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Abstract. General circulation models (GCMs) face significant uncertainties in estimating Earth's radiative budget due to
aerosol-cloud interactions (ACI). To improve the representation of ACI in GCMs it is crucial to constrain processes controlling
the aerosol lifecycle and the resulting size distribution. This is challenging due to the complexity and number of competing
atmospheric processes that interact over large spatial and temporal scales which require untangling to elucidate dominant
processes controlling aerosol properties. This study aims to (a) develop a generic explainable Al framework from air-mass
history to build an accurate representation of processes controlling aerosol properties, from this, (b) identify key relationships
between aerosol processes and their impacts on observed aerosol number concentrations, and (c) provide robust process-based
observational constraints to aid in the isolation of GCM structural uncertainties. This is achieved by developing XGBoost
regression models to simulate Aitken and accumulation mode number concentrations for receptor surface stations and
application of TreeSHAP to identify key processes from explanatory variables describing meteorological and aerosol processes
collocated to Lagrangian air-mass trajectories. The fidelity of this framework is demonstrated for the Antarctic station
Trollhaugen, situated in a pristine region in which GCMs exhibit significant biases. Aerosol number concentrations at
Trollhaugen were shown to be dominated by marine sources as well as transport from the free troposphere. The contribution
from aloft dominates aerosol burden of the Aitken mode in the transitions between summer and winter, in contrast to a larger

contribution in the summer from local marine sources from transport in the boundary layer.
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1 Introduction

Aerosols remain one of the largest sources of uncertainty in climate modelling, with the difficulty in constraining the natural
baseline being a significant compounding factor for accurately predicting future climate scenarios (Bellouin et al., 2020;
Carslaw et al., 2013; Sherwood et al., 2020). Aerosol-cloud interactions (ACI) contribute the largest uncertainty to the radiative
forcing (RF) from aerosols (Bellouin et al., 2020), with the strong sensitivity in pristine conditions contributing significantly
to the total uncertainty in ACI (Gryspeerdt et al., 2023; McCoy et al., 2020; Regayre et al., 2020). The non-linearity of the
sensitivity of the anthropogenic forcing to the natural baseline significantly impedes our ability to accurately predict future

climate scenarios (Carslaw et al., 2013).

The lack of observations in the pre-industrial period is one of the factors that limits our ability to constrain the natural aerosol
baseline in general circulation models (GCMs) and to enable estimations of ACI forcing. To improve understanding of natural
aerosol processes, case studies of pristine regions are frequently analysed to minimise the anthropogenic influence (Hamilton
et al., 2014; McCoy et al., 2020; Schmale et al., 2019). However, GCMs have been shown to demonstrate significant bias in
these regions with significant underpredictions of aerosol concentrations being reported over the Antarctic and Southern Ocean
(e.g. McCoy et al., 2020, 2021; Mulcahy et al., 2020; Regayre et al., 2020). Improving the poor representation of aerosols and
thus cloud properties is of paramount importance to reduce known biases in the planetary albedo over the Southern Ocean
(Fiddes et al. 2024). Improvement in representation of natural aerosol in pristine regions promises to improve natural aerosol

processes globally and thus provide an improved constraint on RF.

Additionally, in future climates it is thought that aerosol-climate feedbacks will have significant impacts, acting to enhance or
dampen RF but these are currently poorly constrained in GCMs (e.g. Blichner et al., 2024). A study by Paasonen et al. (2013)
across different regions found that concentrations of cloud condensation nuclei (CCN) increase with increasing temperatures,
this feedback was found to be particularly strong for clean environments. Polar regions are some of the most pristine regions
on Earth and are also experiencing rapid changes owing to polar amplification effects. These changes such as retreating sea
ice (Dall’Osto et al., 2017; Struthers et al., 2011) and changes in atmospheric transport patterns (Pernov et al., 2022) may
strongly impact aerosol sources (Schmale et al., 2022). Both climate induced, and policy induced changes could result in rapid
alterations to dominant aerosol processes globally. To understand the full impacts of climate change, understanding of aerosol

processes and therefore potential amplification or dampening of these processes under future scenarios will be key.

The importance of airmass history for understanding aerosol processes has been demonstrated in many studies (e.g. Sogacheva
et al., 2005; Tunved et al., 2006, 2013). As aerosol populations undergo significant transformations during transport,
Lagrangian frameworks are employed to investigate the potential sources and sinks experienced during transport, and thus
understand the resultant measured or modelled population of aerosol. Source-receptor models have been used in aerosol studies

to identify potential source regions by linking back trajectories to concentrations measured at the receptor site, for example
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using a concentration-weighted trajectory framework (CWT). These are powerful tools to provide an overview of potential
source regions, particularly when applied to perform climate model evaluation using air-mass trajectories calculated from
climate model meteorological and aerosol outputs for climate model evaluation (Kim et al., 2020; Talvinen et al., 2025).
However, receptor modelling alone poses challenges for informing process understanding and pinpointing which processes
contribute to biases in GCM aerosol representation as they only provide the combined effect of sources and sinks during

transport.

Further understanding of the role of specific processes can be gained from deriving source-receptor relationships. One at a
time (OAT) based studies have long been used to understand aerosol processes (e.g. Tunved et al., 2006, 2013), focusing on
the relationship between a variable, particularly during transport, and the measured aerosol properties at a receptor site. For
example, the role of removal via wet scavenging during transport (Khadir et al., 2023; Tunved et al., 2013) and the importance
of emissions from the boreal forest as a source of secondary organic aerosols during transport (Liao et al., 2014; Tunved et al.,
2006). This has recently been extended to evaluation of model representation of wet scavenging source-receptor relationships
using GCM airmass transport (Talvinen et al., 2025) over the boreal forest. Whilst these techniques useful to improve
understanding of model bias, these studies do not account for interactions or the potential for compensating errors in GCMs.
Additionally, the high dimensionality of aerosol modelling means that applying OAT approaches to constrain all processes
would be prohibitively time consuming. Statistical models have previously been employed to investigate relationships of
multiple variables at a time for specific aerosol environments. For example, a study by Isokéénté et al. (2022) developed a
mixed effects model to examine the drivers of aerosol mass in the boreal forest. The benefit of statistical models is

interpretability; however, they commonly rely on an assumption of linearity.

The use of machine learning techniques to model complex, difficult to constrain aerosol properties and processes, has been
increasing rapidly, with examples of regressing aerosol particle number concentrations (e.g. Kulkarni et al., 2022), aerosol
optical properties (e.g. Geiss et al., 2023; Kumar et al., 2024), CCN concentrations (e.g. Arjunan Nair & Yu, 2020) and aerosol-
cloud interactions (Chen et al., 2022, 2024; Watson-Parris et al., 2019). Machine learning regression models using
meteorological inputs and source proxies have been used to predict aerosol concentrations, and several studies have considered
direction of transport (Chen et al., 2020; Gao & Li, 2021; Karimian et al., 2019; Qin et al., 2019; Qiu et al., 2023; Zhao et al.,
2019) but have not considered a full airmass history. Whilst these deep learning models, such as neural networks, have been
found to provide accurate predictions of aerosol properties, these architectures are often referred to as ‘black boxes’ due to the
difficulty in probing the hidden architecture to unpick drivers of predictions. To improve both real-world understanding of
natural aerosol processes and their representation by numerical models, understanding the drivers of predictive models is key.
Numerous methods for interpreting machine learning models have been developed, for example permutation feature

importance, SHAP (Lundberg & Lee, 2017), Sobols (Jaxa-Rozen & Kwakkel, 2018) and LIME (Ribeiro et al., 2016), however,
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these rely on the assumption of non-correlated explanatory variables for implementation which cannot be assumed for

processes controlling the aerosol lifecycle.

Tree-based models, whilst less complex than neural networks, offer interpretability and still maintain the ability to represent
non-linear relationships. A study by Song et al. (2022) leveraged information from airmass history with random forests to
predict species of aerosol and investigate the driving processes of concentrations of species of acrosol. This covered an 8-
month period in 2015, during the operating period at Gruvebadet Observatory on Svalbard, so could not explore the full
seasonal cycle. To predict species of aerosol some of the airmass history was included as explanatory variables (fraction of
trajectory over each land type and cluster of direction of transport) as well as meteorological parameters at the site. However,
meteorological parameters during transport, such a precipitation, have been found to play a significant role in aerosol prediction
(Isokaéntd et al., 2022; 2024, Tunved et al., 2013), so key relationships could be missed by only considering meteorology at
the measurement site. A recent study utilised combined meteorological weighted trajectory (MWT) maps to as the explanatory
variables to predict CWT maps of methanesulfonic acid aerosol (MSA) across the Arctic (Pernov et al. 2024). This allowed
for the exploration of the impact that meteorological variables had during transport, but on a monthly scale, using averaged
MWT maps. Aerosol processes act much shorter timescales, therefore, in order to perform a process-based analysis, a higher

temporal resolution is required.

Whilst significant progress has been made in leveraging Lagrangian-based frameworks to constrain aerosol processes, a

number of gaps have been identified that we will address by developing a new framework that considers:

High dimensionality
Non — linearity
Explanatory (allowing for correlations)

Generic applicability

A e

Process driven explanations

Development of a Lagrangian machine learning (ML) framework that accounts for (1-5) is paramount to untangle the complex,
non-linear processes that govern natural aerosol properties and provide robust observationally derived constraints on process
level timescales for GCM evaluation. This is important as it will allow us to pinpoint key processes leading to targeted GCM
improvements which will be the focus of future work by leveraging a recently developed modelling framework to obtain air-

mass history from GCM meteorological data (Kim et al., 2020).

To achieve this, the focus of this study is the development of a holistic, generic ML framework for aerosol lifecycle process
understanding that can be subsequently applied to provide unparalleled constraints for aerosols in GCMs to reduce the

longstanding uncertainty in ACI. To achieve a process driven ML framework (point 5 above) it is important to note that this
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framework does not include date information or wind direction as proxies for processes, commonly utilised in PM2.5
modelling studies (e.g. Xiao et al., 2020; Yazdi et al., 2020). Instead, we link directly to data describing underlying processes,
which will inherently encapsulate the information represented by these proxies, such as the seasonal cycle, as the aim of the
study is to investigate natural aerosol processes and in future work elucidate the potential sources of bias in GCMs. The
criterion for the development of a framework is that it is applicable to any in-situ aerosol measurement site (point 4 above),
with a sufficient multi-annual timeseries of high temporal resolution aerosol size distribution data, to build a greater

understanding of the driving processes in any environment.

The framework developed uses tree-based regression models, selected as the most suitable architecture to achieve points 1-3,
to predict aerosol concentrations at in-situ measurement sites from the airmass history. We build a comprehensive airmass
history using satellite and reanalysis data during transport to the measurement site. This breadth of data allows us to conduct
a holistic study into the drivers of natural aerosols and facilitates application of the framework to different environments. We
utilise model interrogation techniques to build on understanding from observational studies and further unpick the complex
interactions of the aerosol-climate system. We demonstrate the capability of this framework at Trollhaugen in the Antarctic;

however, this framework has been developed to be globally applicable.

Our objective is to improve understanding of the processes governing aerosol concentrations in Antarctic which will be

achieved by the following contributions:

1. Identifying the seasonal cycle of aerosol number concentration and the dominant source regions for the measurement
site.

2. Building and evaluating a model for accurate predictions of aerosol concentrations from airmass history.

3. Elucidating the relationships between meteorological parameters, source proxies and aerosol concentrations.

4. Identifying dominant source and sink processes controlling the number concentration for Aitken and accumulation

modes particle number concentration for the case study environment.

These results could have significant impact for representation of natural aerosol sources in GCM parameterisations, by
improving understanding of aerosol processes, and therefore highlighting underrepresented or missing sources and sinks in

GCMs.

In Sect. 2 we present the datasets utilised in the study, in Sect. 3 the framework is described, results are discussed in Sect. 4

and finally, conclusions are presented in Sect. 5.
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2 Datasets

We now set out the properties and sources of the datasets used in this study as the explanatory and response variables in the

ML framework.

2.1 Particle number size distribution measurements

Particle number size distribution (PNSD) measurements used for this study were obtained from a ground-based aerosol
measurement site on the Antarctic continent (Fiebig et al., 2014) through the ACTRIS network (Laj et al., 2024). Trollhaugen
(TRH) (72°00'42"S 02°32'06"E, 1553 m a.s.l.) is located at Trollhaugen Mountain, between the Antarctic plateau and the
coast, and experiences both air masses from the ocean and continent (Hansen et al., 2009). The location is shown in Fig. la.
The observatory was established taking permanent measurements at this location in February 2014, so is the longest running

timeseries of Differential Mobility Particle Sizer (DMPS) data in the Antarctic region.
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Figure 1: (a) Map of aerosol measurement site location used in this study. (b) The median size distribution per day of year (2014-

2018).

Dry PNSD measurements obtained at the site using DMPS instruments at ambient humidity and temperature are then filtered
for this study to remove artifacts and contamination. Filters provided with the size distribution datasets were applied to remove
those data entries flagged as likely containing instrumental artifacts. Four additional filters were applied; these are described
along with the selected flags in Sect. S1.1 and the results are described in Table S1. Once filtered, the size distributions were
interpolated to a consistent grid from 1-1000nm with a dlogDp of 0.015 for consistency between instruments at sites and to
facilitate consistent comparison to data from multiple GCMs in future studies, the results of which are shown in Fig. S1. The
interpolation was conducted using the Piecewise Cubic Hermite Interpolation Polynomial (PCHIP) function (Fritsch &
Butland, 1984) from the SciPy package (Virtanen et al. 2020). However, we note that the consistent instrument measurement
limits over the period considered spans 34-660 nm, and we do not extrapolate beyond these limits, additional considerations

for interpolation are discussed in Sect. S1.2. We note that the interpolation can result in negligible differences of the total
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concentration calculation where the bin midpoints of the new and original grid do not match (Fig. S1). The resultant PNSD

are summarised in Fig. 1b, showing the median size distribution for each day of the year.

Trollhaugen showed surprising pollution events during the austral winter (Fig. S2), some of which have previously been linked
to local pollution from other Antarctic stations (Myhre et al., 2019). We utilise back trajectories to isolate events in the
concentration timeseries considered at Trollhaugen corresponding to transport from nearby Antarctic stations that use diesel
generators year-round: Novolazarevskaya (70°46'37"S 11°49"26"E), Maitri (70°46'00"S 11°43'55"E), Showa (69°00'15"S
39°34'55"E), SANAE IV (69°00'15"S 39°34'55"E) and Neumayer (70°4028"S 8°1627"W). These local anthropogenic
sources will not be represented by the explanatory variables so need to be removed before fitting the regression model. We
consider potential events to be the highest 2% of N80 concentrations for April-September transport, and consider
contamination, and therefore a flagged pollution event, within 0.4 degrees of each site. Additionally, some extreme low
concentrations (N80 < 4cm®) consistent for several timesteps appeared anomalous in the timeseries and upon inspection of the

raw data these were removed from analysis. The results for this contamination filtering step are shown in Sect. S1.3.

The response variable selected for the regression models was the aerosol concentration for two size ranges: ~30-80 nm to
represent the Aitken mode (34 nm the actual lower limit due to PNSD coverage), and ~80-660nm to represent the accumulation
mode. These size ranges were selected as the concentration of aerosol above 80nm (N80) is commonly used to represent a
proxy for CCN (e.g. Asmi et al., 2011; Kerminen et al., 2012) and understanding the drivers of CCN in different regions is
essential when considering the climatic impact. We also consider the Aitken mode, as in pristine regions these can contribute
to CCN burden (e.g. Karlsson et al., 2022). It is also important to consider the two size ranges in tandem when exploring the
dominating processes controlling the observed aerosol particle number size distribution to contribute to a greater understand
of aerosols in the region. The aerosol concentrations were averaged to a 6-hourly resolution, using the mean, to reduce noise

in the dataset.

2.2 Air-mass trajectories

Single-particle backwards trajectories from each aerosol measurement (receptor) site were calculated using the Hybrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT) model developed by the National Oceanic and Atmospheric
Administration (NOAA) Air Resources Laboratory (Stein et al., 2015). The HYSPLIT version used in this study (5.1.0)
includes a minor bugfix to improve the velocity interpolation calculation of trajectories passing near the poles. Trajectory
release heights are selected based on the receptor site orography and the representation of the orography in the driving
meteorological data. To reduce the likelihood of trajectories having contact with the surface, a release height of 100m above

ground level (AGL) is used, the decimal coordinates and starting altitude for trajectory calculations are reported in Table 1.

For the driving meteorological data, 6-hourly ERA-Interim reanalysis data (Dee et al., 2011) was re-gridded onto a 1.0° x 1.0°
latitude-longitude grid. For this study 4D variables (latitude, longitude, pressure, time) from ERA-Interim are output on 30

7
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fixed pressure levels. ERA-Interim was selected for this study following the setup for the Aerosol Comparisons between
Observations and Models (AeroCom) phase III experiment. This facilitates comparison to GCM simulations nudged to ERA-

interim horizontal winds, to ensure any biases identified are not due to differences in transport.

Our analysis, like all frameworks reliant on single-particle trajectories (e.g. Dal Maso et al., 2007; Tunved et al., 2013), is
susceptible to the inherent uncertainty linked with individual trajectories (Engstrom & Magnusson, 2009; Stohl, 1998). Some
uncertainty can be mitigated with the averaging of summary statistics from hourly trajectories to create a 6-hourly average
airmass history (see Sect. 2), however the uncertainty in the input meteorology is often regarded as the dominant contribution

(Bowman et al., 2013).

Station Description | Years Diameter Trajectory release location Trajectory
included length (hrs)
in study | range Latitude Longitude Height
(inclusive) m

included A.G.L.
(nm)
Trollhaugen | Antarctic 2014-2018 | 34-660 -72.012 2.535 100 240
(pristine)

Table 1: The receptor site with the site description, years included in the study, diameter range and the trajectory release locations.

2.3 Explanatory variables

The airmass history provided by HYSPLIT trajectories is further supplemented by considering sources and sinks of aerosols
during transport (Table 2). We collocate 2D satellite and reanalysis variables identified as proxies for aerosol processes along
trajectories in 3 dimensions (latitude, longitude, and time) using linear interpolation over rectilinear grids provided by the
SciPy library (Virtanen et al., 2020), in a 3D adaption of the 4D approach described in Talvinen et al. (2025). For categorical
variables such as land classes, we employ a nearest neighbour collocation approach. We consider a wide range of potential

aerosol sources in this study to ensure the framework is generic and applicable to other regions.

2.3.1 Meteorological variables

HYSPLIT provides many important meteorological variables for aerosol properties during the calculation of trajectories. In
this framework we include trajectory height, boundary layer height, temperature (at trajectory height) and relative humidity
(RH). Many of the driving processes for natural aerosol formation are also photosynthetically driven, therefore the surface net

solar radiation from ERA-Interim is included from the trajectory calculation. Time in boundary layer is calculated from the
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trajectory height compared to the boundary layer height for each trajectory point. Trajectory speed is calculated from the

latitude and longitude of the trajectory, using the Haversine formula.

Many near surface processes generating pre-cursor gases and primary aerosol have meteorological drivers. Therefore, we
additionally collocated surface meteorological variables: 2m temperature and 10m wind speed from ERAS reanalysis

(Hersbach et al., 2020). The ERAS data is provided at a 6-hourly resolution on a 0.25-degree grid.

2.3.2 Aerosol sink proxies

It is also essential to consider removal processes during transport; to account for wet removal ERA-Interim reanalysis surface
precipitation large scale and convective data (Dee et al., 2011; https://codes.ecmwf.int/grib/param-db/228) is collocated along
trajectories. The HYSPLIT calculated precipitation fields are truncated and thus, are poorly representative of light rain and
drizzle (Talvinen et al., 2025). Satellite products were considered, however due to data sparsity there is not global coverage
particularly at the highest latitudes at the time resolution required, therefore for this study the reanalysis dataset is used and
collocated after trajectory calculation. Time dependent weightings are applied during the calculation of summary statistics to
account for the time dependent influence of precipitation during transport, discussed in Sect. 2. As in Isokdénti et al. (2022)
and Tunved et al. (2013) we calculate ‘time in cloud’ based on an RH threshold (where RH from the ERA-Interim reanalysis

exceeds 94 %) to account for cloud processing in our model.

2.3.3 Aerosol source proxies

Numerous studies have examined source-receptor relationships in different environments, utilising proxies to represent aerosol
sources. Time over land has been shown in several studies in the boreal forest to be strongly correlated with aerosol mass (Liao
et al., 2014; Petéja et al., 2022; Réty et al., 2023; Tunved et al., 2006), and has been utilised in previous studies to predict
aerosol properties (Isokdéinti et al., 2022; Song et al., 2022). To obtain an estimation of time of trajectory over land the General
Bathymetric Chart of the Oceans (GEBCO) 2019 product was used (GEBCO Compilation Group, 2019), this provides global
coverage of terrain elevation over land and ocean. We use this to create a land mask (land > 0 m a.s.l.) to collocate onto the
trajectories. However, from initial analysis this was found to act as a proxy for anthropogenic emissions in some regions
therefore we elected to replace this with separate land classes: time over evergreen forest, deciduous forest, shrub, cropland
and urban. To implement this separation, land cover maps utilising the United Nations Food and Agriculture Organization’s
(UN FAO) Land Cover Classification System (LCCS) were collocated along trajectories with the appropriate classes selected
for each variable (Table S2). The dataset is based on classifying a baseline land cover map using Medium Resolution Imaging
Spectrometer (MERIS) and updated using change detected from System Pour I’Observation de la Terre-Vegetation (SPOT-
VGT) (1998 to 2012) and Project for On-Board Autonomy-Vegetation (PROBA-V) and Sentinel-3 OLCI (S3 OLCI) (from

2013). Time over land was then replaced with time over sea — the summation of the trajectory timesteps not classified as land.
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In addition to considering the time over each annual vegetation species classification maps, we seek to further isolate the
impact of different aerosol sources such as biogenic volatile organic compound (BVOC) emissions from trees and shrubs and
dimethylsulfide (DMS) from phytoplankton so include additional source proxies with a higher temporal resolution as
explanatory variables. Leaf area index (LAI) is used here as the proxy for BVOCs which are important sources of secondary
organic aerosol, particularly for Boreal regions (e.g. Spracklen et al., 2008). In this study we use effective LAI, derived from
normalized top-of-canopy reflectance from the Vegetation (VGT) sensor onboard two satellites covering the data period:
PROBA (2013-2020) and SPOT (1998-2014). The LAI product is derived every 10 days with a 20-day composite window,
with a spatial resolution of 1km. Chlorophyll-a has been shown to be a good proxy for secondary organic aerosol (O’Dowd et
al., 2015) and primary marine organic emission at Mace Head (Rinaldi et al., 2013) and has been used in the parameterisations
for primary marine emissions in GCMs (Rinaldi et al., 2013). The GlobColour product was used for to collocate chlorophyll
concentrations along trajectories (Fanton d’Andon et al., 2009; Maritorena et al., 2010), this is a combined L3 product from

MODIS, MERIS and SeaWiFS (O’Reilly et al., 2000).

Sea ice plays an important role in aerosol processes in Arctic and Antarctic regions, with decreased sea ice extent leading to
increases in sea salt aerosol flux and increased biogenic flux (e.g. Struthers et al., 2011; Dall’Osto et al., 2017; Yan et al.,
2020). To a lesser extent sea ice has also been found to be a source of aerosol from the sublimation of blowing snow (Frey et
al., 2019). The Operational SST and Sea Ice Analysis (OSTIA) sea ice product with a spatial resolution of 0.05 degrees is
produced at a daily resolution. This has been averaged to a monthly resolution, to decrease data sparsity from cloudy retrievals

(Donlon et al., 2012). A threshold fraction of 0.25 is used to classify a trajectory timestep as spending time over sea ice.

Despite the selection of a pristine site to study natural aerosol processes, we acknowledge that there could be transport of
anthropogenic emissions and periodic wildfires to this region, and these variables will be important for other regions. To
account for these, anthropogenic emissions are included in the explanatory variables using the Community Emissions Data
System (CEDS) gridded emissions (v_2021 04 21) at 0.1° resolution. This dataset is a downscaled version of the 0.5° dataset
(Hoesly et al., 2018), using 0.1° proxy data from EDGAR (Janssens-Maenhout et al., 2019). The estimates of global air
emissions species at a monthly resolution were summed over all sectors to provide a total anthropogenic emission of BC, NHs,
NOx and SOz. To investigate the impact of fires in the study, BC and OC emission estimates from the Global Fire Emissions
Database (GFED) were included as explanatory variables at two heights to account for lofting. The BC and OC emissions
obtained from GFED were at a daily temporal resolution and 0.25° spatial resolution. Whilst not expected to dominate in
Antarctica, fires emissions will be of greater importance in other regions, for example the Arctic (e.g. Gramlich et al., 2024;

Warneke et al., 2010).

All these variables have been shown in previous studies, as discussed, to have an impact on aerosol properties and data sources
have been selected to provide the fullest coverage across the globe and consistent timeseries for this framework. The selected

variables and sources are summarised in Table 2, resulting in 35 explanatory variables. The mean was used for meteorological

10
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variables, with a weighting (Sect. 2). For surface solar radiation the weighted sum was used, to introduce a measure for the
length of the length of daylight hours. For source and sink variables the weighted sum was used to consider the accumulation

of source variables during transport using the weight (Eq. (1)), discussed in Sect. 2. The ‘time over’ mask variables are

summarised using the sum to ensure interpretability and facilitate comparison to previous studies.

No. | Variable Source Spatial Temporal | Reference Averaging
(unit) resolution | resolution method over

trajectory

1 Height (m | Hysplit+ Era- | 1.0° 6-hourly (Dee et al., 2011; Stein et al., | Weighted
a.gl) Interim 2015) mean

2 Boundary Reanalysis 1.0° 6-hourly (Dee et al., 2011) Weighted
layer height | (Era-Interim) mean
(m)

3 Temperature | Reanalysis 1.0° 6-hourly (Dee et al., 2011) Weighted
(K) (Era-Interim) mean

4 Trajectory Reanalysis 1.0° 6-hourly (Dee et al., 2011) Mean
speed (Era-Interim)

5,6, | Total surface | Reanalysis 1.0° 6-hourly (Dee et al., 2011) Weighted
precipitation | (Era-Interim) and non-
(convective weighted
and  large sum and
scale) reverse
(mmhr!) weighted

sum.

8 Snowfall Reanalysis 1.0° 6-hourly (Dee et al., 2011) Weighted
(mmhr!) (Era-Interim) sum

9 Relative Reanalysis 1.0° 6-hourly (Dee et al., 2011) Weighted
humidity (Era-Interim) mean
(o)

10 Surface net | Reanalysis 1.0° 6-hourly (Dee et al., 2011) Weighted
solar (Era-Interim) sum
radiation
(Wm?)

11 Time in | Reanalysis 1.0° 6-hourly (Dee et al., 2011) Sum
boundary (Era-Interim)
layer (hr)

12 | Time in | Reanalysis 1.0° 6-hourly (Dee et al., 2011) Sum
cloud (hr) (Era-Interim)

11
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13 Chlorophyll | Satellite 4km Monthly (Fanton d’Andon et al., 2009; | Weighted
(ugL™h) (GLOB- Maritorena et al., 2010) sum
Colour)
14 | LAI (m*m?) | Satellite lkm Monthly Copernicus ~ Climate  Change | Weighted

(SPOT VGT) Service, Climate Data Store, | sum
(2018): Leaf area index and
fraction absorbed of
photosynthetically active
radiation 10-daily gridded data
from 1981 to present. Copernicus
Climate Change Service (C3S)
Climate Data Store (CDS). DOI:
10.24381/cds.7e59b01a
(Accessed on 26/03/2021)

15, | 10m  wind | Reanalysis 0.25° 6-hourly (Hersbach et al., 2020) Mean, std,

16, | speed (ms') | (ERAS5) max and

17, non-

18 weighted

mean

19 2m Reanalysis 0.25° 6-hourly (Hersbach et al., 2020) Weighted
temperature | (ERAS) mean
(°0)

20 Time over | Satellite 0.05° Monthly (Donlon et al., 2012) Sum
sea ice (hr) (Ostia)

21 Sea ice | Satellite 0.05° Monthly (Donlon et al., 2012) Weighted
weighted (Ostia) mean
mean

22 Time over | ESACCI 300m Yearly ESA. Land Cover CCI Product | Sum
evergreen User Guide Version 2. Tech. Rep.
forest (hr) (2017). Available at:

maps.elie.ucl.ac.be/CCl/viewer/d
ownload/ESACCI-LC-Ph2-
PUGV2_2.0.pdf

23 Time over | ESACCI 300m Yearly ESA. Land Cover CCI Product | Sum
deciduous User Guide Version 2. Tech. Rep.
forest (hr) (2017). Available at:

maps.elie.ucl.ac.be/CCl/viewer/d

12
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ownload/ESACCI-LC-Ph2-
PUGV2_2.0.pdf

24 Time over | ESACCI 300m Yearly ESA. Land Cover CCI Product | Sum
shrub (hr) User Guide Version 2. Tech. Rep.
(2017). Available at:

maps.elie.ucl.ac.be/CCl/viewer/d
ownload/ESACCI-LC-Ph2-
PUGV2_2.0.pdf

25 Time over | ESACCI 300m Yearly ESA. Land Cover CCI Product | Sum
urban (hr) User Guide Version 2. Tech. Rep.
(2017). Available at:

maps.elie.ucl.ac.be/CCl/viewer/d
ownload/ESACCI-LC-Ph2-
PUGV2_2.0.pdf

26 Time over | GEBCO 0.0042° N/A (GEBCO Compilation Group, | Sum

sea (hr) 2019)
27, | Anthropoge | CEDS 0.1° Monthly (Hoesly et al., 2018) Weighted
28, | nic sum

29, | emissions
30 (BC, SO,

NOx, NH3)
31, | Emissions GFEDS 0.25° Daily (Giglio et al., 2013; Mu et al., | Weighted
32, | from fires 2011; Van Der Werf et al., 2017) | sum

33. | (BC  high,
34 | BC low, OC

high, OC
low)
35 | Arrival hour | N/A N/A N/A N/A N/A

Table 2: Explanatory variables source, resolution, reference and averaging technique.

2.4 UKESM1 configuration

We compare the performance of our Lagrangian ML modelling framework to aerosol concentration predictions in Eulerian
space at the receptor site by the UK Earth System Model (UKESM1.0), hereafter referred to as UKESM. The configuration
290 used is the same atmosphere-only style as for the Atmospheric Model Intercomparison Project (AMIP). The external forcing
datasets are consistent with the Coupled Model Intercomparison Project Phase 6 (CMIP6) implementation of UKESM and
time-evolving sea surface temperature, sea ice and prescribed marine biogenic emissions are used from a fully coupled model
simulation as described in Sellar et al. (2020). The horizontal winds in UKESM are nudged to ERA-Interim (Telford et al.,

2008), and the resolution used is 1.875 degrees longitude, 1.25 latitude and 85 vertical levels. The 2-moment modal aerosol
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scheme in United Kingdom Chemistry and Aerosols (UKCA) model is described in (Mann et al., 2010). We note that
UKESMI1.0 uses a binary neutral homogeneous H2SO4+—H20O nucleation scheme (Vehkamaéki et al., 2002) throughout the

atmosphere.

We linearly interpolate the log-normal modal aerosol fields (diameter, concentration, and geometric standard deviation) at the
receptor site latitude, longitude and trajectory start height, at a 3 hourly resolution. We use the UKESM1 UKCA modal
parameters (dry diameters, number concentrations and geometric mean diameters, see Table S3) to calculate the log-normal
PNSD (Seinfeld and Pandis, 1998) on the same grid as for the observations described in Sect. 2.1 The size distributions are

then averaged to 6-hourly to match the resolution of the observations.

3 Methodology

Explainable machine learning techniques are implemented to predict and then interrogate aerosol properties at the receptor site
using the airmass history as described in Sect. 2.3 In this section we describe the overarching framework, data preparation,

receptor models used for analysis and finally the regression model setup and interrogation.

3.1 Framework

The airmass history is used to predict aerosol properties at the measurement site, in the framework described by the schematic
in Fig. 2. Combining Lagrangian frameworks with regression models, is a relatively new approach. Previous studies have
relied on meteorological inputs at the site (Qin et al., 2019; Song et al., 2022), but not the impacts of processes acting during
the air-mass on the formation and growth of aerosols during transport. Therefore, we consider a much more comprehensive
description of the airmass history, as described in Sect. 2.3. We build XGBoost regression models to predict aerosol
concentrations, then interrogate these models with SHAP methods to investigate the dominant processes leading to the

measured aerosol properties at the receptor site.

Vl.“n(to - t) Vl...n(to)
j N(t )
T Predicted
p o o, Valtor XGBoost (e,
=
_~ Va (t

Figure 2: Schematic to describe the framework implemented in this study.
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3.2 Data preparation

To prepare the explanatory variables for the regression modelling, we seek to reduce the dimensionality to avoid model
overfitting and increase interpretability by taking summary statistics along trajectories for each variable. These are shown in
Table 2.

As this study focuses on building a ML model corresponding to acrosol properties observed near the surface, where the aerosol
lifecycle in the atmosphere tends to be on the scale of days (Boucher et al., 2013), a weighting (Eq. (1)) is applied to the
summary statistics to account for the decay of feature importance along the trajectory, the graph for this equation over a 240-
hour trajectory is shown in Fig. S3. We use an exponential decay based on the trajectory hour (i) but introduce a ‘daily’ factor

to reduce the gradient of the exponent, as typically atmospheric process act on timescales of days (Raes et al., 2000).

1
w; =e 24, i €{1,..,N} €9

We also ensure that the weights are normalised in order to preserve the scale of the explanatory variables and maximise
interpretability. For missing data, in order to preserve the scale of the explanatory variables, we remove these weights from
the trajectory before any normalisation is applied. For variables such as LAI, ocean can be represented as missing data in the
dataset, however in this context there is an absence of the source (e.g. LAI=0), therefore we use the land mask to apply a
padding to ocean points, to fill with zeros, before the weighting step. This approach is consistently applied for chlorophyll

concentrations and sea ice fraction.

For the weighted summary statistics, we consider a weighted sum (Eq. (2)) for aerosol source and sink proxies, and for

meteorological variables we consider the weighted mean (Eq. (3)), for each variable, x, over a trajectory of length N.

N
S = Z X;W;S (2
i=1
N xw;s
E — Zl—lNl L (3)
N
where s = Y 4)
i=1""i

A linear weight was also tested (not shown), however the exponential performed better, highlighting importance of accounting
for the decay in relevance of variables during transport. Data is all averaged to 6-hourly, using the arithmetic mean, to match
the time resolution of the aerosol concentration data. A 6-hourly resolution was selected to remove noise from the hourly

aerosol data, whilst maintaining a diurnal cycle, and during initial tests (not shown), this averaging period was found to result
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in the best model performance. Any data points with missing data in the calculated explanatory or response variables were
removed prior to fitting the ML framework. For regression tasks it is common to apply a Box-Cox transform (Eq. (5)) to
transform the distribution of the response variable to a normal distribution to improve model performance (Osborne, 2010).
Here, lambda is fitted on the whole response variable dataset and the same lambda value used on all data splits.

@ _ 1

Yi ]
yi(/l) — n ifA+0 (5)

In(y)if 2 =0

Finally, the data must be split into training and test datasets. The implementation of a random test-train split, as implemented
in Song et al. (2022), disregards the inherent correlation of timeseries data, therefore the reported skill is likely higher than the
model skill on unseen data. Here we select a full year (2017) to use for testing and remove this prior to training to avoid

contamination of the test set. The number of data points in each dataset is shown in Table 3.

Station Total dataset Training dataset Test dataset

Trollhaugen 6497 5149 1348

Table 3: The number of datapoints in each dataset for explanatory and response variables, at the 6-hourly resolution.

3.3 Receptor models

Five types of receptor model are used in this study to inform our understanding a priori of aerosol processes associated with
the aerosol receptor station and evaluate model performance. Transport frequency receptor models are used to investigate the
spatial distribution of the airmass history for each site. We define this over a grid, with the frequency of transport within a

given grid cell defined as:

100 \M
Fijo l=1vijl (6)

where Fj; is the frequency of visits for a grid cell, T is the total number of trajectories, v;;;the number of unique visits by a

trajectory, /, in the grid cell, 7,7, and M is the total number of trajectories with endpoints in the i,jth grid cell.

Concentration weighted trajectory (CWT) receptor models are used to investigate the potential dominant sources of aerosols
for each receptor site used in this study. These are defined over the same grid as for the transport frequency models using the

definition as defined in Hsu et al. (2003):

1 M
L= M .
Zl=1 Tiji =1
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where C; is the concentration associated with trajectory /, 7;;; is the total number of trajectories endpoints in the grid cell (i,j)

associated with the C; sample. We additionally build receptor error model to investigate regions of error in the models:

1 M
e.'. = —Z eTii (8)
Lj Z{Vil Tijl =1 5]

where e, is the error in predicted concentration (e; = C;mogetiea) — Ciropservea))-

To highlight dominant regions of error we weight the error functions by the frequency of visits per grid cell to produce the

weighted absolute error (W) receptor model:

W 100 M 1 ZM )
iji = Viii o= e T;i
L] T =1 ijl Z][vil Tijl =1 LYijl

For variables such as height a collocated variable trajectory (CVT) receptor model is used. CVT receptor models, similarly to
the meteorological weighted trajectory models in (Pernov et al., 2024), represent an average of a collocated variable at a point
in space during the transport of the airmass to the measurement site. Generally, this will closely reflect the monthly mean
distribution for the collocated values and take into account the spatial variability in meteorological conditions and air mass

transport pathways (Pernov et al., 2024). The CVT receptor model is described by Eq. (10):

1 M
i,j Z?/I:1Tijl =1 ijltijt

where V; ; 1 is the variable value associated with trajectory point, 7;;;, in the grid cell i/ is the total number of trajectories

endpoints in the grid cell (i,)).

A Lambert azimuthal equal-area projection is used for the receptor models in this study to ensure that the defined regularly
spaced grid results in grid cells with equal area. The receptor models are build using the hexbin function from cartopy (Elson
et al., 2022), but it must be noted that there is some approximation of equal area based on the ‘best fit’ of hexagons over the
domain by introduced by the algorithm. However, the bias introduced by this approximation is negligible, considering
geographic coordinate grids. Note that for these maps we do not apply a mask to remove low trajectory counts, in order to

facilitate direct comparison to the SHAP results.

3.4 Regression model and SHAP model interrogation technique

The regression model used in this study was XGBoost (eXtreme Gradient Boosting) (Chen & Guestrin, 2016), an additive

tree-based model, built from decision trees. XGBoost was selected as it frequently outperforms Random Forest models on
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imbalanced datasets. For the model setup, the mean squared error was used as the loss function and hyperparameter tuning
was performed using Tree-based Parzen Estimators (TPE) implemented by the hyperopt package (Bergstra et al., 2013), results
from which are described in Table S7. Hyperparameter tuning was conducted for 300 iterations, using the negative R? score

as the minimisation objective. The models developed in this study are hereafter referred to as the ‘ML models’.

SHAP is used in this study for model interrogation, estimating Shapley values to explain the contribution of each feature to a
prediction of an instance (Lundberg et al., 2017). KernelSHAP calculates the contribution of features by sampling from the
marginal distribution of the dataset to represent absent features. However, it is important to note that the use of the marginal
expectation in KernalSHAP to estimate the contribution of a feature ignores the dependence structure of the features so if there
are high correlations between variables this can break those dependencies. The more recently developed path-dependent
TreeSHAP calculates the expectation f(S) using the conditional expectation based on the structure of the trees, therefore not
breaking the correlations between features (Lundberg et al., 2018). As the features of the regression model used in this study
demonstrate high correlations, it was paramount to implement a model interrogation technique that did not break the
dependencies between variables. However, a caveat of TreeSHAP is that correlated features can result in a SHAP value
different from zero, therefore correlation between features must be considered in the interpretation of TreeSHAP results.
Additionally, a correlated feature used higher in the tree will be given more importance than a correlated feature used lower in

the trees.

SHAP is employed in this study using path-dependent TreeSHAP from the python SHAP package (Lundberg et al., 2020).
SHAP rankings were used to perform recursive feature selection during the model build: removing all features with zero
importance then recursively removing the lowest ranked features until model performance degrades. The TreeSHAP rankings
were used here as the standard feature importance is based on a shuffling algorithm so assumes independence of features, the

results of feature selection are described in Table S6.

SHAP is used for model interrogation, to investigate the relationships leading to predictions of the ML model in Sect. 4.4. As
well as considering the SHAP-feature relationships from the SHAP analysis we consider the spatial distribution, to visualise
this, we employ the CWT framework (Sect. 3.2) to the SHAP results, where each SHAP value for a measurement at the site
corresponds to a trajectory. Note that the SHAP analysis is conducted on the regression models which predict Box-Cox
transformed aerosol concentrations, thus the SHAP values are on the magnitude of the transformed data. The Box-Cox
transformation is monotonic, therefore the SHAP analysis holds for the aerosol concentrations, so the SHAP results are
discussed in relation to the aerosol number concentrations throughout. Additionally, it is important to note that as the Box-Cox
transformations are performed on each concentration dataset separately, the magnitudes of the SHAP values cannot be
compared between the two models. Thus, in the analysis of the results the rankings of the variables between the models, and

the magnitudes only are considered within each ML model analysis.
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4 Results and discussion

In this section we present the results of this study. Starting by demonstrating the seasonal cycle of aerosol at Trollhaugen.
Next, we present the results of the regression models for each site: evaluating first the ML model performance in a Eulerian
perspective, comparing to UKESM, and finally in a Lagrangian perspective. Then we present the results of the SHAP analysis

utilising the ML models for both aerosol particle number concentration size ranges.

4.1 Seasonal cycle at each site

Figure 3 shows the average seasonal cycle for the period considered in the study for each measurement site. Trollhaugen is a
pristine site; highlighted by the extremely low concentrations and variability in the austral winter. There is a very distinct
seasonal cycle for both the accumulation and Aitken concentrations (Fig. 3). The shape of the distributions is very similar,
however in the austral summer concentrations in the Aitken mode are almost double that of the accumulation mode (Fig. 3a).
This is consistent with results for the seasonal cycle across Antarctic aerosol measurement sites (Fiebig et al., 2014; Lachlan-
Cope et al., 2020; Rose et al., 2021). A strong seasonal cycle in total particle number concentration has been found to be a
prominent feature across Antarctic in previous studies with Austral Summer being found to be up to 20—-100 times greater than
during the winter (e.g. Fiebig et al., 2014; Ito, 1993; Shaw, 1979; Weller et al., 2011), and has been found to be more
pronounced at measurements sites on the upper plateau rather than the coastal sites which are more influenced by sea salt
concentrations (Lachlan-Cope et al., 2020). Trollhaugen is located between the Antarctic plateau and the coast but still

demonstrates a strong seasonal cycle in number concentrations for both modes.
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Figure 3: The seasonal cycle of concentrations (cm™) at TRH (Trollhaugen) for (a) 30-80nm and b) 80-660nm for the observations
for the years used for model training (2014-2018 inc., excluding 2017) (light blue, left shift), the observations for the year used to test
the model (navy, centred) and the ML model (XGBoost) predictions for the test year (2017) (pink, right shift). The monthly median

is indicated by the central point and the bars show the 25"-75™ percentiles.
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4.2 Model evaluation

The ML regression models developed in this study for each site and aerosol size range accurately replicate the seasonal cycle
of aerosol concentrations (Fig. 3). Comparing to UKESM, ML models better replicate the average aerosol concentrations (Fig.
4). Notably, we see significant underprediction by UKESM of accumulation mode aerosol particle number concentrations
during the Austral summer at Trollhaugen (Fig. 4b), by a factor of 2. It has long been shown that UKESM underpredicts
aerosol concentrations in the Antarctic (Mulcahy et al., 2020) and as it is the accumulation mode particles that have the most
significant impact on cloud properties, this underprediction could have significant ramification for climate predictions in this
highly climatically significant region. The ML model also better replicates the variance of the observations for the
accumulation mode, particularly for March (Fig. 4b). For N30-80nm the ML model consistently outperforms UKESM at this
monthly scale, apart from October and November when the range is better captured by UKESM (Fig. 4a). Furthermore, when
we consider the overall skill of the ML models on a 6-hourly resolution, as measured by the coefficient of determination (Table
4), we see that the ML models significantly outperform UKESM. These results give us confidence in the considerable
improvement our ML predictions offer, and therefore, we can use these ML models to inform decisions to improve the

parameterisation of aerosol processes in pristine regions.

We utilise UKESM as a benchmark in this study, however it is important to note that UKESM is tuned to be globally
representative, compared to the site-specific ML models. Nevertheless, we have demonstrated current biases in UKESM as
we aim for insights for potential limitations of UKESM aerosol process representation in Antarctica. Future work will extend

the framework to additional sites, enabling insights across the globe.
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Figure 4: The seasonal cycle of concentrations (cm~) TRH (Trollhaugen) for the test year for (a) 30-80nm and (b) 80-660nm. The
monthly median is indicated by the central point and the error bars show the 25%-75t percentiles for observations (blue, centred),

ML model (XGBoost) results from this study (pink, right shift) and UKESM (turquoise, left shift).

The ML models’ limitations lie in the ability to predict the highest concentrations, likely due to the sparsity of these in the

training dataset and the model setup (Figs. S4 and S5). Inherently the choice of mean squared error as the learning objective
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for the regression task does not optimise the model to predict extremes (when there are relatively few such examples), however
in this study the objective is to identify the prevailing processes represented at each site, hence the selection of the mean
squared error and the use of seasonal average plots for evaluation here. We note that this is particularly true for the Aitken
mode: in both the test and training datasets, the ML model was not able to replicate the highest concentrations (Fig. S4), which
could be associated with short-term high concentrations from new particle formation (NPF) events. Some of these extremes,
particularly those in the winter, could be due to remaining contamination of the underlying PNSD data by instrument errors
and station generator contamination. However, overall, the ML models demonstrate a relatively high predictive performance
(Table 4), especially on a seasonal scale (Fig. 3), which allows us to have confidence in relationships represented by the model

and implement model interrogation techniques to investigate these.

Model simulated quantity Trollhaugen N30-80nm Trollhaugen N80-660nm
ML model (Cross-validation average) | 0.65 0.68
ML model (test year) 0.72 0.75
UKESM (test year) 0.15 0.19

Table 4: Coefficient of determination, R of the models for each size range at each site for the average across the cross-validation
years for the ML models, the score for the test year for the ML models and the score for the test year data for UKESM compared
to observations. The cross-validation average is calculated as the mean of the R? scores during k-fold cross-validation (without the

test year).

4.3 Receptor models

To understand potential sources regions of aerosol particle number concentration at Trollhaugen and evaluate ML model

performance in a Lagrangian framework we now utilise the receptor models described in Sect. 3.3.

We consider the transport history built from the backwards trajectories at each site. At Trollhaugen, in Fig. 5a, we see the clear
pattern of the Antarctic easterly winds with transport mainly coming from the coast to the East, similarly, to findings for
previous studies at the nearby Halley station (Lachlan-Cope et al., 2020; Paglione et al., 2024). We also consider the height of
trajectories above ground level during transport to the measurement site in Fig. Sb. For the dominant transport pathway around
the continent, this follows the relatively low orography of the coastline, near ground level. Over the Weddell Sea trajectories
are high compared to transport from the Bellingshausen Sea where trajectories are much closer to ground (or sea) level, which

would likely lead to more of a dominance of marine sources from this region, similarly to the results of Fiebig et al. (2014).
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Figure 5: (a) Transport frequency receptor model and (b) CVT receptor model (Eq. 10) for height of trajectories (above ground
level) calculated using ERA-Interim meteorology for the full test year at Trollhaugen (2017).

The CWT receptor models (Eq. (7)) for the observed and predicted aerosol number concentrations are shown for the two size
ranges considered in this study: 30-80nm (Fig. 6a-d) and 80-660nm (Fig. 6e-h) across the test year for each receptor site. These
results highlight the potential source regions of aerosol for each size range. We use this as an evaluation tool, building a replica
map using the ML predictions. Linking the bias of the ML model at each time point to the respective averaged trajectories, in
the methodology of a CWT model (Eq. (8)), we can utilise an error map to highlight source regions where the ML model
performance could be improved. The error plots have been used throughout the study in model development to assess the skill
of the models and also highlight potential methods for improvement and potential missing processes. Shown in Fig. 6 are the

CWT plots for the observations, ML model predictions and bias at each site.

For Trollhaugen the high concentrations for both size ranges are associated with the dominant transport pathway, anticlockwise
around the continent, as well as the Southern Ocean (Figs 6a and 6¢). The potential dominant sources over the Southern Ocean
would likely be associated with sea spray and secondary marine organics (Lachlan-Cope et al., 2020; Paglione et al., 2024).
The ML model replicates the potential source regions very accurately for both size ranges (Figs 6b and 6f), this is also
highlighted by the error figures (Figs 6¢ and 6g) where the regions of high error are edge cases, associated with fewer
trajectories (Fig. Sa). The weighted error demonstrates overprediction for the Aitken mode predictions around the coast in the
region of highest trajectory frequency (Fig. 6d). Whereas, for the accumulation mode model, when weighting by transport,
there is a clear path of transport around the coast associated with underprediction in the model: this path corresponds to the
highest observed concentrations, which the model is not able to replicate. The pathway around the coast associated with
underprediction of the accumulation mode in the model is a region of low-level transport (Fig. 5b). We suggest that the
underprediction in the ML model along the coast could be due to a lack of representation of seabird colonies. Seabirds have

been shown to be significant sources of nitrates and ammonia at in the Antarctic (e.g. Boyer et al., 2025; Brean et al., 2025;
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Dall’Osto et al., 2022) and colonies are located all around the continent coast (e.g. Riddick et al., 2012), however we do not

currently have a representation of these in the model.
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Figure 6: Concentration weight trajectory maps for Trollhaugen test year using ERA-Interim trajectories with: a) Observation
concentrations for 30-80nm, b) ML model (XGBoost) predicted concentrations for 30-80nm c) the absolute error between
observation and ML model predicted concentration for 30-80nm, d) Observation concentrations for 80-660nm, e¢) ML model
predicted concentrations for 80-660nm f) the absolute error between observation and ML model predicted concentration for 80-
660nm.

4.4 ML Model interrogation

Trollhaugen is a pristine environment and clearly dominated by natural processes that exhibit pronounced seasonal variation
(Fig. 3). This is also demonstrated in the SHAP analysis (Figs 7a and 7b) where the majority of the top features have distinct
seasonal cycles, represented by surface solar radiation, temperature, and time over sea ice (Fig. S6). Other studies at Antarctic
sites have found a distinct austral summer and winter in aerosol properties, indicating the importance of solar intensity and
temperature in the formation and growth of particles in the region (Kim et al., 2019). We find similar results and find that
increased observed aerosol concentrations are associated with higher levels of surface solar radiation, higher temperatures,
higher sea surface temperatures, and decreased time over sea ice in the summer months (Figs. 7, 8 and 9), associated with more
open ocean, increased biological activity and therefore emission of primary marine aerosol (PMA) and DMS contributing to

the aerosol burden.
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Figure 7: SHAP beeswarm for Trollhaugen (a) Aitken mode concentrations and (b) accumulation mode concentrations. Plots are

ordered by the rank of each feature as determined by the TreeSHAP analysis. The points are coloured by the feature value

corresponding to the data point for the SHAP value, and the ‘violin’ shape of the distribution represents the density of points.

As the SHAP ranking are based on the absolute mean of the SHAP values that can result in very close values for several

535 features, the rank of a feature can change with different model runs, due to the stochastic nature of the model. Therefore, we

do not focus heavily on the specific rank value of each feature in our analysis, rather the relationship between SHAP and

feature values and the relative magnitude of the SHAP values for each model. We test the interventional TreeSHAP approach,

which uses the training data as the background dataset to fill each missing feature, to ensure the robustness of our results shown
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in Sect. S2.7. We see only slightly changes in SHAP rankings of features with the use of interventional SHAP (Fig. S10), and
not at all in the relationships between SHAP values and features (Fig. S11), giving us confidence in the relationships found

using the path-dependent method.

Key features have been identified through the investigation of SHAP rankings, to further investigate the processes represented
by these features the SHAP-feature distributions, as well as spatial and covariate relationships, are analysed for the highest-

ranking features in the following sections.

4.4.1 Surface solar radiation

For both size ranges we see a strong positive linear correlation between integrated surface solar radiation and SHAP for model
prediction concentrations up to 50,000 W/m? accumulated over the 10-day trajectory period, corresponding to an approximate
average of 210 W/m 2. At radiation levels exceeding the threshold there is an asymptotic plateau with no further increase in
predicted aerosol concentration associated with increased solar insolation (Figs 8 and 9). A study by Fiebig et al. (2014) found
that particle volume was linearly correlated with integral insolation in the Antarctic and suggested that photooxidative

production was limited by photooxidative capacity, not the availability of precursor gases.
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4.4.2. Contribution of marine sources

Time over sea ice is one of the most important features for both N30-N80 and N80-N660 ML models showing a consistent
negative SHAP-feature relationship (Figs 7-9). As found with numerous previous studies, with less sea ice, in the warmer
months, Antarctic sites have increased aerosol concentrations associated with more contribution from the ocean (e.g. Lachlan-
Cope et al., 2020; Paglione et al., 2024). Accumulated chlorophyll is also ranked highly for SHAP of both aerosol size range
models (Fig. 7) and demonstrates a very consistent logarithmic relationship (Figs 8d and 9c). Chlorophyll in the model acts as
a proxy for both secondary organic marine aerosol and primary marine organic aerosol (PMOA) and the high ranking suggests
that these sources dominate aerosol prediction for this location. UKESM significantly underestimates the accumulation mode
in the Austral summer, which could be associated with underestimation of PMOA or DMS concentrations (Mulcahy et al.,

2020).

4.4.3 Generation and loss mechanisms associated with windspeed

The negative relationships between 10m wind speed features and SHAP (Figs 7-9) suggest that concentrations of Aitken and
accumulation mode particles are not dominated by the primary production aerosol from breaking waves sea spray (driven by
10m wind speed). A recent study at Halley found strikingly low concentrations of sea salt aerosol and found that the aerosol
concentrations (PM1) were dominated by secondary sources (Paglione et al., 2024), we conclude that this is highly likely to
be the same for the Aitken mode at Trollhaugen from the SHAP results and the similarity in the position of the measurement

sites on the Antarctic coast.

Sanchez et al., (2021) found similar relationships in the North Atlantic when considering the correlation between N(D, < 100
nm), N(D, > 100 nm) and 5-day airmass history sea surface wind speed and suggested, while seemingly counterintuitive, the
inverse correlation they found between N(D, > 100 nm) and sea surface windspeed was likely driven by enhanced PMA at
higher wind speeds, that results in a larger condensation sink. PMA, while not expect to contribute significantly to particle
number concentrations, was found to contribute to significantly to the total particle surface area, and thus the condensation
sink. Therefore, the elevated total particle surface area from PMA at higher surface windspeeds could reduce the likelihood of
occurrence of NPF (Cainey & Harvey, 2002; Yoon & Brimblecombe, 2002). We see this reflected in the combined SHAP plot
for chlorophyll and 10m windspeed for the accumulation mode model: for larger accumulated chlorophyll concentrations,
higher values of SHAP for the same chlorophyll concentrations, are associated with lower wind speed values (Fig. 10a). If a
model is overestimating PMA, as UKESM has been found to in the Southern Ocean (Revell et al., 2019; Venugopal et al.,
2025), then N80 and therefore CCN could be reduced due to high condensation sink caused by PMA.

PMA are more suspectable to deposition, so we could also be seeing the impact of dry deposition on a PMA contribution to

accumulation mode particles (Sanchez et al. 2021). However, the gradient of the windspeed SHAP relationship is lower for
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colder 2m temperatures (Fig. 10b), highlighting the dominance of this mechanism for warmer temperatures, when the

contribution of secondary mechanisms from DMS will be higher.

Trajectory speed is an important variable to investigate growth of aerosol along trajectories; slower transport facilitates longer
timescales for growth of particles during descent from free troposphere (Clarke et al., 1998) and transport in the boundary
layer (Covert et al., 1996). It is shown to be very important for predictions for the N80-660nm ML model compared to the
N30-80nm ML model, highlighting the importance of the role of growth during transport into the accumulation mode size
range. Interrogation of the explanatory variables reveals that the trajectory speed mean is highly correlated with 10m windspeed
mean (0.8) (Fig. S7) and demonstrate similar SHAP relationships (Fig. 10d), which suggests that trajectory speed mean could
be representing the same wind driven processes, and due to the caveats of TreeSHAP discussed in Sect. 3.4 we cannot separate

the importance of these features.

Similarly, to the higher correlation found in the Sanchez et al. (2021) study for N(Dp > 100nm) and windspeed compared to
N(Dp < 100 nm), we find that windspeed and trajectory speed features play a larger role in the accumulation mode model
compared to the Aitken mode (Fig. 7). This could suggest that NPF in the free troposphere, which is independent of PMA in

the boundary layer, is contributing more significantly to the Aitken mode concentrations, rather than NPF in the boundary

layer.
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Figure 10: SHAP dependence plots at Trollhaugen with the corresponding values for a second variable indicated by the colour of
points: (a) chlorophyll weighted mean with 10m windspeed weighted mean (b) 10m windspeed mean with 2m temperature weighted

mean, (¢) 10m windspeed max with 2m temperature weighted mean and (d) chlorophyll weighted mean with trajectory speed mean.
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SHAP spatial distributions using the CWT receptor model framework, with the vertical distribution shown in the side panels for (e)
chlorophyll weighted sum, (f) 10m windspeed weighted mean, (g) 2m temperature weighted mean and (h) trajectory speed mean.

Note that (a) and (d) use a log scale on the x-axis. All figures are for the N80-660nm model.

Although the dominant relationships with the windspeed features are negative, there are a few outliers of positive SHAP values
for the highest maximum windspeeds for the accumulation mode model (Fig. 10c) above 20 ms™!, which could be indicative
of sea spray production in gusty conditions. Blowing snow has also been found to be an important source of aerosol in polar
regions (Frey et al., 2019; Lachlan-Cope et al., 2020; Yang et al., 2019). First direct observations of blowing snow events were
recorded during a storm with wind speed maxima between 15 and 25 ms™ (Frey et al., 2019), the upper end of which
corresponds to the values for which we see positive SHAP. However, there are only a few outliers associated with positive
SHAP at high windspeed (Fig. 10c); thus, it is not possible conclude model representation of this source. Perhaps due to the
extreme concentrations associated with blowing snow events, comparative to the low concentrations in the winter (Frey et al.,

2019) and the sparsity of events in the dataset (Fig. S5), our model is not able to replicate these.

4.4.4 Role of vertical transport pathways and boundary layer structure

Average trajectory height (above ground level) plays an important role in the contribution to aerosol concentration prediction
for the Aitken mode size range (Fig. 7a). With transport from aloft, SHAP values are higher, indicating a high aerosol
concentration prediction. This is associated with transport from the free troposphere above the continental plateau, highlighted

as the region of high SHAP in Fig. 11e.

Lachlan-Cope et al. (2020) proposed two mechanisms of NPF leading to aerosol concentrations at the Halley measurement
site (a coastal site 940 km away from Trollhaugen) with airmasses arriving from marginal sea ice zone and those arriving from
the free troposphere above the Antarctic plateau but could not conclude the relative importance of each mechanism. The results
of Lachlan-Cope et al. (2020) pointed to secondary aerosol processes in sea ice regions and open-ocean water the regions,
noting that these regions are not only sources of gaseous precursors but also of NPF. In the first mechanism, formation and
growth occurs in the marine boundary layer, whereas in the second mechanism, precursor gases are lofted into the free
troposphere, where nucleation and growth occur. Particles are brought down again by the Antarctic drainage flow (James,
1989) and then transported to the Antarctic coastal stations from the continent by the katabatic winds, in a mechanism first

proposed by Ito (1993).

The relationship between trajectory height and SHAP values is much stronger for the Aitken mode and ranks much higher
compared to the accumulation model SHAP results (Fig. 7). From the absolute mean SHAP value, height ranks higher
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compared to parameters representative of boundary layer transport, indicating that this is due to the relative contribution of the

NPF mechanisms, with transport from the free troposphere dominating the aerosol burden for the Aitken mode.

To investigate potential mechanisms leading to the contribution of Aitken mode particles from transport aloft, we investigate
the seasonality and spatial pattern associated with the trajectory height relationship, as the second proposed mechanism is
associated with DMS emission. Height is highly correlated with 2m temperature mean with a correlation coefficient of -0.6
(Fig. S7), and we see that for the covariate SHAP relationship, high SHAP values for trajectory height are mostly associated
with low 2m temperatures (Fig. 11b).

Considering the seasonal cycle of the SHAP values, we see that height is positively contributing to predictions during the
transition between Austral Summer and Winter (March, September and October) (Fig. 11c). From the spatial distribution for
these months (Fig. 11e) we see high SHAP for trajectory height with transport from Bellingshausen and Ross Sea regions, and
to a lesser extent the Weddell Sea, suggesting lofting of precursor gases into the free troposphere. Whilst the trajectory height
also contributes to predictions during the Austral winter, the strongest positive influence is during March, September and
October, suggesting the importance of photooxidative processes in contributions from aloft to Aitken mode concentrations.
For summer (January, February, November and December), where the trajectory height contributes much less to model
predictions (Fig. 11c¢), the spatial transport pattern is markedly different and more constrained, with the majority of transport
coming from Southern Ocean and East of the Antarctic continent (Fig. 11d). There are outliers which have strong positive
SHAP associated with transport from aloft (Fig. 11c), which can be clearly seen on the SHAP spatial maps, associated with
transport from the free troposphere, likely from long range transport, and perhaps some contribution from the Lazarev and
Ross Seas (Fig. 11d). In order to investigate these mechanisms further, longer back-trajectories would be required to investigate
the contribution from long-range transport to the Aitken mode burden at Trollhaugen. However, longer trajectories are

associated with increased uncertainty (Engstrom & Magnusson, 2009).

Sedimentation from polar stratospheric clouds (PSCs) have been suggested in previous studies to contribute significantly to
the nitrate aerosol burden at coastal Antarctic sites (Frey et al., 2009; Savarino et al., 2007; Traversi et al., 2014), which could
be associated with the high contribution to the Aitken mode from aloft. The formation and contribution from PSCs has been
suggested to peak during the winter and early summer (Frey et al., 2009; Savarino et al., 2007; Wagenbach et al., 1998), which
could coincide with the peak contribution from the feature ‘height weighted mean’ to the prediction of Aitken mode
concentrations, however, this contrasts with the additional peak contribution during March (Fig. 11c). Chemical speciation at

the in-situ measurement site could enable separation of the potential sources from aloft that contribute to the Aitken mode.

For the accumulation mode, whilst playing a much smaller role in model predictions, with low SHAP values, the SHAP results
show an interesting bimodal relationship (Fig. 11a): for warmer 2m temperatures we see a mostly negative relationship with

average trajectory height up to around 1000m above ground level, and for average heights above 1000m, associated with colder
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temperatures we see a positive relationship. This demonstrates a clear change in the dominant sources of aerosol throughout
the seasons: local PMA transported in the boundary layer during the summer and transport from aloft during the winter. Cloud
processing and condensation growth within the marine boundary layer have been found to be important for increasing
accumulation mode concentrations in the Southern Ocean (McCoy et al., 2021), therefore the negative relationship for higher
temperatures could be associated with the growth of NPF particles into the accumulation size range during higher biological

activity in the warmer months.
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Figure 11: SHAP value dependence plots for height weighted mean with the corresponding 2m temperature values indicated by the
colour of points for (a) the N80-660nm mode and (b) the N30-80nm model. (c) The boxplots for the SHAP value for height weighted
mean for the N30-80nm model for each month. SHAP spatial distributions for height weighted mean, using the CWT receptor model
framework, with the vertical distribution shown in the side panels for (d) January, February, November and December, (e¢) March,

September and October and (f) April-August (inclusive) for the N30-80nm model.

Boundary layer height plays an important role for accumulation mode concentration predictions and Aitken mode
concentration predictions demonstrated by the SHAP relationships in Fig. 7, but the contrasting relationships highlight the
difference in dominating processes contributing to prediction of each mode. With increased boundary layer depth, we see

lower SHAP values for the Aitken mode model (Fig. 12a), relating to dilution aerosols in a larger volume of air, thus lower
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concentrations at the measurement site. Additionally, there will be dilution of pre-existing aerosol emissions in a larger volume
of air, therefore less growth through condensation and coagulation. A deeper boundary layer also results in additional transport
to the upper troposphere, for gas-phase species of low solubility such as DMS, which are not scavenged and thus are entrained
more easily into the free troposphere (Zheng et al., 2021) compared to PMA. For the accumulation mode there is a contrasting
SHAP-feature relationship: increased boundary layer depths and warmer 2m temperatures are associated with higher
concentrations of accumulation mode particles (Fig. 12¢), perhaps associated with the increased lifetime of particles, the

mechanisms of which warrant investigation in future work.

Time in boundary layer shows similar relationships for both Aitken and accumulation mode, with longer proportions of the
trajectory spent in the boundary layer contributing negatively to the prediction of aerosol concentration. This contribution is
much more pronounced for cooler months compared to summer months (Figs 12 b and d), likely due to the greater contribution

of aerosol from aerosols aloft during winter.

(@) , (b) , © , (d) ,
-5 ¢ 0.15 -15 ¢ -5 ¢ F-15 ¢
0.2 I ) 0.3 S 0.06 ]
& 20E 5 010 20E ] -20E ] i -20E
o - . ° o ° 0.044 ¢ °
JE g .3 £ _E o g .3 g
Ssg 019 ¢ 255 S> oos{h " --55 23 55 2x --25%
1] k= - k=, k] =, =,
35 | e g 5 6% 34 ¢ s m g 28 g
g FL . -0y S5 000 4 -0y S -0y 85 -30 ¢
2 0.0 i¥ £ 3 ¢ £ E ” £ 2 £
o 4 N ,,."’. 3 agld PR 3 a b Il ) S a gl S
%z SRR 2 < ) B <2 00 ® <c-002 ®
I : o b0 -35% T 005 vy -358 TE * -358 Tc --35 8
»no ] .. o ©y f g »nZ L 4 o ny o
o Q Q o y Q Q
2 -01 - £ £ > £ £ -01 £ £ -0.04 £
= -40 g F -0.10 -40 @ 2 -40 g S --40 g
13 £ 0.2 I3 -0.06 €
-0.2 k-4 -0.15 --45N F-45 --45 N

0 200 400 600 0 100 200 0 200 400 600 0 100 200

BL height weighted mean Time in boundary layer BL height weighted mean Time in boundary layer

Figure 12: SHAP dependence plots with the corresponding values for 2m temperature weighted mean indicated by the colour of
points: (a and c¢) BL height weighted mean, (b and d) Time in boundary layer for (a-b) the N30-80nm model and (c-d) the N80-
660nm model.

4.4.5 Role of cloud processing and relative humidity during transport

The contrasting relationships between RH and SHAP value for the two size range models (Figs 13a and 13c) highlights the

importance of RH for growth into the accumulation mode, leading to a reduced concentration in the Aitken mode.

“Time in cloud’ is not a weighted variable and therefore, represents the total experienced cloud and averaged relative humidity
during the 10-day back-trajectory and shows consistent relationships for both model size ranges (Figs 13b and 13d). With
increased time in cloud during transport, there is increased SHAP for both accumulation and Aitken mode models. This
suggests the role of cloud processing, resulting in populations of larger sized aerosol after removal of aerosol populations

during transport, similarly to precipitation.
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Figure 13: SHAP dependence plots for (a, ¢) RH weighted mean and (b, d) Time in cloud. Where (a and b) and for the 30-80nm
model and (¢ and d) for the 80-660nm model.

4.4.6 Precipitation experienced during transport

Precipitation is shown to act as a sink for aerosol at Trollhaugen when we consider the weighted sum: higher values of weighted
accumulated precipitation are associated with lower SHAP values for precipitation (Figs 14a and 14c). This highlights the role
of precipitation scavenging as a dominant aerosol loss process, particularly for precipitation closer to the measurement site.
However, considering the accumulated precipitation with no weighting, allows us to consider the impact of precipitation further
away from the site. For both size ranges we see a strong positive relationship with SHAP (Figs 14b and 14d), linked in previous
studies to a reduction in condensation sink, providing preferential conditions for new particle formation (Andronache, 2004;
Ueda et al., 2016), and therefore growth into the size ranges considered in this study. For the weighted sum, only a few
predictions are strongly affected by the wet removal, the positive relationship with non-weighted sum is consistently stronger
and dominates the feature importance for the Aitken mode (Fig. 7). The positive region of SHAP is over the Southern Ocean,
associated with trajectories travelling close to the surface for both size range models (Figs 5b, 14f and 14h). The duality of the

relationship with precipitation highlights the importance of considering the timing of precipitation during transport.
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and for the 30-80nm model and (g and h) for the 80-660nm model.

It is worth noting that for the Antarctic most precipitation will be snow, demonstrated by the extremely high correlation
between snowfall weighted sum and precipitation weighted sum (Fig. S7), so these are not analysed separately in this study,

however for other environments it could be important to distinguish precipitation types.

4.5 Testing the generality of the framework

To demonstrate the generality of the newly developed ML framework we provide proof of concept results for two additional
stations representative of two distinctly different aerosol environments. A detailed assessment of the processes driving aerosol
properties in these environments will be the focus of a future study. Here we demonstrate the performance of the ML model
for the accumulation size range for a site in the boreal forest and a maritime continental site. The same methodology was
applied to regress aerosol concentrations calculated from in-situ PNSD measurements from Virrio (VAR) SMEAR 1
measurement station (67.767°N, 29.583°E, 390m a.s.l.), 120km north of the Arctic circle (Hari et al., 1994) and Mace Head
(53.3267° N, 9.9046° W, 8m a.s.l.) on the coast of Ireland (O’Dowd et al., 1998). Back trajectories were calculated using the
trajectory release locations described in Table 5 and the study was conducted over the periods described in Table 5, with 2012

used as the test year.
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740
Station Description | Years Diameter Trajectory release location Trajectory
included in length
study range Latitude Longitude Height | (prg)
(inclusive) m
included A.G.L.
(nm)
Virrid Boreal forest | 2009-2016 30-790 -72.012 2.535 150 240
(excl. 2014)
Mace Maritime 2009-2018 30-470 53.327 -9.9040 100 240
Head continental | (excl. 2013-
2016)
Table 5: The receptor sites with the site description, years included in the study, diameter range and the trajectory release locations.
The Eulerian evaluation results are shown here (Fig. 15), demonstrating the performance of the ML models at each site for the
test year (2012). Both the models are able to accurately replicate the seasonal cycles for each site and the variance. However,
for some of the highest concentrations (January and February for Virrio, and March for Mace Head) the ML models are not
745 able to replicate the observed range. Overall, the models are able to accurately predict the observed concentrations, thus
demonstrating the generality of the framework to different environments, which will be the subject of future studies.
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Figure 15: The seasonal cycle of concentrations (cm™) at (a) VAR (Virrio) for 80-790nm and (b) MCH (Mace Head) for 80-470nm
for the observations for the years used for model training (light blue, left shift), the observations for the year used to test the model
750  (navy, centred) and the ML model (XGBoost) predictions for the test year (pink, right shift).
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5 Conclusions

Our objectives were to (1) identify the seasonal cycle of aerosol number concentration and the dominant source regions for the
measurement site, in order to (2) build and evaluate a model for accurate predictions of aerosol concentrations from airmass
history, (3) elucidate the relationships between meteorological parameters, source proxies and aerosol concentrations, in order
to (4) identify dominant source and sink processes controlling the number concentration for Aitken and accumulation modes
in the Antarctic. These aims were realised in this study through the development and interrogation of Lagrangian based

explainable Al regression models.

This study has demonstrated the power of the explainable machine learning framework to predict aerosol concentrations from
airmass histories, yielding representative models of distinct regions. The regression models built for each size range at the case
study site have been shown to accurately replicate the seasonal cycle and potential source regions, and generally exhibited
relative strong predictive power. However, for extremes in aerosol concentrations, the limits in the models’ predictive
capabilities were demonstrated. This limitation was particularly evident for the Aitken mode size range model which is strongly
influenced by NPF. Future work could explore additional model learning objectives and architectures, however, the sparsity
of data of the extreme cases limits the ability to build a highly effective model for these events in this framework. Despite
extensive additional filtering efforts, there also remains the potential for contamination of the underlying PNSD data by
instrument errors and generator contamination at the site, this could be contributing to some of the extremes in the timeseries

of aerosol concentration data.

For the first time we identify dominating processes by simultaneously considering most processes and their interactions,
finding distinct dominant processes for each size range, summarised in Fig. 16. Aerosol concentrations at Trollhaugen are
dominated by marine natural sources and well as transport from the free troposphere. The contribution from the free
troposphere dominates aerosol burden of the Aitken mode in the transition periods between summer and winter, compared to
a larger contribution in the summer from local marine sources from transport in the boundary layer. Longer trajectories coupled
with additional variables such as height cluster in future studies could enable further confirmation of the sources of tropospheric
aerosol contributing to the Aitken concentrations. For the accumulation mode, local marine sources dominate the number
concentration for the warmer months, but transport from aloft is the dominant contributor to the low concentrations measured
during the winter. PMA plays a greater role as condensation sink for Trollhaugen accumulation mode concentration rather
than a source, with NPF resulting in higher concentrations during the warmer months. This study has highlighted the
importance of considering transport and airmass history during aerosol studies and the importance of timing for variables such

as precipitation.
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Figure 16: Schematic of the processes during transport controlling aerosol lifecycle and thus the aerosol particle number
concentrations measured at Trollhaugen.

In future work, the driving meteorology, which contributes the most to the uncertainty in trajectories, could be replaced with
ERAS, which is a higher resolution reanalysis product. Furthermore, an ensemble of trajectories (with small perturbations to
the underlying meteorological grid in the three dimensions) could be used to reduce uncertainty in the trajectories. However,
these steps would significantly add to the computational burden, particularly for the calculation of trajectories and the

collocation of explanatory variables.

This analysis was not able to discern the influence of blowing snow which is known to be a significant source of SSA in the
Antarctic, additional variables such as terrestrial ice and snow depth would allow for further exploration of the importance of
this source at Trollhaugen. Additional sources, such as ammonia and nitrates from natural terrestrial sources such as sea bird
colonies have previously been shown to significantly contribute to aerosol populations in the Antarctic (Boyer et al., 2025;
Brean et al., 2025). There is not currently a clear representation of these sources using the current explanatory variables, to
explore the addition of a representation of seabird colonies, seabird tracking datasets could be tested (such as
https://www.seabirdtracking.org/resources/). Chemical speciation at Trollhaugen would be useful to provide more certainty

and separation of aerosol sources alongside the current framework.
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In future studies, combining datasets from multiple in-situ stations could enable provide more data coverage for data sparse
regions such as the Antarctic, similarly to Pernov et al. (2024) which built Pan-Arctic models, enabling a more holistic view
of an environment. This would also allow for exploring the generality of a Pan-Antarctic model by transfer learning (by testing
on a site not included in the training dataset). Moreover, expanding the dataset through the addition of measurement sites

would allow for investigation into interannual relationships and differences in dominant processes across an environment.

By comparing to UKESM as a benchmark we can highlight potential areas for model development at key locations. In future
work upon expansion of the framework to further sites, consistent sources of model bias can be identified, to improve

representation of natural aerosol processes in GCMs tuned for best global representation.

Using a holistic approach to aerosol studies allows us to explore the relative importance of different aerosol processes and the
interactions between them. This study has significantly contributed to the understanding of aerosol processes in a pristine
environment in which GCMs have been shown to exhibit significant biases, thus is a key environment to reduce uncertainty
in climate modelling. The framework developed in this study has the flexibility to easily adapt to different aerosol sources and
processes through the choice of explanatory variables and can be extended to any site with aerosol size distribution
measurements. Future studies will explore further the generalisability of the framework by applying the framework to
additional environments and perform a transparent, process-based evaluation of GCMs using trajectories derived from GCM

meteorological data combined with GCM output for explanatory and target variables in a consistent manner.
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Data availability

Field data (particle number size distributions) are freely available from the EBAS database at http://ebas.nilu.no/ (last access:

21st October 2021; NILU, 2021), full citations provided in Table S4. Satellite and reanalysis products are freely available from
the databases described in Table S5.

The datasets for the framework used in this study will be made available upon publication.

Code availability

Data analysis was conducted in Python (version 3.9.16), and colour maps for the figures considering colour vision deficiencies

were inspired by Crameri et al., (2020).

Python scripts used for the analysis and plotting will be made available upon publication.
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