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Abstract 24 

 25 

The Scalable PaRallelised EArth Data Assimilation System (SPREADS) is a next-26 

generation data assimilation system developed at CMCC-Foundation (Euro-27 

Mediterranean Center on Climate Change) to support operational global forecasts. 28 

Built upon the Data Assimilation Research Testbed (DART), SPREADS incorporates 29 

key advancements such as First Guess at Appropriate Time (FGAT), enhanced 30 

observation handling via D4O (Database for Observations), and high-performance 31 

parallelisation to significantly improve computational efficiency and scalability. A 32 

major focus of SPREADS is the assimilation of a vastly increased number of 33 

asynchronous satellite-based radiances, which have been shown to substantially 34 

enhance analysis quality. Designed for coupled atmosphere-land-ocean-ice 35 

assimilation, SPREADS forms the core of the CMCC Earth SYstem Modelling and Data 36 

Assimilation (ESYDA division) operational forecast system. This paper presents the 37 

modifications made to DART, evaluates preliminary results, and outlines future 38 

developments toward fully coupled data assimilation. 39 

 40 

1. Introduction & Motivation 41 

 42 

Data Assimilation Research Testbed (DART; The Data Assimilation Research 43 

Testbed, Version X.Y.Z, 2021, Boulder, Colorado UCAR/NSF NCAR/CISL/DAReS, 44 

http://doi.org/10.5065/D6WQ0202), is a widely used data assimilation system in the 45 

atmospheric and oceanic sciences. It was developed and is maintained by the Data 46 

Assimilation Research Section (DAReS) at the NSF National Center for Atmospheric 47 

Research (NCAR) in the United States. DART provides a flexible and modular platform 48 

for conducting research on data assimilation algorithms and their applications to 49 

numerical weather prediction, climate modelling, and other environmental 50 

forecasting systems. It primarily focuses on ensemble-based data assimilation 51 

methods, such as the Ensemble Kalman Filter (EnKF) and its variants (Evensen 52 

1994a,b; Evensen 2001; Tippett et al., 2003; Collins 2007). These methods use an 53 

ensemble of model state vectors to represent the uncertainty in the system state and 54 

assimilate observations to update this ensemble. DART is designed with a modular 55 

architecture, allowing users to easily integrate different numerical models, 56 
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observation types, data assimilation algorithms, and experimental configurations. 57 

This flexibility enables researchers to tailor the system to specific research questions 58 

and applications. DART incorporates the localisation technique (Hamill et al. 2001; 59 

Houtekamer and Mitchell 2001; Haugen and Evensen 2002 Otto et al. 2004) to account 60 

for the fact that observations are often only informative within a limited spatial and 61 

temporal range, helping therefore to prevent spurious long-range correlations in the 62 

analysis, improving the accuracy of the assimilation. DART  also includes methods for 63 

adaptively inflating the ensemble spread to account for underestimation or 64 

overestimation of forecast error covariance. Adaptive inflation is crucial for 65 

maintaining the reliability of the ensemble and preventing filter divergence. The 66 

benefit to the scientific community of using DART all over these years is without any 67 

doubts: DART has been used by a large world wide young and senior researchers to 68 

advance understanding data assimilation methods and observations usage (Noh et al. 69 

2024; Tang et al. 2024; Dietrich et al. 2024; Pedatella and Anderson 2022; Fox et al 70 

2022; Rackza et al. 2021). Over the last 20 years, DART has been continuously 71 

developed and improved with input and feedback from the scientific community 72 

across the atmospheric, oceanic and land sciences. Researchers have contributed new 73 

algorithms, techniques, and methodologies expanding the capabilities of the 74 

framework and  enabling new users to experiment with state-of-the-art approaches 75 

(Grooms and  Riedel 2024; Anderson 2023; Dibia 2023). By experimenting with 76 

various observation types, processing techniques, and quality control methods, users 77 

have contributed to optimising the assimilation of observational data and the 78 

computational efficiency of DART. This includes improvements in parallelisation 79 

strategies, algorithmic optimisations, and enhancements to reduce memory usage and 80 

computational costs.  And finally also improvements have been obtained on 81 

diagnostics, metrics, and benchmarking datasets to assess the quality and reliability 82 

of the produced analyses. 83 

In 2021 the Euro-Mediterranean Center on Climate Change (CMCC, Italy) 84 

approved a new strategy on longer forecast range predictions (e.g. the seasonal 85 

forecast) strongly supporting the use of a proper initialisation of these predictions by 86 

a weakly coupled data assimilation system. The CMCC strategy foresaw therefore the 87 

development of a weakly coupled atmosphere, land, ocean and cryosphere data 88 

assimilation system initialising such predictions. Given the crucial role that the open-89 
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source modelling plays in terms of transparency and reproducibility, fostering 90 

collaboration and community engagement that encourages knowledge sharing, idea 91 

exchange, and collective problem-solving, leading to the development of more robust 92 

and comprehensive models, CMCC has engaged in the development of a data 93 

assimilation system that will serve as an open-source system for operational use. 94 

Therefore starting from the open-source DART, SPREADS has evolved by modifying 95 

and implementing new features essential for an operational use of the system 96 

(Cardinali et al., 2025). CMCC's development of SPREADS as an open-source data 97 

assimilation system for operational use builds upon the strengths of the DART 98 

framework while customising and extending it to meet the specific requirements of 99 

operational forecasting and decision support. In this paper, the description of the 100 

changes adopted towards an operational use of an atmospheric data assimilation 101 

system is described and assessed. This paper describes the methodological 102 

innovations in SPREADS, evaluates its preliminary performance, and outlines future 103 

expansion plans toward a coupled open-source DA system. 104 

 105 

2. Ensemble Kalman Filter and SPREADS 106 

 107 

The Ensemble Adjustment Kalman Filter (EAKF) is a data assimilation technique 108 

developed by members of the DAReS team  (Anderson 2001, 2003; Andersson  2009; 109 

Andersson, 2012; Anderson and Collins 2012; Reader et al. 2012) within DART. The 110 

EAKF addresses key limitations of the standard EnKF, particularly when dealing with 111 

small ensemble sizes or poorly known model and observation error statistics. It 112 

employs a least squares method to adjust the ensemble state, ensuring consistency 113 

with both model dynamics and observational constraints. The EAKF refines the 114 

ensemble mean and spread to better fit incoming observations. Observations and 115 

ensemble members are assimilated within localised regions, reducing the impact of 116 

spurious long-range correlations and enhancing computational efficiency. 117 

When new observations become available, the EAKF assimilation process follows 118 

two main steps: 119 

1. Observation-Space Update (Scalar Update): for each observation, the 120 

ensemble members are first updated in the observation space. This involves 121 

adjusting the prior observation estimates for each ensemble member based on the 122 
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observed value, the prior ensemble's variance in observation space, and the 123 

observation error variance. This step ensures that the updated observation 124 

estimates are consistent with the new measurement. This update is often 125 

performed as a series of scalar updates if observations are assimilated 126 

sequentially. 127 

2. State-Space Adjustment (Ensemble Member Transformation): following the 128 

observation-space update, each ensemble member's state variables are then 129 

adjusted to reflect the change made in the observation space, ensuring that the 130 

updated state remains consistent with the updated observation and the ensemble's 131 

internal correlations. This adjustment explicitly leverages the cross-132 

covariances between each state variable and the observed variable (computed 133 

directly from the prior ensemble). The transformation ensures that the ensemble 134 

mean and covariance are updated according to the Kalman filter equations, and 135 

crucially, that the updated ensemble members retain their statistical spread and 136 

do not collapse. This adjustment is applied to each ensemble member 137 

independently, guaranteeing that the analysis ensemble still represents the 138 

posterior uncertainty. 139 

By explicitly incorporating the least squares assumption, the EAKF provides a 140 

computationally efficient solution. Under these assumptions, the ensemble filtering 141 

problem reduces to a nonlinear filter applied to a scalar, followed by sequential linear 142 

regressions. While subsets of observations with independent error distributions can 143 

be assimilated in sequence, the sequential nature of the regression step presents a 144 

computational challenge when millions of observations must be processed within a 145 

six-hour window. It is well know that satellite radiance assimilation has significantly 146 

improved the quality of numerical weather prediction (NWP) analyses: incorporating 147 

vast amounts of satellite observations, it leads to better initial conditions for 148 

forecasting. To efficiently handle the assimilation of large volumes of satellite 149 

radiances, SPREADS has introduced several modifications, including the First Guess at 150 

Appropriate Time (FGAT) approach, the implementation of RTTOV (the Radiative 151 

Transfer for TIROS Operational Vertical Sounder, Saunders et al., 2018) for radiance 152 

processing (Kugler et al. 2023), the scan and air mass bias corrections, and code 153 

improvements in the observations treatment. 154 

 155 
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2.1 Graphical User Interface and Diagnostics 156 

To support the execution of SPREADS, an ensemble data assimilation system 157 

processing over one million observations every six hours, a dedicated Graphical User 158 

Interface (GUI) was essential. Given the complexity of SPREADS, which involves 159 

numerous interdependent modules and programs, a robust and dynamic workflow 160 

management tool was required. For this reason, an EcFlow-based GUI (ECMWF 161 

EcFlow User Documentation https://confluence.ecmwf.int/display/ECFLOW) was 162 

developed in parallel with SPREADS. This client/server interface allows for controlled 163 

and coordinated execution of all components of the data assimilation suite. The GUI 164 

handles task scheduling, monitors job statuses, and responds to events via embedded 165 

script commands. It is designed to tolerate hardware or software failures and 166 

supports automatic restarts when needed. The GUI manages task dependencies using 167 

a trigger-based system, where the execution of one job can depend on the status of 168 

others. Job statuses typically include submission, queuing, running, failed, or 169 

suspended. These functionalities are enabled by a combination of command-line 170 

executables, shared libraries, and a Python-based interface that defines the suite 171 

structure and handles communication with the EcFlow server. The server component 172 

acts as the scheduler, responding to client requests and managing job execution. While 173 

Figure 1: Graphical User Interface EcFlow  managing the atmosphere and land component 

data assimilation and forecast of  SPREADS 
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not a queuing system itself, it is capable of submitting jobs to external queueing 174 

systems, making it suitable for heterogeneous computing environments. The GUI also 175 

provides real-time monitoring and visualisation of the suite's hierarchical node tree, 176 

giving users full visibility and control over the operational workflow. Figure 1 shows 177 

the EcFlow GUI for SPREADS. 178 

Alongside the EcFlow GUI, an interactive graphical diagnostics package based on 179 

Streamlit (Streamlit 2024) has been developed to monitor and assess the performance 180 

of SPREADS. This tool allows users to explore both model and observation spaces 181 

through a range of visualisations. In model space, users can generate geographical 182 

maps, cross sections, and mean vertical profiles of key variables. In observation space, 183 

the package offers time series and vertical profiles of key statistics, such as biases and 184 

standard deviations of the differences between observations and both the prior and 185 

posterior fields. Additional diagnostic and dynamical metrics are also available. All the 186 

plots presented in this paper were produced using this diagnostic tool. 187 

 188 

2.2 FGAT-approach & Code Modularity 189 

One of the key features developed in SPREADS is the FGAT approach, designed to 190 

enhance both efficiency and accuracy in the assimilation process. In the First Guess at 191 

Appropriate Time (FGAT) approach, the model’s background (first-guess) forecast is 192 

interpolated to the exact time of each observation, so that the observation-minus-193 

background difference is evaluated at the proper moment before the analysis is 194 

performed, yielding a more consistent estimate of the system’s current state. 195 

In SPREADS, the model’s first guess is interpolated to match the time of 196 

observational data. To achieve this, the commonly used 6-hour assimilation window 197 

is divided into 11 time slots of 30 minutes and 2 additional slots of 15 minutes at the 198 

beginning and end of the window. This fine-grained temporal segmentation ensures 199 

precise alignment between observations and model output, enabling a more 200 

meaningful and accurate comparison. 201 

This approach offers several key advantages: it eliminates the need to time-shift 202 

either field, which (a) removes interpolation-induced errors and (b) saves 203 

considerable CPU and memory, because one forecast integration serves all 204 

observation times instead of many separate. Also it enhances consistency by ensuring 205 
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alignment between the model’s initial conditions and observational data, enabling 206 

therefore the assimilation of asynchronous observations such as polar orbiting 207 

satellite-based observations. Finally, since FGAT can be applied across various data 208 

assimilation techniques, it provides flexibility in adapting to different modelling and 209 

observational setups. 210 

The effectiveness of FGAT was demonstrated during the development of the 211 

variational data assimilation system at ECMWF, where the transition from a 6-hour 212 

3DVar window to FGAT-3DVar resulted in the largest improvement in assimilation 213 

performance (Andersson et al., 1998). The modularity inherent in DART has been 214 

further enhanced in SPREADS by refining and structuring the assimilation steps into 215 

four distinct modules, each designed to improve efficiency, computational 216 

organisation and flexibility. Notably, these modules can be executed independently, 217 

allowing for greater adaptability in different assimilation workflows. 218 

Module-0: Executes the model trajectory using the FGAT approach, while 219 

independently handling observation preprocessing. 220 

Module-1: Performs observation preprocessing, including cross-checking 221 

observations, converting them from buffer storage to an SQL query-based database, 222 

and conducting screening and blacklisting. Also the scan and air mass bias corrections 223 

are performed in here: biases in satellite radiance observations arise due to 224 

instrument calibration errors, radiative transfer modeling inaccuracies, and 225 

atmospheric variations. The implementation of bias corrections includes adjusting 226 

radiances for systematic errors associated with the sensor's viewing angle and using 227 

predictors such as atmospheric thickness and surface temperature to adjust radiances 228 

for biases linked to atmospheric conditions (Harris and Kelly, 2001, Auligné et al. , 229 

2007). 230 

Module-2: Carries out the nonlinear spatial interpolation of model values from all 231 

ensemble members to the observation locations. 232 

Module-3: Executes the two-step sequential regression, ensuring the adjustment 233 

of the model state based on observations. 234 

Since each module can be executed independently, users can customise the 235 

assimilation process by running only the required components, optimising 236 

computational resources and allowing for seamless integration with external systems. 237 
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This flexibility enhances scalability, maintainability, and operational efficiency, 238 

making SPREADS highly adaptable for various forecasting and research applications. 239 

 240 

2.3 Observation handling d4o 241 

To ensure a flexible and fast observation handling throughout all the assimilation 242 

processes a query language observation database (Database for Observations, d4o) 243 

based on SQLite (https://sqlite.org/) open-source has been developed. D4o manages 244 

and controls the observations flow through observations definition and query 245 

language organised in a hierarchical tree-like structure from which is easy to select 246 

the desired information and place it in a data matrix for further examination. The 247 

system allows SQL queries to efficiently extract and manipulate observational data. 248 

The provided SQL can for example filter observations based on latitude, observation 249 

type, quality control flags, and availability of posterior values. A Fortran module 250 

(fd4o_mod) was developed to interface with the database. It includes functions to 251 

open, close, query, and update the database. The Fortran interface is built on a C-layer 252 

that calls standard SQLite APIs. The d4o database was integrated into the SPREADS 253 

data assimilation system to handle large volumes of observational data. This 254 

implementation optimises I/O operations and improves data accessibility across 255 

parallel processing tasks. In fact, this relational-like process is particularly efficient for 256 

MPI-parallel data access and queries coordination for data shuffling between MPI-257 

tasks. High vectorisation efficiency for storing and retrieving observations is therefore 258 

achieved, enabling fast, flexible and configurable I/O management.    259 

The Fortran interface was optimised for MPI-parallelised operations: the 260 

observations are now stored and retrieved in a highly efficient, vectorised manner to 261 

reduce computational overhead. Various parallelisation techniques, such as OpenMP 262 

and MPI non-blocking communications and several debugging and logging options 263 

were introduced to track database transactions. The database system was extended 264 

to support observational inputs for different Earth system models, including CAM 265 

(Community Atmosphere Model) and CLM (Community Land Model). 266 

The d4o database has been architected to handle, in a fully scalable manner, the 267 

vast volumes of satellite observations required for state-of-the-art analyses. It draws 268 

its observation metadata directly from a series of database files (“data pools”), whose 269 

contents are cached into the observational I/O-server tasks. The design of d4o 270 
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deliberately builds on the success of the ECMWF ODB system (Observational 271 

DataBase) first deployed in 2000 to seamlessly assimilate diverse observation types 272 

and, in particular, to manage very large volumes of IASI radiance data within the 273 

ECMWF IFS 4DVar framework 274 

(https://www.ecmwf.int/sites/default/files/elibrary/2004/76278-ifs-275 

documentation-cy36r1-part-i-observation-processing_1.pdf). In contrast to ODB, d4o 276 

leverages a modern, standardised SQL-query interface via the lightweight SQLite 277 

engine (https://www.sqlite.org/) wrapped in a versatile Fortran 2008 SPREADS 278 

interface that employs hybrid MPI/OpenMP parallelism and parallel I/O for the SQLite 279 

files. This hybrid approach reduces total memory usage and cuts the need for large 280 

MPI task counts, avoiding the overhead of fine-grained message passing and 281 

synchronisation: so that, in practice, 2–8 threads per MPI task suffice. Indeed, on Sami 282 

Saarinen’s personal tests, SPREADS with its optimised d4o library running on just 283 

eight nodes outperformed a comparable DART run on 32 nodes by a factor of 2–3 284 

(2024–2025, pers. comm.). 285 

Module-1 provides all the observations preprocessing: once all the observations 286 

to be assimilated are in d4o, the screening according to the chosen resolution is 287 

performed and the observations are thinned accordingly. The screening module was 288 

implemented to filter out low-quality or irrelevant observations. 289 

Moreover, in SPREADS, a dedicated blacklisting module has been introduced that 290 

permanently excludes observation channels, platforms, or stations with documented 291 

systematic errors at ingest, preventing the assimilation of problematic data and 292 

reducing subsequent quality-control and computational overhead. 293 

 294 

2.4 Code optimisation  295 

The modifications introduced focused on optimising code efficiency and 296 

enhancing parallelisation. The traditional linked-list observation sequence was 297 

replaced with a SQLite-based d4o database system, significantly improving memory 298 

management and data retrieval speed. An I/O server architecture was implemented 299 

to separate data handling from computational tasks, reducing bottlenecks and 300 

improving scalability. The sequential observation loop in Module-3 was optimised by 301 

eliminating unnecessary index copying and improving observation-state closeness 302 

calculations, leading to faster processing. Parallelisation was enhanced through the 303 
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introduction of OpenMP within MPI tasks, reducing the number of required MPI tasks 304 

while maximising computational efficiency.  305 

The previous blocking MPI communications were replaced with non-blocking 306 

alternatives to minimise delays and improve data exchange. Additionally, database 307 

operations were optimised by disabling SQLite journaling, allowing for faster 308 

database writes and exclusive access for I/O servers. The handling of satellite 309 

observations, particularly IASI data, was refined with a more efficient preprocessing 310 

pipeline. Performance monitoring tools, such as perfstat, were introduced to identify 311 

and address bottlenecks, while automated scripts were developed to streamline 312 

database management, observation blacklisting, and debugging. These modifications 313 

collectively enhanced the scalability, performance, and reliability of the SPREADS data 314 

assimilation system. Table 1 shows the computational speed and efficiency before and 315 

after the code optimisation. 316 

Module  CPU       
old                            new 

                   Node 
old                         new 

                    Member 
old                       new 

Module0       

Module1 105’ 38’ 2 1 1 1 

Module2 8’ 6’ 12 x ts 4 x ts   

Module3 1h30  35’ 25 8   

Table 1: Computer configuration and CPU time before (left panel) and after (right panel) 

SPREADS optimisation. Ts stands for time-slot. 

 317 

3. E-suite and preliminary results 318 

SPREADS is fully integrated into the Community Earth System Model (CESM, 319 

https://www.cesm.ucar.edu/), an infrastructure developed through a joint 320 

collaboration between many meteorological centres including CMCC  321 

 322 

 323 

 324 

 325 

 326 

 327 
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and NCAR. CESM provides a flexible software framework for configuring and 328 

running coupled models, each designed to represent different components of the 329 

Earth system. Specifically, SPREADS is coupled with the atmosphere model (CAM), the 330 

land model (CLM), the cryosphere model (CICE), and the ocean model NEMO (for the 331 

CMCC CESM). 332 

 333 

Figure 2: 6 hour window observation data coverage according to observation 

type. From top left:  Radiosonde, Aircraft, Wind profiler, Synop and Buoy, AMV, 

GPS-RO and AMSU-A 
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Observation Observation kind Information 

GPS-RO Metop A, B GRAS Refractivity Temperature 

AMSU-A Metop A  Microwave sounder radiance Temperature 

AMSU-A Metop B   

AMSU-A NOAA-15   

AMSU-A NOAA 18   

AMSU-A NOAA-19   

AMSU-A AQUA    

AMV AQUA Visible u, v 

AMV TERRA Visible  

AMV GOES-15 Visible  

AMV Meteosat-10 IR, WV and V  

AMV COMS-1 IR, WV and V  

AMV Dual Metop IR  

AMV INSAT -3D   

AMV NPP IR  

AMV HIMAWARI-8 Visible  

Profiler European, Japanese Wind u, v 

Radiosonde Land and Ship u, v,  T, q 

Aircraft  u, v, T, q 

Buoys Moored and Drifters Surface pressure 

SYNOP Land Surface pressure 

Table 2 Observation types and platforms assimilated  

 334 

An experimental suite (E-suite) has been implemented using SPREADS to assess 335 

its performance in an operational-like environment. The E-suite began running in 336 

January 2024, covering the period from July 2017 to the present at 1° horizontal 337 

resolution. It is currently up to the January 2018 analysis production, utilising the 93 338 

model levels of CAM (version 6 finite volume dynamical core; Simpson et al, 2025), 339 

with enhanced vertical resolution in the free troposphere and stratosphere and a 340 
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model lid height set at 0.01 hPa. Each cycle operates on a 6-hour window, subdivided 341 

via the FGAT approach to accommodate the asynchronous nature of the observations. 342 

The E-suite assimilates a wide range of observations, as listed in Table 2. 343 

A representative data coverage for a 6-hour assimilation window centred on 12 344 

UTC is shown in Figure 2. For that cycle, the number of assimilated observations 345 

includes: 35,110 GPS-RO refractivity profiles, 768,002 AMSU-A brightness 346 

temperatures, 163,284 AMV winds, 40,158 wind profiler reports, 174,263 radiosonde 347 

measurements, 79,043 aircraft reports, and 500 surface pressure observations from 348 

SYNOP and BUOY platforms. This results in a total of approximately 1.3 × 10⁶ 349 

assimilated observations every 6 hours. Figure 3 presents time series of the zonal 350 

wind component (u) from radiosonde (left) and aircraft (right) observations over the 351 

Northern Hemisphere between 400 hPa and 0.01 hPa. The assimilation results show 352 

a reduction in bias of approximately 30% for radiosondes and 40% for aircraft data. 353 

Aircraft observations typically exhibit smaller biases, generally within ±1.5 m/s, 354 

compared to radiosonde data, which show biases reaching ±3 m/s. 355 

Figure 3: Time series of observation-minus-background (prior) and observation-minus-

analysis (posterior) departures for the zonal wind component (u) from 2 October 2017 to 

21 January 2018 at 00, 06, 12, and 18 UTC, over the Northern Hemisphere and between 

400 hPa and 0.01 hPa. The left panel shows radiosonde observations, and the right panel 

shows aircraft observations. Displayed diagnostics include RMS, RMSE, ensemble 

Dispersion Index (DI), and Observation Influence (OI 
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A notable change occurs around 14 November 2017, coinciding with the 356 

introduction of AMSU-A microwave radiances into the assimilation system; prior to 357 

this, aircraft data tend to underestimate the zonal wind. 358 

The RMSE for aircraft observations remains higher (~2.5 m/s) than that for 359 

radiosondes (~1.5 m/s), consistent with known instrument characteristics and 360 

sampling differences. The ensemble Dispersion Index (DI), defined as the ratio of the 361 

ensemble RMSE (computed against the own analysis) to the total spread, stays close 362 

to 1 throughout the period for the aircraft observation types, whilst is less than 1 for 363 

the radiosonde observations indicating an overdispersive ensemble at the top of the 364 

atmosphere (~50hPa) and a well calibrated ensemble in the high troposphere (~250 365 

hPa). 366 

The observation Influence (OI), 0≤OI≤1, indicates that when OI = 0 the 367 

observation had no leverage in the fit, whereas OI = 1 means the fit relied entirely on 368 

the observation, with no contribution from the first guess (Cardinali et al., 2004; 369 

Cardinali, 2014; Liu et al., 2009; Gharamti et al., 2019). OI remains relatively low for 370 

aircraft (~0.1), while radiosondes display higher influence values (~0.25), reflecting 371 

their higher information content and smaller observation error variances in the upper 372 

troposphere and lower stratosphere. 373 

AMSU-A channels 9–14 were assimilated starting on 14 November 2017, initially 374 

with a scan bias correction following Harris and Kelly (2001) and subsequently, on 2 375 

January 2018, with the addition of an air-mass bias correction following Noh et al. 376 

(2023). While the scan bias correction, after extensive evaluation, was shown to 377 

perform satisfactorily, the air-mass bias correction proved less effective. 378 

Further analysis demonstrated that the regression predictors used for the 200–379 

50 hPa thickness were inadequate to represent channels 11–14. A more suitable 380 

choice was to separate the predictors and also include a 50–2 hPa thickness to account 381 

for the stratospheric channels. Therefore, the final air-mass bias correction was 382 

applied using a linear combination of several thickness predictors (1000–300, 200–383 

50, and 50–2 hPa), enabling the scheme to account for biases arising from multiple 384 

physical dependencies simultaneously (Auligné et al., 2007). To anchor the model 385 
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bias, unbiased radiosonde and GPS-RO observations were used, and AMSU-A channel 386 

14 was left uncorrected since it is considered unbiased for the same reason. In 387 

addition, the averaging of correction coefficients across last four cycles, as done in Noh 388 

et al., was found to mask the actual dynamical situation. To better capture flow-389 

dependent variability, our implementation used only the predictors within the current 390 

assimilation window for the regression. 391 

Figure 4 presents the time series diagnostics for two key observation types, GPS-392 

RO refractivity (right) and AMSU-A AQUA Channel 9 brightness temperatures (left), 393 

covering the global pressure range from 400 to 0 hPa over the period 20171113 to 394 

20180122. The GPS-RO diagnostics indicate a well-calibrated assimilation system: the 395 

posterior bias remains near zero (0.00  ±0.01), the RMS and total spread are closely 396 

matched, and the dispersion index remains near one. The observation influence (OI) 397 

is moderate (0.34 ± 0.05), showing a balanced contribution between the observations 398 

and the model background. These results confirm GPS-RO’s role as a high-impact, 399 

high-precision observation source, especially in the upper troposphere and 400 

stratosphere. 401 

In contrast, AMSU-A Channel 9, which peaks near 100 hPa in the mid-402 

stratosphere, presents a more complex picture. Following the introduction of scan 403 

angle bias correction on 14 November and air-mass bias correction on 2 January, a 404 

Figure 4: Global time series of Aqua AMSU-A TB channel 9 (left panel) compared with GPS-RO 

refractivity in the layer 400-0.01 hPa (right panel). 
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notable reduction in posterior bias is observed from ~0.6 K to -0.2 K. This 405 

improvement in bias is accompanied by a steady decrease in RMSE from ~1 to 0.8 K. 406 

Additionally, the observation influence rises to a higher value of 0.25, indicating a 407 

better leveraged analysis fit. 408 

 409 

This diagnostic reinforces conclusions that while SPREADS effectively assimilates 410 

high-accuracy GPS-RO data, stratospheric radiance assimilation still presents some 411 

challenges. 412 

Figure 5 presents a comparison of the prior and posterior departure vertical 413 

profiles of the zonal wind, averaged over the week 20180103–19, for AMV, Wind 414 

Profiler, and Radiosonde observations (top panel), and Aircraft observations (bottom 415 

Figure 5: Average vertical profiles of the zonal wind component (u) 

for AMVs, wind profilers, and radiosondes (top panel), and for 

aircraft observations (bottom panel). Aircraft profiles are 

complemented by diagnostics including RMS, RMSE, Dispersion 

Index (DI), and Observation Influence (OI). 
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panel). For the Aircraft data, ensemble performance statistics are included: ensemble 416 

spread, total spread, RMS, RMSE, dispersion index, and observation influence (OI). 417 

Across all observation types, the posterior fit demonstrates a clear reduction in 418 

bias throughout the atmosphere. Larger residual departures are seen above 200 hPa, 419 

with AMVs showing differences between −3 m/s at 50 hPa and +1 m/s at 100 hPa. 420 

Wind Profiler data shows a −0.75 m/s departure at 200 hPa, while Aircraft exhibit 421 

slightly positive departures of 0.4 m/s at around 100 hPa. These discrepancies likely 422 

stem from the sparser data coverage at upper levels and some residual effects from 423 

AMSU-A assimilation. 424 

The profiles also show that posterior fits tend to converge across observing 425 

systems in the troposphere, suggesting a consistent adjustment by the assimilation 426 

system despite differing data characteristics. A subtle transition in departure 427 

behaviour is visible near the tropopause, possibly indicating increased 428 

representativeness error or limitations in vertical resolution at this level.  429 

Figure 6: Temperature increment density distribution for 20171201 (top panel) and 

20180123 (bottom panel). Probability density function of the increments (left) and their 

vertical distribution across 3 cycles (right) 
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Ensemble performance metrics are shown only for Aircraft data, as their 430 

behaviour is representative of the other platforms. The RMSE remains around 2 m/s 431 

throughout the column, while the RMS departures (middle panel, bottom row) are 432 

slightly higher, as expected. The dispersion index indicates approximately 20% over-433 

dispersion in the ensemble below 200 hPa. The OI for Aircraft observations is 434 

relatively low (0.1 to 0.2), primarily due to their error characteristics. 435 

Finally, since the statistics are averaged over a full week, they represent 436 

systematic patterns rather than short-term variability. Interpretation of vertical 437 

features should also consider the varying vertical resolution and density of each 438 

observation type, particularly above 200 hPa, where reduced data availability can 439 

influence both bias correction and ensemble reliability. 440 

Figure 6 illustrates the temperature increment density distribution for two 441 

selected dates during the analysis period: December 1st, 2017 (top panel) and January 442 

23rd, 2018 (bottom panel). Each panel shows the probability density function of the 443 

increments (left) and their vertical distribution across three analysis cycles of each 444 

day (right). 445 

Over the course of the period, a clear reduction in the amplitude of temperature 446 

increments is observed, particularly within the troposphere. The spread of the 447 

distribution narrows from approximately ±0.4°K on December 1st to about ±0.2°K by 448 

January 23rd. This contraction reflects improved constraint in the analysis, likely 449 

resulting from better-calibrated observations and/or enhanced ensemble 450 

performance. 451 

Alongside the amplitude reduction, the tropospheric increment distributions 452 

become increasingly symmetric around zero, indicating a progressive reduction in 453 

systematic bias and a more balanced assimilation system. Additionally, the analysis 454 

cycles per day show greater consistency over time: while 20171201 displays notable 455 

variability between cycles, especially in the lower troposphere, the cycles on 456 

20180123 exhibit much tighter agreement, suggesting improved temporal stability of 457 

the system. Similar reduction of the increments is observed in the stratosphere. 458 

 459 

 460 
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 461 

Figures 7 and 8 present a comparison between SPREADS and ERA5 analyses, 462 

highlighting both horizontal and vertical structural differences in the representation 463 

of key atmospheric variables. 464 

Figure 7 displays global fields from SPREADS (left panels) and ERA5 (right 465 

panels) at 00 UTC on 20180121 for the zonal wind component at 200 hPa (top) and 466 

temperature at 850 hPa (bottom). The large-scale circulation patterns are well 467 

captured in SPREADS, showing good agreement with ERA5 in both magnitude and 468 

spatial structure. However, differences emerge at smaller spatial scales, particularly 469 

in regions with sharp gradients such as subtropical jet streams, where ERA5 exhibits 470 

finer, more coherent jet streaks owing to its higher horizontal resolution nearly 471 

double that of SPREADS. 472 

At 850 hPa, the temperature patterns in both systems reflect realistic meridional 473 

gradients and contrast between land and ocean. Yet, subtle regional differences are 474 

visible: SPREADS appears cooler over high-latitude  475 

Figure 7: SPREADS analysis (left panels) compare with ERA5 (right panels) of the U wind 

component at 200 hPa (top panels) and  T at 850 hPa (bottom panels) 
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continental regions, such as Siberia and Canada, possibly due to differences in 476 

land-surface model physics or less dense observational constraints in those areas. The 477 

thermal contrast between land and ocean is well maintained in both datasets, though 478 

slightly smoother in SPREADS, again reflecting resolution effects. 479 

To further understand these differences, Figure 8 shows vertical profiles of 480 

average temperature differences (SPREADS minus ERA5) at 00 UTC for two key dates: 481 

20171201 (left) and 20180120 (right), representing the beginning and end of the 482 

evaluation period. The profiles are shown for Global (black), Northern Hemisphere 483 

(blue), Southern Hemisphere (green), and Tropics (orange). 484 

From early December to late January, the NH and Tropics show a marked 485 

improvement, with temperature differences decreasing by up to ±1 K, particularly in 486 

the mid-to-upper troposphere. This reflects both improved background constraint 487 

and effective assimilation updates during the SPREADS evaluation period. In contrast, 488 

the SH shows minimal change, likely due to sparser observational coverage, 489 

underscoring the asymmetry in observing system density between hemispheres. 490 

Notably, around 200–300 hPa, the NH and Tropics exhibit a transition from cold 491 

to warm bias, suggesting a tropopause-level sensitivity that may be  492 

Figure 8: Vertical profile of the average T differences between SPREADS and ERA5  for 

the Global (black line), NH (blue line), SH (green line) and TR (yellow line) valid at 00 

UTC  20171201 (left panel) and 20180121 (right panel) 
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influenced by the vertical resolution and radiative transfer modelling. Above 100, 493 

a persistent warm bias remains globally, more pronounced in the SH, pointing to 494 

potential limitations in stratospheric observation assimilation, possibly related to 495 

reduced usage of GPS-RO or upper-level radiance channels. Overall, despite the 496 

coarser resolution, SPREADS reproduces the dominant features of the atmospheric 497 

state with high fidelity. Improvements over time in the troposphere, particularly in 498 

the NH and Tropics, indicate that the system is maturing well. Future enhancements, 499 

such as  expanded use of satellite data in the SH, and increased spatial resolution, could 500 

further close the gap with ERA5 in under-constrained regions. 501 

Figure 9: Zonal cross section of  the T  differences between SPREADS and ERA5   

valid at 00 UTC  20171201 (top panel) and 20180121 (bottom panel) 
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As a final examination of the analysis difference, Fig. 9 and 10 show the average 502 

cross section of temperature for the E-suite initial day (top panel) and at the end of 503 

January (bottom panel)  across the longitude and latitude, respectively. At the initial 504 

time (Fig. 9 top panel), the temperature differences between SPREADS and ERA5 show 505 

widespread cold biases (blue shading) across nearly all longitudes in the lower to mid-506 

troposphere (around 900–400 hPa). Maxima of positive differences exceed +3.6 K, 507 

particularly around the central and eastern Pacific and parts of the Atlantic. In the 508 

upper troposphere (above ~300 hPa), some warm biases (red shading) begin to 509 

appear, though they are less dominant. Figure 9 bottom panel shows a clear 510 

improvement in the zonal consistency and magnitude of the differences. Cold biases 511 

are notably reduced in amplitude and spatial extent, particularly across the mid-512 

troposphere. The structure becomes more vertically layered and less zonally 513 

coherent, suggesting improved local balance and constraint. Warm anomalies aloft 514 

become slightly more pronounced in some sectors (e.g., near 60° longitude), pointing 515 

to evolving differences in vertical structure, possibly due to the upper-air 516 

observational influence. The complemented Fig. 10 initially shows (top panel) 517 

significant cold biases (~-3 to -6 K) in the extratropics, especially over the Southern 518 

Ocean (around 60°S–80°S) and Northern Hemisphere high latitudes (~60°N–80°N), 519 

spanning from the surface up to 400 hPa. The tropical region remains relatively 520 

neutral, with near-zero or weakly positive anomalies. The biases show a strong 521 

hemispheric asymmetry, being more intense and vertically extensive in the SH. At the 522 

final time (bottom panel), the magnitude of cold biases is substantially reduced, 523 

particularly over the Southern Hemisphere, where mid- and upper-tropospheric 524 

differences nearly vanish. Remaining differences are more localised and patchy, with 525 

some persistent warm  526 

anomalies in the upper troposphere (above 300 hPa) over both poles. The tropics 527 

remain stable, with minor variations and low-magnitude anomalies. There is an 528 

overall flattening of the difference structure, indicating improved vertical and 529 

hemispheric balance. In summary, between early December and late January, 530 
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SPREADS shows significant improvement in temperature alignment with ERA5, 531 

particularly in the lower to mid-troposphere and across the Southern Hemisphere. 532 

The initial large cold anomalies in the SH and NH extratropics largely diminish, 533 

suggesting better background constraint or improved assimilation tuning over time. 534 

There is a slight emergence of warm biases in the upper troposphere and lower 535 

stratosphere, possibly tied to model vertical resolution (Simpson et al., 2025) or under 536 

observed stratospheric layers. In general, the differences become less globally 537 

coherent and more structured, indicating that the system is moving toward finer-538 

scale, observation driven corrections rather than broad model biases. 539 

  540 

4. Conclusion&Plan 541 

 542 

Figure 10: Meridional cross section of  the T  differences between SPREADS and ERA5   

valid at 00 UTC  20171201 (top panel) and 20180121 (bottom panel) 
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The development of SPREADS, Scalable PaRallelised EArth Data Assimilation 543 

System, represents a crucial step in advancing ensemble-based data assimilation from 544 

research to operational application. Built upon the flexible, open-source DART 545 

framework, SPREADS embodies the principles of transparency, collaboration, and 546 

reproducibility that are foundational to modern Earth system science. Open-source 547 

modelling is not only a technical choice but a strategic enabler of scientific progress: 548 

it fosters community-driven innovation, ensures the traceability of results, and 549 

accelerates the adoption of new ideas across institutions and research domains. By 550 

sharing tools, code, diagnostics, and configuration options, SPREADS positions itself 551 

at the forefront of a collaborative data assimilation system. 552 

SPREADS introduces a suite of technical enhancements, FGAT-based temporal 553 

alignment, modular parallelised assimilation architecture, and the d4o SQL-based 554 

observational database to address the computational and algorithmic challenges of 555 

operational ensemble systems. These advancements enable the efficient assimilation 556 

of over one million observations every six hours, including a diverse set of 557 

conventional and satellite-based measurements. The E-suite evaluation demonstrates 558 

promising results, with improved bias characteristics, ensemble calibration, and 559 

overall consistency in comparison to ERA5, particularly in the Northern Hemisphere 560 

and tropics. 561 

The bias diagnostics in SPREADS are consistent with model-based findings from 562 

the CAM7 vertical resolution study (Simpson et al., 2025). In particular, the cold biases 563 

observed in the tropical lower stratosphere in SPREADS, as diagnosed through AMSU-564 

A, align with those seen in low-vertical-resolution CAM configurations. The 565 

application of FGAT and adaptive bias correction in SPREADS significantly reduces 566 

these biases, mirroring the improvements achieved in CAM7 through enhanced 567 

vertical resolution. This convergence from both model and observational assimilation 568 

perspectives underscores the robustness of the diagnostic framework in SPREADS 569 

and its capability to detect and mitigate systematic biases in the upper troposphere 570 

and lower stratosphere. A key direction for SPREADS development is the inclusion of 571 

more satellite-based observations, particularly infrared radiances such as IASI. These 572 

sensors provide rich vertical information in cloud-free conditions and are essential for 573 

improving temperature and humidity profiles, especially in the stratosphere and 574 

upper troposphere. Preliminary testing of IASI data within SPREADS is currently 575 
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underway and shows great promise for enhancing the vertical structure of the 576 

analysis and addressing residual biases observed in the current system. 577 

In parallel, all-sky microwave radiance assimilation is being actively tested. This 578 

represents a shift in satellite data usage, enabling the assimilation of radiances under 579 

both clear and cloudy conditions. All-sky assimilation significantly increases the 580 

spatial and temporal coverage of radiance data, especially in regions with persistent 581 

cloud cover such as the tropics and storm tracks. By more effectively capturing cloud-582 

affected observations, SPREADS aims to improve its representation of moisture fields, 583 

cloud dynamics, and convective processes, key elements for accurate medium- to 584 

long-range forecasts. 585 

Although SPREADS currently operates at coarser resolution than ERA5, its ability 586 

to replicate large-scale atmospheric patterns and to reduce biases over time 587 

demonstrates the system’s robustness. Continued tuning of satellite bias corrections, 588 

expansion of satellite data types, and enhancement of vertical resolution will be 589 

critical next steps. Furthermore, ongoing integration within a fully coupled Earth 590 

system model positions SPREADS as a strategic asset for seamless forecasting, from 591 

weather to climate timescales. 592 

In conclusion, SPREADS is a scalable, open, and forward-looking platform that 593 

effectively bridges research innovation with operational demands. Its modular, 594 

transparent architecture invites community contribution and ensures adaptability to 595 

evolving scientific goals. With a growing observational portfolio and expanding 596 

capabilities, including the assimilation of all-sky and hyperspectral infrared radiances, 597 

SPREADS is well positioned to become a next-generation system for global Earth 598 

system prediction. 599 
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