
1.​ Insufficient detail in the methods section 
 
The methods section is, in my view, too sparse for a modeling paper in GMD. Key 
elements of the model design and training procedure are only briefly mentioned or 
deferred to the LUCIE-2D paper. This makes it difficult for readers to fully understand, 
reproduce, or adapt LUCIE-3D. I recommend substantially expanding the methods to 
include: 

 
●​ A self-contained description of the architecture (input/output variables, SFNO 

configuration, vertical treatment, and integration scheme). 
●​ Details of the training setup (loss functions, normalization, spectral bias correction, 

optimizer and learning rate schedule, regularization, and training/validation/test splits). 
●​ A clearer explanation of the Euler integration-based constraint and any other 

stability-promoting design choices. 
 

These additions could partly be placed in an appendix, but the main text should still 
provide enough detail for the reader to understand the core design and training choices 
without needing to consult prior work. 

​  
Author’s response: We thank the reviewer for this suggestion. The method section has been 
updated.  

Section 3 and section 3.1 describe the SFNO architecture of LUCIE-3D, with the 
hyperparameters listed in Table 2. The input and output variables are listed in Table 1 with the 
pressure levels corresponding to sigma levels noted in the caption.  

Section 3.2 describes the integration scheme of LUCIE-3D: the model predicts the increment 
between the timesteps and reconstructs the full-field prognostic variables to perform 
autoregressive inference. 

Section 3.3 shows the loss functions of LUCIE-3D and the training procedure. Section 3.3.1 
shows the first stage of training where LUCIE-3D is trained to perform one-step prediction with 
adaptive weighting on the training loss values of different variables, based on the validation loss 
values, after the first 20 epochs of training. Section 3.3.2 shows the FFT spectral regularizer in 
the final stage to fine tune the model’s ability to capture the FFT power spectrum. 

Section 3.4 is added to the manuscript to describe the probabilistic LUCIE-3D which shows a 
major advantage of LUCIE-3D. Because of the lightweight nature of LUCIE-3D, a simple 
plug-and-go method for uncertainty quantification in the training stage can turn LUCIE-3D into 
a probabilistic model that fits the chaotic nature of the atmospheric system. 

 



 
2.​ Limited assessment of climatology and model accuracy 

 
The current evaluation of the model climatology, particularly in Sect. 4.1, feels too 
limited to support the conclusion that LUCIE-3D achieves “good accuracy”. For instance, 
showing a single vertical structure plot, where positive and negative biases can partially 
cancel when averaged, is not sufficient to characterize the climatological performance. 
Saying there is ”little bias” doesn’t really prove this point. I recommend: 
 

●​ Expanding the diagnostics to include spatial maps of mean state and biases (at 
multiple levels), as well as zonal-mean sections, for key variables. 

●​ Providing quantitative metrics (e.g. RMSE, pattern correlation, variance ratios) 
for climatology over well-defined regions and levels. 

●​ Clarifying the time period over which climatological statistics are computed and 
ensuring consistency across figures. 

 
A more systematic assessment would better support the claims about climatological 
accuracy and help readers understand where the emulator performs well and where it has 
limitations. In addition, the discussion of stratospheric representation and the role of the 
QBO should be tempered. The model has only a single vertical level within the typical 
QBO altitude range, and the QBO is primarily a tropical signal. Under these constraints, 
it is not realistic to attribute stratospheric deficiencies to the absence or misrepresentation 
of the QBO. Instead, the manuscript should emphasize the limited vertical extent and 
coarse stratospheric resolution of LUCIE-3D as the primary factors shaping its 
stratospheric performance and be more cautious in drawing conclusions about 
QBO-related behavior. 
 

Author’s response: We thank the reviewer for this suggestion. We added the climatology spatial 
map into Appendix Section A.  
We have added the RMSE table to the manuscript in the climatology section. The time period 
used in the climatological statistics is noted in the caption of the figures now. In addition to the 
RMSE table, climatology spatial maps are added into Appendix A for ease to see the 
performance of the model to capture the climatological pattern. 
For the discussion about QBO, we agree that the vertical resolution is too coarse to cover the 
QBO altitude range. We meant to point out that LUCIE-3D cannot capture the stratospheric 
dynamics accurately. We have changed the wording in the result section. Figure 1 in this 
document shows the LUCIE QBO compared to ERA5 QBO. 



 
Figure 1. ERA5 QBO and LUCIE QBO during free run period. 

 
3.​ Limited and selective use of quantitative metrics 

 
Across the manuscript, model performance is often described using qualitative phrases 
such as “high accuracy” or “low bias” without accompanying quantitative metrics. In 
contrast, where the model performs particularly well (e.g., the spatial correlations of the 
SAM and NAM modes of 0.95 and 0.98, respectively), these strong metrics are 
highlighted, but even there important caveats are not fully discussed (for instance, the 
fraction of explained variance differs substantially from ERA5 for each of these modes). 
It is perfectly acceptable for the model to have deficiencies; however, these should be 
documented transparently and supported by quantitative diagnostics. I encourage the 
authors to adopt a more systematic use of metrics throughout (e.g., RMSE, variance 
ratios, correlation coefficients, explained variance) and to discuss both strengths and 
weaknesses wherever possible. 

 
Author’s response: We thank the reviewer for this suggestion.  
We have added the climatological RMSE table to the Result Section 4.1. With the RMSE values 
listed for all the variables on different sigma levels, it is clear to see, especially with wind 
variables, the degrading performance from lower altitude levels to higher altitude levels. Some 
variables including specific humidity may not be obvious for the small values on the lower sigma 
levels so we have added climatological spatial maps into the appendix for the reader to clearly 
see how well the model is capturing the climatology patterns.  For all the metrics, we have noted 
the year range of data used. 



 

4.​ Interpretation of the SSW case and implied predictability 

Section 4.4 shows a single SSW-like event at 25 hPa and states that LUCIE-3D 
produces “one of these events in 2006 with inference initialized in 1980”. As written, 
this can be read as implying that the model is expected to reproduce the timing of an 
individual SSW event many months (or even decades) after initialization. Given that 
SSWs are generally regarded as having limited predictability on subseasonal scales of 
at most a few weeks (e.g., Cho et al., 2023, and related work on SSW predictability), 
this raises several questions: 

●​ What exactly is being claimed here in terms of predictability? Is the goal to 
show qualitative capability to generate SSW-like events under realistic forcing, 
or to reproduce the timing of specific observed events? 

●​ What aspects of the forcing or model design would make it reasonable for an 
SSW to occur in both ERA5 and LUCIE-3D in the same winter, given the long 
lead time from the stated initialization date? 

●​ If the emulator is primarily intended as a climate model (rather than a forecast 
system), is it appropriate to emphasize the coincidence in calendar year at all, or 
could this be misread as evidence of overfitting or overly strong imprint of the 
training data? 

I would recommend clarifying the intent of this example and aligning it with current 
understanding of SSW predictability. For instance, you could frame it more explicitly 
as a qualitative demonstration that LUCIE-3D can produce SSW-like events with 
realistic structure, and complement this with a more statistical evaluation (e.g., 
frequency, seasonality, and basic characteristics of SSW-like events), rather than 
focusing on a single coincident case. Though, now that it is brought up, I suggest 
clarifying that this is not evidence of overfitting. 

Author’s response: We thank the author for this comment. In this experiment, LUCIE-3D is 
able to generate several SSW events throughout the long-term inference period from 1981 to 
2020 . The one shown in Figure 8 is one of the SSW events that happened in the free run 
period. SSW events are considered to have limited predictability on subseasonal scales due the 
chaotic nature and the purpose of this demonstration is to show that they can be generated (and 
not predicted). Therefore, this experiment does not aim to show deterministic capability on 
matching specific events as shown in ERA5 after such a long term of inference. Instead, the 
purpose of this experiment is to demonstrate the qualitative capability of the model to generate 
realistic SSW events. We have added a clarification in section 4.4. 

 
 

5.​ Physical constraints and position within the ML emulator landscape 

The manuscript does not really discuss physical constraints such as mass, water, and 
energy conservation, nor how well LUCIE-3D respects these quantities in practice. 
Other emulators (e.g., CAMulator, ACE2) explicitly include fixers or correction steps 



to enforce or at least improve physical consistency. It would be very helpful if the 
authors could: 

●​ Clarify whether LUCIE-3D includes any explicit constraints or postprocessing 
to address conservation of mass, water, and energy, and if not, provide at least a 
basic diagnostic assessment of how large the associated drifts or imbalances are 
over long integrations. 

●​ Discuss how these choices affect the intended use cases for LUCIE-3D (for 
example, short-term sensitivity experiments versus multi-decadal climate 
response studies). 

●​ Situate LUCIE-3D more clearly within the broader family of ML climate 
emulators, in particular relative to models that enforce stronger physical 
constraints such as CAMulator and ACE2. What niche or role do you envision 
for LUCIE-3D, given its design choices regarding conservation and physical 
consistency? 

A more explicit discussion of physical constraints and where LUCIE-3D sits in the 
current emulator landscape would make it much easier for readers to understand when 
and how this model can be reliably used. 

 

Author’s response:We thank the reviewer for this comment. LUCIE-3D is specifically designed  
as a purely data-driven, increment-learning model, distinguishing it from models that utilize 
explicit physical constraints (e.g., ACE2, CAMulator). 
Unlike ACE2, which predicts full fields and employs explicit conservation layers, LUCIE is 
trained to predict variable increments. Our findings suggest that predicting the increments rather 
than the full state naturally improves long-term stability and climatological accuracy. LUCIE 
does not currently include explicit physical constraints for mass or energy. This allows for a 
more flexible, lightweight architecture. We acknowledge that it may lead to conservation drifts 
over multi-decadal scales. However, the intention is to keep the model purely data-driven to 
avoid any potential artificial biases. 
LUCIE is designed as an efficient tool for rapid climate sensitivity experiments and exploring 
atmospheric variability. It is accessible to academic groups with minimal resource requirements. 
It serves as an efficient and effective platform for both climate studies and architecture design. 
As evidenced by the new addition to the manuscript of a probabilistic learning mode, the 
lightweight nature of LUCIE can easily be leveraged for novel deep learning paradigms. 

 
 

6.​ Conclusions and framing of LUCIE-3D’s role 

The concluding paragraphs strike a good balance between highlighting the promise of 
LUCIE-3D and acknowledging several key limitations (stratospheric fidelity, lack of 
dynamic ocean coupling, and sensitivity to prescribed SST perturbations) I would, 



however, encourage a bit more specificity and alignment with the main body of the 
paper: 

●​ It would be helpful if the conclusion more clearly articulated what LUCIE-3D is 
currently well suited for (e.g., idealized forced-response experiments, 
present-day climate sensitivity tests, process studies focusing on large-scale 
tropospheric structure) versus applications where it is not yet reliable (e.g., 
teleconnection studies strongly involving the stratosphere, detailed SSW/QBO 
analyses, fully coupled ocean–atmosphere variability). 

●​ The statement that LUCIE-3D can ingest SST forcing and produce “physically 
consistent” atmospheric responses feels somewhat strong in light of the issues 
documented earlier in the paper (e.g., spurious land cooling under SST 
perturbations, limited vertical coverage in the stratosphere). I suggest softening 
or qualifying this wording, or explicitly stating in what sense the responses are 
physically consistent. 

●​ Since the discussion emphasizes the need for hybrid approaches, improved 
stratospheric representation, and coupled dynamics, the conclusion could briefly 
connect this to concrete next steps for LUCIE-3D (e.g., adding physical 
constraints or fixers, targeted stratospheric training, coupling to an ocean 
emulator), rather than only framing these as generic goals for “data-driven 
emulators” as a whole. 

A slightly sharper and more concrete conclusion along these lines would help readers 
understand both the genuine progress represented by LUCIE-3D and the realistic limits 
of what it can currently deliver. 

 

Author’s response: We thank the reviewer for the suggestion. 
We have briefly summarized the reliable use case of LUCIE-3D in the last paragraph of the 
discussion section. We have also added a statement on the potential future research plans. As 
mentioned in the last paragraph of the discussion section, the model can benefit from better 
weighting on the different sigma levels to help the model recognize the lower sigma level 
variables. The significantly slower dynamics in the, for example, stratosphere makes the model 
prioritize learning the near surface variables. We have also added the condition to the physical 
consistency: the model is currently only reliable with realistic SST. 
 
 

Technical corrections and typos and places to improve 

T1. Page 1, line 10: Replace “(Pathak et al.)” with “(e.g., Pathak et al.)”. There are now many 
ML-based NWP systems, and adding “e.g.” makes clear that this is an illustrative, not 
exhaustive, citation. 

Author’s response: We thank the reviewer for the suggestion. The manuscript has been updated 
accordingly. 



T2. Page 1, line 20: Consider adding a more recent and/or peer-reviewed reference in addition 
to the arXiv preprint (Chattopadhyay and Hassanzadeh, 2023), given that this preprint is now a 
few years old. 

Author’s response: We thank the reviewer for this comment. We have talked to both of the 
authors and there is currently no flowing-up paper. 

T3. Page 1, line 24: remove (developed by us) or make a more scholarly statement. 

Author’s response: We thank the reviewer for the suggestion. The manuscript has been updated 
accordingly. 

T4. Page 2, line 27: I am not fully convinced by the argument that training cost is prohibitive. 
While non-trivial, a few days on four GPUs does not seem excessively demanding in the 
current context and could be better justified or rephrased. 

Author’s response: We thank the reviewer for this comment. The key philosophy behind this 
project is to build a lightweight climate emulator that requires as little computing resource as 
possible. This feature allows LUCIE to be deployed on a single A100 GPU or even on CPUs to 
generate reliable long-term emulation. We expect LUCIE to lower the barrier to accelerate 
climate research with machine learning, for any academic groups or even individuals with or 
without access to clusters. Furthermore, the fast training process enables projects, including our 
own downstream projects, on architectural designs, training procedure refinement, and 
experimentation on new techniques (e.g. probabilistic training scheme added to the manuscript). 
 
T5. Page 2, line 38: The sentence “Unlike its predecessor, which was trained on a limited 
number of sigma-levels, LUCIE-3D is trained on data spanning the full vertical extent of the 
atmosphere” is potentially misleading. Because the vertical information is interpolated and the 
model does not extend above 25 hPa, this is not the full vertical extent of the atmosphere. Please 
clarify the actual vertical coverage and rephrase accordingly. 
Author’s response: We thank the reviewer for the suggestion. We agree that the coarse vertical 
grid does not completely cover the full vertical extent. The manuscript has been updated 
accordingly. 

T6. Page 2, line 47: The manuscript states that the model has potential for coupling to 
dynamical ocean models. However, in its present configuration the model does not include the 
full set of variables typically required for coupling to dynamic oceans. Please clarify what is 
meant by “potential for coupling” in this context and specify which additional variables or 
interfaces would be needed. 

Author’s response: The current setup allows the model to take in sea surface temperature as a 
forcing variable. LUCIE-3D can be initialized with given SST values and  provide an ocean 
model with surface atmospheric variables for the ocean model to predict the SST values which 
will be input to future steps of LUCIE-3D inference. However, as shown in 



https://www.arxiv.org/abs/2509.12490 , the ocean-coupled version of ACE, the results indicate 
no major change in the dynamics.  

T7. Page 2, line 55: “Vertically interpolated across eight” is ambiguous. Do you mean 
vertically averaged (as in ACE) or simply interpolated to eight fixed levels? Please clarify the 
procedure. Also, please give the nominal horizontal resolution in degrees (e.g. T30, 
approximately 3.75°x 3.75°, corresponding to a Gaussian grid of 96 longitude by 48 latitude 
points) and briefly comment that this is a relatively coarse resolution. 

Author’s response: We thank the reviewer for the suggestion. The vertical gridding was simply 
interpolated from pressure levels, instead of vertically averaged. The detailed procedure is 
recorded in https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021MS002712, as cited in 
the Dataset section. 

T8. Page 3, section “Dataset”: A small table listing all variables used (including units and 
number of levels per variable) would improve clarity. Please also explicitly cite the ERA5 
dataset. It would be helpful to add a brief motivation for the choice of variables. 

Author’s response: We thank the reviewer for the suggestion. The manuscript has been updated 
accordingly. The variables involved in LUCIE-3D training are based on Arcomano el al. ( 2020) 
(https://doi.org/10.1029/2020GL087776), Arcomano el al. (2022) 
(https://doi.org/10.1029/2021MS002712), and Arcomano et al. ( 2023) 
(https://doi.org/10.1029/2022GL102649) as cited in the manuscript. The original intention was to 
compare the LUCIE-3D results with the climate model in Arcomano el al. (2022). However, 
since the ML approach of climate modeling is simpler and more demonstrated now, we cut the 
discussion on the comparison to the traditional models for brevity. 

T9. Page 3, section “Methods”: The statement that SFNO is “well-suited” is rather qualitative. 
Please provide a more scientific justification (e.g. handling of spherical geometry, spectral 
properties, ability to capture multi-scale dynamics) and, if possible, support this with 
references. 

Author’s response: We thank the reviewer for the suggestion. We have added the reason and 
advantages of using SFNO for climate emulators in Method Section 3.1. SFNO performs 
convolutions in spectral space where the coordinates are given by a spherical harmonics basis. 
This guarantees rotational equivariance and mitigates polar artifacts 

T10. Page 3, section “Methods”: The description of the model architecture is very brief and 
relies heavily on the previous LUCIE-2D paper. It would be helpful to include at least a 
concise, self-contained description of the core architecture here (potentially moving further 
details to an appendix) so that the manuscript is readable without constantly referring back to 
earlier work. 

Author’s response: We thank the reviewer for the suggestion. As answered for comment 1, we 
have added details to the method section with self-contained description on the architecture, 
workflow, input/output variables, and loss functions. 

https://www.arxiv.org/abs/2509.12490
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021MS002712
https://doi.org/10.1029/2020GL087776
https://doi.org/10.1029/2021MS002712
https://doi.org/10.1029/2022GL102649


T11. Page 3, section 3.1: The “Euler integration-based constraint” is not clearly explained. Is 
this simply predicting tendencies and then updating the state with an explicit Euler step? Please 
provide a precise description. At present, the reader must rely on the LUCIE-2D description to 
fully understand the setup. 

Author’s response: We thank the reviewer for the suggestion. The method section has been 
updated accordingly. We have added a detailed description on Euler integration in section 3.2. 

T12. Page 3, line 89: Please clarify how the value 0.005 was chosen (e.g. tuning, prior work, 
sensitivity tests). 

Author’s response: We thank the reviewer for the suggestion. The method section has been 
updated accordingly. The value 0.005 has been obtained through hyperparameter tuning to 
maintain the scaled loss value in the approximately same range as the original loss values 
without weighting. 

T13. Page 3: Please specify whether and how the data were scaled or normalized before 
training, and describe the training/validation/test split (time periods, fraction of data, etc.). As 
written, this part of the methods section feels incomplete. 

Author’s response: We thank the reviewer for the suggestion. The dataset section has been 
updated accordingly. The dataset is normalized with the z-score normalization with the mean and 
standard deviation of each variable. 

T14. Page 4, line 90: Please provide more detail on the “corrected spectral bias term”: what is 
the exact form of this correction, and how is it implemented in the loss or architecture? 

Author’s response:We thank the reviewer for the suggestion. The method section has been 
updated accordingly. We have added a detailed description of the loss function for training in 
section 3.3.2. 

T15. Page 5, Figure 1 and related text: The uppermost model level lies near the lower portion 
of the QBO region, so only a small part of the full QBO structure (approximately 10–70 hPa) is 
represented, one level (25hpa). Thus, I would not expect the model to capture a realistic QBO 
vertical structure at all. It would just be a fluctuation at the top of your last line. I think line 
105-109 is just not relevant for that conversation, given the fact that you are not near the QBO 
height. Also, the QBO is tropical feature. This suggests the discussion has not fully accounted 
for the actual vertical coverage of the model. 

Author’s response: We thank the reviewer for this comment. As in the answer for comment 2, 
we agreed that the vertical resolution is too coarse to cover the QBO altitude range for correct 
QBO representation. We have modified the discussion in Section 4.1.  

T16. line 113: typo ”polar amplification”. 

Author’s response: We thank the reviewer for the correction. The manuscript has been updated 
accordingly. 



T17. Section 4.2: I agree with reviewer 1 that the 0.5 degree bias seems high for the surface 
temperature trend. 

Author’s response: We thank the reviewer for this comment. ​​We believe that the source of this 
problem lies in the absence of TOA (top-of-the-atmosphere) radiation variable in the diagnosed 
quantities and thus an absence of an energy budget in the loss function. In future development, 
we expect to improve the weighting scheme on the loss function and further include additional 
variables for addressing this bias. 

T18. Section 4.2, line 115 for all of these findings are you still refering to figure 2? how can 
you look at polar amplification in a single line plot. 

Author’s response: We thank the reviewer for this comment. The findings are indeed based on 
Figure 2 in the manuscript. We have added a reference to the figure in the statement. 

T19. Section 4.2, line 117. Specific humidity change is in the wrong location in LUCIE with 
the trend being focused right on the equator rather than in the northern hemisphere tropics. 
Adjust this comment 

Author’s response: We thank the reviewer for this correction. The moistening in LUCIE-3D is 
indeed centered around the equator. We have changed the statement in the manuscript. 

T20. Interpretation of biased SST experiments and smoothing procedure (lines 135–147) The 
discussion of the +2 K and +4 K SST bias experiments raises several concerns. Despite being a 
nice result, the statement that the model is “numerically stable and physically consistent” 
seems too strong in light of the clearly unphysical cooling response over Northern Hemisphere 
land. I would recommend softening this wording or being more specific about which aspects of 
the solution are physically consistent. Second, the attribution of this land cooling to prescribed 
SST fields with land values fixed at 270 K and associated land–sea discontinuities is plausible, 
but currently presented without direct supporting evidence. The smoothing procedure, mixing 
SST over ocean and coastal land via a Gaussian convolution and normalization by a smoothed 
ocean mask,also feels rather ad hoc and is not described in enough detail to be reproducible 
(e.g., kernel width, definition of “coastal land” points, and whether this is applied during 
training only or also at inference). Moreover, blending SST into coastal land points is not 
physically straightforward, since land “SST” is not a well-defined quantity, so it would be 
helpful to emphasize that this is a pragmatic numerical fix rather than a physically based 
boundary treatment. Again, this is a nice result, but feels more of an ad hoc numerical remedy 
than a fully physical solution. Finally, the claim that the smoothing “improves the response” 
and the subsequent conclusion that this behavior indicates a broader difficulty for emulators to 
“extrapolate well outside of their training data” could be made more cautious. It would 
strengthen the argument to provide simple quantitative metrics demonstrating the improvement 
(e.g., pattern correlation or RMSE of the warming pattern) and to frame the extrapolation 
limitation more narrowly in the context of these particular uniform SST perturbation 
experiments, rather than as a general statement about all emulators. 

Author’s response: We thank the reviewer for this comment.  



The driving logic behind smoothing the SST values into the coastline stems from the forcing 
variables nature of SST. LUCIE-3D responds to the change in the forcing variables. Increasing 
the SST values with +2 K and +4 K (while fixing the land values) causes the model to force the 
prediction to stay unchanged over the land. Since the land values are acting as a constraint on the 
model prediction and are expected to be ignored by the model, blending the SST value into the 
land aims to mitigate the sharp spatial derivative that may lead to numerical artifacts. We agree 
that this approach is more of a pragmatic fix than a physically sound solution. The current setup 
is a proposed potential solution and our effort on solving this problem and we indeed show 
accurate signs in the responses for both +2K and +4K SST perturbation. We have added this 
statement into the manuscript and made the code open-source. 
 

T21. Section 4.3, line 149: When introducing the Wheeler–Kiladis diagram and the MJO as a 
key diagnostic for variability, please add appropriate references (e.g., the original 
Wheeler–Kiladis paper and foundational MJO references) to support this discussion. 

Author’s response: We thank the reviewer for the correction. We have added the original paper 
from Dr. Wheeler and Dr. Kiladis to the literature review. 
 
T22. Line 152: The statement that LUCIE-3D “closely matches ERA5 in spectral power within 
the MJO band” is qualitative. From Fig. 6 it appears that LUCIE-3D may in fact overestimate 
power in parts of the MJO band. I suggest either (i) providing a quantitative metric (e.g., power 
ratio, integrated variance in the MJO box, correlation across the spectrum) to substantiate 
“closely matches”, or (ii) softening the wording to acknowledge any apparent overestimation. 

Author’s response: We thank the reviewer for this comment. We agree that there is slight 
overestimation in the MJO box. We have added this statement in the manuscript. 

T23. Lines 153–155: The text states that incorporating the full vertical structure in LUCIE-3D 
“grants the model the ability to represent the spectrum of Kelvin waves”, in contrast to the 
earlier 2D version. It would be helpful to clarify what specific deficiency existed in LUCIE-2D 
(e.g., weaker amplitude, incorrect phase speed, missing parts of the Kelvin band) and to show 
how LUCIE-3D improves on this with quantitative metrics. Since you highlight MJO and 
equatorial wave representation in the abstract, this section would benefit from a more 
systematic analysis, including a brief discussion of remaining deficiencies as well as successes, 
supported by measurable diagnostics (e.g., power spectra in Kelvin and ER bands, comparison 
to theoretical dispersion curves). 

Author’s response: We thank the reviewer for this comment. We have added a brief discussion 
on the deficiency of LUCIE-2D in section 4.3. We have added the power spectra of all the 
variables into the appendix. 

T24. Line 175; what is the improvement or strategy in Kent et al.(2025)? briefly summarizing 
which elements of Kent et al. (2025) you have in mind and how they could be applied to 
LUCIE-3D (for example, a systematic evaluation of SSW frequency, timing, and composite 



structure, or an analysis of low-frequency precursors), or removing the reference to Kent et al. 
(2025) at this point and instead making a more generic statement about the need for a 
dedicated, quantitative SSW evaluation in future work. 

Author’s response: We thank the reviewer for this correction. We agree that the original writing 
was confusing. We have changed the wording and removed the reference to Kent et al. (2025). 

T25. Section 4.4 would we expect to have the ability to predict a SSW at 6 Months lead time? 
If not this is evidence of the model being too fit to the data. What is driving the SSW such that 
it should show up in both ERA5 and LUCIE at the same time (1980) at 6 months lead? This 
paper does not seem to indicate that they are at all that predictable. 
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JD039559 

Author’s response: We thank the reviewer for this comment. We clarify that the objective of 
this experiment is to demonstrate the model’s qualitative capability to generate physically 
realistic SSW events, rather than to achieve deterministic predictive accuracy. Given the chaotic 
nature of the atmosphere and the limited subseasonal predictability of SSWs, we do not expect a 
40-year free-running inference to match the specific timing of events in ERA5. Instead, Figure 8 
confirms that LUCIE-3D successfully captures the characteristic dynamics and structural 
evolution of SSW events as an emergent property of the model. We have reworded this section to 
better reflect our original point. 

T26. Line 202-203. Expand on this sentence or remove. 

Author’s response: We thank the reviewer for the suggestion. The manuscript has been updated 
accordingly. 

 

 

 
 

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JD039559

