Supplementary material for a framework to holistically investigate processes controlling the aerosol lifecycle using explainable AI techniques

Table of Contents

5	S1 Supplementary methods	2
	S1.1 Aerosol size distribution filtering	2
	S1.2 Aerosol size distribution interpolation	3
	S1.3 Filtering for potential contamination from generators	4
	S1.4 Land classification types	5
10	S1.5 UKESM aerosol modes	5
	S1.6 Weighting	6
	S1.7 Dataset references	6
	S2 Supplementary results	8
	S2.1 Feature selection results	8
15	S2.2 Hyperparameter tuning results	9
	S2.3 Model evaluation	10
	S2.4 Seasonal cycle of SHAP	12
	S2.5 Correlation matrix	13
	S2.6 SHAP interaction matrix	14
20	S2.7 Interventional SHAP	16

S1 Supplementary methods

S1.1 Aerosol size distribution filtering

- Aerosol size distributions after initial processing, were further filtered using the filters described below considering only diameter ranges consistent over the size distribution whole timeseries used for analysis:
 - 1. In order to remove PNSD with sections of the distribution missing, we consider the dlogdp of consecutive flagged groups in an individual size distribution. If any of these groups exceed the threshold (0.1) the whole distribution is removed.
- 2. The second filter applied is the percentage of NaN in a distribution, if a distribution consists of more than 10% NaN, then we consider the whole distribution to be contaminated and remove the distribution from analysis.
 - 3. A total concentration percentage filter (99.5%) was implemented to ensure that any outlier distributions were removed from analysis. The total concentration threshold is calculated over the whole timeseries of PNSD and only considers bins within the consistent minimum and maximum bin limits to ensure a consistent comparison.
- 35 Total number concentration (N) is calculated as the sum of ΔN over all of the bins (Eq. (S1)).

$$N = \sum_{i=1}^{n} \Delta N_i \, \Delta log D p_i \tag{S1}$$

4. DMPS measurements can experience abnormal behaviour in the largest size bins. As the concentrations in these bins are often lower, extreme values associated with the largest bins may not be addressed. Therefore, a separate filter is applied for the final two bins: implement a filter based on a threshold (99.5%) on the total concentration in the last two bins over the timeseries considered in each data file (with consistent bin midpoints).

Filter removal rates for each yearly aerosol file are shown in Table S1.

Year	Datapoints at	Percentage points	Percentage points	Percentage points	Percentage points
	start	removed for 1	removed for 2	removed for 3	removed for 4
2014	8760	20.16	0 (all removed	0.32	0.5
			during 1)		
2015	8760	9.90	0 (all removed	0.22	0.5
			during 1)		
2016	8784	7.66	0 (all removed	0.44	0.5
			during 1)		
2017	8760	0.45	0 (all removed	1.38	0.5
			during 1)		
2018	8760	2.95	0 (all removed	0.15	0.5
			during 1)		

Table S1: The percentage of datapoints removed from each yearly aerosol file by each filter for Trollhaugen.

S1.2 Aerosol size distribution interpolation

50

Two issues must be considered when conducting the interpolation:

- 1. The range 1-1000nm often exceeds the original range of bin midpoints and the PCHIP algorithm will extrapolate past the bounds of the original distributions.
- 2. Any missing (NaN: Not a Number) values within the distribution will propagate through the whole distribution, resulting in an empty distribution.

To resolve these two issues data extrapolated during the PCHIP algorithm outside of the original grid limits are set to NaN. With the filters applied discussed in Sect. S1.2, any distributions with more than 10% NaN and with any groups of NaN with a dlogD_p larger than 0.1 nm have been removed from analysis. Therefore, the distributions for interpolation have sufficiently small areas of missing data within the size distribution to interpolate over. For the PCHIP algorithm, all bins with missing values are removed from the original distribution before interpolation to the new grid.

The results after filtering and interpolating are shown in Fig. S1.

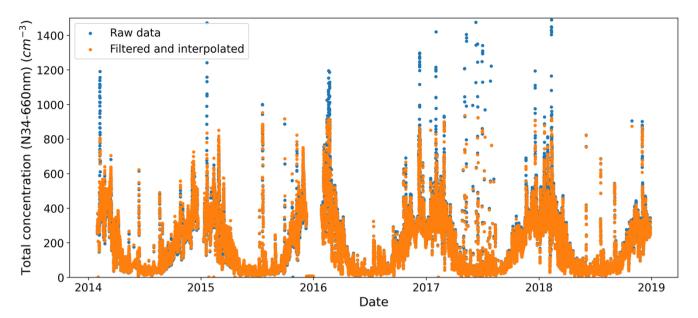


Figure S1: The total concentration 34-660nm. Raw data (blue) and data after filtering and interpolation to the new size grid (orange) for Trollhaugen.

S1.3 Filtering for potential contamination from generators

As described in Sect. 2.1 additional filters were needed for Trollhaugen to mitigate potential contamination from nearby station generators, the results for these filters are shown in Fig. S2.

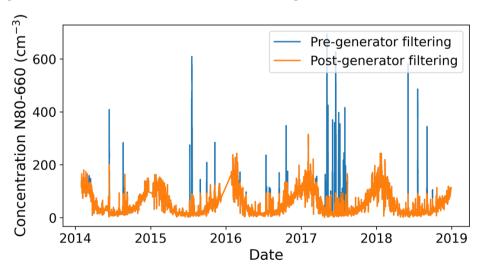


Figure S2: The concentration (N80-660nm) pre (blue) and post (orange) filtering for potential generator contamination at Trollhaugen.

S1.4 Land classification types

Explanatory variable	Class names			
Deciduous Forest	"tree_broadleaved_deciduous_closed_to_open",			
	"tree_broadleaved_deciduous_closed", "tree_broadleaved_deciduous_open",			
	"tree_needleleaved_deciduous_closed_to_open",			
	"tree_needleleaved_deciduous_closed", "tree_needleleaved_deciduous_open"			
Evergreen Forest	"tree_broadleaved_evergreen_closed_to_open",			
	"tree_needleleaved_evergreen_closed_to_open",			
	"tree_needleleaved_evergreen_closed", "tree_needleleaved_evergreen_open"			
Shrub and grass land	"mosaic_tree_and_shrub", "mosaic_herbaceous", "shrubland",			
	"shrubland_evergreen", "shrubland_deciduous", "grassland",			
	"lichens_and_mosses", "sparse_vegetation", "sparse_shrub",			
	"sparse_herbaceous"			
Cropland	"cropland_rainfed", "cropland_rainfed_herbaceous_cover",			
	"cropland_rainfed_tree_or_shrub_cover", "cropland_irrigated",			
	"mosaic_cropland"			
Urban	"urban"			

Table S2: The names of Land Cover Classification System (LCCS) classes used to define each land type in this study.

S1.5 UKESM aerosol modes

Aerosol mode	Species	Diameter (nm)	Geometric standard
			deviation (σ)
Nucleation soluble	SO ₄ , OM	1–10	1.59
Aitken soluble	SO ₄ , BC, OM	10–100	1.59
Accumulation soluble	SO ₄ , BC, OM, SS	100–500	1.40
Coarse soluble	SO ₄ , BC, OM, SS	500-10000	2.00
Aitken insoluble	BC, OM	10–100	1.59

Table S3: UKESM1.0 aerosol mode descriptions. Species comprise sulphate (SO₄), organic matter (OM), black carbon (BC) and sea salt (SS).

S1.6 Weighting

A weighting was applied to summary statistics taken along the trajectories as described in main text Sect. 3.2, Eq. (1). Fig. S2 shows the weighting in a graphical form.

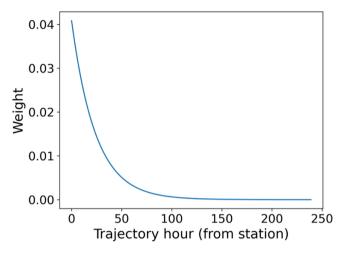


Figure S3: Weighting applied along trajectories.

Years

S1.7 Dataset references

Station

85

90

Citations for each ACTRIS dataset

Trollhaugen	2014-2016	Lunder, C., Fiebig, N
		Particle_number_size_distri
		DOI: https://doi.org/10.4859
	2016-2019	Fiebig, M., Lunder,
		Particle_number_size_distri

Citation

Trollhaugen	2014-2016	Lunder, C., Fiebig, M., GAW-WDCA, NILU, ACTRIS, 2014-2016,					
		Particle_number_size_distribution at Trollhaugen, data hosted by EBAS at NILU,					
		DOI: https://doi.org/10.48597/P8UE-H3XQ					
	2016-2019	Fiebig, M., Lunder, C. GAW-WDCA, NILU, ACTRIS, 2016-2020,					
		Particle_number_size_distribution at Trollhaugen, data hosted by EBAS at NILU,					
		DOI: https://doi.org/10.48597/ZYY4-2JFW					
Varrio	2009-2016	Kulmala, M., Aalto, P. GAW-WDCA, 2000-2017, Particle_number_size_distribution					
		at Värriö, data hosted by EBAS at NILU, DOI: https://doi.org/10.48597/G847-CW5N					
	2016-2018	Kulmala, M., Petäjä, T. GAW-WDCA, ACTRIS, 2015-2020,					
		Particle_number_size_distribution at Värriö, data hosted by EBAS at NILU, DOI:					
		https://doi.org/10.48597/9Z23-MPE6					

Mace Head	2009-2010	Jennings,	Р.,	GAW-WDCA,	CREATE,	EUSAAR,	2009-2010,
		Particle_number_size_distribution at Mace Head, data hosted					BAS at NILU,
		DOI: https://	doi.org/	10.48597/7Y43-TT	<u>EN</u>		
	2010-2011	Monahan,	С.,	GAW-WDCA,	EUSAAR,	EMEP,	2010-2011,
		Particle_nun	nber_siz	e_distribution at M	Iace Head, data	hosted by EI	BAS at NILU,
DOI: https://doi.org/10.48597/S				10.48597/SG52-M	<u>N3P</u>		
	2011-2012	O'Dowd,	С.,	GAW-WDCA,	ACTRIS,	EMEP,	2011-2012,
		Particle_nun	nber_siz	e_distribution at M	Iace Head, data	hosted by EI	BAS at NILU,
DOI: https://doi.org/10.48597/ZQ5A-MN			MDK_				
	2012-2013	O'Dowd,	С.,	GAW-WDCA,	ACTRIS,	EMEP,	2012-2013,
		Particle_nun	nber_siz	e_distribution at M	Iace Head, data	hosted by EI	BAS at NILU,
		DOI: https://	/doi.org/	10.48597/TX72-EJ	<u>EZ</u>		
	2016-2018	Personal cor	respond	ence with Dr Cebur	nis, University o	of Galway	

Table S4: References for each ACTRIS dataset used in the study.

Dataset/ Network	Database
Actris	http://ebas.nilu.no/
ERA5	https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels
GLOB-Colour	https://doi.org/10.48670/moi-00281
SPOT VGT	10.24381/cds.7e59b01a
Ostia	ttps://doi.org/10.48670/moi-00168?
ESACCI	https://maps.elie.ucl.ac.be/CCI/viewer/download.php
GEBCO	https://www.gebco.net/data-products/gridded-bathymetry-data/gebco-
	<u>2019</u>
CEDS	https://data.pnnl.gov/group/nodes/dataset/13488
GFEDS	https://www.geo.vu.nl/~gwerf/GFED/GFED4/

Table S5: Databases for the datasets used in the study.

S2 Supplementary results

S2.1 Feature selection results

TRH 30-80nm	TRH 80-660nm
X	X
X	X
X	X
X	X
X	X
X	X
X	X
X	X
X	X
X	X
X	X
	X
X	X
X	X
X	X
X	X
X	X
X	X
X	X
X	X
X	X
X	X
X	X
	X
	X X X X X X X X X X X X X X X X X X X

BC weighted sum	X	X
SO2 weighted sum	X	X
NH3 weighted sum	X	X
NOx weighted sum	X	X
OC weighted sum	X	X
BC biomass low sum		
BC biomass high sum		
OC biomass low sum		
OC biomass high sum		_
Arrival hour	X	X

Table S6: Results from the recursive feature selection described in Sect. 3.4, where an X indicates that the feature was included in the final model.

S2.2 Hyperparameter tuning results

	TRH 30-80nm	TRH 80-660nm
Number of estimators	200	450
Max depth	9	9
Learning rate	0.07	0.06
Min child weight	3	5
Min split loss	2	0
Subsample	0.94	0.62
Colsample by tree	0.97	0.81
Lambda	33.19	34.48
Alpha	9.73	0.50
Test score	0.65	0.71

Table S7: Results of the hyperparameter tuning performed using Tree-based Parzen Estimators, as described in Sect. 3.4 of the main text.

115

S2.3 Model evaluation

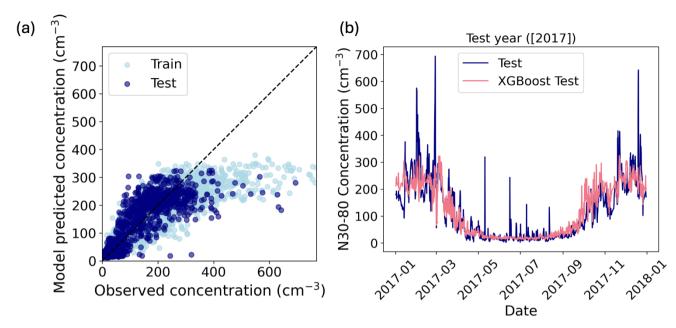


Figure S4: (a) Correlation plot for observed concentrations (30-80nm) against ML model prediction concentration (30-80nm) for the training data set (light blue) and test dataset (navy). (b) Timeseries for observed concentrations (navy) and ML model predictions (pink). For Trollhaugen.

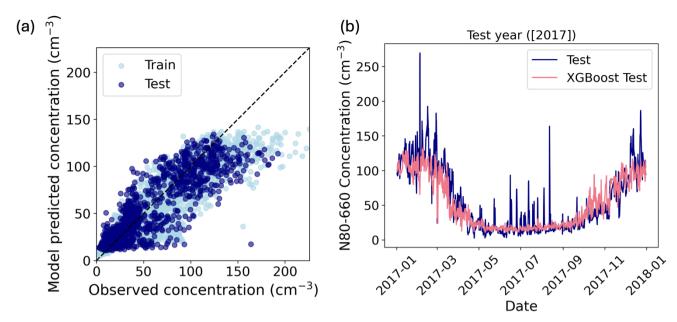
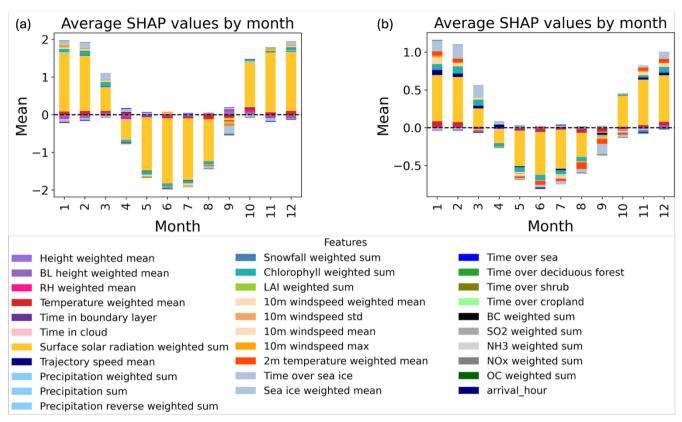
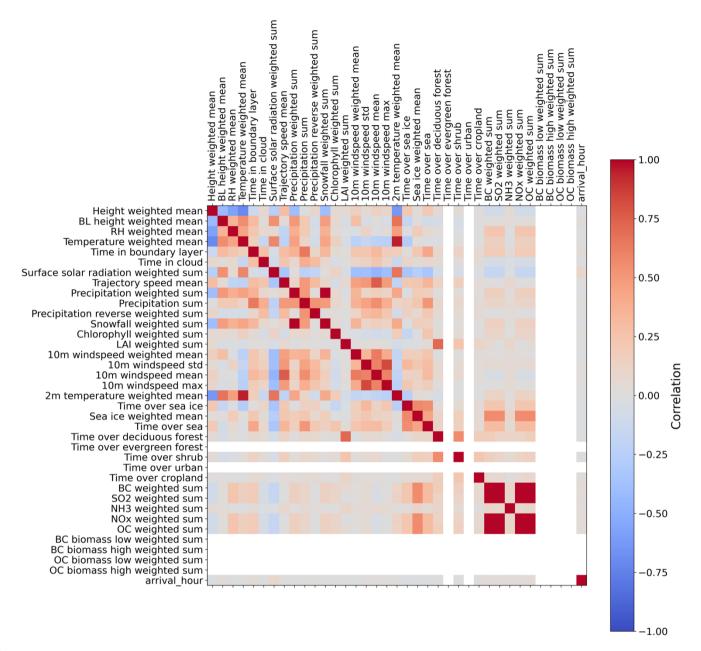
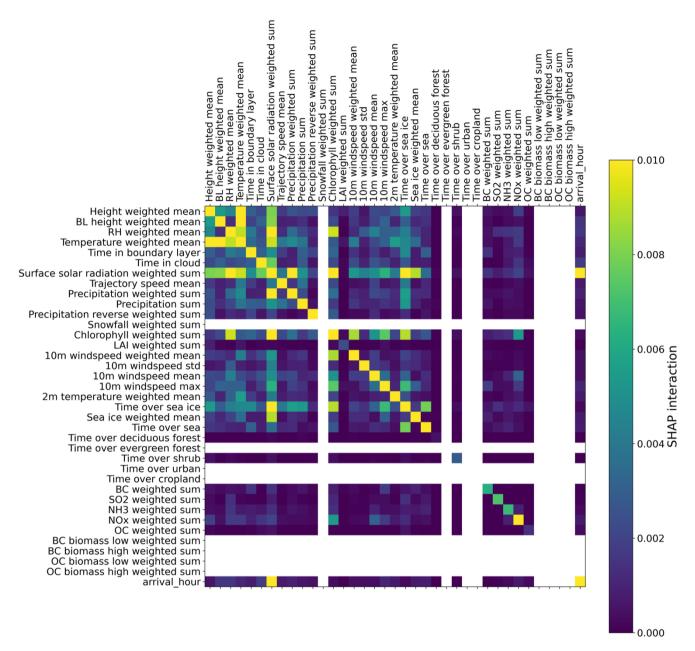




Figure S5: (a) Correlation plot for observed concentrations (80-660nm) against ML model prediction concentration (80-660nm) for the training data set (light blue) and test dataset (navy). (b) Timeseries for observed concentrations (navy) and ML model predictions (pink).


S2.4 Seasonal cycle of SHAP

125 Figure S6: The average monthly SHAP value for each feature. The size of the bar corresponds to the magnitude of the mean SHAP value of the feature for each month. Note that the placement above or below the x-axis demonstrates the sign of the mean SHAP value of the feature, however that the order of features within the bar does not have significance.

130 Figure S7: Correlation coefficients for all explanatory variables in the test dataset (2017). White indicates that the feature was not included in the final models.

135 Figure S8: Absolute mean SHAP results for the 30-80nm model. Where the diagonal elements are the total SHAP value for the feature and the other elements represent the other features contribution to the total SHAP of a feature. White indicates that the feature was not included in the final model.

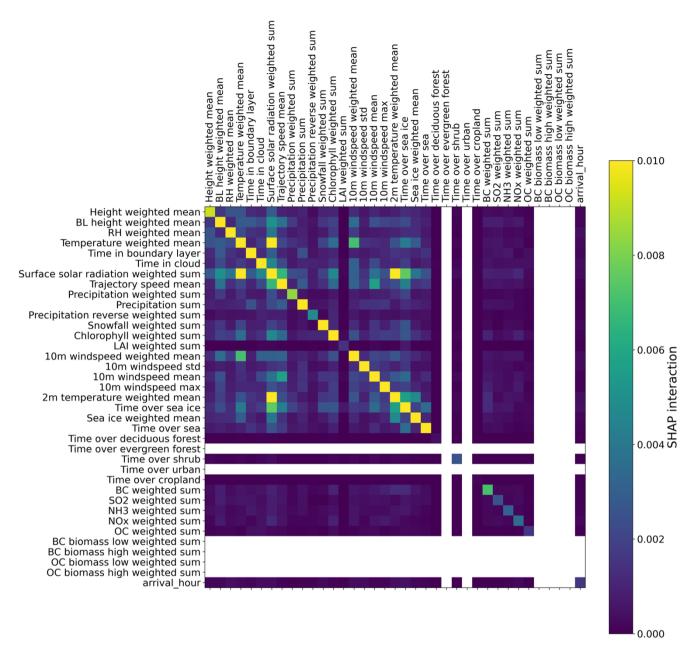


Figure S9: Absolute mean SHAP results for the 80-660nm model. Where the diagonal elements are the total SHAP value for the feature and the other elements represent the other features contribution to the total SHAP of a feature. White indicates that the feature was not included in the final model.

150 **S2.7 Interventional SHAP**

155

We also conduct the TreeSHAP analysis with the 'interventional' approach to ensure the robustness of the SHAP results.

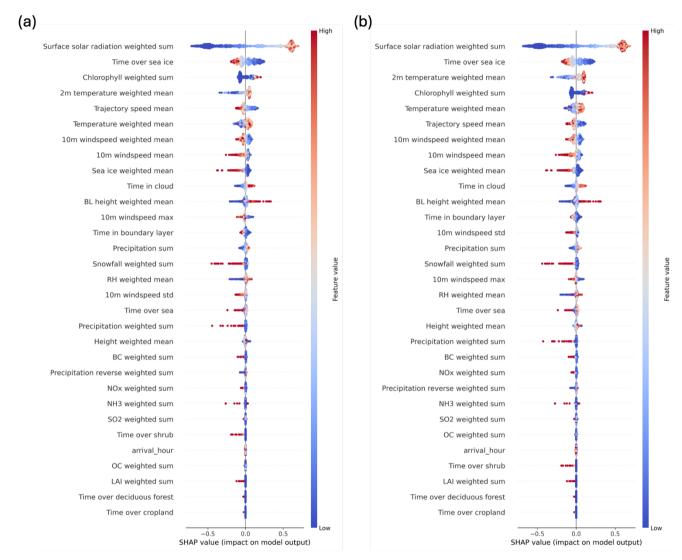


Figure S10: SHAP beeswarm for Trollhaugen N80-660nm model (a) path-dependent TreeSHAP and (b) interventional. Plots are ordered by the rank of each feature as determined by the TreeSHAP analysis. The points are coloured by the feature value corresponding to the data point for the SHAP value, and the 'violin' shape of the distribution represents the density of points.

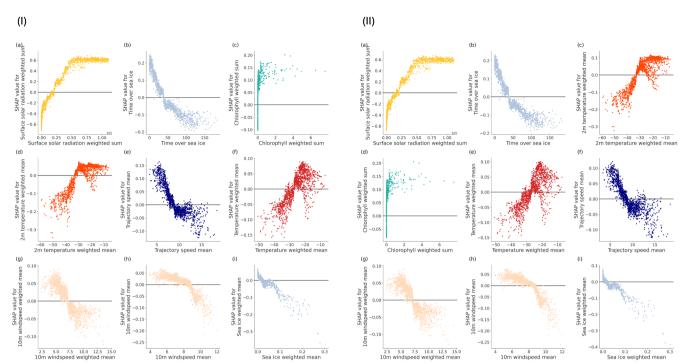


Figure S11: SHAP dependence plots for the Trollhaugen N80-660nm model. Plots are ordered by the rank of each feature as determined by the TreeSHAP analysis and the top 9 ranked features are shown. Colours are associated with each variable. (I) Path-dependent TreeSHAP, (II) interventional TreeSHAP.