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Abstract. Extreme precipitation is a major contributor to the total precipitation over Antarctica, as well as its variability. 9 

However, it’s still poorly understood whether any recent trends in extreme precipitation over Antarctica have occurred, and if 10 

so, whether they are anthropogenically driven. Here we address this knowledge gap by using ERA5 data from 1979 to 2023 11 

to identify six Antarctic drainage basins with significant positive trends in total and extreme precipitation. These basins include 12 

one in the Antarctic Peninsula, one in West Antarctica, and four in East Antarctica. We show that these trends are partly due 13 

to an increased occurrence of atmospheric rivers. We subsequently perform a detection and attribution analysis of these trends 14 

using precipitation outputs from global climate model CESM2 ensembles that consider all external forcing (ALL), greenhouse 15 

gases only (GHG), and anthropogenic aerosols only (AAER). Five of the basins (one in West Antarctica and four in East 16 

Antarctica) have good agreement between the trends from the ALL ensemble and ERA5, as well as between the ALL and 17 

GHG ensembles, indicating that greenhouse gases are the primary driver of the present-day trends in total and extreme 18 

precipitation over these basins. The good agreement between the ALL ensemble and ERA5 trends is confirmed using a 19 

regression-based detection and attribution technique. However, regressing the ALL, GHG, and AAER ensembles against 20 

ERA5 did not yield robust attribution to any specific single-forcing for either total or extreme precipitation, which is likely 21 

due to limitations such as the relatively small ensemble size of the simulations. 22 

1 Introduction 23 

Extreme precipitation events (EPEs, i.e., where the amount of precipitation at a location is substantially greater than normal) 24 

have increased in intensity and frequency globally in recent decades (Donat et al., 2013; Sun et al., 2020; Dunn et al., 2020; 25 

Li et al., 2024), which has been attributed to anthropogenically-induced climate change (Min et al., 2011; Zhang et al., 2013; 26 

Paik et al., 2020; Young et al., 2020; Dong et al., 2020, 2021; Seneviratne et al., 2021; Estrada et al., 2023; IPCC 2023). In 27 

Antarctica, EPEs account for over 40% of the continent's total precipitation and almost 70% of the variance in annual 28 
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precipitation, and are often associated with intense atmosphere rivers (ARs) (Gorodetskaya et al., 2014; Turner et al., 2019; 29 

Adusumilli et al., 2021; Wille et al., 2021, 2024a, 2025; Gehring et al., 2022; Maclennan et al., 2022, 2023; Simon et al., 30 

2024). However, identifying positive trends in EPEs over recent decades in Antarctica is hampered by such events being rare 31 

and difficult to separate from the substantial interannual precipitation variability that characterises its climate (Connolley, 32 

1997; Hosking et al., 2013; Yu et al., 2018, 2025). Nevertheless, positive trends in the number of EPEs occurring over recent 33 

decades have been identified over parts of East Antarctica (Yu et al., 2018; Simon et al., 2024). 34 

Antarctic precipitation and EPEs are the major component of surface mass balance (SMB), and thus play a crucial role in 35 

controlling the stability of the Antarctic ice sheet by offsetting dynamically driven ice-losses (Favier et al., 2017; Zwally et al., 36 

2017; Paolo et al., 2018; Rignot et al., 2019; Kittel et al., 2021; Mottram et al., 2021; Davison et al., 2023; Kromer and Trusel, 37 

2023; Otosaka et al., 2023; Wang et al., 2025). Furthermore, mass gained from precipitation and EPEs over Antarctic ice 38 

shelves can partially compensate for mass-losses caused by either basal or surface melting (Bintanja et al., 2013; Trusel et al., 39 

2013; Paolo et al., 2015; Nicolas et al., 2017; Pattyn et al., 2017; Gardner et al., 2018; Kuipers Munneke et al., 2018; Rignot 40 

et al., 2019; Nakayama et al., 2021; Wille et al., 2022; Johnson et al., 2022; van Wessem et al., 2023). This is especially critical 41 

as ice shelf thinning results in the acceleration of grounded ice toward the ocean, where the ice subsequently calves into the 42 

ocean as icebergs and causes increased sea-level rise (Rott et al. 1996; Pritchard et al. 2012; Rignot et al. 2019). Additionally, 43 

snowfall is an essential factor in minimizing the susceptibility of ice shelves to surface melt pond formation, which can initiate 44 

hydrofracturing of ice shelves, by counteracting any firn air depletion caused by surface melting (Scambos et al. 2000; 45 

Munneke et al., 2014; Banwell and MacAyeal 2015; Lai et al. 2020; Orr et al., 2023; Van Wessem et al., 2023).  46 

Therefore, a better physical understanding of the trends in EPEs during the past decades over Antarctica is critical. Moreover, 47 

an enhanced understanding of the drivers of these trends, such as anthropogenically-induced changes (i.e., external climate 48 

forcing), is also of critical importance to better highlight how EPEs and associated impacts might change under future climate 49 

projections (Kittel et al., 2021; Vignon et al., 2021). For example, Dalaiden et al. (2022) identified that increased greenhouse 50 

gas emissions and stratospheric ozone depletion were the primary drivers of increased precipitation and temperature over West 51 

Antarctica since the middle of the twentieth century. These two drivers were also identified as causing recent changes in 52 

Southern Ocean temperature and salinity by Swart et al. (2018) and Hobbs et al. (2020).  Additionally, increased anthropogenic 53 

aerosol emissions in Asia in recent decades have been suggested by Gu et al. (2025) to affect Antarctica’s climate by Rossby-54 

wave teleconnections. However, the strong internal variability prevailing in the Southern Hemisphere high latitudes makes the 55 

analysis of the forced signal from the observed changes during the past decades highly challenging (e.g., Fyke et al., 2017). 56 

For example, the contribution of internal variability to driving changes in sea ice extent is critical and may become even more 57 

prominent by the middle of the twenty-first century, potentially reducing the influence of anthropogenically-induced changes 58 

on Antarctic precipitation / SMB (Previdi and Polvani, 2016; Morioka et al., 2024).  59 
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Nevertheless, although some studies have investigated the drivers of trends of extreme temperatures over Antarctica (e.g., 60 

Blanchard-Wrigglesworth et al., 2023; Wille et al., 2024b), our understanding of the drivers of changes in EPEs over Antarctica 61 

is still lacking. In this study we therefore perform a detection and attribution (D&A) analysis to investigate the influence of 62 

external forcings and natural variability on annual trends in total and extreme precipitation across Antarctica from 1979 to the 63 

present-day. Our approach uses precipitation from ERA5 reanalysis to identify trends and precipitation output from the single-64 

forcing and all-forcing large ensembles performed using the fully-coupled global climate model Community Earth System 65 

Model 2 (CESM2) to undertake the D&A analysis and identify the role of different external climate forcings versus internal 66 

climate variability. 67 

2 Data and Methods 68 

2.1 Datasets 69 

In situ measurements of precipitation over Antarctica are extremely scarce and difficult to make due to the challenging remote 70 

environment and difficulties distinguishing between falling and wind-driven snow (Pritchard, 2021). Therefore, we use hourly 71 

precipitation data from the ERA5 reanalysis (Hersbach et al., 2020) at a horizontal resolution of 0.25° as the best estimate of 72 

present-day conditions in Antarctica as this provides complete spatial and temporal coverage of this region for the period of 73 

interest. ERA5 precipitation has been used previously in studies examining daily precipitation over Antarctica (Vignon et al., 74 

2021; Carter et al., 2022; Tewari et al., 2022) and for extreme event analysis (Min Xu et al., 2024). However, for this study 75 

we only use data from 1979 to 2023 (45 years), as prior to this period there were relatively few satellite observations over the 76 

Southern Ocean and Antarctica, which are necessary to constrain the reanalysis (Bromwich et al., 2024).  77 

As ARs are an important contributor to EPEs, we identify their occurrence using a 3-hourly AR detection dataset at a horizontal 78 

resolution of 0.5° from 1980 to 2023, derived from ERA5 reanalysis (Wille et al., 2025). Here, ARs are identified based on 79 

the meridional component of integrated vapor transport exceeding the 98th percentile of the monthly climatologies. 80 

We also use daily precipitation output for the period 1979 to 2023 from the large ensemble simulations performed with the 81 

CESM2 model, which for the atmospheric component uses the 'low-top' version of the model (i.e., a top of 40 km and 32 82 

vertical levels) and a horizontal resolution of 1°, as well as prescribed stratospheric ozone depletion (Danabasoglu et al., 2020; 83 

Simpson et al., 2023). The CESM2 large ensemble simulations were selected because of the relatively large number of 84 

members available and because the model has a relatively good representation of the surface climate of Antarctica (Dunmire 85 

et al., 2022), which are both crucial for the D&A analysis. We use CESM2 ensembles that consider all external forcings (ALL; 86 

50 members) and span the period from 1850 to 2100 under CMIP6 (Coupled Model Intercomparison Project Phase 6) historical 87 

and SSP370 (Shared Socioeconomic Pathways, representing additional radiative forcing of 7 W m-2
 by 2100) scenario for the 88 

future, i.e., forcings due to both anthropogenic (such as greenhouse gases and aerosols caused by human activities) and natural 89 
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(such as solar variability and volcanic eruptions) causes. In addition to this, we also use CESM2 ensembles that consider 90 

single-forcing and span the period from 1850 to 2050 (Simpson et al., 2023), which are simulations forced by greenhouse 91 

gases only (GHG; 15 members) and by anthropogenic aerosols only (AAER; 20 members). Here, the GHG and AAER 92 

concentrations are evolving in time in their respective simulations, while all other forcings are fixed at 1850 values. In the 93 

AAER ensemble, the aerosols included are from industrial, agricultural, household, and transportation-related sources but 94 

exclude any anthropogenic biomass burning sources (e.g., black carbon and soot). Finally, to assess internal variability we use 95 

the CESM2 pre-industrial 2000-year long control simulation (with forcings fixed at 1850 values). Note that there is no CESM2 96 

single-forcing experiment for stratospheric ozone depletion available (Simpson et al., 2023), and thus the effects of the 97 

Antarctic ozone hole are not considered in our analysis. 98 

2.2 Methods 99 

Hourly ERA5 precipitation outputs are firstly re-gridded onto the CESM2 grid using an area-weighted averaging method, and 100 

then summed over 24-hour intervals to produce daily values. We then compute trends in total and extreme precipitation for 101 

ERA5 and the ALL, GHG, and AAER ensembles for the period 1979 to 2023. Here, precipitation days are defined as days 102 

with precipitation exceeding a threshold of 0.02 mm day-1, and extreme precipitation as days with precipitation exceeding the 103 

95th percentile of all precipitation days over the period 1979 to 2023, following Swetha Chittella et al. (2022). These daily data 104 

are then annually aggregated to obtain an annual time-series of both total and extreme precipitation for ERA5 and each member 105 

of the ALL, GHG, and AAER ensembles from 1979 to 2023. These are subsequently used to calculate: i) the spatial distribution 106 

of statistically significant (90% confidence interval) linear trends of total and extreme precipitation over Antarctica from 107 

ERA5, and ii) statistically significant (90% confidence level) basin-averaged linear trends of total precipitation and extreme 108 

precipitation for Antarctica’s 18 drainage basins from ERA5 (mapped using the Ice Sheet Mass Balance Inter-comparison 109 

(IMBIE) dataset shown in Fig. 1; Rignot et al., 2019), and iii) to what extent the total and extreme precipitation trends from 110 

ERA5 can detected and attributed to specific external forcings using the CESM2 ensembles.  111 

To examine trends in AR-associated total and extreme precipitation, for a day during which an AR is present, we summed the 112 

3-hourly precipitation values from the AR detection dataset over 24-hour intervals to produce daily AR-associated 113 

precipitation. AR-associated extreme precipitation is then calculated as days with precipitation exceeding the 95th percentile 114 

of all precipitation days over the period 1980 to 2023. These daily data are then annually aggregated to obtain an annual time-115 

series of both AR-associated total and extreme precipitation from 1980 to 2023. Following the approach of Maclennan et al. 116 

(2022), this was subsequently used to investigate: i) the spatial distribution of statistically significant (90% confidence interval) 117 

AR-associated total and extreme precipitation, and ii) the relative contribution of AR-associated total and extreme precipitation 118 

trends to the ERA5-based total and extreme precipitation trends (which required regridding the total and extreme precipitation 119 

from ERA5 onto the AR detection dataset grid).    120 
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Next, we assessed the ability of the ALL ensemble to capture the ERA5 trends in total and extreme precipitation for the 121 

Antarctic drainage basins that show statistically significant trends. Here, if the basin-averaged linear trends in total and extreme 122 

precipitation from the ALL ensemble are significant at the 90% level and consistent with the trends estimated by ERA5, then 123 

the ALL ensemble was judged to reproduce the ERA5-based trends for that basin. For the basins identified during this step, 124 

we subsequently conduct a preliminary analysis of the forcings associated with these trends by assessing the contribution of 125 

the trends simulated by the GHG and AAER ensembles to the trends in the ALL ensemble. This was primarily achieved by 126 

comparing probability density distributions for the precipitation trends for each of the basins from the ALL, GHG, and AAER 127 

ensembles, calculated using a kernel density estimation method (significant at the 90% confidence level). 128 

We then apply a regression-based D&A technique for the selected drainage basins, referred to as optimal fingerprinting 129 

analysis (Allen and Stott, 2003; Ribes et al., 2013; Dong et al., 2020; Hobbs et al., 2020; Dalaiden et al., 2022), to further 130 

investigate to what extent the total and extreme precipitation trends from ERA5 can be formally associated with external 131 

forcing. In this method, a generalized linear regression model (based on a least-squares fitting framework) is used to calculate 132 

scaling factors (also known as regression-based coefficients) between ERA5 and combinations of the CESM2 ensembles, as 133 

well as the CESM2 pre-industrial control simulation to also consider internal climate variability. This method also provides 134 

confidence intervals associated with the scaling factors to represent uncertainty. If the scaling factor (and its confidence 135 

interval) is greater than zero, then the observed changes are outside the range of internal variability. We therefore conclude 136 

that the observed changes can only be explained by external forcing (Dong et al., 2020; Dalaiden et al., 2022). However, if the 137 

scaling factor (and its confidence interval) is greater than one, this implies that the model significantly underestimates the 138 

observed trends. While if the scaling factors (and their confidence intervals) are smaller than one and greater than zero, this 139 

implies that the model significantly overestimates these trends. Finally, if the lower bound of the confidence interval is smaller 140 

than or equal to zero, we cannot conclude a statistically impact of external forcing on the observed changes.   141 

Using this method, detection is investigated by applying a one-signal analysis, where the basin-averaged total and extreme 142 

precipitation time-series from the ALL ensemble (along with internal variability) are regressed onto the ERA5 time-series, 143 

resulting in scaling factors (and confidence intervals) for ALL (Dalaiden et al., 2022). Following this, attribution is investigated 144 

by applying a three-signal analysis, where the basin-averaged total and extreme precipitation time-series from the ALL, GHG 145 

and AAER ensembles (along with internal variability) are regressed onto the ERA5 time-series (Dalaiden et al., 2022). This 146 

results in scaling factors (and confidence intervals) for GHG and AAER, and also all forcings other than greenhouse gases and 147 

anthropogenic aerosols, which is labelled OTHERS (Gillett et al., 2021; Dalaiden et al., 2022). Unlike the one-signal analysis, 148 

the three-signal analysis therefore allows assessment of the contributions of different forcing to the ERA5 changes. Here, the 149 

basin-averaged contribution of internal variability to total and extreme precipitation comes from the pre-industrial control 150 

simulation.  151 
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Both the one-signal and three-signal analysis were performed with a common number of members from each ensemble, which 152 

was therefore limited to 15, i.e., the number from the GHG ensemble, as this was less than both the ALL (50) and AAER (20) 153 

ensembles. However, the results from the one-signal analysis using all 50 members from the ALL ensemble were largely 154 

identical to using 15 members (not shown). Additionally, the one-signal analysis is not applied to single-forcing ensembles 155 

(e.g., GHG and AAER) because, by construction, it forces each ensemble to match against ERA5 and can therefore lead to an 156 

artificial attribution of the changes in ERA5 to forcings that cannot physically explain them. 157 

 158 

Figure 1: Map of Antarctica showing key regions of interest and the 18 major drainage basins, as defined in the IMBIE dataset 159 
(Rignot et al., 2019). 160 

3 Results 161 

3.1 Identification of precipitation trends 162 

Figure 2 (a, e) shows annual trends in total and extreme precipitation from ERA5 from 1979 to 2023. This shows that broad 163 

positive trends for both total and extreme precipitation (up to 2 mm year-1) are apparent from Ellsworth Land in West Antarctica 164 

to the Amery ice shelf in East Antarctica, while negative trends (up to -2 mm year-1) are evident from Marie Byrd Land in 165 

West Antarctica to Wilkes Land in East Antarctica (see Fig. 1 for locations). However, for some of these regions, the trends 166 
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are statistically insignificant, with only Ellsworth Land, the Filchner-Ronne basin, Dronning Maud Land, Enderby Land, and 167 

the Amery Ice Shelf showing relatively large areas with significant positive trends, and only Marie Byrd Land and Wilkes 168 

Land showing relatively large areas with significant negative trends. Over the Antarctic Peninsula, the ERA5 trends in total 169 

and extreme precipitation differ in direction, with total precipitation increasing and extreme precipitation decreasing, although 170 

only the trends over the northern Antarctic Peninsula are significant.  171 

 172 

Figure 2: Annual trends in (a-d) total and (e-h) extreme precipitation over Antarctica for the period 1979 to 2023 (mm year-1) from 173 
(a, e) ERA5 and the ensemble mean from the (b, f) ALL, (c, g) GHG, and (d, h) AAER ensembles. Stippling indicates regions where 174 
trends are statistically significant at the 90% confidence level. Also shown in panel (a) are the locations of the I-Ipp drainage basin 175 
in the Antarctic Peninsula, the J-Jpp basin in West Antarctica and the Jpp-K basin in East Antarctica (both part of Filchner-Ronne 176 
basin), and the K-A, A-Ap (both part of Dronning Maud Land), and Ap-B (Enderby Land) drainage basins in East Antarctica 177 
(outlined in black). 178 

Within the regions showing positive ERA5-based trends, we identified six drainage basins that showed significant basin-179 

averaged trends in both total and extreme precipitation (Figs. 2 and 3). These are basin I-Ipp in the Antarctic Peninsula, basins 180 

J-Jpp in West Antarctica and Jpp-K in East Antarctica (both part of the Filchner-Ronne basin), basins K-A and A-Ap in East 181 

Antarctica (both part of Dronning Maud Land), and basin Ap-B in East Antarctica (Enderby Land) (see Figs. 1 and 2 for 182 

locations). The basins J-Jpp, A-Ap, and Ap-B all have similar basin-averaged ERA5 trends of about 1 mm year-1 for total 183 

precipitation and 0.5 mm year-1 for extreme precipitation, whereas basins Jpp-K, K-A, and I-Ipp have trends of about 0.1, 1.5, 184 

and 5 mm year-1 for total precipitation respectively, and 0.1, 1, and 2.5 mm year-1 for extreme precipitation respectively (Fig. 185 

3).  186 
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3.2 Detection of precipitation trends 187 

Figure 2 (b, f) demonstrates that the ensemble mean of the ALL ensemble also shows significant positive trends for both total 188 

and extreme precipitation (up to 2 mm year-1) from Ellsworth Land to the Amery ice shelf, which agree with ERA5. For 189 

example, it largely captures the spatial pattern and magnitude of the significant positive trends from ERA5 for total and extreme 190 

precipitation over Ellsworth Land, the Filchner-Ronne basin, Dronning Maud Land, Enderby Land, and the Amery ice shelf. 191 

Additionally, the ensemble mean from ALL also shows significant positive trends for total precipitation over the Antarctic 192 

Peninsula, which agree with significant positive trends from ERA5. By contrast, the ensemble mean from ALL shows positive 193 

trends in total and extreme precipitation over Marie Byrd Land and the western section of Wilkes Land, and positive trends 194 

for extreme precipitation over the Antarctic Peninsula, which disagree with ERA5. However, some differences in trends 195 

between the ALL ensemble and ERA5 results are to be expected as the ALL results are based on an ensemble of model means, 196 

which would therefore artificially reduce the contribution from internal variability, i.e., the ALL signal is only from forced 197 

variability, while the ERA5 signal is a combination of both internal and forced variability.  198 

For the six drainage basins that are identified as having significant positive trends in both total and extreme precipitation from 199 

ERA5, Fig. 3 shows that for five of them (J-Jpp in West Antarctica, and Jpp-K, A-Ap, Ap-B, and K-A in East Antarctica) that: 200 

i) the basin-averaged trends from the ensemble mean of the ALL ensemble are close to the ERA5 trends, and ii) the range of 201 

the basin-averaged ALL trends from the different members includes the ERA5 trends (although this is less apparent for basin 202 

K-A). We therefore identify these five basins as having ALL trends that are in good agreement with ERA5 trends, and focus 203 

on these basins for the rest of our analysis. By contrast, the ERA5 trend for the remaining basin (I-Ipp in the Antarctic 204 

Peninsula) is outside the range of the ALL trends from the different members, and therefore is not considered for further 205 

analysis. Additionally, to further compare the basin-averaged trends between ERA5 and the ensemble mean of the ALL 206 

ensemble, Fig. 4 shows their time-series of total and extreme precipitation from 1979 to 2023 for our five selected basins. 207 

Consistent with Fig. 3, this shows broadly similar positive trends for all five basins for both ERA5 and ALL (although this is 208 

again less apparent for basin K-A). However, Fig. 4 also shows that the ensemble mean of ALL shows considerably higher 209 

precipitation amounts than ERA5 over the basins at the start of the period analysed, reflecting a mean state bias in the CESM2 210 

model (Dunmire et al., 2022). 211 
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 212 

Figure 3: Basin-averaged annual trends in (a) total and (b) extreme precipitation for drainage basins J-Jpp, Jpp-K, K-A, A-Ap, Ap-213 
B, and I-Ipp for the period 1979 to 2023 (mm year-1) from ERA5 (thick red line) and the ensemble mean from the ALL ensemble 214 
(thick blue line). Also shown are the basin-averaged trends from the different members (50) of the ALL ensemble (filled blue circles). 215 
The trends are statistically significant with a 90% confidence level. 216 

Figure 5 presents the one-signal D&A results for total and extreme precipitation across the five selected basins, based on 217 

regression of the ALL ensemble onto ERA5. This shows: i) scaling factors of around 0.6 to 0.8 for both total and extreme 218 

precipitation, and ii) relatively small confidence intervals, with total precipitation showing narrower intervals than extreme 219 

precipitation. Since the scaling factors are greater than zero and the confidence intervals are relatively small, this suggests with 220 

high confidence that the signal from the ALL ensemble is detectable in ERA5, i.e., supporting the results from Figs. 2 and 3. 221 

Additionally, because the scaling factors are less than one, this suggests that the ALL ensemble tends to overestimate the trends 222 

apparent in ERA5. Also, the slightly narrower intervals for total precipitation suggests that the influence of internal variability 223 

is larger for extreme precipitation compared to total precipitation. 224 
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 225 

Figure 4: Times series of basin-averaged annual (a-e) total and (f-j) extreme precipitation (mm) for drainage basins J-Jpp, Jpp-K, 226 
K-A, A-Ap, and Ap-B from 1979 to 2023 from ERA5 (red) and the ensemble mean of the ALL ensemble (blue). Linear trends 227 
(statistically significant at 90% confidence level) for ERA5 and ALL are represented by the red and blue lines, respectively. Each 228 
panel also shows the linear trend and the standard error (mm year-1). 229 

 230 

Figure 5: One-signal estimates of basin-averaged scaling factors (solid blue circles) for annual (a) total and (b) extreme precipitation 231 
for drainage basins J–Jpp, Jpp–K, K–A, A–Ap, and Ap–B for the period 1979 to 2023 based on regressing the ALL ensemble against 232 
ERA5. The error bars denote the 90% confidence intervals and the horizontal line indicates a scaling factor of one. 233 
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Table 1: Basin-averaged ensemble mean annual trends in total and extreme precipitation (mm year-1) for drainage basins J-Jpp, 234 
Jpp-K, K-A, A-Ap, and Ap-B for the period 1979 to 2023 (mm year-1) from the ALL, GHG, and AAER ensembles. Trends that are 235 
statistically significant at the 90% confidence level are shown in bold. 236 

 ALL GHG AAER 

Basins 
Total 

precipitation 

Extreme 

precipitation 

Total 

precipitation 

Extreme 

precipitation 

Total 

precipitation 

Extreme 

precipitation 

J-Jpp 0.52 0.30 0.77 0.46 0.08 0.03 

Jpp-K 0.15 0.09 0.12 0.13 -0.04 -0.04 

K-A 0.87 0.50 1.13 0.84 -0.24 -0.15 

A-Ap 1.06 0.67 0.86 0.56 -0.17 -0.09 

Ap-B 0.98 0.64 1.2 0.76 -0.09 -0.12 

3.3 Attribution of precipitation trends 237 

An initial assessment of the contribution from different external forcings to the positive trends for both total and extreme 238 

precipitation from the ALL ensemble (that are in agreement with ERA5) was made by comparing these trends with the 239 

ensemble mean from the GHG and AAER ensembles (Fig. 2). These results show that the ensemble mean trends in total and 240 

extreme precipitation from the GHG ensemble are in good agreement with those from the ALL ensemble over much of 241 

Antarctica, i.e., indicating that greenhouse gas forcing is the primary driver of the positive trends in the ALL ensemble. For 242 

example, the GHG ensemble captures the positive trends from Marie Byrd Land to the western section of Wilkes Land that 243 

are apparent in ALL. By contrast, the trends of the ensemble mean of the AAER ensemble are mostly negative for total and 244 

extreme precipitation over Antarctica, although areas that show significant trends are rather patchy, i.e., indicating that the 245 

effects of increased anthropogenic aerosols tend to offset the positive trends from increased greenhouse gases. 246 

To assess the contribution from different external forcings to the positive trends for both total and extreme precipitation from 247 

the ALL ensemble for the five target basins, Table 1 compares basin-averaged ensemble mean trends from the ALL, GHG, 248 

and AAER ensembles for each of these. For total precipitation, the basin-averaged ensemble mean trends of the GHG ensemble 249 

exceeds the ALL trends in three out of the five basins (J-Jpp, K-A, and Ap-B), with values ranging from around 0.8 to 1.2 mm 250 

year-1 for GHG and from 0.5 to 1 mm year-1 for ALL. While for extreme precipitation, the basin-averaged ensemble mean 251 

trends of the GHG ensemble exceeds the ALL trends in four out of five basins (J-Jpp, Jpp-K, K-A, and Ap-B), with values 252 

ranging from around 0.5 to 0.8 mm year-1 for GHG and from 0.1 to 0.6 mm year-1 for ALL. By contrast, the basins show 253 

negative AAER trends, confirming that increased anthropogenic aerosols largely offset the positive GHG trends (although 254 

only the trends for basins Jpp-K and K-A are significant). For example, the AAER trends for total and extreme precipitation 255 

are both -0.04 mm year-1 for the Jpp-K basin, while the GHG trends are 0.12 and 0.14 mm year-1, respectively, i.e., the 256 

magnitude of the AAER trends are around a third of the GHG trends. While the AAER trends are -0.24 and -0.15 mm year-1 257 
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for total and extreme precipitation for basin K-A, respectively, and 1.13 and 0.84 mm year-1 for GHG, i.e., the magnitude of 258 

the AAER trends are roughly one-fifth of the GHG trends. This therefore further indicates that greenhouse gas forcing is the 259 

primary driver of the positive precipitation trends in the five basins, and that these trends are partially offset by the effects of 260 

increased anthropogenic aerosols. 261 

The importance of greenhouse gas forcing for producing the positive trends in total and extreme precipitation over the five 262 

selected basins is also evident from probability distribution functions of the trends from the ALL, GHG, and AAER ensembles, 263 

which shows considerable similarities between the distributions for the GHG and ALL trends (Fig. 6). The distribution of the 264 

AAER trends also confirms the offsetting effect of anthropogenic aerosols for the Jpp-K and K-A basins, where AAER 265 

distributions are skewed towards negative values. By contrast, for the remaining basins the AAER distributions are more 266 

mixed, with both positive and negative trends. 267 

 268 

Figure 6: Probability density functions of annual trends in (a-e) total and (f-j) extreme precipitation for drainage basins J-Jpp, Jpp-269 
K, K-A, A-Ap and Ap-B for the period 1979 to 2023 (mm year-1) from the ALL (blue), GHG (green), and AAER (orange) ensembles. 270 
The results are based only on annual trends from grid points that are statistically significant at the 90% confidence level. 271 
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 272 

Figure 7: As Fig. 5, but showing three-signal estimates of basin-averaged scaling factors for annual (a) total and (b) extreme 273 
precipitation for drainage basins J–Jpp, Jpp–K, K–A, A–Ap, and Ap–B for the period 1979 to 2023 based on regressing the GHG 274 
ensemble (solid green circles), AAER ensemble (solid orange circles), and OTHERS (solid black circles; all forcings other than 275 
greenhouse gases and anthropogenic aerosols) against ERA5. The error bars denote the 90% confidence intervals and the horizontal 276 
line indicates a scaling factor of one.  277 

Figure 7 presents the three-signal D&A results for total and extreme precipitation across the five selected basins, based on 278 

regression of the ALL, GHG, and AAER ensembles against ERA5, which produces scaling factors for GHG, AAER, and 279 

OTHERS (i.e., all forcings other than greenhouse gases and anthropogenic aerosols). Here, the scaling factors were all 280 

associated with large confidence intervals, generally ranging from -7 to 7 for GHG, -10 to 10 for AAER and -5 to 5 for 281 

OTHERS. This indicates very low confidence in the obtained regression. Therefore, the signals from the GHG and AAER 282 

ensembles (and OTHERS) cannot be considered statistically significant for either total or extreme precipitation. One exception 283 

is basin Jpp–K, where the GHG signal is detected because the lower bound of the confidence interval is greater than zero. 284 

However, this result still lacks consistency as the upper bound of the confidence interval is less than one, which suggests that 285 

GHG tends to overestimate the trends apparent in ERA5. 286 
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 287 

Figure 8: Annual trends in AR-associated (a) total and (b) extreme precipitation over Antarctica for the period 1980 to 2023 (mm 288 
year-1) from the AR detection dataset. Also shown are the relative contribution of the (c) AR-associated total precipitation trend to 289 
the ERA5-based total precipitation trend (%), and the (d) AR-associated extreme precipitation trend to the ERA5-based extreme 290 
precipitation trend (%). Stippling indicates regions where trends are statistically significant at the 90% confidence level. Also shown 291 
in panel (a) are the locations of drainage basins J-Jpp, Jpp-K, K-A, A-Ap and Ap-B. 292 

3.4 Role of atmospheric rivers in driving precipitation trends 293 

Finally, to assess the role of ARs in driving the positive trends of total and extreme precipitation that are apparent in ERA5 294 

over these five basins (Figs. 2 and 3), we also show the annual trends in AR-associated total and extreme precipitation from 295 

1980 to 2023 (Fig. 8a, b), as well as the relative contribution of these trends to the total and extreme precipitation trends from 296 
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ERA5 (Fig. 8c, d). The results show broadly significant positive trends in AR-associated total and extreme precipitation over 297 

the basins considered, with trends around 0.5 mm year-1 over basins J-Jpp and Jpp-K and up to 2 mm year-1 over basins K-A, 298 

A-Ap, and Ap-B. Additionally, the relative contribution of the AR trends to the ERA5-based total and extreme precipitation 299 

trends has increased across all five basins, with values of 10 to 40% over sections of basins J-Jpp, Jpp-K, and K-A, and up to 300 

100% over sections of basins A-Ap and Ap-B. 301 

4 Discussion  302 

Our initial attribution analysis of total and extreme precipitation trends showed good agreement between the trends from the 303 

ensemble mean of the ALL and GHG ensembles for our five target basins (Figs. 2 and 6, Table 1), indicating that greenhouse 304 

gases are the primary driver of the present-day trends in total and extreme precipitation over these basins. Additionally, our 305 

initial attribution analysis also suggests that increases in anthropogenic aerosol emissions can oppose / offset the increases in 306 

precipitation from increased greenhouse gases over our five basins (Figs. 2 and 6, Table 1). However, the three-signal 307 

regression-based D&A analysis using the ALL, GHG and AAER ensembles (resulting in scaling factors for GHG, AAER, and 308 

OTHERS) was unable to provide robust attribution for total or extreme precipitation to any specific single-forcing, including 309 

increased greenhouse gases (Fig. 7). This inconsistency between these results demonstrates that formally detecting the 310 

fingerprint of anthropogenic forcing on recent Antarctic precipitation changes remains highly challenging (Previdi and Polvani, 311 

2016; Dalaiden et al., 2022).  312 

For example, one of the main challenges in detecting a trend in total and extreme precipitation is separating the signal from 313 

forced variability and internal variability, which is exacerbated in Antarctica by its climate being particularly characterized by 314 

strong internal variability (Jones et al., 2016a; Previdi and Polvani, 2016; Stenni et al., 2017). Thus, detection of the signal in 315 

ERA5 in the ALL ensemble using the one-signal regression-based D&A analysis is confined to five drainage basins (Fig. 5) 316 

where the forced signal emerges more clearly above internal variability, with four of the five basins located in East Antarctica 317 

and the other in West Antarctica. This agrees with Casado et al. (2023), who found weaker multi-decadal variability in East 318 

Antarctic ice cores compared to West Antarctic, i.e., the relatively weaker internal multi-decadal variability in East Antarctica 319 

likely increases the signal-to-noise ratio, and enables a more robust detection of the forced signal in this region. Additional 320 

challenges also include that the three-signal analysis has more degrees of freedom than the one-signal analysis, making it more 321 

uncertain, and that there are likely larger uncertainties with forcings such as anthropogenic aerosols, as well as their modelled 322 

response (Jones et al., 2016b).  323 

We also showed that the trends in total and extreme precipitation over the five target basins can be linked to increasing ARs 324 

(Fig. 8). This provides physical support for the analysis, highlighting the consistency between the  identification of the trends 325 

and the underlying dynamical drivers. This result is also consistent with previous results that suggested that ARs contribute up 326 

to 20% of total precipitation in East Antarctica (Wille et al., 2021, 2025; Maclennan et al., 2022), and as much as 50 to 70% 327 
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of extreme precipitation (Wille et al., 2021, 2025; Simon et al., 2024). The increased ARs are likely associated with anomalous 328 

northerly airflow, combined with increased atmospheric moisture from warmer oceans, which could be linked to recent 329 

regional climate changes such as sea-ice loss in the East Antarctic sector and a strengthening of the low-pressure system off 330 

the East Antarctic coast (Goosse et al., 2024). Moreover, additional anomalous transport from the midlatitudes through Rossby-331 

wave teleconnections could also be a factor (Wille et al., 2025). Moreover, future increases in greenhouse gas concentrations 332 

are expected to strengthen Antarctic total and extreme precipitation by causing warmer atmospheric conditions (leading to 333 

more moisture, via the Clausius-Clapeyron relation) and a reduction in sea-ice (Frieler et al., 2015; Lenaerts et al., 2016; 334 

Previdi and Polvani, 2016; Kittel et al., 2021; Vignon et al., 2021; Zhu et al., 2023; Nicola et al., 2023).  335 

Moreover, its noteworthy that the effects of increased greenhouse gas emissions are generally considered to be a positive trend 336 

in the Southern Annular Mode (SAM) (Kushner et al., 2001; Arblaster and Meehl, 2006), which corresponds to stronger, 337 

poleward-shifted westerlies around Antarctica, resulting in reduced temperatures (and precipitation) over East Antarctica 338 

(Thompson and Solomon, 2002). While increased anthropogenic aerosol emissions are generally considered to correspond to 339 

the opposite effects (Gillett et al., 2013; Pope et al., 2020). Based on this, as greenhouse gases are the dominant driver of the 340 

present-day trends, a decrease in precipitation and extreme precipitation over our five target basins (four of which are in East 341 

Antarctica) would be expected, rather than an increase. However, one reason for this contradiction may be a reversal in the 342 

relationship between SAM and temperature anomalies across East Antarctica during the twenty-first century, which occurred 343 

in response to anomalous high pressure over East Antarctica (Marshall et al., 2013). This anomalous circulation would result 344 

in increased northerly airflow into East Antarctica, i.e., consistent with our results showing increased precipitation and 345 

intensification of ARs.  346 

However, because the CESM2 ensembles that consider single-forcing do not include stratospheric ozone depletion, the 347 

influence of the Antarctic ozone hole was not specifically considered in our attribution analysis (Dalaiden et al., 2022). This 348 

is a primary driver of summertime atmospheric circulation changes in the Southern hemisphere from around 1980 onwards 349 

(Thompson and Solomon, 2002; Polvani et al., 2011; Orr et al., 2021), which Dalaiden et al. (2022) showed was partly 350 

responsible for recent increases in precipitation over West Antarctica. Furthermore, the combined and potentially non-linear 351 

effects of different forcings is also likely important for representing precipitation, and especially for extreme precipitation 352 

where linear assumptions are least valid (Meehl et al., 2003; Pope et al., 2020).  353 

Finally, in our study, although we rely primarily on ERA5 as the best estimate of recent precipitation changes, we did consider 354 

using precipitation outputs from high-resolution regional climate model simulations (e.g., Deb et al., 2018; Mottram et al., 355 

2021; Carter et al., 2022; Orr et al., 2023; Gilbert et al., 2025) which dynamically downscale ERA5 to a horizontal resolution 356 

of 0.1°. Such datasets are generally better suited to represent the critical interactions between atmospheric flows and the 357 

complex coastal orography that influences precipitation, and especially extreme events (Carter et al., 2022; Orr et al., 2023; 358 
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Gilbert et al., 2025). However, since our methodology required regridding to the coarser CESM2 grid (horizontal resolution 359 

of 1°), the added value from the downscaling was effectively lost, and no systematic advantage was gained compared to ERA5. 360 

5 Conclusions  361 

This study confirms a statistically significant increase in both total and extreme precipitation (up to 2 mm year-1) across six 362 

drainage basins in Antarctica from 1979 to 2023, based on ERA5 reanalysis. These are basin I-Ipp in the Antarctic Peninsula, 363 

basin J-Jpp in West Antarctica and basin Jpp-K in East Antarctica (both part of Filchner-Ronne basin), basins K-A and A-Ap 364 

in East Antarctica (both part of Dronning Maud Land), and basin Ap-B in East Antarctica (Enderby Land).  For five of these 365 

six basins (J-Jpp, Jpp-K, A-Ap, Ap-B, and K-A) the total and extreme precipitation trends from the ALL ensemble are in good 366 

agreement with those from ERA5, i.e., suggesting that a combination of both anthropogenic and natural forcings, along with 367 

internal variability are responsible for the present-day trends in total and extreme precipitation over these basins. This was 368 

confirmed using a regression-based D&A technique, based on the regression of the ALL ensemble against ERA5. The results 369 

also showed that a substantial portion of the ERA5-based trends in both total and extreme precipitation for these five basins 370 

are from a contemporaneous increase in precipitation from ARs, which provides additional physical support for the 371 

identification of the trends.    372 

The study further showed that the trends in both total and extreme precipitation for these five basins from the GHG ensemble 373 

are in good agreement with those from the ALL ensemble, i.e., indicating that increased greenhouse gases are the primary 374 

driver of the positive precipitation trends over these basins. In contrast, trends from the AAER ensemble are generally negative 375 

and smaller in magnitude than the GHG ensemble trends, i.e., indicating that the effects of increased anthropogenic aerosol 376 

emissions slightly offset the effects of increased greenhouse gases.  However, regressing the ALL, GHG, and AAER ensembles 377 

against ERA5 did not yield robust attribution to any specific forcing for either total or extreme precipitation, which is likely 378 

due to limitations such as the relatively small ensemble size of the simulations. 379 

Code and data availability 380 

The code used in this study can be obtained from the corresponding author upon reasonable request. Precipitation output from 381 

the ERA5 reanalysis dataset is publicly available through the Copernicus Climate Data Store: 382 

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview. Precipitation output from the CESM2 383 

ensembles with all external forcings are available at: https://rda.ucar.edu/datasets/d651056/. Precipitation output from the 384 

CESM2 ensembles with single-forcings are available at: https://rda.ucar.edu/datasets/d651055/dataaccess/#. Precipitation 385 

output from the CESM2 pre-industrial control simulation are available at: 386 

https://www.earthsystemgrid.org/dataset/ucar.cgd.cesm2.b.e21.B1850.f09_g17.CMIP6-387 
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piControl.001.atm.proc.daily_ave.PRECT.html. The AR detection dataset derived from ERA5 is available at: 388 

https://zenodo.org/records/15830634. 389 
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