by nitrate and sulfate,
230 which are related to the formation of secondary aerosols and possibly some primary emissions
231 from regional sources that include energy production and distant urban regions. Some similar
232 factors were also resolved in published PMF analyses using IMPROVE data (Liu and Hopke, 2003;
233 Hwang and Hopke, 2007). Further details on the PMF analysis and results, as well as support for
234 their applicability over the broad surrounding Rocky Mountain region (IMPROVE sites at Mount
235 Zirkel and Rocky Mountain National Park) are provided in Supplement Text S1 and Figure S7.
236 Data for the PMF results are available through the ARM data product (Zhou et al., 2025a).

237 To assess the impact of different sources on INPs, the INP samples were categorized into six types
238 based on the dominant aerosol sources during the sampling period, and the contribution of sources
239 to each sample was shown in Figure S8. However, IMPROVE samples were taken only one of
240 every three days. For days without available IMPROVE data, aerosol sources were inferred from
241 the nearest sampling days. Samples were classified as follows: (1) Coarse dust, if coarse dust
242 contributed more than 50% to the total PM₁₀ mass concentration or contributed more than 40%
243 and represented the largest contribution among all sources; (2) Biomass burning, if biomass
244 burning accounted for more than 50% of the total PM₁₀; (3) Dust, if the combined contribution of
245 coarse and fine dust exceeded 50% of the total PM₁₀, with the difference between fine and coarse
246 dust being less than 20%; (4) Fine dust, if the combined mass contribution of coarse and fine dust
247 exceeded 50% of the PM₁₀ and fine dust exceeded coarse dust by more than 20%; (5) Mixed
248 samples, samples for which no single source was dominant, typically characterized by a sulfate
249 contribution greater than 20% of the PM₁₀. (6) Additionally, seven samples fell within periods
250 where more than one consecutive IMPROVE sample was missing (one week or longer). For these
251 cases, source contributions were not interpolated, and they were categorized as samples with no
252 source data. Source influences inferred from the nearest sampling days may introduce uncertainties.
253 However, the merged size distribution data (section 2.5 and Figure 2) for these days showed similar
254 size distribution patterns and comparable number concentrations for most size ranges compared to
255 the nearest days, suggesting that significant changes in aerosol sources for these inferred days were
256 limited. Also, the discussion is based on each group containing multiple samples, which should
257 also reduce the uncertainties associated with the inferred source from a single sample.

258

259 **2.4 Back trajectory analysis**

260 Air mass back trajectory analysis was performed using the Hybrid Single-Particle Lagrangian
261 Integrated Trajectory model (HYSPLIT; Stein et al., 2015; Rolph et al., 2017), developed by the
262 National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory. For each
263 hour during each sampling period (typically 24 h), a 96-hour back trajectory was initiated at the
264 SAIL sampling site, starting 100 m above ground level, and using the GDAS meteorological
265 dataset with model vertical velocity. The areas traversed by the back trajectory were gridded into
266 $1^\circ \times 1^\circ$ cells. For each trajectory, its occurrence in each grid cell was weighted by the residence
267 time spent in that cell. To account for the peak in occurrence near the sampling site, the residence
268 times were further normalized by the distance from the SAIL sampling site, following the method
269 of Ashbaugh et al. (1985). The analysis was performed for each sample, and the resulting
270 trajectories were aggregated to produce a composite residence-time map (Figure 1). Separate
271 analyses were also performed for samples categorized by different source types (Figure S9),
272 aggregating hourly trajectories for all sample times of a corresponding type across the campaign.
273 Back trajectory data are available through the ARM data product (Zhou et al., 2025b).

274

275 **2.5 Merged particle number-size distribution and IN active surface site density**

276 During the SAIL campaign, a scanning-mobility particle sizer (SMPS) and an optical particle
277 counter (OPC) were deployed simultaneously with the filter sample collection to measure aerosol
278 number size distributions in the particle diameter ranges from 10–500 nm and 0.25–35 μm ,
279 respectively (Kuang et al., 2024; Cromwell et al., 2024). To obtain a continuous number size
280 distribution from 10 nm to tens of micrometers, measured number size distributions from the
281 SMPS and OPC were merged following previous methods (Hand and Kreidenweis, 2002;
282 Marinescu et al., 2019). Briefly, the mobility diameters from the SMPS were assumed to be equal

283 to volume equivalent diameters by assuming the particles are spherical, and number distributions
284 were converted to volume distributions. A scaling factor was determined by comparing the
285 overlapping size range of the two instruments, and the OPC volume size distribution was then
286 aligned with the SMPS volume distribution measurements by shifting OPC measured diameters to
287 estimate the SMPS mobility diameter corresponding to that optical diameter. All aerosol data from
288 the ARM archive were corrected to standard temperature (273.15 K) and pressure (101.3 kPa). All
289 merged size distribution data are available through the ARM data product (Zhou et al., 2025c). A
290 timeline of the merged number-size distributions of aerosols during the SAIL campaign is shown
291 in Figure 2.

292 Assuming that the number of active ice nucleation sites is linearly proportional to the particle
293 surface area, the IN active surface site density (m^{-2}) at temperature T ($n_s(T)$, m^{-2}) was calculated
294 using the following equation:

$$295 \quad n_{s,500}(T) = \frac{n_{\text{INP}}(T)}{S_{\text{m},500}} \times 10^9$$

296 where $n_{\text{INP}}(T)$ (sL^{-1}) is the measured INP concentration at temperature T , $S_{\text{m},500}$ ($\mu\text{m}^2/\text{scm}^3$) is the
297 surface area concentration of particles larger than 500 nm diameter calculated from the merged
298 size distribution, assuming that particles are spherical, and the 10^9 conversion factor is used for
299 $n_{s,500}$ units of m^{-2} . In this study, the surface area of particles > 500 nm is used to exclude surface
300 area associated with pollution and other aerosol types that are inefficient sources of INPs. This is
301 supported by the correlation found between INP concentrations and the number concentrations of
302 particles > 500 nm in a previous study (DeMott et al., 2010). The n_s is also calculated based on
303 total surface area concentrations to facilitate comparison with other studies and is shown in Figure
304 S10. While the IN active surface site density approach is typically fully justified for single INP

305 compositions, we will apply it here to the total surface areas, but also discuss adjustments needed
306 when comparing to more specific INP parameterizations.

307

308 **3. Results and Discussion**

309 **3.1. INPs concentrations at the SAIL study site**

310 Samples not affected by artificial INP generation activities (cloud seeding and snowmaking
311 activities in winter; see section 2.2), representing the natural INPs in this region (84 samples in
312 total), are shown in Figure 3a. The discussion in this study focuses on these samples to better
313 understand the characteristics of natural INPs in the Rocky Mountain region. INP concentrations
314 ranged from $4 \times 10^{-4} \text{ L}^{-1}$ to 1.5 L^{-1} (mean: 0.15 L^{-1} , median: 0.05 L^{-1}) at -15°C , and from 1.2
315 L^{-1} to 90 L^{-1} (mean: 16 L^{-1} , median: 12 L^{-1}) at -25°C . This is comparable to online INP
316 measurements in the Rocky Mountain region (median: 8.2 L^{-1} at -26°C ; Lacher et al., 2025).
317 Compared with previous INP studies summarized by Kanji et al. (2017), the INP concentrations
318 observed during the SAIL campaign fall within the range of those in their compilation that were
319 influenced by dust, biomass burning, and precipitation, and are higher than those from marine
320 aerosols but lower than the maximum of those attributed to biological sources. Regarding temporal
321 variations, INP concentrations at all measured temperatures followed a similar trend over the
322 nearly two-year observation period: low in winter, increasing in spring, and reaching highest
323 concentrations during summer and early fall. For activation temperatures warmer than -25°C , the
324 highest INP concentrations were all observed in summer. For temperatures colder than -25°C , the
325 samples from summer also showed high INP concentrations, while the peak concentrations
326 occurred in September 2021. Back trajectories of those samples (2021-9-9 and 2021-9-16) showed

327 that the air masses mainly originated from the northwestern U.S. Intense wildfires occurred in that
328 region during the summer of 2021 (Jain et al., 2024), and the transported smoke plumes increased
329 aerosol loading at the SAIL site. These smoke intrusions may also result in enhanced INP
330 concentrations active at low temperatures.

331 Monthly mean INP concentrations were calculated and are presented in Figure 3b, to better
332 visualize seasonal trends and reduce the impact of individual outliers. INP concentrations showed
333 clear seasonal variations throughout the campaign. Note that our sampling did not cover the entire
334 month, so some outliers may have been coincidentally captured or missed, however, the two-year
335 monthly dataset is still expected to broadly represent the seasonal variations of INPs in this region.
336 In general, INP concentrations reached peaks in June 2022 across all temperatures, and reached
337 minimum levels during winters in both years. However, differences existed among activation
338 temperatures. At warmer temperatures (-10°C and -15°C), INP concentrations were relatively
339 similar in warm seasons (April–October) and much higher than those in cold seasons (November–
340 March). Bioaerosols are typically recognized as major INP sources at these activation temperatures
341 (Kanji et al., 2017), and their emissions generally decrease in winter in most areas due to reduced
342 biological activities and possible snow cover limiting resuspension (Fröhlich-Nowoisky et al.,
343 2016). A distinct high INP peak was observed in June 2022, which was ten times higher than that
344 in June 2023, and much higher than in other months, suggesting that a high INP emission event
345 occurred during this month, which may be related to a specific biological emission event and/or
346 dust event. For activation temperatures of -20°C and -25°C , INP concentrations also showed a
347 seasonal pattern increasing from April, peaking in June, then decreasing and reaching a minimum
348 in December. Recent online INP measurements for activation temperatures from -22°C to -32°C
349 conducted from October 2021 to May 2022 and January to May 2025 at the Storm Peak Laboratory

350 in the Rocky Mountains (Lacher et al., 2025) found a similar seasonal pattern, with the lowest INP
351 concentrations in winter and increased in spring, suggesting that the INP sources could be similar
352 and may dominate INPs across a broad region of the Rocky Mountains. The elevated INPs from
353 April to September may be attributed to enhanced dust aerosols, as dust concentrations were found
354 to increase during this period (Hand et al., 2017), and dust is a significant source of INPs,
355 especially at temperatures below -15°C (Kanji et al., 2017; DeMott et al., 2015). Lower-
356 temperature INP concentrations in June 2022 were also higher than those in June 2023, while
357 the magnitude of this difference (a factor of two) was less distinct from the difference at -10°C
358 (twelve times). This suggests that the origins of INPs activated at lower temperatures differ from
359 those at warm temperatures.

360

361 **3.2. Relationships between aerosol sources and INPs**

362 The sources of aerosols to the SAIL campaign region were identified based on the PMF analysis
363 (Text S1, Figures S5 and S6). Different sources exhibited unique seasonal trends. Coarse dust
364 showed increased concentrations from April to September and had the highest annual mean
365 concentration among the five resolved particle types. Fine dust increased sharply in April, May,
366 and June, and remained low during other months. Biomass burning aerosol varied significantly by
367 year. Strong peaks in concentrations were observed in September 2021, with SAIL collecting some
368 samples at the end of these events, and increased contributions in June–August 2022. The biomass
369 burning factor typically showed high concentrations in summer. The sulfate-dominated and nitrate-
370 dominated factors had much lower concentrations overall, with peaks occurring in summer and
371 spring, respectively. The aerosol number size distribution also reflected the variations in different
372 sources (Figure 2). Supermicron particle concentrations were higher when coarse dust increased.

373 Submicron particles concentrations increased in September 2021 and the summer of 2022, which
374 corresponded to increases in contributions from the biomass burning factor. To investigate the
375 impact of different aerosol types on INPs, temporal variations between aerosol sources and INP
376 concentrations at -15°C and -25°C were compared, as shown in Figure 4. Monthly average
377 concentrations were used to minimize the impact of unsampled dates. Although this may introduce
378 uncertainties by smoothing episodic peaks of a source, the nearly two-year (22 months) record
379 should adequately represent its seasonal cycle. Pearson correlation coefficients between monthly
380 INP concentrations (-10°C , -15°C , -20°C , and -25°C) and aerosol sources are shown in Table
381 1.

382 Coarse dust and biomass burning presented seasonal variations similar to those of INPs at -15°C
383 and -25°C , while fine dust, nitrate-dominated, and sulfate-dominated factors had weaker
384 correlations (Figure 4). The strong correlations with coarse dust and biomass burning aerosols
385 suggest that these sources significantly contributed to observed INPs. Coarse dust showed good
386 correlations with INPs active at all temperatures (Table 1), with correlation coefficients increasing
387 for colder temperatures, suggesting that coarse dust is a major source of INPs, particularly at lower
388 temperatures. This is consistent with previous findings that dust dominates the INPs at
389 temperatures below -20°C (Beall et al., 2022; Testa et al., 2021; Kanji et al., 2017). Furthermore,
390 Lacher et al. (2025) provided direct evidence that INPs active at cold temperatures were
391 significantly contributed by supermicrometer particles, which they attributed to dust, in the Rocky
392 Mountains. Their observation site was located near to the IMPROVE site at Mount Zirkel, where
393 our PMF analyses identified similar sources and trends to those near the SAIL (Text S1),
394 suggesting that INPs in both studies were impacted by coarse dust. Interestingly, coarse dust
395 presented a weaker correlation with INPs at -10°C ($R^2 = 0.43$), a temperature range usually

396 associated with biological INPs. This may be due to the large number of coarse dust particles,
397 biological INPs carried on dust particles, and/or the inclusion of biological particles in the coarse
398 dust factor, as biological particles are mostly supermicron in size (Després et al., 2012). Biomass
399 burning presented a strong correlation with INP at -25°C and weak correlations at warmer
400 temperatures (-10°C and -15°C), suggesting that aerosols from biomass burning contribute
401 primarily to INPs active at lower temperatures. Combining coarse dust and biomass burning
402 contributions showed an even better correlation with INPs (Table 1), supporting that these are the
403 major contributors of INPs in this region, especially at lower activation temperatures.

404 Different from coarse dust, fine dust showed weak relationships with INPs at all temperatures (R^2
405 = 0.10–0.19), suggesting lower contributions to INPs. One possible reason is that larger particles
406 have more ice nucleation active sites (Reicher et al., 2019; DeMott et al., 2010). Another reason
407 could be differences in sources of fine and coarse dust that resulted in different ice-nucleating
408 abilities. Fine dust presented a different seasonal pattern compared to coarse dust. Fine dust
409 concentrations peaked in spring, especially in April, while coarse dust was higher in summer. This
410 difference was also observed in Hand et al. (2017) for the Colorado Plateau and Central Rockies
411 regions. They suggested that fine dust in this region is influenced by regional or long-range
412 transported dust, such as Asian dust, while coarse aerosol mass concentrations (defined as the
413 difference between PM_{10} and $\text{PM}_{2.5}$, which was almost all loaded into the coarse dust factor in our
414 PMF analysis) are mainly derived from local and regional sources. Sulfate-dominated and nitrate-
415 dominated sources were not correlated with INP concentrations. In remote areas, sulfate and nitrate
416 particles mainly come from secondary formation (Seinfeld and Pandis, 2016) and are generally
417 not considered as efficient INPs (Kanji et al., 2017).

418

419 **3.3. INP temperature spectra categorized by sources**

420 The total INP temperature spectra categorized by dominant aerosol types are shown in Figure 5a,
421 and total INP spectra sorted under dominant influence of each source type are plotted separately
422 in Figure S11. Significant differences in INP concentrations were observed between periods where
423 different aerosol source types were dominant. Over 50% of the samples were dominated by coarse
424 dust, which was the predominant aerosol source in this region (Figure S8). Considering that coarse
425 dust also showed a strong correlation with INPs, this suggests INP concentrations were likely
426 primarily influenced by coarse dust in this area. Mineral dust (DeMott et al., 2003; Niemand et al.,
427 2012; Atkinson et al., 2013), soil dust that contains abundant organics (Tobo et al., 2014; Steinke
428 et al., 2016; O'Sullivan et al., 2014), and playa dusts (Pratt et al., 2010; Hamzehpour et al., 2022)
429 have been widely investigated, and are considered as important INP sources. Based on back
430 trajectories for samples categorized as coarse dust-dominated (Figure S9), air masses were mostly
431 from local or regional sources (Central Rockies and Colorado Plateau, with additional inputs from
432 the agricultural Imperial Valley in southern California). Considering their larger size and mass,
433 coarse dust particles have relatively short atmospheric transport ranges, and local resuspension of
434 soil is likely a dominant source (Hand et al., 2017). High air mass residence times were also
435 indicated for the Great Salt Lake region, suggesting potential contributions from playa salts. This
436 is consistent with the contributions of Cl and Na in the coarse dust factor profile from the PMF
437 analysis (Figure S5a), and playa salt dusts have also been observed, at least at lower temperatures
438 in the mixed phase regime, to serve as INPs (Pratt et al., 2010; Koehler et al., 2007).

439 Compared to INPs samples that aerosols dominated by coarse dust, fine dust-dominated time
440 periods showed lower INP concentrations (Figure 5). Back trajectories also indicated different
441 origin regions from those for coarse dust; samples dominated by fine dust had trajectories mainly

442 from southern California and the Sonoran Desert in Arizona, known as an area with high dust
443 emissions (Ginoux et al., 2012). Fine dust is likely long-range transported as Asian dust (Hand et
444 al., 2017) or from the noted southwestern desert areas. Besides their different origins, the higher
445 INP concentrations associated with coarse dust-dominated samples compared to those dominated
446 by fine dust can also be attributed to differences in particle size, although confirming this would
447 require data on size-resolved INPs that were not collected. INPs related to biomass burning-
448 dominated samples presented comparably high concentrations, which may be related to the
449 significantly elevated aerosol loading during biomass burning events. To assess the ice nucleating
450 activity, with the influence of aerosol concentrations and size distributions accounted for, the IN
451 active surface site density was further investigated.

452

453 **3.4. IN active surface site density (n_s) temperature spectra**

454 The IN active surface site density (n_s) temperature spectra, a measure of INPs per aerosol surface
455 area, are shown in Figure 5b for all samples, categorized by dominant aerosol type. Compared to
456 INP concentrations, the n_s values were less variable at a given temperature, with most samples
457 within one order of magnitude of each other, whereas INP concentrations spanned nearly two
458 orders of magnitude, suggesting that at least some of the variability in INP concentrations can be
459 explained by differences in particle size distributions and concentrations.

460 Samples dominated by a specific aerosol source (coarse dust, dust, fine dust, or biomass burning)
461 exhibited relatively consistent n_s values with some differences among categories. The n_s of samples
462 dominated by coarse dust was similar to or slightly higher than those having both abundant coarse
463 and fine dusts (categorized as dust), suggesting that INPs from coarse dust have higher IN active

464 surface site density. After normalizing by surface area, the n_s for the fine dust-dominated samples
465 showed closer values with those of the coarse dust-dominated samples, while still lower. This
466 suggests that the lower INP concentrations in fine dust-dominated samples can be partly attributed
467 to differences in aerosol surface area concentrations, but also to lower active site density due to
468 potentially different INP sources. The differences in n_s between coarse dust- and fine dust-
469 dominated samples were limited, likely because there were still small contributions from coarse
470 dust (17% on average), although fine dust dominated these samples (59% on average).

471 During biomass burning events, aerosol number concentrations were significantly enhanced,
472 especially for submicron particles (Figure 2). A correlation was found between the biomass
473 burning factor mass concentrations and the total surface area concentrations of aerosols (Figure
474 S12), suggesting that such events significantly increased aerosol surface area concentrations.
475 However, its contributions to INPs could be affected by coarse dust. After normalization by surface
476 area ($S_{m,500}$), the n_s of INP samples for aerosols dominated by biomass burning were similar to
477 those of coarse dust-dominated samples. Compared with previous studies (comparison based on
478 computing n_s using total surface area), these values were higher than n_s reported from laboratory
479 biomass burning studies (Umo et al., 2015; Jahn et al., 2020) and those reported in ambient biomass
480 burning observations (McCluskey et al., 2014; Barry et al., 2021b; Zhao et al., 2024). During SAIL,
481 this finding may have been due to the presence of coarse dust, which has a much higher n_s than
482 biomass burning, as this aerosol type still contributed moderately to the total aerosols in these
483 samples (an average of 22% of PM_{10}), although biomass burning was the dominant aerosol source
484 (62% on average). Wildfire events could also be a source of airborne dust (Wagner et al., 2018;
485 Meng et al., 2025). From the NOAA Hazard Mapping System (Figure S13) and back trajectories
486 (Figure S9), these samples were mostly affected by long-range transported biomass burning

487 aerosols originating primarily from wildfires in the northwest and southwest U.S. Aging could
488 enhance the n_s of biomass burning INPs (Jahl et al., 2021) and may also have contributed to higher
489 n_s of these samples.

490 In contrast to the convergence observed in samples dominated by a single source, samples related
491 to mixed sources showed no reduction in variability after normalization by surface area (Figure 5
492 and Figure S11). Although it is difficult to precisely determine the INP sources for these samples
493 based on current available analyses, this comparison strongly supports the link between INPs and
494 the dominant bulk aerosol sources in this study.

495

496 **3.5 Evidence of biological contribution to INPs**

497 From the INP temperature spectra and n_s for all samples (Figure 5), the spectra for INPs active at
498 temperatures higher than about -18 °C showed a segregation into two groups: one with higher INP
499 concentrations (and n_s) and measured detectable freezing onset temperatures mostly > -10 °C, and
500 the other with lower INP concentrations (and n_s) and lower measured detectable freezing onset
501 temperatures, with most of those samples assigned to aerosol sources of mixed and fine dust. We
502 found all samples in the latter group were collected from December to March. At freezing
503 temperatures warmer than -15 °C, biological INPs are likely to play a more important role (Kanji
504 et al., 2017).

505 Here, we separated samples collected during cold seasons (December–March) and during other
506 seasons (April–November), as shown in Figure 6. This separation clearly shows that on average,
507 INP concentrations were lower in cold seasons, with the most striking difference at temperatures
508 warmer than -15 °C (15% of INPs in other seasons). A further comparison of n_s (Figure 6b) showed

509 that samples from cold seasons had similar n_s at temperatures colder than around -18 °C. However,
510 at warmer temperatures, samples from cold seasons showed consistently lower n_s . These results
511 suggest that INPs that activated at temperatures colder than around -18 °C likely originated from
512 similar sources throughout the whole year, which were primarily associated with coarse dust, as
513 discussed above. However, in cold seasons, the contribution from biological INPs was
514 significantly reduced, leading to the divergence in the spectra for temperatures warmer than around
515 -18 °C. This seasonal pattern is supported by the environmental temperature dependence of
516 biological aerosol emissions (Shawon et al., 2025).

517 The likely biological nature of these warmer-temperature INPs was also identified from the heat
518 treatment of samples. A compilation of spectra from all base (untreated) analyses, heat, and H_2O_2
519 treatments is shown in Figure 7. The difference between the base and heat spectra indicated a large
520 contribution (82–94%, 90% on average) of heat-labile INPs at warm temperatures (> -15 °C),
521 which are presumably biological INPs. Each individual heat spectrum is shown in Figure S1. In
522 September 2021, most samples showed decreased INP concentrations at temperature warmer than
523 -15 °C after heat treatment, while almost no decrease was observed at lower temperatures. This
524 reduction is likely due to denaturing of biological INPs, reducing or removing their IN activity
525 (Hill et al., 2016). Samples from September 2021 were strongly affected by biomass burning
526 (Figure S6). Kobziar et al. (2024) found that biological aerosols can be co-emitted in biomass
527 burning. The presence of biological INPs in smoke plumes was also suggested in aircraft
528 measurements of biomass burning aerosols, which showed base and heat-treated spectra (Barry et
529 al., 2021b) similar to those observed in SAIL samples from September and October 2022. During
530 the SAIL campaign, Shawon et al. (2025) and Ashfiqur et al. (unpublished data) detected biological
531 aerosols using a Wideband Integrated Bioaerosol Sensor (WIBS) and scanning electron

532 microscopy during selected intensive observation periods (June–September 2022 and September
533 2022, respectively), further supporting the presence of biological aerosols during these periods,
534 some of which may be active as INPs. Biological/heat-labile INPs during the cold seasons account
535 for only 4% of those in the other seasons. There were no significant decreases in warm-temperature
536 INP concentrations after heat treatment for samples collected from January to early April 2022 and
537 December 2022 to March 2023, indicating that biological INPs concentrations were very low
538 during the cold seasons. In the other seasons (April–November), many samples showed spectra in
539 which heat treatment significantly decreased INP concentrations at temperatures $> -15^{\circ}\text{C}$ and
540 almost no change at lower temperatures, suggesting abundant heat-labile INPs, presumably of
541 biological origin.

542

543 **3.6 Relationships among INPs types inferred from treatments**

544 After H_2O_2 treatment, almost all samples showed significant decreases (83–97%, with an average
545 reduction of 91%) in INP concentrations across all measured activation temperatures (Figure 7
546 and Figure S2), suggesting substantial contributions from organic INPs through the entire
547 temperature spectrum. The inorganic INPs and other organic INPs were correlated at -15°C and
548 -25°C (Figure 8e and 8f), especially at the lower temperature. The correlations clustered around
549 the 10:1 line, with ratios of 14 and 13 at -15°C and -25°C , respectively. These results indicated
550 a dominant contribution from organic components suggestive of a soil origin, as previous studies
551 found that soils contain abundant organic INPs in addition to mineral INPs (Tobo et al., 2014;
552 O'Sullivan et al., 2014; Pereira et al., 2022; Suski et al., 2018; Testa et al., 2021). A short-term
553 observational study (DeMott et al., 2025) at the Storm Peak Laboratory in the Colorado Rockies
554 also attributed soil INPs as the dominant INP source in late summer and early fall. These

555 correlations provide further support that the coarse dust factor was mainly from resuspension of
556 local or regional soil dust. Testa et al. (2021) also found a correlation at -25°C between other
557 organic and inorganic INPs, with a mean ratio of 5.5 in samples from north-central Argentina. Our
558 results and those of Testa et al. (2021) suggest that other organic INPs and inorganic INPs are co-
559 emitted from similar sources. The correlation coefficient increased at lower temperatures, possibly
560 because other organic and inorganic INPs had limited contributions at -15°C , a range strongly
561 influenced by biological aerosols. Note that INPs from biomass burning could also contribute to
562 this correlation, as they show similar organic and inorganic INP characteristics in their INP spectra
563 (Schill et al., 2020; Barry et al., 2021b). The only exception is sample 2021-10-14, for which
564 similar INP concentrations were observed in the base, heat, and H_2O_2 treatments at temperatures
565 $< -15^{\circ}\text{C}$, suggesting that it was likely dominated by mineral dust.

566 Unexpectedly, a correlation was observed between the biological/heat-labile INPs and other
567 organic INPs at -15°C ($R^2 = 0.61$, $n = 29$, Figure 8a). This correlation suggests that increases in
568 heat-labile INPs, presumably biological INPs, were accompanied by increases in organic INPs.
569 This is possibly because both biological and organic INPs during SAIL originated from the same
570 source at this temperature, which was likely soil dust. However, at a warmer temperature
571 (-12.5°C), the correlation was weaker ($R^2 = 0.10$, $n = 20$), possibly because biological INPs from
572 non-soil sources contributed at higher temperatures (Huang et al., 2021), as the ratios between
573 biological/heat-labile INPs and other organic INPs changed from 13 (-15°C) to 43 (-12.5°C). At
574 -25°C , correlations between biological/heat-labile INPs and other organic INPs were much
575 weaker, and the ratio was much lower (mean ratio of 2).

576

577 **3.7 Prediction of INPs in the Rocky Mountain region**

578 In this study, n_s values were found to be close to those used in the parameterizations derived from
579 studies of agricultural soil (Tobo et al., 2014), desert dust (Niemand et al., 2012), and fertile soil
580 (O'Sullivan et al., 2014) (Figure S14a). Applying the parameterization from Tobo et al. (2014)
581 using the surface area of particles > 500 nm reasonably estimated INP concentrations (Figure
582 S14b), but tended to underestimate them. This is possibly because the equation provided by Tobo
583 et al. (2014) requires an estimation of the surface area of soil particles, which introduces
584 uncertainties when using $S_{m,500}$; accurately estimating surface area of only soil particles in
585 atmospheric samples requires additional analysis. Also, the equation from Tobo et al. (2014) is not
586 valid for $T > -18$ °C. The parameterization from O'Sullivan et al. (2014) includes a wider
587 temperature range, while it tended to underestimate in temperatures warmer than -20 °C and
588 overestimate at colder temperatures (Figure S14b). The parameterization from Niemand et al.
589 (2012) was derived from desert dust, consisting mainly of mineral dust. Some of their dust samples
590 might have contained arable dust or biological INPs (Beall et al., 2022). Application of their
591 parameterization to our data showed a bias at warm temperatures (Figure S14b). Therefore, we
592 developed a parameterization based on the SAIL samples, which could be useful for estimating
593 atmospheric INPs dominated by organic-containing soil dust.

594 Parameterization was based on an assumed relationship between IN active surface site density (n_s ,
595 m^{-2}) calculated from surface area concentrations of particles > 500 nm ($S_{m,500}$) and temperature
596 (T , °C) over all seasons. First, a single polynomial equation fitted to data from all samples was
597 obtained (Figure S15), and the INP concentrations predicted from this equation and the measured
598 $S_{m,500}$ were compared with the measured INP concentrations (Figure S15). The predicted INPs
599 were mostly within one order of magnitude of the measured values, suggesting this fit generally
600 provides a reasonable estimation of INPs. However, the predicted INPs showed an overestimation

601 trend for some samples around -15°C . This is due to the limited contribution of biological/heat-
602 labile INPs in cold seasons.

603 To better represent the INP temperature spectra accounting for the seasonality of biological
604 contributions, parameterization equations were fitted as polynomials for samples from other
605 seasons (April–November, equation 1) and cold seasons (December–March, equation 2) separately
606 (Figure 9), as follows,

$$\ln(n_s) = -0.007T^2 - 0.785T + 6.636 \quad (-30^{\circ}\text{C} < T < -6^{\circ}\text{C}) \quad (1)$$

$$\ln(n_s) = -0.030T^2 - 1.833T - 5.076 \quad (-20^{\circ}\text{C} < T < -10^{\circ}\text{C}) \quad (2)$$

607 Equation 1 was derived for most samples except those from cold seasons, and Equation 2 was
608 obtained for samples from cold seasons (December–March). Equation 2 was constrained to
609 intersect with Equation 1 at -20°C , as there were no significant differences at $T < -20^{\circ}\text{C}$, and
610 Equation 1 was used in this range. The agreement between predicted and measured INPs based on
611 these two equations showed improvement compared to using the one equation method above
612 (Figure S15), better representing the measured INPs across the full measured temperature range
613 (Figure 9). The accurate prediction of the nearly two years of observations of INPs using this single
614 parameterization, rather than requiring multiple n_s -based parameterizations for specific sources, is
615 likely due to the dominance of coarse dust as the primary INP source in this region. Note that the
616 lack of precise parameterization for biological INPs still introduces larger uncertainties in
617 predictions at warm temperature ranges, while applying the two-equation parameterization based
618 on the seasonal signature of biological INPs identified in this study improves the prediction.

619

620 **4 Summary and atmospheric implications**

621 This study comprehensively characterized INPs over a nearly two-year period in the mountainous
622 Upper Colorado River Basin region. The observed average INP concentrations were 0.15 L^{-1} at
623 -15°C and 16 L^{-1} at -25°C . Clear seasonal variations of INP concentrations and temperature
624 spectra were observed, with low concentrations in winter, increasing in spring, peaking in summer,
625 decreasing in autumn, and returning to low levels in winter. The aerosol types in this region were
626 identified as coarse dust, fine dust, biomass burning, sulfate-dominated, and nitrate-dominated.
627 Coarse dust concentrations were strongly correlated with INP concentrations in all seasons and
628 over a large temperature range, suggesting that background INPs in the study region were strongly
629 influenced by coarse dust. Further analysis of the IN active surface density site supported the
630 dominant role of coarse dust in INPs. Abundant organic INPs were identified, suggesting that
631 organic-containing soil dust was the primary source of INPs. Back trajectories showed that coarse
632 dust mostly originated from local or regional sources. This study also found clear evidence of
633 biological and heat-labile INPs, which showed strong seasonal dependence. Heat-labile,
634 presumably biological INPs were present during warm seasons but were significantly decreased
635 in winter. Two parameterization equations based on IN active surface site density were developed
636 for warm and cold seasons separately. These equations well estimated the measured INP
637 concentrations across the measured temperature and concentration ranges. The parameterization
638 developed here could be useful for representing INPs from organic-containing soil dust in other
639 mountain regions.

640 This long-term observation identified that organic-containing soil dust is the major source of INPs
641 in the Rocky Mountain region. Biomass burning aerosols and fine dust, likely from long-range
642 transport, play less important roles in INPs compared to coarse dust in this region. Our results
643 indicate that soil dust from nearby regions (e.g., the Colorado Plateau and Central Rockies), rather

644 than long-range transported fine and mineral dust, dominates contributions to the INPs in the
645 Upper Colorado River Basin, and therefore influences aerosol-cloud interaction and precipitation.
646 This study investigated the major INP sources by linking long-term INP measurements with
647 aerosol source apportionment, presenting reasonable results that agree well with other studies
648 (DeMott et al., 2025; Lacher et al., 2025). This approach may have broader applicability for INP
649 source attribution in other regions. Future studies combining short-term online INP measurement
650 (e.g., continuous flow diffusion chamber, CFDC) with detailed chemical analyses (e.g., mass
651 spectrometer) would be valuable for providing more direct evidence of INP sources, such as
652 demonstrated by the approaches used in Cornwell et al. (2023, 2024).

653 In this study, the origins of biological INPs are unclear due to the limitations of the analytical
654 methods used. One possibility is that biological INPs were associated with soil dust, e.g., fungi in
655 soil (Conen and Yakutin, 2018; O'Sullivan et al., 2016). This is supported by the correlation
656 between biological/heat-labile INPs and other organic INPs at -15°C . Also, raindrop impact could
657 be an important biological INP emission pathway (Prenni et al., 2013; Mignani et al., 2025). In
658 cold seasons, snow covers the Rocky Mountain region and inhibits the suspension of local soil
659 dust, which is considered as the main source of INPs in this region. This assumption that coarse
660 dust emissions are suppressed in cold seasons is also supported by the observation that more than
661 half of the samples in cold seasons were dominated by mixed sources and fine dust, instead of
662 coarse dust. However, the correlation between biological/heat-labile INPs and other organic INPs
663 was weaker ($R^2 = 0.10$) at a warmer temperature (-12.5°C). This suggests that there are
664 contributions from other biological INPs (e.g., those originating from vegetation) at warmer
665 freezing temperatures, which are likely independent of soil dust emissions, thereby complicating
666 the estimation of biological INPs. For example, airborne bacteria (Bowers et al., 2012) and pollen

667 (Fall et al., 1992) in the Rocky Mountain region decrease in winter and increase during the warmer
668 seasons. This seasonal pattern is consistent with the variation in biological/heat-labile INPs
669 observed in this study, suggesting that these biological particles may represent potential sources of
670 the biological INPs. In this case, the INP spectra in cold seasons likely represent that of soil dust,
671 and the spectra in other seasons represent the combination of soil dust and biological INPs. While
672 bacteria may also be partly related to soil, as summer bacteria taxa were reported to likely originate
673 from soil and leaf surface (Bowers et al., 2012), the specific ice-active taxa among them require
674 further investigation. In future studies, identifying the most abundant biological INPs in this region
675 and determining whether they originate from vegetation, soil-associated sources, or from a
676 combination of both would help improve our understanding of biological INP variability and
677 improve their estimation. However, besides heat treatment, current approaches provide only
678 indirect evidence of biological INPs (Cornwell et al., 2023 and 2024; Sanchez-Marroquin et al.,
679 2021). Comprehensive characterization of biological aerosol types and abundance, or developing
680 new analytical approaches, would be highly beneficial for advancing biological INP research.

681 The INP concentrations in this study were similar to those observed in ambient samples influenced
682 by agricultural soil in Argentina (Testa et al., 2021). The n_s values reported for agricultural soil
683 samples (Tobo et al., 2014) were higher than those calculated from total surface area (Figure S10),
684 but similar to n_s when based on surface area of particles > 500 nm (Figure S14). This finding
685 suggests that using particles > 500 nm is a reasonable threshold for excluding most aerosol types
686 that are inefficient INP sources, and approximating aerosol surface area contributions from
687 organic-containing soils. Since SAIL was conducted at a remote site in the Rocky Mountains, these
688 comparisons suggest that the parameterization developed in this study can potentially be applied
689 to other remote continental areas. A recent global modeling study (Herbert et al., 2025) found that

690 including organic INP components in dust particles, which are present in many soils, can
691 significantly improve predictive accuracy. It is therefore essential to validate the INPs originating
692 from organic-containing soil dust, beyond the mineral dust that has already been intensively
693 studied, through field measurements across different continental regions.

694

695 **Data Availability**

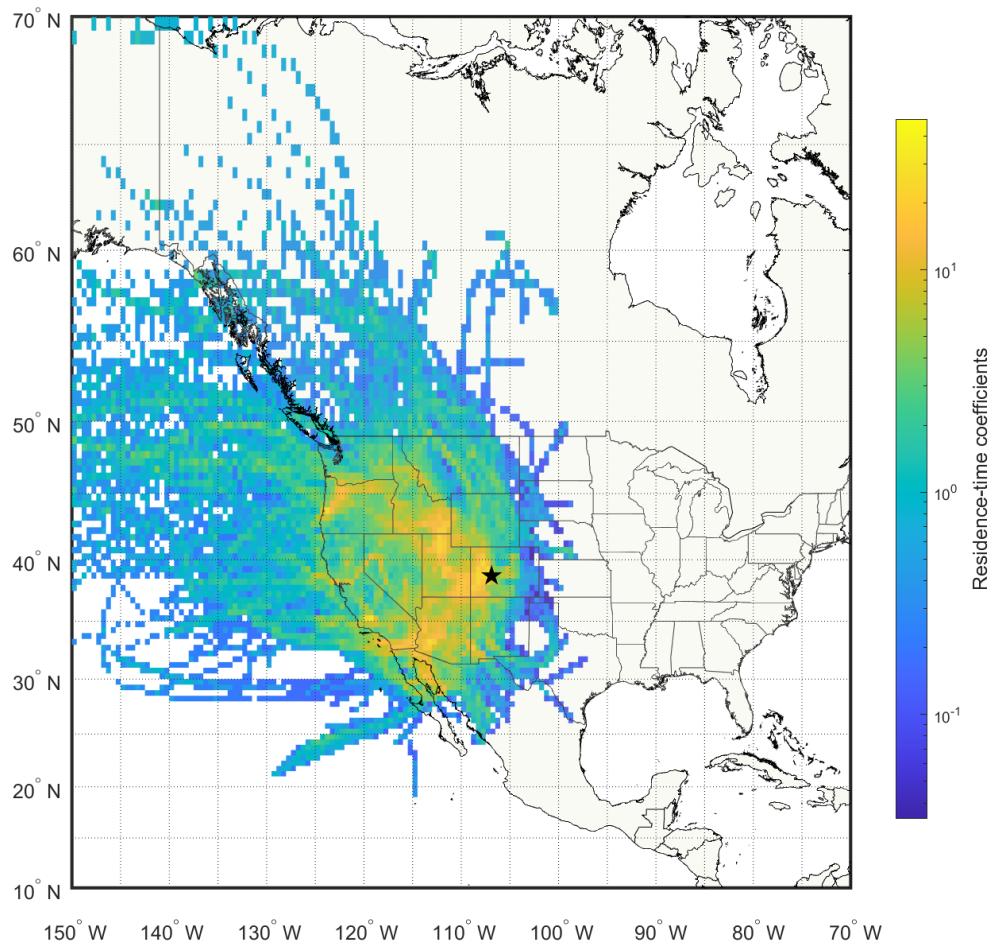
696 The data from the SAIL campaign used in this study are available through the ARM Data
697 Discovery (<https://adc.arm.gov/discovery/>). This includes INPs data (Shi et al., 2025), source
698 apportionment results (Zhou et al., 2025a), back trajectory data (Zhou et al., 2025b), merged
699 aerosol number-size distribution (Zhou et al., 2025c), and particle number size distribution data
700 from SMPS (Kuang et al., 2024) and OPC (Cromwell et al., 2024).

701

702 **Author contributions**

703 RP, SK, PD, and RZ conceptualized the study. DJ, RZ, KA, and OD performed additional
704 immersion-mode INP measurements. RZ, RP and SK conducted the source apportionment and
705 merged the size distribution data. RZ, RP, KA and SK performed the back trajectory analysis. KB
706 performed qPCR analysis. RZ wrote the manuscript, with revisions from RP, PD, and SK. All
707 authors reviewed the manuscript and contributed to the final version of the manuscript.

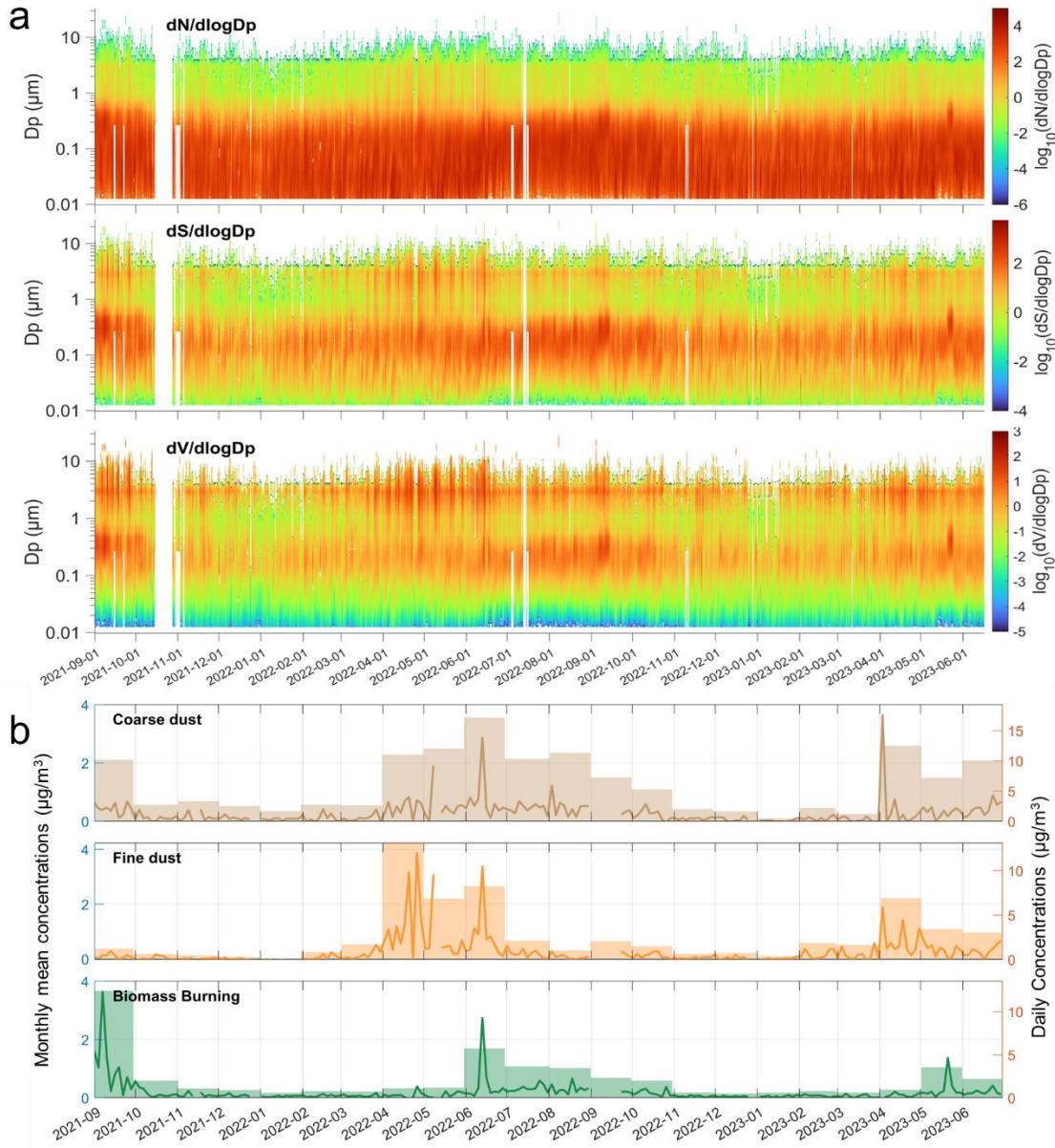
708

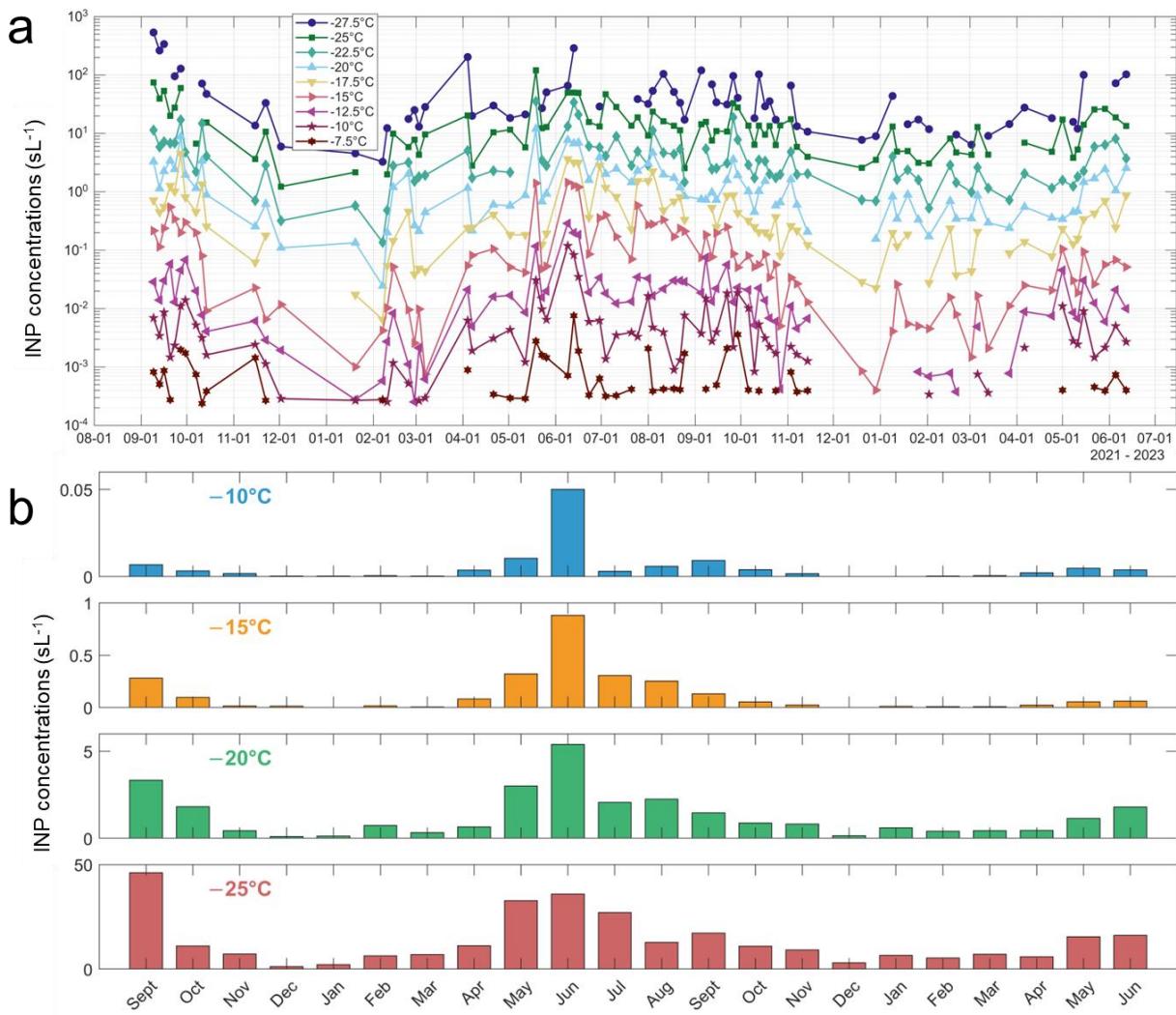

709 **Competing interests**

710 The authors declare no competing interests.

711

712 **Acknowledgements**

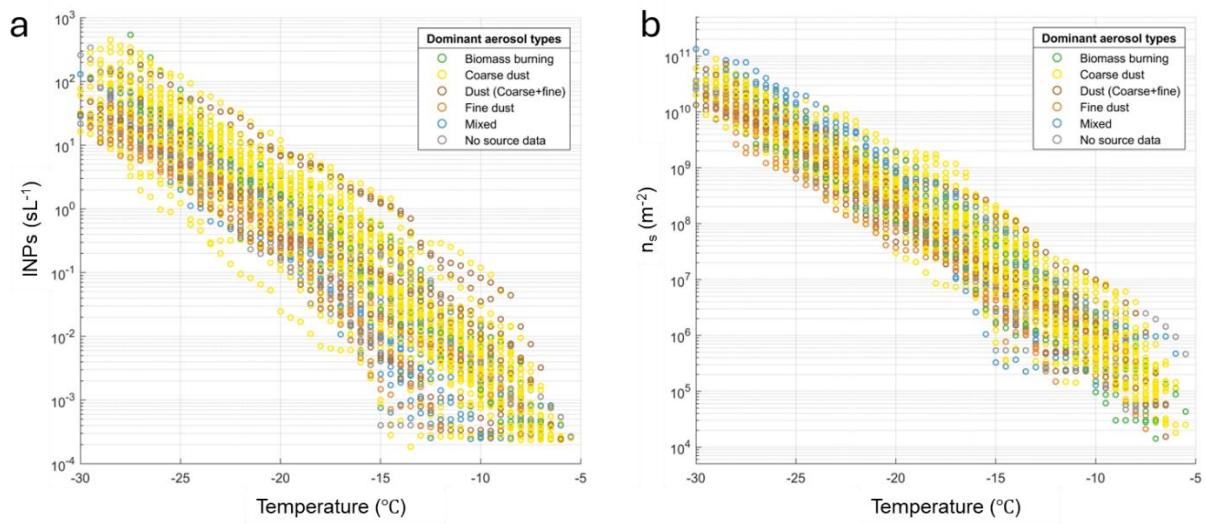

713 This work is supported by DOE Atmospheric Systems Research award DE-SC0024202 and DE-
714 SC0021116. We thank the DOE ARM INP Mentors Jessie Creamean, Tom Hill, and Carson Hume
715 for coordinating the sample collections and for helping with the combined INP data archival. We
716 also thank Ty Johnson for assistance with generating the NOAA Hazard Mapping System plots.
717 The authors acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the
718 HYSPLIT transport and dispersion model used in this publication. We also thank the Interagency
719 Monitoring of Protected Visual Environments (IMPROVE) network for providing aerosol
720 composition data. IMPROVE is a collaborative association of state, tribal, and federal agencies,
721 and international partners. US Environmental Protection Agency is the primary funding source,
722 with contracting and research support from the National Park Service. The Air Quality Group at
723 the University of California, Davis is the central analytical laboratory, with ion analysis provided
724 by Research Triangle Institute, and carbon analysis provided by Desert Research Institute. We
725 thank North American Weather Consultants Inc. for providing records of their cloud seeding
726 activities near the SAIL campaign site. Kelton Ayars and Oren Dutton would like to acknowledge
727 support from the Scott Undergraduate Research Experiences program at Colorado State University.



728

729 **Figure 1.** Residence-time weighted back trajectories for all sampling periods. 96-hour back
 730 trajectories were generated hourly during each sampling period and normalized by residence
 731 time and distance from the sampling site. The residence-time coefficients indicate the relative
 732 time air masses spent within each grid cell. The black star marks the SAIL sampling location.

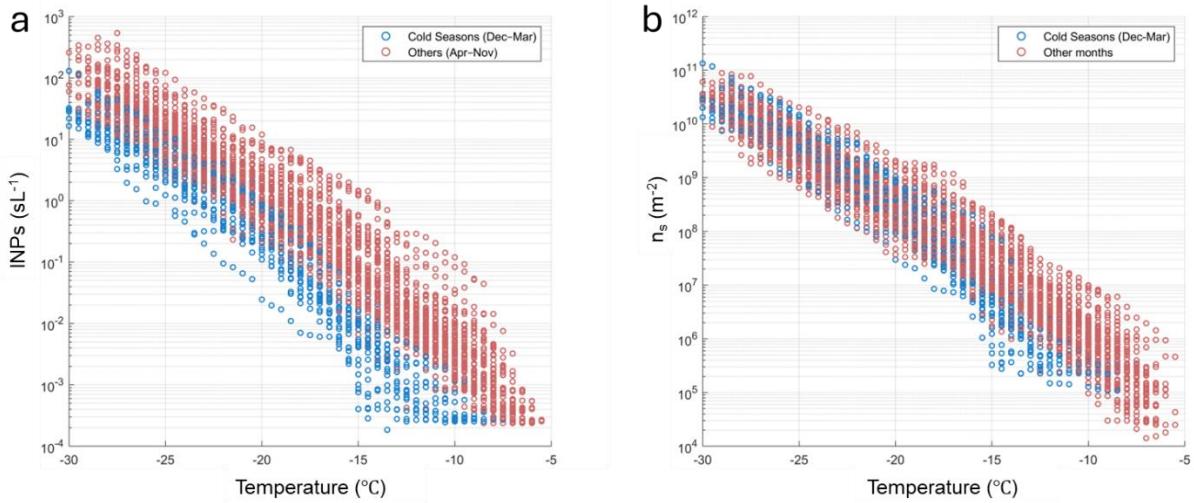
733



740

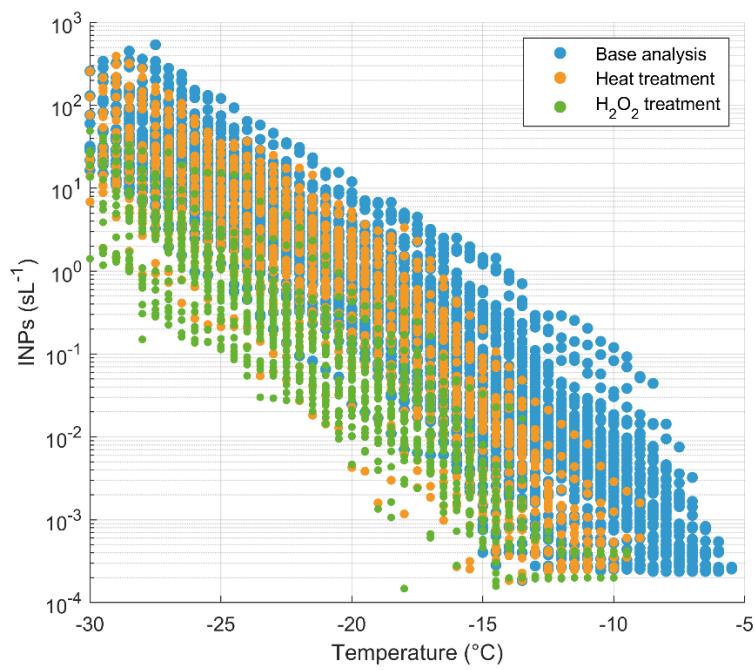
741 **Figure 3.** Measured INP concentrations (sL^{-1}) during the SAIL campaign (September 2021–June
 742 2023), excluding samples obtained during cloud seeding and snowmaking activities. (a) INP
 743 concentrations at temperatures from -7.5°C to -27.5°C in 2.5°C intervals. (b) Monthly mean
 744 INP concentrations at temperatures of -10°C , -15°C , -20°C , and -25°C .

745

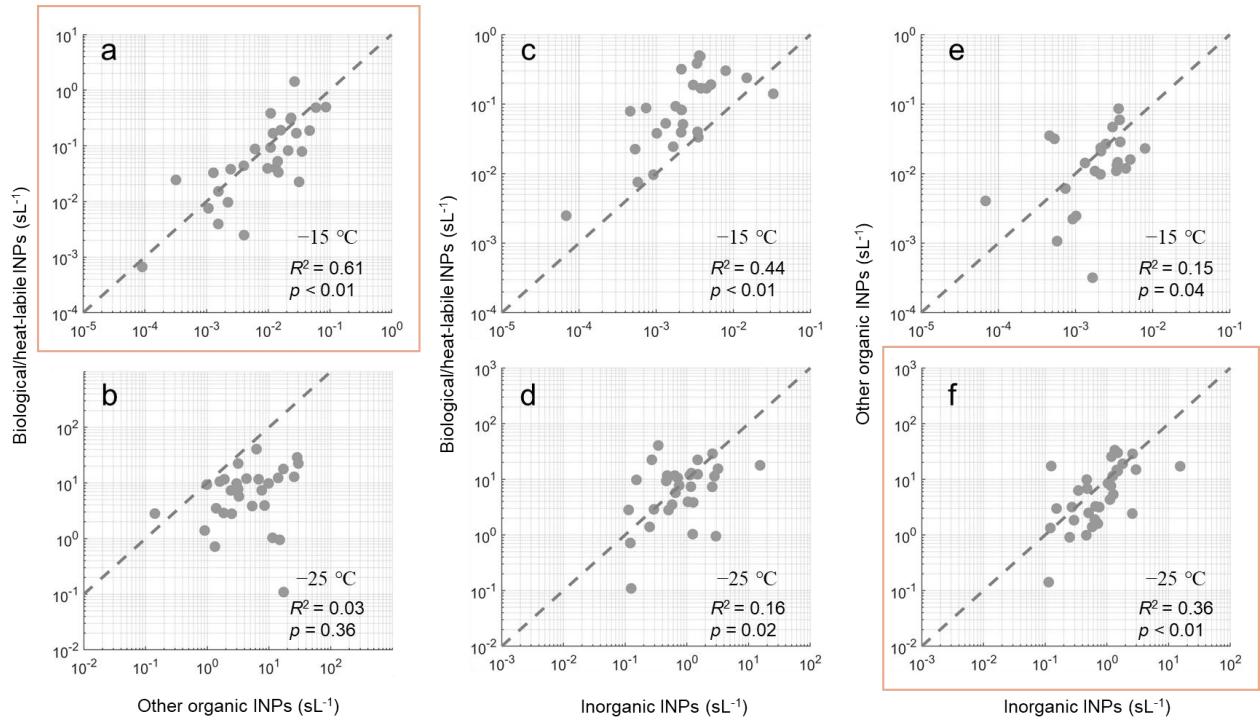


751

752 **Figure 5.** (a) Total INP concentration (sL^{-1}) temperature spectra, and (b) IN active surface site
 753 density (n_s, m^{-2}) calculated based on the surface area of particles larger than 500 nm. All samples
 754 were categorized by the dominant aerosol sources. Colors in the legend represent the dominant
 755 aerosol types during sampling.

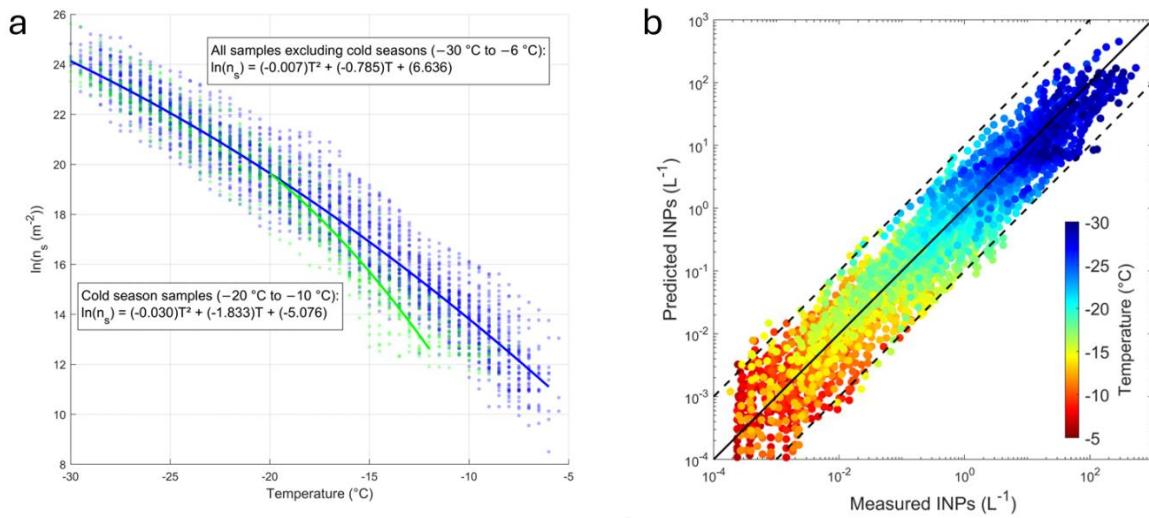

756

757


758 **Figure 6.** (a) INP temperature spectra and (b) IN active surface site density (n_s) categorized by
 759 sampling date as cold seasons (December–March) and other seasons (April–November). n_s was
 760 calculated based on the surface area of particles larger than 500 nm.

761

762


763 **Figure 7.** Comparison of INP temperature spectra from base (untreated), heat-treated, and H_2O_2 -
764 treated analyses.

765

766 **Figure 8.** Correlations between concentrations of (a, b) biological/heat-labile INPs and other
767 organic INPs, (c, d) biological/heat-labile INPs and inorganic INPs, and (e, f) other organic INPs
768 and inorganic INPs, active at either $-15\text{ }^{\circ}\text{C}$ (upper row) or $-25\text{ }^{\circ}\text{C}$ (lower row). Dashed lines
769 indicate a 10:1 relationship for reference, and the orange rectangles highlight the strongest
770 correlations at each temperature.

771

772

773 **Figure 9.** (a) All cold season (December–March) and other seasons (April–November) INP data,
774 expressed as IN active surface site density n_s (based on the surface area of particles larger than
775 500 nm), with parameterization fits. All samples, excluding those from cold seasons, were used
776 to develop the parameterization equation for temperatures from -30°C to -6°C . A separate
777 equation was developed for samples from cold seasons at temperatures from -20°C to -10°C .
778 (b) Comparison between predicted INP concentrations based on the parameterization equations
779 and measured surface area concentrations, and measured INP concentrations.

780

781 **Table 1.** Pearson correlation coefficients (R^2) between monthly means of INP concentrations and
 782 source factor concentrations.

	Coarse dust	Fine dust	Biomass burning	Sulfate-dominated	Nitrate-dominated	Coarse dust and biomass burning
-10 °C	0.430*	0.192	0.157	0.070	0.036	0.389*
-15 °C	0.568*	0.175	0.316*	0.093	0.040	0.590*
-20 °C	0.579*	0.117	0.484*	0.121	0.040	0.706*
-25 °C	0.500*	0.100	0.688*	0.147	0.051	0.763*

783 * p < 0.01

784

785 References

786 Agresti, A. and Coull, B. A.: Approximate is better than “exact” for interval estimation of
787 binomial proportions, *Am. Stat.*, 52, 119-126, 1998.

788 Ashbaugh, L. L., Malm, W. C., and Sadeh, W. Z.: A residence time probability analysis of sulfur
789 concentrations at Grand Canyon National Park, *Atmos. Environ.*, 19, 1263-1270, 1985.

790 Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S.,
791 Dobbie, S., O’Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by
792 mineral dust in mixed-phase clouds, *Nature*, 498, 355-358, <https://doi.org/10.1038/nature12278>,
793 2013.

794 Barry, K. R., Hill, T. C. J., Jentzsch, C., Moffett, B. F., Stratmann, F., and DeMott, P. J.:
795 Pragmatic protocols for working cleanly when measuring ice nucleating particles, *Atmos. Res.*,
796 250, <https://doi.org/10.1016/j.atmosres.2020.105419>, 2021a.

797 Barry, K. R., Hill, T. C. J., Levin, E. J. T., Twohy, C. H., Moore, K. A., Weller, Z. D., Toohey, D.
798 W., Reeves, M., Campos, T., Geiss, R., Schill, G. P., Fischer, E. V., Kreidenweis, S. M., and
799 DeMott, P. J.: Observations of Ice Nucleating Particles in the Free Troposphere From Western
800 US Wildfires, *J. Geophys. Res: Atmos.*, 126, <https://doi.org/10.1029/2020jd033752>, 2021b.

801 Beall, C. M., Hill, T. C. J., DeMott, P. J., Köneman, T., Pikridas, M., Drewnick, F., Harder, H.,
802 Pöhlker, C., Lelieveld, J., Weber, B., Iakovides, M., Prokes, R., Sciare, J., Andreae, M. O.,
803 Stokes, M. D., and Prather, K. A.: Ice-nucleating particles near two major dust source regions,
804 *Atmos. Chem. Phys.*, 22, 12607-12627, <https://doi.org/10.5194/acp-22-12607-2022>, 2022.

805 Bigg, E. K.: The supercooling of water, *Proceedings of the Physical Society. Section B*, 66, 688,
806 1953.

807 Bowers, R. M., McCubbin, I. B., Hallar, A. G., and Fierer, N.: Seasonal variability in airborne
808 bacterial communities at a high-elevation site, *Atmos. Environ.*, 50, 41-49,
809 <https://doi.org/10.1016/j.atmosenv.2012.01.005>, 2012.

810 Brown, S. G., Eberly, S., Paatero, P., and Norris, G. A.: Methods for estimating uncertainty in
811 PMF solutions: examples with ambient air and water quality data and guidance on reporting
812 PMF results, *Sci. Total Environ.*, 518-519, 626-635,
813 <https://doi.org/10.1016/j.scitotenv.2015.01.022>, 2015.

814 Burrows, S. M., McCluskey, C. S., Cornwell, G., Steinke, I., Zhang, K., Zhao, B., Zawadowicz,
815 M., Raman, A., Kulkarni, G., and China, S.: Ice-nucleating particles that impact clouds and
816 climate: Observational and modeling research needs, *Rev. Geophys.*, 60, e2021RG000745, 2022.

817 Conen, F. and Yakutin, M. V.: Soils rich in biological ice-nucleating particles abound in ice-
818 nucleating macromolecules likely produced by fungi, *Biogeosciences*, 15, 4381-4385,
819 <https://doi.org/10.5194/bg-15-4381-2018>, 2018.

820 Conen, F., Rodríguez, S., Hulin, C., Henne, S., Herrmann, E., Bukowiecki, N., and Alewell, C.:
821 Atmospheric ice nuclei at the high-altitude observatory Jungfraujoch, Switzerland, *Tellus B
822 Chem. Phys. Meteorol.*, 67, 25014, 2015.

823 Creamean, J. M., Hill, T. C., Hume, C. C., and Devadoss, T.: Ice Nucleation Spectrometer (INS)
824 Instrument Handbook, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

825 Atmospheric Radiation Measurement (ARM) Data Center, <https://doi.org/10.2172/1846263>,
826 2024.

827 Creamean, J. M., Suski, K. J., Rosenfeld, D., Cazorla, A., DeMott, P. J., Sullivan, R. C., White,
828 A. B., Ralph, F. M., Minnis, P., and Comstock, J. M.: Dust and biological aerosols from the
829 Sahara and Asia influence precipitation in the western US, *Science*, 339, 1572-1578, 2013.

830 Cornwell, G. C., McCluskey, C. S., Hill, T. C. J., Levin, E. T., Rothfuss, N. E., Tai, S. L., Petters,
831 M. D., DeMott, P. J., Kreidenweis, S., Prather, K. A., and Burrows, S. M.: Bioaerosols are the
832 dominant source of warm-temperature immersion-mode INPs and drive uncertainties in INP
833 predictability, *Sci Adv*, 9, eadg3715, <https://doi.org/10.1126/sciadv.adg3715>, 2023.

834 Cornwell, G. C., Steinke, I., Lata, N. N., Zelenyuk, A., Kulkarni, G., Pekour, M., Perkins, R.,
835 Levin, E. J. T., China, S., Demott, P. J., and Burrows, S. M.: Enrichment of Phosphates, Lead,
836 and Mixed Soil-Organic Particles in INPs at the Southern Great Plains Site, *J. Geophys. Res.: Atmos.*, 129, <https://doi.org/10.1029/2024jd040826>, 2024.

838 Cromwell, E., Singh, A., & Kuang, C. Optical Particle Counter (AOSOPC), 2021-10-27 to 2023-
839 06-16, ARM Mobile Facility (GUC), Gunnison, CO; Supplemental Facility 2 (S2). Atmospheric
840 Radiation Measurement (ARM) User Facility. <https://doi.org/10.5439/1824224>, Data accessed
841 2024-08-01.

842 de Boer, G., Morrison, H., Shupe, M. D., and Hildner, R.: Evidence of liquid dependent ice
843 nucleation in high-latitude stratiform clouds from surface remote sensors, *Geophys. Res. Lett.*,
844 38, 2011.

845 DeMott, P. J., Sassen, K., Poellot, M. R., Baumgardner, D., Rogers, D. C., Brooks, S. D., Prenni,
846 A. J., and Kreidenweis, S. M.: African dust aerosols as atmospheric ice nuclei, *Geophys. Res. Lett.*,
847 30, <https://doi.org/10.1029/2003gl017410>, 2003.

848 DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H.,
849 Richardson, M. S., Eidhammer, T., and Rogers, D. C.: Predicting global atmospheric ice nuclei
850 distributions and their impacts on climate, *Proc. Natl. Acad. Sci. USA*, 107, 11217-11222,
851 <https://doi.org/10.1073/pnas.0910818107>, 2010.

852 DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobe, Y.,
853 Niemand, M., Möhler, O., Snider, J. R., Wang, Z., and Kreidenweis, S. M.: Integrating laboratory
854 and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles,
855 *Atmos. Chem. Phys.*, 15, 393-409, <https://doi.org/10.5194/acp-15-393-2015>, 2015.

856 DeMott, P. J., Mirrieles, J. A., Petters, S. S., Cziczo, D. J., Petters, M. D., Bingemer, H. G., Hill,
857 T. C. J., Froyd, K., Garimella, S., Hallar, A. G., Levin, E. J. T., McCubbin, I. B., Perring, A. E.,
858 Rapp, C. N., Schiebel, T., Schrod, J., Suski, K. J., Weber, D., Wolf, M. J., Zawadowicz, M.,
859 Zenker, J., Möhler, O., and Brooks, S. D.: Field intercomparison of ice nucleation measurements:
860 the Fifth International Workshop on Ice Nucleation Phase 3 (FIN-03), *Atmos. Meas. Tech.*, 18,
861 639-672, <https://doi.org/10.5194/amt-18-639-2025>, 2025.

862 Després, V., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A., Buryak, G., Fröhlich-
863 Nowoisky, J., Elbert, W., Andreae, M., Pöschl, U., and Jaenicke, R.: Primary biological aerosol
864 particles in the atmosphere: a review, *Tellus B Chem. Phys. Meteorol.*, 64, 15598,
865 <https://doi.org/10.3402/tellusb.v64i0.15598>, 2012.

866 Fall, P. L.: Spatial patterns of atmospheric pollen dispersal in the Colorado Rocky Mountains,
867 USA, *Review of Palaeobotany and Palynology*, 74, 293-313, [https://doi.org/10.1016/0034-6667\(92\)90013-7](https://doi.org/10.1016/0034-6667(92)90013-7), 1992.

869 Feldman, D. R., Aiken, A. C., Boos, W. R., Carroll, R. W. H., Chandrasekar, V., Collis, S.,
870 Creamean, J. M., de Boer, G., Deems, J., DeMott, P. J., Fan, J., Flores, A. N., Gochis, D., Grover,
871 M., Hill, T. C. J., Hodshire, A., Hulm, E., Hume, C. C., Jackson, R., Junyent, F., Kennedy, A.,
872 Kumjian, M., Levin, E. J. T., Lundquist, J. D., O'Brien, J., Raleigh, M. S., Reithel, J., Rhoades,
873 A., Rittger, K., Rudisill, W., Sherman, Z., Siirila-Woodburn, E., Skiles, S. M., Smith, J. N.,
874 Sullivan, R. C., Theisen, A., Tuftedal, M., Varble, A. C., Wiedlea, A., Wielandt, S., Williams, K.,
875 and Xu, Z.: The Surface Atmosphere Integrated Field Laboratory (SAIL) Campaign, *Bull. Amer.
876 Meteor. Soc.*, 104, E2192-E2222, <https://doi.org/10.1175/bams-d-22-0049.1>, 2023.

877 Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., Andreae, M. O.,
878 Lang-Yona, N., Burrows, S. M., Gunthe, S. S., and Elbert, W.: Bioaerosols in the Earth system:
879 Climate, health, and ecosystem interactions, *Atmos. Res.*, 182, 346-376, 2016.

880 Garcia, E., Hill, T. C., Prenni, A. J., DeMott, P. J., Franc, G. D., and Kreidenweis, S. M.:
881 Biogenic ice nuclei in boundary layer air over two US High Plains agricultural regions, *J.
882 Geophys. Res: Atmos.*, 117, 2012.

883 Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.: Global-scale attribution of
884 anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue
885 aerosol products, *Rev. Geophys.*, 50, <https://doi.org/10.1029/2012rg000388>, 2012.

886 Hamzehpour, N., Marcolli, C., Klumpp, K., Thöny, D., and Peter, T.: The Urmia playa as a
887 source of airborne dust and ice-nucleating particles – Part 2: Unraveling the relationship between
888 soil dust composition and ice nucleation activity, *Atmos. Chem. Phys.*, 22, 14931-14956,
889 <https://doi.org/10.5194/acp-22-14931-2022>, 2022.

890 Hand, J. L. and Kreidenweis, S. M.: A New Method for Retrieving Particle Refractive Index and
891 Effective Density from Aerosol Size Distribution Data, *Aerosol Sci. Technol.*, 36, 1012-1026,
892 <https://doi.org/10.1080/02786820290092276>, 2002.

893 Hand, J. L., Gill, T. E., and Schichtel, B. A.: Spatial and seasonal variability in fine mineral dust
894 and coarse aerosol mass at remote sites across the United States, *J. Geophys. Res: Atmos.*, 122,
895 3080-3097, <https://doi.org/10.1002/2016jd026290>, 2017.

896 Hand, J.: IMPROVE Data User Guide 2023 (Version 2), Interagency Monitoring of Protected
897 Visual Environments (IMPROVE) Program, available at:
898 <https://vista.cira.colostate.edu/Improve/data-user-guide/>, 2023.

899 Harrison, A. D., Lever, K., Sanchez-Marroquin, A., Holden, M. A., Whale, T. F., Tarn, M. D.,
900 McQuaid, J. B., and Murray, B. J.: The ice-nucleating ability of quartz immersed in water and its
901 atmospheric importance compared to K-feldspar, *Atmos. Chem. Phys.*, 19, 11343-11361,
902 <https://doi.org/10.5194/acp-19-11343-2019>, 2019.

903 Herbert, R. J., Sanchez-Marroquin, A., Grosvenor, D. P., Pringle, K. J., Arnold, S. R., Murray, B.
904 J., and Carslaw, K. S.: Gaps in our understanding of ice-nucleating particle sources exposed by
905 global simulation of the UK Earth System Model, *Atmos. Chem. Phys.*, 25, 291-325, 2025.

906 Hill, T. C. J., DeMott, P. J., Toto, Y., Fröhlich-Nowoisky, J., Moffett, B. F., Franc, G. D., and
907 Kreidenweis, S. M.: Sources of organic ice nucleating particles in soils, *Atmos. Chem. Phys.*, 16,
908 7195-7211, <https://doi.org/10.5194/acp-16-7195-2016>, 2016.

909 Hiranuma, N., Augustin-Bauditz, S., Bingemer, H., Budke, C., Curtius, J., Danielczok, A., Diehl,
910 K., Dreischmeier, K., Ebert, M., Frank, F., Hoffmann, N., Kandler, K., Kiselev, A., Koop, T.,
911 Leisner, T., Möhler, O., Nillius, B., Peckhaus, A., Rose, D., Weinbruch, S., Wex, H., Boose, Y.,
912 DeMott, P. J., Hader, J. D., Hill, T. C. J., Kanji, Z. A., Kulkarni, G., Levin, E. J. T., McCluskey,
913 C. S., Murakami, M., Murray, B. J., Niedermeier, D., Petters, M. D., O'Sullivan, D., Saito, A.,
914 Schill, G. P., Tajiri, T., Tolbert, M. A., Welti, A., Whale, T. F., Wright, T. P., and Yamashita, K.: A
915 comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a
916 comparison of 17 ice nucleation measurement techniques, *Atmos. Chem. Phys.*, 15, 2489-2518,
917 <https://doi.org/10.5194/acp-15-2489-2015>, 2015.

918 Hoose, C. and Möhler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a review of
919 results from laboratory experiments, *Atmos. Chem. Phys.*, 12, 9817-9854,
920 <https://doi.org/10.5194/acp-12-9817-2012>, 2012.

921 Hopke, P. K., Dai, Q., Li, L., and Feng, Y.: Global review of recent source apportionments for
922 airborne particulate matter, *Sci. Total Environ.*, 740, 140091,
923 <https://doi.org/10.1016/j.scitotenv.2020.140091>, 2020.

924 Huang, S., Hu, W., Chen, J., Wu, Z. J., Zhang, D. Z., and Fu, P. Q.: Overview of biological ice
925 nucleating particles in the atmosphere, *Environ. Int.*, 146,
926 <https://doi.org/10.1016/j.envint.2020.106197>, 2021.

927 Hwang, I. and Hopke, P. K.: Estimation of source apportionment and potential source locations
928 of PM2.5 at a west coastal IMPROVE site, *Atmos. Environ.*, 41, 506-518,
929 <https://doi.org/10.1016/j.atmosenv.2006.08.043>, 2007.

930 IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability., Contribution of
931 Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate
932 Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegria,
933 M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University
934 Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp.,
935 <https://doi.org/10.1017/9781009325844>, 2022.

936 Jahl, L. G., Brubaker, T. A., Polen, M. J., Jahn, L. G., Cain, K. P., Bowers, B. B., Fahy, W. D.,
937 Graves, S., and Sullivan, R. C.: Atmospheric aging enhances the ice nucleation ability of
938 biomass-burning aerosol, *Sci. Adv.*, 7, eabd3440, 2021.

939 Jahn, L. G., Jahl, L. G., Bland, G. D., Bowers, B. B., Monroe, L. W., and Sullivan, R. C.:
940 Metallic and crustal elements in biomass-burning aerosol and ash: Prevalence, significance, and
941 similarity to soil particles, *ACS Earth Space Chem.*, 5, 136-148, 2020.

942 Jain, P., Sharma, A. R., Acuna, D. C., Abatzoglou, J. T., and Flannigan, M.: Record-breaking fire
943 weather in North America in 2021 was initiated by the Pacific northwest heat dome, *Commun.*
944 *Earth Environ.*, 5, 202, 2024.

945 Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D. J., and Krämer,
946 M.: Overview of Ice Nucleating Particles, *Meteor. Monogr.*, 58, 1.1-1.33,
947 <https://doi.org/10.1175/amsmonographs-d-16-0006.1>, 2017.

948 Kiselev, A., Bachmann, F., Pedevilla, P., Cox, S. J., Michaelides, A., Gerthsen, D., and Leisner,
949 T.: Active sites in heterogeneous ice nucleation—the example of K-rich feldspars, *Science*, 355,
950 367-371, <https://doi.org/10.1126/science.aai8034>, 2017.

951 Knippertz, P. and Stuut, J.-B. W.: Mineral dust, Mineral dust—A key player in the Earth system,
952 121-147, Springer, 2014.

953 Kobziar, L. N., Lampman, P., Tohidi, A., Kochanski, A. K., Cervantes, A., Hudak, A. T.,
954 McCarley, R., Gullett, B., Aurell, J., and Moore, R.: Bacterial emission factors: a foundation for
955 the terrestrial-atmospheric modeling of bacteria aerosolized by wildland fires, *Environ. Sci.*
956 *Technol.*, 58, 2413-2422, 2024.

957 Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Prenni, A. J., and Petters, M. D.: Potential
958 impact of Owens (dry) Lake dust on warm and cold cloud formation, *J. Geophys. Res: Atmos.*,
959 112, 2007.

960 Kotchenruther, R. A.: Source apportionment of PM_{2.5} at IMPROVE monitoring sites within and
961 outside of marine vessel fuel sulfur emissions control areas, *J Air Waste Manag Assoc*, 71, 1114-
962 1126, <https://doi.org/10.1080/10962247.2021.1917463>, 2021.

963 Kuang, C., Singh, A., Howie, J., Salwen, C., & Hayes, C. Scanning mobility particle sizer
964 (AOSSMPS), 2021-10-27 to 2023-06-16, ARM Mobile Facility (GUC), Gunnison, CO;
965 Supplemental Facility 2 (S2). Atmospheric Radiation Measurement (ARM) User Facility.
966 <https://doi.org/10.5439/1476898>, Data accessed 2024-08-01.

967 Lacher, L., Steinbacher, M., Bukowiecki, N., Herrmann, E., Zipori, A., and Kanji, Z. A.: Impact
968 of Air Mass Conditions and Aerosol Properties on Ice Nucleating Particle Concentrations at the
969 High Altitude Research Station Jungfraujoch, *Atmosphere*, 9,
970 <https://doi.org/10.3390/atmos9090363>, 2018.

971 Liu, W. and Hopke, P. K.: Origins of fine aerosol mass in the western United States using positive
972 matrix factorization, *J. Geophys. Res: Atmos.*, 108, <https://doi.org/10.1029/2003jd003678>, 2003.

973 Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, *Atmos. Chem. Phys.*, 5,
974 715-737, <https://doi.org/10.5194/acp-5-715-2005>, 2005.

975 Lynn, B., Khain, A., Rosenfeld, D., and Woodley, W. L.: Effects of aerosols on precipitation from
976 orographic clouds, *J. Geophys. Res: Atmos.*, 112, 2007.

977 Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., and Cahill, T. A.: Spatial and seasonal
978 trends in particle concentration and optical extinction in the United States, *J. Geophys. Res: Atmos.*,
979 99, 1347-1370, 1994.

980 Marinescu, P. J., Levin, E. J., Collins, D., Kreidenweis, S. M., and van den Heever, S. C.:
981 Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains,
982 USA, *Atmos. Chem. Phys.*, 19, 11985-12006, 2019.

983 McCluskey, C. S., DeMott, P. J., Prenni, A. J., Levin, E. J. T., McMeeking, G. R., Sullivan, A. P.,
984 Hill, T. C. J., Nakao, S., Carrico, C. M., and Kreidenweis, S. M.: Characteristics of atmospheric
985 ice nucleating particles associated with biomass burning in the US: Prescribed burns and
986 wildfires, *J. Geophys. Res: Atmos.*, 119, 10458-10470, <https://doi.org/10.1002/2014jd021980>,
987 2014.

988 McCluskey, C. S., Ovadnevaite, J., Rinaldi, M., Atkinson, J., Belosi, F., Ceburnis, D., Marullo,
989 S., Hill, T. C. J., Lohmann, U., Kanji, Z. A., O'Dowd, C., Kreidenweis, S. M., and DeMott, P. J.:
990 Marine and Terrestrial Organic Ice-Nucleating Particles in Pristine Marine to Continentally
991 Influenced Northeast Atlantic Air Masses, *J. Geophys. Res: Atmos.*, 123, 6196-6212,
992 <https://doi.org/10.1029/2017jd028033>, 2018a.

993 McCluskey, C. S., Hill, T. C. J., Malfatti, F., Sultana, C. M., Lee, C., Santander, M. V., Beall, C.
994 M., Moore, K. A., Cornwell, G. C., Collins, D. B., Prather, K. A., Jayarathne, T., Stone, E. A.,
995 Azam, F., Kreidenweis, S. M., and DeMott, P. J.: A Dynamic Link between Ice Nucleating
996 Particles Released in Nascent Sea Spray Aerosol and Oceanic Biological Activity during Two
997 Mesocosm Experiments, *J. Atmos. Sci.*, 74, 151-166, <https://doi.org/10.1175/Jas-D-16-0087.1>,
998 2017.

999 McCluskey, C. S., Hill, T. C. J., Humphries, R. S., Rauker, A. M., Moreau, S., Strutton, P. G.,
1000 Chambers, S. D., Williams, A. G., McRobert, I., Ward, J., Keywood, M. D., Harnwell, J.,
1001 Ponsonby, W., Loh, Z. M., Krummel, P. B., Protat, A., Kreidenweis, S. M., and DeMott, P. J.:
1002 Observations of Ice Nucleating Particles Over Southern Ocean Waters, *Geophys. Res. Lett.*, 45,
1003 <https://doi.org/10.1029/2018gl079981>, 2018b.

1004 Meng, X., Yu, Y., and Ginoux, P.: Rise in dust emissions from burned landscapes primarily
1005 driven by small fires, *Nat. Geosci.*, 18, 586-592, <https://doi.org/10.1038/s41561-025-01730-3>,
1006 2025.

1007 Meyers, M. P., DeMott, P. J., and Cotton, W. R.: New primary ice-nucleation parameterizations
1008 in an explicit cloud model, *J. Appl. Meteor. Climatol.*, 31, 708-721, 1992.

1009 Miltenberger, A. K., Field, P. R., Hill, A. A., Rosenberg, P., Shipway, B. J., Wilkinson, J. M.,
1010 Scovell, R., and Blyth, A. M.: Aerosol–cloud interactions in mixed-phase convective clouds—Part
1011 1: Aerosol perturbations, *Atmos. Chem. Phys.*, 18, 3119-3145, 2018.

1012 Mignani, C., Hill, T. C. J., Nieto-Caballero, M., Barry, K. R., Bryan, N. C., Marinescu, P. J.,
1013 Dolan, B., Sullivan, A. P., Hernandez, M., Bosco-Lauth, A., van den Heever, S. C., Stone, E. A.,
1014 Grant, L. D., Perkins, R. J., DeMott, P. J., and Kreidenweis, S. M.: Ice-Nucleating Particles Are
1015 Emitted by Raindrop Impact, *J. Geophys. Res: Atmos.*, 130,
1016 <https://doi.org/10.1029/2024jd042584>, 2025.

1017 Murray, B. J., O'Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice nucleation by particles
1018 immersed in supercooled cloud droplets, *Chem Soc Rev*, 41, 6519-6554,
1019 <https://doi.org/10.1039/c2cs35200a>, 2012.

1020 Niemand, M., Möhler, O., Vogel, B., Vogel, H., Hoose, C., Connolly, P., Klein, H., Bingemer, H.,
1021 DeMott, P., Skrotzki, J., and Leisner, T.: A Particle-Surface-Area-Based Parameterization of
1022 Immersion Freezing on Desert Dust Particles, *J. Atmos. Sci.*, 69, 3077-3092,
1023 <https://doi.org/10.1175/Jas-D-11-0249.1>, 2012.

1024 Norris, G., Duvall, R., Brown, S., and Bai, S.: EPA positive matrix factorization (PMF) 5.0
1025 fundamentals and user guide, US Environmental Protection Agency, Washington, DC, www2.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf, 2014.

1027 O'Sullivan, D., Murray, B. J., Ross, J. F., and Webb, M. E.: The adsorption of fungal ice-
1028 nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating
1029 particles, *Atmos. Chem. Phys.*, 16, 7879-7887, <https://doi.org/10.5194/acp-16-7879-2016>, 2016.

1030 O'Sullivan, D., Murray, B. J., Malkin, T. L., Whale, T. F., Umo, N. S., Atkinson, J. D., Price, H.
1031 C., Baustian, K. J., Browse, J., and Webb, M. E.: Ice nucleation by fertile soil dusts: relative
1032 importance of mineral and biogenic components, *Atmos. Chem. Phys.*, 14, 1853-1867,
1033 <https://doi.org/10.5194/acp-14-1853-2014>, 2014.

1034 Pereira, D. L., Gavilán, I., Letechipía, C., Raga, G. B., Puig, T. P., Mugica-Álvarez, V., Alvarez-
1035 Ospina, H., Rosas, I., Martinez, L., Salinas, E., Quintana, E. T., Rosas, D., and Ladino, L. A.:
1036 Mexican agricultural soil dust as a source of ice nucleating particles, *Atmos. Chem. Phys.*, 22,
1037 6435-6447, <https://doi.org/10.5194/acp-22-6435-2022>, 2022.

1038 Pratt, K. A., DeMott, P. J., French, J. R., Wang, Z., Westphal, D. L., Heymsfield, A. J., Twohy, C.
1039 H., Prenni, A. J., and Prather, K. A.: In situ detection of biological particles in cloud ice-crystals,
1040 *Nat. Geosci.*, 2, 398-401, <https://doi.org/10.1038/ngeo521>, 2009.

1041 Pratt, K. A., Twohy, C. H., Murphy, S. M., Moffet, R. C., Heymsfield, A. J., Gaston, C. J.,
1042 DeMott, P. J., Field, P. R., Henn, T. R., Rogers, D. C., Gilles, M. K., Seinfeld, J. H., and Prather,
1043 K. A.: Observation of playa salts as nuclei in orographic wave clouds, *J. Geophys. Res: Atmos.*,
1044 115, <https://doi.org/10.1029/2009jd013606>, 2010.

1045 Prenni, A. J., DeMott, P. J., Sullivan, A. P., Sullivan, R. C., Kreidenweis, S. M., and Rogers, D.
1046 C.: Biomass burning as a potential source for atmospheric ice nuclei: Western wildfires and
1047 prescribed burns, *Geophys. Res. Lett.*, 39, <https://doi.org/10.1029/2012gl051915>, 2012.

1048 Prenni, A. J., Tobo, Y., Garcia, E., DeMott, P. J., Huffman, J. A., McCluskey, C. S., Kreidenweis,
1049 S. M., Prenni, J. E., Pöhlker, C., and Pöschl, U.: The impact of rain on ice nuclei populations at a
1050 forested site in Colorado, *Geophys. Res. Lett.*, 40, 227-231,
1051 <https://doi.org/10.1029/2012gl053953>, 2013.

1052 Reicher, N., Budke, C., Eickhoff, L., Raveh-Rubin, S., Kaplan-Ashiri, I., Koop, T., and Rudich,
1053 Y.: Size-dependent ice nucleation by airborne particles during dust events in the eastern
1054 Mediterranean, *Atmos. Chem. Phys.*, 19, 11143-11158, 2019.

1055 Rolph, G., Stein, A., and Stunder, B.: Real-time environmental applications and display system:
1056 READY, *Environ. Model. Softw.*, 95, 210-228, 2017.

1057 Sanchez-Marroquin, A., West, J. S., Burke, I. T., McQuaid, J. B., and Murray, B. J.: Mineral and
1058 biological ice-nucleating particles above the South East of the British Isles, *Environ Sci Atmos*,
1059 1, 176-191, <https://doi.org/10.1039/d1ea00003a>, 2021.

1060 Schill, G. P., DeMott, P. J., Emerson, E. W., Rauker, A. M. C., Kodros, J. K., Suski, K. J., Hill, T.
1061 C. J., Levin, E. J. T., Pierce, J. R., Farmer, D. K., and Kreidenweis, S. M.: The contribution of
1062 black carbon to global ice nucleating particle concentrations relevant to mixed-phase clouds,
1063 *Proc. Natl. Acad. Sci. USA*, 117, 22705-22711, <https://doi.org/10.1073/pnas.2001674117>, 2020.

1064 Schnell, R. C. and Vali, G.: Looking Back: An Account of How Ice Nucleation by Bacteria Was
1065 Discovered (1963 to about Mid-1980s). Part II: Broadening the Scope, *Bull. Amer. Meteor. Soc.*,
1066 105, E1004-E1014, <https://doi.org/10.1175/bams-d-23-0115.1>, 2024.

1067 Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to
1068 climate change, 3rd edn., Wiley, Hoboken, NJ, 2016.

1069 Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G.,
1070 Ghan, S., Guenther, A. B., Kahn, R., Kraucunas, I., Kreidenweis, S. M., Molina, M. J., Nenes,

1071 A., Penner, J. E., Prather, K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A.
1072 R., Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental understanding of the
1073 role of aerosol-cloud interactions in the climate system, *Proc. Natl. Acad. Sci. USA*, 113, 5781-
1074 5790, <https://doi.org/10.1073/pnas.1514043113>, 2016.

1075 Shawon, A. S. M., Benedict, K. B., Gutierrez, A., and Aiken, A. C.: Diurnal Trends and
1076 Meteorological Factors Influencing the Variability of Fluorescent Bioaerosol in Mt. Crested
1077 Butte, Colorado During SAIL, *J. Geophys. Res: Atmos.*, 130,
1078 <https://doi.org/10.1029/2024jd041186>, 2025.

1079 Shi, Y., Creamean, J., Hill, T., Hume, C., & Vazquez, M. Ice Nucleation Spectrometer for INP
1080 measurement (INP), 2021-09-09 to 2023-06-12, ARM Mobile Facility (GUC), Gunnison, CO;
1081 Supplemental Facility 2 (S2). Atmospheric Radiation Measurement (ARM) User Facility.
1082 <https://doi.org/10.5439/1770816>, Data accessed 2025-05-01.

1083 Shi, Y. and Liu, X.: Dust radiative effects on climate by glaciating mixed-phase clouds, *Geophys.*
1084 *Res. Lett.*, 46, 6128-6137, 2019.

1085 Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. D., and Ngan, F.: NOAA's
1086 HYSPLIT atmospheric transport and dispersion modeling system, *Bull. Amer. Meteor. Soc.*, 96,
1087 2059-2077, 2015.

1088 Steinke, I., Funk, R., Busse, J., Iturri, A., Kirchen, S., Leue, M., Möhler, O., Schwartz, T.,
1089 Schnaiter, M., Sierau, B., Toprak, E., Ullrich, R., Ulrich, A., Hoose, C., and Leisner, T.: Ice
1090 nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany, *J.*
1091 *Geophys. Res: Atmos.*, 121, <https://doi.org/10.1002/2016jd025160>, 2016.

1092 Storelvmo, T., Hoose, C., and Eriksson, P.: Global modeling of mixed-phase clouds: The albedo
1093 and lifetime effects of aerosols, *J. Geophys. Res: Atmos.*, 116, 2011.

1094 Sun, Y., Zhu, Y., Qi, Y., Chen, L., Mu, J., Shan, Y., Yang, Y., Nie, Y., Liu, P., Cui, C., Zhang, J.,
1095 Liu, M., Zhang, L., Wang, Y., Wang, X., Tang, M., Wang, W., and Xue, L.: Measurement report:
1096 Atmospheric ice nuclei in the Changbai Mountains (2623 m a.s.l.) in northeastern Asia, *Atmos.*
1097 *Chem. Phys.*, 24, 3241-3256, <https://doi.org/10.5194/acp-24-3241-2024>, 2024.

1098 Suski, K. J., Hill, T. C., Levin, E. J., Miller, A., DeMott, P. J., and Kreidenweis, S. M.:
1099 Agricultural harvesting emissions of ice-nucleating particles, *Atmos. Chem. Phys.*, 18, 13755-
1100 13771, 2018.

1101 Testa, B., Hill, T. C. J., Marsden, N. A., Barry, K. R., Hume, C. C., Bian, Q., Uetake, J., Hare, H.,
1102 Perkins, R. J., Möhler, O., Kreidenweis, S. M., and DeMott, P. J.: Ice Nucleating Particle
1103 Connections to Regional Argentinian Land Surface Emissions and Weather During the Cloud,
1104 Aerosol, and Complex Terrain Interactions Experiment, *J. Geophys. Res: Atmos.*, 126,
1105 <https://doi.org/10.1029/2021jd035186>, 2021.

1106 Tobo, Y., DeMott, P. J., Hill, T. C. J., Prenni, A. J., Swoboda-Colberg, N. G., Franc, G. D., and
1107 Kreidenweis, S. M.: Organic matter matters for ice nuclei of agricultural soil origin, *Atmos.*
1108 *Chem. Phys.*, 14, 8521-8531, <https://doi.org/10.5194/acp-14-8521-2014>, 2014.

1109 Tobo, Y., Prenni, A. J., DeMott, P. J., Huffman, J. A., McCluskey, C. S., Tian, G., Pöhlker, C.,
1110 Pöschl, U., and Kreidenweis, S. M.: Biological aerosol particles as a key determinant of ice
1111 nuclei populations in a forest ecosystem, *J. Geophys. Res: Atmos.*, 118,
1112 <https://doi.org/10.1002/jgrd.50801>, 2013.

1113 Umo, N. S., Murray, B. J., Baeza-Romero, M. T., Jones, J. M., Lea-Langton, A. R., Malkin, T. L.,
1114 O'Sullivan, D., Neve, L., Plane, J. M. C., and Williams, A.: Ice nucleation by combustion ash
1115 particles at conditions relevant to mixed-phase clouds, *Atmos. Chem. Phys.*, 15, 5195-5210,
1116 <https://doi.org/10.5194/acp-15-5195-2015>, 2015.

1117 Vali, G.: Quantitative evaluation of experimental results on the heterogeneous freezing
1118 nucleation of supercooled liquids, *J. Atmos. Sci.*, 28, 402-409, 1971.

1119 Vali, G. and Schnell, R. C.: Looking Back: An Account of How Ice Nucleation by Bacteria Was
1120 Discovered (1963 to about Mid-1980s). Part I: The Basics, *Bull. Amer. Meteor. Soc.*, 105, E778-
1121 E788, <https://doi.org/10.1175/bams-d-23-0114.1>, 2024.

1122 Vivioli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner, R.: Mountains of the
1123 world, water towers for humanity: Typology, mapping, and global significance, *Water Resour.*
1124 *Res.*, 43, 2007.

1125 Wagner, R., Jähn, M., and Schepanski, K.: Wildfires as a source of airborne mineral dust—
1126 revisiting a conceptual model using large-eddy simulation (LES), *Atmos. Chem. Phys.*, 18,
1127 11863-11884, 2018.

1128 Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M., Browse, J., Burrows,
1129 S. M., Carslaw, K. S., Huffman, J. A., Judd, C., Kilthau, W. P., Mason, R. H., McFiggans, G.,
1130 Miller, L. A., Najera, J. J., Polishchuk, E., Rae, S., Schiller, C. L., Si, M., Temprado, J. V., Whale,
1131 T. F., Wong, J. P., Wurl, O., Yakobi-Hancock, J. D., Abbatt, J. P., Aller, J. Y., Bertram, A. K.,
1132 Knopf, D. A., and Murray, B. J.: A marine biogenic source of atmospheric ice-nucleating
1133 particles, *Nature*, 525, 234-238, <https://doi.org/10.1038/nature14986>, 2015.

1134 Zhao, X., Jiang, K., Ou'yang, S., Li, Y., Wang, Y., Wang, J., Zhao, N., and Shen, G.: Global
1135 Biomass Burning Emission Contributions to Ice Nucleating Particles, *Geophys. Res. Lett.*, 51,
1136 <https://doi.org/10.1029/2024gl111881>, 2024.

1137 Ruichen Zhou, Russell Perkins, Sonia Kreidenweis. Source apportionment of aerosols at the White
1138 River IMPROVE site near the SAIL site. ARM Data Collection, Oak Ridge National Laboratory,
1139 U.S. Department of Energy, Oak Ridge, Tennessee, USA. Dataset accessed on 2025.
1140 <https://doi.org/10.5439/2573028>, 2025a.

1141 Ruichen Zhou, Russell Perkins, Sonia Kreidenweis, Kelton Ayars. Back trajectories during SAIL.
1142 ARM Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,
1143 Tennessee, USA. Dataset accessed on 2025. <https://doi.org/10.5439/2574969>, 2025a.

1144 Ruichen Zhou, Russell Perkins, Sonia Kreidenweis. Merged aerosol size distribution from SMPS
1145 and OPC for SAIL. ARM Data Collection, Oak Ridge National Laboratory, U.S. Department of
1146 Energy, Oak Ridge, Tennessee, USA. Dataset accessed on 2025.
1147 <https://doi.org/10.5439/2572899>, 2025a.

1148