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Abstract

Over the past few decades, ozone risk assessments for vegetation have evolved two methods based on stomatal 

O3 flux. However, substantial uncertainties remain in accurately simulating these fluxes. Here, we investigate 

stomatal O3 fluxes across various land cover types worldwide simulated by six established deposition models. 

Hourly O3 concentration and meteorological data at nine sites were extracted from the Tropospheric Ozone 

Assessment Report database, a comprehensive global collection of measurements, for the model simulations. 

The models estimated reasonable O3 deposition (0.5 - 0.8 cm s-1 in summer), which is mostly in agreement with 

the literature. Simulations of canopy conductance showed differences that varied by land cover type with 

correlation coefficients of 0.75, 0.80 and 0.85 for forests, crops and grasslands among the models. Differences 

between models were primarily influenced by soil moisture and vapor pressure deficit, depending on each 

model’s specific structure. Across models, the range of O3 damage simulations at each site was most consistent 

for crops (6 to 11 mmol O3 m-2), followed by forests (3 to 19.5 mmol O3 m-2) and grasslands (7 to 33 mmol O3 m-

2). The median estimate across models aligns well with the literature at the sites most vulnerable to O3 damage. 

Overall, this study represents a critical first step in developing and evaluating tools for broad-scale assessment of

O3 impacts on vegetation within the framework of TOAR phase II.

                                                                                                                                                                                     

1.   Introduction

Elevated surface O3 levels significantly damage vegetation due to the stomatal uptake of O3 by canopy leaves. 

Stomatal uptake of O3 leads to plant tissue injury which in turn causes changes in metabolic functioning, 

reducing photosynthesis and consequently plant growth and productivity (Mills et al., 2011; Emberson, 2020; 

Ainsworth et al. 2012; Fuhrer et al., 2016; Grulke and Heath, 2020). Such damage can have significant impacts 

on crop yields and quality, leading to economic losses and impacting food security in regions already facing 

scarcity (Avnery et al., 2011; Ainsworth et al. 2017; Ramya et al., 2023). There is an ever-growing body of 

observational evidence demonstrating a variety of O3 impacts on different ecosystems (crops, forests, grasslands)

in North America, Europe and more recently, Asia (Emberson 2020). Various indices assessing O3 exposure to 

vegetation have been developed over recent decades with the stomatal O3 flux (PODy; phytotoxic ozone dose 
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over a threshold y) index found to provide better estimates of  O3 risk to vegetation than the more commonly 

used concentration-based exposure approaches (e.g., Accumulated Ozone over Threshold (AOT); growing 

season daylight mean O3 concentration (M7, M12) (Mills et al., 2011; Avnery et al., 2011). A global overview of

spatial distribution and trends using concentration-based metrics was provided in the first Tropospheric Ozone 

Assessment Report (TOAR) by Mills et al. (2018). During TOAR phase II (TOAR-II), here we conduct a flux-

based analysis to ensure the most up-to-date vegetation metrics are provided through this community effort.

O3 dry deposition to vegetation is in part determined by canopy-level O3 concentrations. A significant fraction of

O3 uptake occurs through the plant stomata with the remainder depositing on plant cuticular surfaces and the 

under-storey vegetation and soil. The stomatal contribution can vary between 50 and 80%, depending on the 

factors controlling the partitioning of stomatal and non-stomatal uptake (e.g., Huang et al., 2022; Wong et al., 

2022; Clifton et al., 2023). As such, quantifying canopy stomatal conductance is important for assessing the 

mass balance of atmospheric O3 concentrations and its potential damage to vegetation. Both stomatal and non-

stomatal processes can vary with environmental conditions such as humidity, solar radiation, temperature and 

CO2 concentration as well as vegetation type and density (Clifton et al., 2020a). The occurrence of soil water 

deficit can also play a crucial role where soil water stress induces stomatal closure (Lin et al., 2020; Huang et al.,

2022). There are two commonly used stomatal conductance (gs) models - the empirical, multiplicative approach 

first developed by Jarvis (1976) and the semi-mechanistic coupled net photosynthesis-stomatal conductance 

models (Anet-gs). The common Jarvis-type models (e.g. Emberson et al., 2000; Ganzeveld et al., 1995; Zhang et 

al. 2003), widely applied due to their simplicity and computational efficiency, correct a prescribed maximum 

stomatal conductance with the multiplication of different environmental factors (e.g., temperature, light, soil 

water and atmospheric moisture). The Anet-gs models couple gs to plant photosynthesis by calculating the net 

assimilation of CO2 and estimating gs based on the resulting supply and demand of CO2 (Farquhar et al., 1980; 

Goudriaan et al., 1985; Ball et al., 1987). Anet-gs models involve multiple non-linear dependencies on soil water, 

humidity and temperature, among other factors defined by measurement constraints (Ball 1987; Leuning et al., 

1997). Heterogeneity of stomatal deposition estimates over different land cover types is anticipated, but model 

uncertainty depends on the representation of the deposition mechanisms, model parameterisation and 

meteorological inputs (Hardacre et al., 2015; Clifton et al., 2020b; Huang et al., 2022; Khan et al., 2024). 

Broadly speaking, the pros and cons of these two modelling approaches will tend to depend on the aims of the 

risk assessment study, the extent of knowledge of the ecosystem being investigated and prevailing bio-climatic 

conditions. Jarvis-type models are arguably more suitable for studies where less is known about the eco-
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physiology of the ecosystem since they do not require simulation of net photosynthesis which in itself is 

inherently difficult to model accurately. However, these models still need to be calibrated for the particular bio-

climate of study to ensure temperature and VPD functions are suitable for the prevailing conditions. By contrast,

Anet-gs models may be more useful for studies where the physiological response to environmental conditions of 

the ecosystems is reasonably well understood as they can provide insight into not only pollutant deposition, but 

also how other environmental conditions in addition to pollution may limit plant growth and productivity more 

generally. 

In this study, the stand-alone version of six O3 deposition schemes, commonly used in climate or air quality 

models, are assessed with a focus on their stomatal uptake portion and resulting PODy calculation. Using 

concurrent O3 concentration and meteorological variable measurement data from the TOAR database enables us 

to conduct a detailed intercomparison of multiple deposition schemes by avoiding uncertainties arising from 

using different input data. For this study, various sites have been selected to represent different land cover types 

and climate regimes around the globe, focusing on sites where observational data are available for O3 

concentration. By assessing the model estimates of stomatal O3 deposition at these different sites, we aim to 

identify key differences in model formulation and parameterisation that influence estimates of stomatal O3 flux 

and consequent PODy. The estimation of the stomatal uptake from water flux measurements taken from the 

FLUXNET database provides an additional observational constraint as well as an uncertainty estimate at each 

site.

Furthermore, sensitivity simulations allow us to investigate the variability of stomatal O3 deposition and plant 

damage with key input parameters and land cover characteristics. Post hoc, plant damage will be calculated 

offline based on the PODy simulated by different models and flux-response relationships, where appropriate. 

Ultimately, we aim to understand the key factors driving stomatal O3 flux and thus PODy and assess the O3-

induced potential for vegetation damage for different land cover types and global regions.

2.   Methodology

2.1 Meteorological and O3 data from the TOAR-II database 
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The web version of the DO3SE model is coupled to the TOAR database, i.e. the required input data (Table 3) is 

automatically provided by the database at the respective modelling sites. The TOAR-II database (from now on 

TOAR) contains harmonised measurements of surface O3 and its important precursors and key meteorological 

variables that can impact O3 concentrations and stomatal O3 uptake. As one of the largest collections of quality-

controlled air pollution measurements in the world, it comprises ground-based station measurements of O3 

concentration at more than 22905 sites globally which cover different periods between 1974 and 2023. These 

have been collected from different O3 monitoring networks (e.g., Clean Air Status and Trends Network, 

CASTNET), harmonised and synthesised to enable uniform processing. The data were selected for inclusion in 

the TOAR database based on an extended quality control; e.g., sites where the measurement technique changed 

with time have been excluded. Data errors remain but have been shown to have a minor impact (Schultz et al., 

2017). The total uncertainty in modern O3 measurements is estimated to be < 2 nmol mol-1 (Tarasick et al., 

2018). The meteorological data (irradiance, air temperature, relative humidity, precipitation, air pressure, and 

wind speed) in the database stems from the fifth generation of ECMWF reanalysis (ERA5) for global climate 

(Hersbach et al., 2020). Data re-initialisation (of precipitation and radiation, Copernicus Climate Change 

Service, 2017) is bridged by (linear) interpolation. The Leaf Area Index (LAI) data in the database stems from 

the MODerate resolution Imaging Spectroradiometer (MODIS). TOAR data is freely, and openly available 

through a graphical user interface and a representational State Transfer interface 

(https://toar-data.fz-juelich.de/api/v2/, last access: 01.11.2024). The TOAR data centre team is committed to the 

Findability, Accessibility, Interoperability, and Reusability principles (Wilkinson et al., 2016). The centre aims 

to achieve the highest standards regarding data curation, archival, and re-use (Schröder et al., 2021). To conduct 

offline simulations with models in addition to Web-DO3SE, the input data were extracted beforehand and proven

for identicality. The additionally required data (Table 3) were extracted from the TOAR database and the 

MeteoCloud server (https://datapub.fz-juelich.de/slcs/meteocloud/index.html) at Forschungszentrum Jülich.

2.2 Observation-constrained stomatal conductance 

To compare the modelled stomatal conductance with observational information, we prepared model input data at

two sites (Hyytiälä, Harvard Forest) from the FLUXNET 2015 dataset (Pastorello et al., 2020), which is openly 

available under the CC-BY-4.0 data usage licence. Additional vegetation information for the model input (i.e., 

LAI, canopy height, and crop calendar data) was provided by the site project investigators. Then, we used the 
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canopy-scale stomatal conductance dataset, SynFlux version 2 to estimate Gst for two forest sites, US-Ha1 and 

FI-Hyy. While in SynFlux version 1, canopy transpiration is assumed to be equal to total latent heat flux 

SynFlux version 2 improved its previous estimations (Ducker et al., 2018) by using a machine-learning-based 

method (Nelson et al., 2018) to partition total evapotranspiration into surface evaporation and canopy 

transpiration. To train quantile random forest models to relate meteorological conditions with water use 

efficiency (derived from water and carbon fluxes), periods with minimal surface wetness were chosen during the

growing season. These models were then used to back-calculate transpiration for the whole growing season. 

Instead of the total latent heat flux, the resulting transpiration estimate was used as an input to the inverse 

Penman-Monteith Equation, reducing the potential high bias in the stomatal conductance estimates in SynFlux 

version 1.

2.3 Summary of sites selected for deposition modelling 

Nine sites (Table 1) were selected for this modelling work accounting for the following factors: i. geographical 

spread,including major continents with terrestrial vegetation; ii. land cover/use types, including the plant 

functional types (PFTs) which are important in terms of economy, food security, or biodiversity and for which 

we have fairly good knowledge of O3 impacts ; iii. availability of meteorological and O3 data from the TOAR 

database; iv. availability of observational data describing stomatal conductance of water vapour (gwv) estimated 

from the FLUXNET measurements (Section 2.2); and v. location proximity to previous experiments that have 

investigated O3 impacts on vegetation that can help interpret our model results. 

Table 1. Sites selected for stomatal deposition modelling using data from the TOAR database grouped by 

continent. Sites that also have FLUXNET data are denoted by ‘FN’ and those with SynFlux data are 

denoted by ‘SF’.

Site (TOAR 

station id, 

nearest 

FLUXNET 

site id)

Location, 

station 

altitude from

TOAR

Köppen-

Geiger 

climate 

classification

Vegetation 

details 

(LAI, 

canopy 

height in m)

Record 

(measureme

nt heights in 

m)

References
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Europe

Hyytiälä, 

Finland 

(FI00621, FI-

Hyy)

FN & SF

61.8611 °N, 

24.2833 °E, 

104 m

Dfc LAI: 2.9

Height: 23.3

O3: 2014 (4)

FLUXNET: 

1996/04-

2013/09 (14)

Chen et al. (2018);

Junninen et al. 

(2009); Visser et al.

(2021)

Grignon, 

France 

(FR04038, 

FR-Gri)

FN

48.5819 °N, 

1.833 °E, 165 

m

Cfb LAI: 4.3

Height: 3.5

O3: 

2013/2014 (3)

FLUXNET: 

2004-2014 

(2)

Stella et al. (2013)

Castelporzian

o, Italy 

(IT0952A, 

IT-Cpz)

41.8894 °N,

12.266 °E, 19 

m

Csa LAI: 6.9

Height: 14.0

O3: 

2013/2014 

(19.7)

FLUXNET: 

2013/2014 

(10)

Gerosa et al. (2005, 

2009);

Fares et al. (2009, 

2012); personal 

communications 

with Silvano Fares

Asia

Amberd, 

Armenia 

(AM0001R)

40.3844 °N,

44.2605 °E, 

2080 m

BSk (or Dfa) LAI: 3.9

Height: 1.0 

O3: 

2009/2010

(3)

Pha Din, 

Vietnam 

(VN0001R)

21.5731 °N,

103.5157 °E, 

1466.0 m

Cwa LAI: 6.9

Height: > 

10.0

O3: 2015-

2017 (12)

Pieber et al. (2023);

Bukowiecki et al. 

(2018); Yen et al. 

(2013)

North America

Quabbin 

Reservoir/Har

42.2985 °N, -

72.3341 °E, 

Dfb LAI: 3.0

Height: 24.0

O3: 2010-

2012 (2)

Clifton et al. (2019, 

2020b);

713
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vard Forest 

tower, USA 

(25-015-

4002, US-

Ha1)

FN & SF

312 m FLUXNET: 

1993-2012 

(24)

Ducker et al. (2018)

Nebraska, 

USA (31-

055-0032, 

US-Ne3)

41.3602 °N, -

96.0250 °E, 

400 m

Dfa LAI: 1.7

Height: 2.5

O3: 2010 (2)

FLUXNET: 

2013/04- 

(0.5)

Amos et al. (2005);

Leung et al (2020)

South America

Huancayo, 

Peru 

(PE0001R)

-12.0402 °N, -

75.3209 °E, 

3314 m

Cwb LAI: 3.6

Height: 1.0

O3: 2015 (6)

Africa

Mt. Kenya, 

Kenya 

(KE0001G) 

-0.062 °N,

37.297 °E, 

3678.0 m

Aw LAI: 4.2

Height: 1.0

O3: 2015 

(unknown)

Henne et al. 

(2008a,b)

Table 2. Land cover type, species and growing season (where SGS = start of growing season and EGS = 

end of growing season) by site. The equivalent land cover type and soil texture data used by the models 

used in this study (Section 2.3) are also shown. MESSy does not consider different land cover types. 

Models that do not consider soil type (i.e. do not include an estimate of soil moisture influence on stomatal

deposition) are marked with *.

Station site:  land cover

type (species) and 

 Web-DO3SE TEMIR* NOAH-

GEM

ZHANG* CMAQ
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growing season

Hyytiälä, Finland: 

evergreen needleleaf 

forest (Scots pine)

SGS=1, EGS=366

evergreen 

needleleaf forest, 

loam

evergreen 

needleleaf 

boreal forest

evergreen 

needleleaf 

forest, 

organic 

material

evergreen 

needleleaf 

forest

evergreen 

needleleaf 

forest, silty

loam (peat)

Grignon, France: crops 

(rapeseed and wheat)

SGS=304, EGS=571

winter wheat, 

loam

 C3 crop crops/

grassland 

mosaic, silt 

loam

 crops crops 

(wheat), 

silty loam

Castelporziano, Italy: 

evergreen broadleaf 

forest (laurel, abutus, 

broad-leaved phillyrea, 

holm oak, pine)

SGS=1, EGS=366

evergreen 

broadleaf forest, 

loam

Evergreen 

broadleaf 

temperate 

forest

evergreen 

broadleaf 

forest, sandy 

loam

evergreen 

broadleaf 

forest

evergreen 

broadleaf 

forest, 

loamy sand

Amberd, Armenia: 

Grassland, mixed

SGS=1, EGS=366

grassland, loam  grassland grassland, 

loam

long 

grassland

grassland, 

loam

Pha Din, Vietnam: 

evergreen needleleaf 

forest

SGS=1, EGS=366

evergreen 

needleleaf forest, 

loam

evergreen 

needleleaf 

temperate 

forest

evergreen 

needleleaf 

forest, clay

evergreen 

needleleaf 

forest

evergreen 

needleleaf 

forest, clay

Quabbin 

Reservoir/Harvard 

Forest tower, USA 

SGS=93, EGS=312

temperate mixed 

forest, loam

deciduous 

broadleaf 

temperate 

forest

deciduous 

broadleaf 

forest, sandy 

loam

deciduous 

broadleaf 

forest

deciduous 

broadleaf 

forest, 

sandy loam

Nebraska, USA: crops 

(maize/soybean rotation)

SGS=132/148, 

crops (maize, 

soybean), loam

 C3 crop crops/

grassland 

mosaic, silty 

 crops crops 

(corn), silty

clay loam

917
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EGS=278/260 clay loam

Huancayo, Peru: 

grassland

SGS=1, EGS=366

grassland, loam grassland grassland, 

loam

long 

grassland

grassland, 

loam

Mt. Kenya, Kenya: 

grassland, shrublands

SGS=1, EGS=366

grassland, loam grassland grassland, 

loam

long 

grassland

grassland, 

silty loam

 

Fig. 1: Locations of 9 selected sites on Köppen-Geiger climate classification map for 1991-2020 (source: 

Beck et al., 2023). Table 1 specifies the classifications of these sites.

2.3 Stomatal deposition models and their key inputs

Six widely used empirical/Jarvis and semi-empirical/Ball-Berry types of stomatal deposition models were 

selected for this study. All of these used models can accommodate a variety of land cover/land use types and 
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provide estimates of stomatal deposition that can be output as both hourly- and season-long cumulative-stomatal 

deposition metrics. The key model features are described below.   

(1) The empirical/Jarvis-type models use a predefined stomatal conductance modified with different 

environmental stressors for radiation (PAR), air temperature (T), vapour pressure deficit (VPD) and soil

water (SM) - The ZHANG model (Zhang et al., 2002; 2003; 2006) and the Web-DO3SE model (i.e., a 

version of DO3SE that is directly coupled to the TOAR database, Emberson et al. 2000) account for 

sunny and shaded leaves (two-big leaf), the Web-DO3SE model also depends on the vegetation 

phenology, the CMAQ_J model (Pleim and Ran, 2011) and the MESSy model (Ganzeveld et al., 1995; 

Kerkweg et al., 2006) account for one-big leaf CMAQ_J uses relative humidity (RH) instead of VPD. 

MESSy calculates the initial stomatal conductance based on the PAR and several empirical parameters 

(2) Semi-empirical/Ball-Berry - The CMAQ_P model  (Ran et al,. 2017) and the TEMIR model (Collatz et 

al., 1991; Farquhar et al., 1980) calculate the stomatal conductance at sunlit and shaded leaves for C3 

and C4 plants depending on net CO2 assimilation rate, CO2 partial pressure, atmospheric pressure (Pa) 

and water vapor pressure for each leave. The  NOAH-GEM model is different, calculating stomatal 

conductance at one big leaf using RH instead of VPD  (Wu et al., 2011; Niyogi et al., 2009).

All models follow the resistance scheme:
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The land cover, growing season, and soil texture specifications used by the models are summarised in Table 2. 

For crops, we used the GGCMI Phase 3 crop calendar (Jägermeyr et al., 2021a) which provides the planting date

and maturity day for 18 different crops at a 0.5° land grid cell resolution (Jägermeyr et al., 2021b). For forest 

trees, we consider four various classes: evergreen-needleleaf (EN), evergreen-broadleaf (EB), deciduous 

needleleaf (DN), and deciduous broadleaf (DB). For evergreen species, we assume a year-round growing season;

for deciduous species, we use the simple latitude function described in Hayes et al.(2017); and we consider a 

year-round growing season for tropical species. The soil texture categories used by the models were obtained 

from the reference studies in Table 1 and the site principal investigators. Table 3 provides the key formulas, 

input data requirements and references for all models. Key total and stomatal deposition parameters for 

empirical models (gmax) and semi-empirical models (VCmax) are described in Table 4, which gives a good 

indication of the overall difference in the magnitude of stomatal deposition. The models’ meteorological and O3 

inputs have been introduced in Section. 2.1.

Table 3. Stomatal deposition models selected for site-scale modelling (list of symbols: A1 and Section S3 in

the SI, *uses u(h), o3(h)=1, for US-Ne: u(h), o3(h)=0.3).

Model Approach Key Formulas Key
Input
data

Reference

ZHANG Empirical
(Jarvis-
style)

Rs=
1

[Gs (PAR ) f (T ) f (D ) f (ψ )×
Di

D v
]

Gs (PAR )=
Lsun

r s(PARsun)
+
Lshade

rs(PARshade)

LAI,
LUC,
Wspee
d, ssrd,
T2m,
Tskin,
RH 

Zhang  et
al.,  2002;
2003; 2006 
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rs (PAR )=r s ,min(1+brs

PAR )

Noah-GEM Semi-
empirical,
photosynth
esis-based
(Ball-Berry
type)

Rs=1/[LAI(m AnhsP

C s

+b)]
LAI,
LUC,
Wspee
d, ssrd,
strd,
T2m,
Tskin,
RH

Wu  et  al.,
2011;
Niyogi  et
al., 2009

CMAQ_J Empirical
(Jarvis-
style) 

Rs=
rs ,minLAI

(f PAR f T f vpd f w)
LAI,
Tair,
PAR,
ssrd,
rn, RH

SM

Pleim  &
Ran 2011

 

CMAQ_P Semi-
empirical,
photosynth
esis-based
(Ball-Berry
type)

Rs=1/(mg Anet esPa

C s

e i+g0) LAI,
CO2,
Pa,  u*,
h_dis,
z0,

SM,
Tsoil,
wspee
d,
wdir,
Soil
texture
,
C3/C4
type,
PAR,

Ran  et  al,.
2017

1325
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ssrd,
rn,
P_rate,
sn, sd

TEMIR Semi-
empirical,
photosynth
esis-based
(Ball-Berry
type)

 
Rs=

1

[(Lsun

rb+rsun

+
Lshade

rb+rshade
)Di

Dv ]
rs=
1
gs

=1

[α(m An(es

esat
)

(C s

Patm
)

+b)]

LAI,
LUC,
u*,
ssrd,
T2m,
Tskin,
RH,
SM

Tai  et  al.,
2024;  Sun
et al., 2022

MESSy Empirical
(Jarvis-
style)

Rs=[rs (PAR , LAI )|f T f vpd f w ]×
Dv

Di

r s(PAR , LAI )=kc x

[bd PAR
ln(ⅆexp (kLAI )+1

d+1 )− ln(ⅆexp (−kLAI )
d+1 )]

−1

LAI,
ssrd,
RH,
sw, Tir

Emmerichs
et al., 2021;
Kerkweg  et
al.,  2006;
Ganzeveld
et al., 1998

Web-
DO3SE

Empirical
(Jarvis-
style)

rs=gmaxmax {(f min , f temp , f VPD , f SWC )}×f phen× f light Tair,
VPD 

wspee
d,  P,
Pa,  O3,
Gr 

Emberson
et al., 2000;
Bueker  et
al.,  2012;
Simpson  et
al.,  2011;
Guaita  et
al., 2023a

1427
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Table 4 Model parameter VCmax at standardised temperature conditions (25°C) [in μmol CO2 m-2 s-1 ] and 

gmax [O3 in cm s-1 ] for the total canopy by land cover/land use type. Note that the values presented in the 

table were recalculated from the original respective rsmin values for H2O (s m-1) in ZHANG, MESSy, and 

CMAQ_J, and Vcmax values for O3 (mol O3 m-2s-1) in Web-DO3 SE . 

Paramete

r

Web-DO3SE ZHANG CMAQ_J TEMIR NOAH-

GEM

CMAQ_P

Gmax or  

VCmax

gmax 

[cm s-1]

gmax 

[cm s-1]

gmax 

[cm s-1]

VCmax
+ 

[μmol CO2

m-2 s-1]

VCmax 

[μmol CO2

m-2 s-1]

VCmax 

[μmol CO2

m-2 s-1]

Forests 0.44 (EN)

0.49 (EB)

0.55 (DB)

0.25 (EN)

0.42 (EB)

0.42 (DB)

Zhang et al., 2003

0.36 (EN),

0.53 (EB),

0.32 (DB),

Pleim & 

Ran, 2011

60.1 (EN) 

59.0 (EB)

55.4 (DB),

(Oleson et 

al, 2013; 

NCAR 

Technical 

notes)

57.6 (EN)

96 (EB)

96 (DB)

Niyogi et 

al., 2009; 

JAMC

57.6 (EN, 

Slevin et al

2015),

49.2 (EB, 

Medi. 

forest, 

(EB_tr+E

B_te)/2,Oli

ver et al., 

2022), 

55.4 (DB, 

CLM4.5, 

Kattge 

2009)

Crops 1.1 (wheat)

0.74 (maize)

0.73 (soybean)

0.53 0.91 96.7 76.8 96.7 

(CLM4.5)
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Grasses 0.66 0.64 0.64 75.1 28.8 75.1 

(CLM4.5)

PODy is calculated in post-processing, according to the guidelines in UNECE LRTAP (2017):. 

 POD y=∑
i=1

n

[ fst , suni− y ]×(3600106 )      for fs t , suni≥ ynmolm− 2PLA S−1                          

Where fs t , suni  is the hourly mean O3 flux in nmol O3 m-2 PLA s-1 at sunlit leaves, y is a species-dependent 

threshold (crops: 6 nmol O3 m² s-1, grassland and forests:1 nmol O3 m-2 s-1; UNECE LRTAP (2017) and i is the 

number of daylight hours (when ssrd > 50 W m-2) within the accumulation period (growing season). The term 

(3600/106) converts from nmol m-2 PLA s-1 to mmol O3 m-2 PLA.fst , sun is calculated by:

f st , sun=c
(z )× gs t×rc

rb+r c

Where c(z) is the O3 concentration at in nmol m-3 (calculated from ppb by multiplying by P/RT where P is the 

atmospheric pressure (Pa) and T is the air temperature (K), R is the universal gas constant of 8.31447 J mol-1 K-1 

and T is the assumed standard air temperature (293 K). The leaf surface resistance (rc) is given by rc = 1/(gst+gext)

where gext is the inverse of cuticular resistance.

. The leaf boundary resistance is calculated by:

rb=1.3×150×√L
u (h)

Where factor 1.3 accounts for the differences in diffusivity between heat and O3, L is the crosswind leaf 

dimension (i.e. leaf width in m) and u(h) is the wind speed at the top of the canopy.

2.4 Description of stomatal deposition model simulations
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The result section aims at identifying trends in stomatal deposition models among different land cover types 

including grass, crops and forests using four model experiments as follows. 

In experiment 1, the different models are driven by the O3 and meteorological data from ERA5. We analysed 

the simulated deposition velocity (Vd) split into stomatal and non-stomatal fractions, canopy (Gst) and sunlit 

(Gsun) stomatal conductance. 

To include observational constraints, in experiment 2, the TEMIR, ZHANG, NOAH, MESSy and CMAQ 

models were run with data obtained from the FLUXNET database (available for three sites, see Table 1), and the

simulated Gst was evaluated with observation-derived values, inferred Gst, of SynFlux. Spearman correlation was

applied for the model evaluation, as it can be applied to any datasets including non-parametric and non-linear 

ones. The US-Ha1 and FI-Hyy sites were considered for the model evaluation due to the availability of SynFlux 

data at these sites

A sensitivity analysis (experiment 3) was performed by driving a set of models with synthetic input data in the 

following steps:  i. O3 input was perturbed by +/- 40% (Sofen et al. 2016). ii. soil water content was perturbed by

+/- 30 % (Li et al., 2020). iii. absolute humidity was perturbed by +/- 30%, soil and air temperatures were 

perturbed by +/-3, independently, iv. the growing season, which was mostly approximated by LAI, was shifted 

by 14 days forward and backward in time. In set (iii) and (iv), relative humidity was calculated from absolute 

humidity and temperature after their perturbation. In both cases, absolute humidity was capped at the saturation 

vapour pressure at the corresponding temperature. 

Finally, for experiment 4, gmax and VCmax of the models were varied by +-20 %, based on previous estimates of 

plant traits dependent uncertainty (e.g., Walker et al., 2017; UNECE LRTAP, 2017).                                             

3.   Results

3.1 General characteristics of simulated total deposition velocity and stomatal contribution

The split of total O3 deposition between different pathways, Gst, Gcut, Gground, simulated by the 7 models is shown 

for each of the 9 sites in Figure 2 and S2 (corresponding data are presented in Table S9). This analysis allows us 

to briefly assess the overall efficacy of the model’s ability to simulate deposition velocity Vd (by comparisons 

with previously published values; more complete assessments of model’s ability for some of these sites can be 
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found in Clifton et al., 2023) and to compare the importance of the stomatal deposition pathway between models

for different land cover types and across different seasons. 

Observations of Vd have only been made at a handful of sites i.e. Hyytiälä, Finland; Castelporziano, Italy; 

Grignion, France and Harvard Forest, US (close to our Quabbin site in terms of proximity, land cover type and 

climate). Overall, the models capture Vd at these sites compared to observed values reported in previous studies. 

Namely, the observed seasonal cycle in Vd at Hyytiälä, Finland (needleleaf forest), with lows of ~0.1 cm s-1 

between January and April and highs of 0.4 cm s-1 between June to September, averaged over 10 years of 

measurements from Clifton et al. (2023) and Visser et al. (2021) are captured by most models except of MESSy 

and TEMIR, which reach Vd values of 0.8 cm s-1 during the summer. Similarly, the strong seasonal cycle in Vd at

Quabbin, US (temperate mixed forest), ranging from around 0.2 cm s-1 between January and April up to 0.5 cm 

s-1 from June to September in Clifton et al. (2023) is captured by all models. Observed Vd at Castelporziano, 

Italy (evergreen broadleaf forest) shows relatively constant values throughout the year, commonly between 0.4 

and 0.8 cm s-1 averaged over a 2-year period (Savi & Fares, 2014). The study by Stella et al. (2011) reports Vd 

measurements of 0.63 cm s-1 (on average) at Grignion (France). At the other sites, no O3 dry deposition 

measurement exists and thus we report the observed ranges for the land cover type (and possibly the matching 

climate). Over grassland, Silva and Heald (2018, and references therein) show a mean of 11 measurements of 

daytime Vd values (~0.4 cm s-1) in agreement with our models. Measurements exist at soybeans and maize crops 

which indicate Vd values of 0.7 (Meyers et al., 1995) and 0.4 - 0.6 cm s-1 (Stella et al., 2011), respectively. Thus, 

the models seem to estimate too low deposition at soybeans.

In terms of deposition pathways, for all sites and models, stomatal deposition consistently ranks as the most 

important pathway in the summer, whereas in winter and, for some models, in the fall Gst decreases to zero to 

very low at sites with seasonal variation in vegetation coverage. The importance of the pathway varies with land 

cover type and season. The highest stomatal contribution of 90 % (NOAH model) is shown at the Amberd site. 

Among the different land cover types, the highest average stomatal contribution to deposition during the summer

is estimated across grass (67 %), followed by crops (65 %) and forests (59 %). The seasonal importance of 

stomatal contribution is not seen for the tropical sites as the year- round growing season means that stomatal 

conductance is driven by solar radiation which is constant throughout the year (e.g. Hardacre et al., 2015). 

Previous studies involving measurements and partitioning approaches (Horvath et al., 2018, Meszaros et al., 

2009) indicate that the non-stomatal O3 deposition pathways (i.e., Gground and Gcut) are very strong (in some cases, 

dominant over Gst) at short vegetation such as the grasslands. Despite there are multiple factors such as wind 
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speed, solar radiation, LAI, etc., that control the relative contributions of the three deposition branches, Gst is the 

dominant pathway at the three grassland sites of the current study (Amberd, Mt Kenya, and Peru). At the 

Amberd and Peru sites, Gcut and Gground are small since low wind speed reduces downward mixing of ozone to the

surface (atmospheric resistance, e.g., at the Peru Site in the Summer season, the mean wind speed was 1.0 cm s-1 

and the Gcu and Gground contributions in the TEMIR model were 21 % and 12 %, respectively; Table S3).

In contrast, at the Mt Kenya site, Gst exceeds Gcut and Gground, since the strong solar radiation (annual mean is 246 

W m-2, Table S2) at this site favours stomatal opening . Besides that, LAI is a very important governing factor 

for Gst . Therefore, it can be inferred that the O3 deposition pathway depends on not only the land cover type but 

also meteorological drivers. The relative contributions of each deposition pathway depends on the interplay 

between these key factors at a particular site. Among the models, Web-DO3SE estimated the lowest stomatal 

contribution at grass (Fig. 2) most likely due to its parallel pathways to cuticle, soil and stomata, with the former 

scaled by LAI with a constant cuticular deposition of 2500 s m-1. Such differences in model structures likely led 

to the wide-ranging partitioning. For example, for the Quabbin site (summer), all models simulate Gcut ranging 

from 15-65 %, Gground from 2-19 % and Gst from 33-66 % despite their agreement on  the overall Vd values (total 

bar). Models agree better in the partitioning of O3 dry deposition to crops with summer stomatal fraction 

contributions ranging between 46-73 %, 37-73 % and 51-81 % for US-Ne3 Maize, US-Ne3 soybeans and FR-

Gri (rapeseed and wheat). Most models estimate non-stomatal deposition equal to or larger than the stomatal 

contribution to deposition outside of the tropics in winter and fall, and to some extent in spring. This again 

emphasises the importance of the stomatal contribution to the seasonal cycle of total deposition as also found in 

Clifton et al. (2023). Similarly, as seen at grasslands, Web-DO3SE (Fig. 2, Table S3) accounts for the highest 

non-stomatal deposition at crop sites.  

      Across all forest sites, models show significant cuticular uptake throughout the year ranging between 11 % and

94 % contribution. At FI-Hyy, Gcut averages ~50 % across all seasons and all models with higher estimates of

~55 % by the TEMIR model due to the higher wind speed at FI-Hyy (annual mean wind speed is 3.2 m s-1; Table

S2) favoring cuticular deposition as suggested by Rannik et  al. (2012).  At IT-Cpz, our models estimate on

average around 43 % (20-80 %) to be non-stomatal deposition, close to the previously reported ranges (Gerosa et

al. 2005, Fares et al. 2012, Fares et al. 2014), which were up to 57 % from non-stomatal deposition and 30-60 %

from stomatal uptake. A similar partitioning (59 % Gst, 33 % Gcut, 5 % Gground model average in summer) is seen

at PhaDin. 
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Fig. 2 Mean effective conductanceof the cuticular (Gcut), ground (Gground), and stomatal (Gst) deposition 

pathways of O3 across various models and sites during the summer season (US-Ne3-S=soybeans, US-Ne3-

M=maize). Respective figures for the other seasons are presented in the supplement.

 

All models except Web-DO3 SE were compared on a seasonal and hourly basis with the SynFlux Gst data for US-

Ha1 and FI-Hyy sites (Figures S2, S3). CMAQ_J, NOAH, TEMIR, and ZHANG show reasonable agreement at 

the Quabbin forest (US-Ha1) whereas CMAQ_P and MESSy show quite significant overestimates at both FI-

Hyy and Harvard Forest (Table S5) and CMAQ_J overestimates at FI-Hyy only. Note that NOAH and ZHANG 

show significant underestimates at FI-Hyy while agreeing well with SynFlux at Harvard Forest (Quabbin). The 
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underestimates by the ZHANG model are consistent with the results from a similar comparison for Yellowstone 

National Park in the US by Mao et al. (2024). Compared to Harvard Forest, FI-Hyy is the most humid and 

cloudy with the lowest solar radiation flux, and these conditions likely contribute to the underestimates by the 

NOAH and the ZHANG model as identified by Mao et al. (2024). The differences between modelled and 

SynFlux Gst do not seem to be associated with the model types, i.e. empirical or photosynthesis-based models.

The correlation of the diurnal cycle of Gst calculated by the models with the inferred Gst by SynFlux for US-Ha1 

and FI-Hyy (Fig. S4) confirms that models generally capture the temporal patterns of Gst of at least these two 

different forest types and climates (FI-Hyy: EN, temperate, subarctic; Quabbin: DB, moist temperate). The best 

Spearman correlations are found at FI-Hyy and range between 0.73 by the MESSy model and 0.85 by the 

TEMIR model. Overall lower correlations are found at the Quabbin site ranging from 0.65 for the NOAH and 

MESSy models to 0.82 for the CMAQ_P model. This poorer correlation suggests that additional water stress 

may limit stomatal conductance at Quabbin, which the models do not capture, compared to FI-Hyy. Notably, a 

similar range of correlation coefficients (0.61 – 0.93) was found when modelled Gst values obtained using the 

TOAR input data were compared with SynFlux Gst. As SynFlux data were generated using FLUXNET 

measurement data, this result corroborates the validity of using the TOAR database as input to Web-DO3SE, 

developed as a service website to aid in risk assessment of O3 damage to European vegetation.

To identify the key drivers of the Gst model schemes among different land cover types and climate conditions, 

we also compare estimates of Gst between models for all sites and analyse the similarity of Gst diurnal cycles in 

empirical and photosynthesis models. Here, it is important to understand the model distinction between shaded 

and sunlit leaf (Gsun , Fig 4). The average diurnal variations of stomatal conductance (Gst) of O3 at the 9 sites for 

each season are shown in Figure 3 and S7. This also helps interpret the modelled stomatal conductance of sunlit 

leaves (Gsun) shown in Fig 4 and S8. Across all models, the diurnal mean Gst (Fig. 3) varied from 0.15 cm s-1 

(Quabbin) to 0.50 cm s-1 (Mt. Kenya). In the TEMIR and the ZHANG model, roughly 50% of Gst occurs at the 

sunlit part of the leaves. Web-DO3SE and CMAQ_P Gsun contribute 30 % on average (Fig. 4). At mid-to-high 

latitudes, the model spread is limited to the summer season, whereas at tropical sites, it is similar throughout the 

year. During the day, models show a spread of 1.2 cm s-1 in Gst at the forest and grassland sites during the 

summer while their predictions agree most at the crop sites (throughout the year) with a maximum of 1.0 cm s-1. 

This is due to the flux response relationship which has a more sensitive response (steeper slope for most crops) 

due to a higher threshold (see Table 5 for the equations describing the steepness of the change). Results among 
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the same model type differed significantly while different model types could produce similar results at the same 

location. For the sites with distinct seasonal variations, model differences were the largest in summer.

In comparison, TEMIR and ZHANG, photosynthesis-based and Jarvis-style, respectively, are both governed 

mainly by solar radiation (see higher Gsun in Fig. 4), showing close agreement, except in summer, at the forest 

sites (ZHANG values are very low). Only these two show a midday depression in Gsun at the peak of solar 

radiation at Mt Kenya (the site with the highest radiation). The ZHANG model also estimated this feature for 

Gsun and Gst at other grassland sites (Fig. 3 and 4). This feature could be due to the day length (seasonality) 

scaling of VCmax in TEMIR, causing Gst to increase significantly during summer at higher latitude sites. In 

contrast, at lower latitude sites (Mt Kenya and Huancayo, Peru), the seasonal variation in day length is smaller 

and subsequently smaller seasonality in VCmax and Gst. The TEMIR and the CMAQ_P models, both 

photosynthesis-based, estimate very similar Gsun values (Fig. 4) at PhaDin (fall, winter), IT-Cpz (spring, 

summer) and FI-Hyy (summer) whereas the Gst estimates show significant differences. The opposite occurs at 

Quabbin where the Gsun values of the two models differ much more than the Gst estimates. These results illustrate

that the different fractionations between shaded and sunlit leaves could mainly contribute to the model spread in 

stomatal conductance.

Further examination of individual models’ features can shed light on the causes of model/site differences in Gst. 

The MESSy Gst value is strongly governed by LAI followed by soil moisture, and in all other respects MESSy 

treats different land cover types the same. Therefore, MESSy simulates the highest Gst values at PhaDin, 

Grignion and Mt. Kenya with LAI values of 6.9, 4.3 and 4.2 m² m-2, respectively (Table 1). In contrast to 

PhaDin, the high LAI site IT-Cpz (6.9 m² m-2) experiences significant water stress during summer. This is only 

captured by MESSy and NOAH indicating higher sensitivity to water stress. During the day, an evident midday 

depression of Gst due to hot weather and water shortage is seen accompanied by a peak in the early morning 

evident from NOAH, same as has been observed in Mediterranean ecosystems (e.g. Gerosa et al. 2005). The 

NOAH model accounts for the direct effect of relative humidity on Gst (see model description in the supplement)

and subsequently modelled a depression in Gst at the daily onset (8 am). This variation explains the Gst peak at 

IT-Cpz and Quabbin, which are especially in the summer the two driest among all sites. Due to the dry 

conditions at the Quabbin site, low soil water and relative humidity, most models, except NOAH, simulate the 

lowest summer daily mean Gst values among all sites. The high estimate by the NOAH model can be explained 

by the highest VCmax value among the photosynthesis models (Table 4). The high gmax value of 0.55 cm s-1 used in
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Web-DO3SE leading to large estimates is largely dampened by strong soil moisture stress at IT-Cpz (Table S2). 

Similarly, Web-DO3SE estimates the lowest Gst (among the models) values at the Peru site (grassland) due to a 

strong limitation by the ftemp function on stomatal conductance suggesting that the minimum temperature for 

stomatal opening at 12 °C is too low for these cool temperate conditions. The ZHANG estimates are generally 

governed by gmax, explaining the highest and lowest Gst values of all models simulated with the ZHANG model 

at grassland and forest sites, respectively. The CMAQ_J model has the lowest gmax values, but it is strongly 

impacted by soil moisture. The additional dependence of the ZHANG model on solar radiation is reflected in 

higher Gsun relative to Gst (Fig. 3 and 4). TEMIR also simulates the smallest spread of Gst among the 3 grassland 

sites (Ambred, MKenya, Peru), as temperature acclimation of photosynthesis (Kattage and Knorr, 2007) is 

implemented. The different temperatures among the 3 sites have smaller effects on photosynthetic capacity and 

Gst than other models. Despite explicitly considering soil water stress, TEMIR does not capture the impacts of 

water stress on Gst in IT-Cpz and Quabbin in the summer, as the equivalent soil moisture threshold to trigger soil

water stress at IT-Cpz and Quabbin is very low (<0.1 m³  m-3). Both versions of CMAQ respond very strongly to 

soil moisture which may not be accurate for each site. The differences between CMAQ-J and CMAQ-P are 

greatest at the sites with the greatest LAI, such as IT-Cpz and PhaDin.
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Fig. 3 Mean diurnal cycle of  total stomatal conductance (Gst) from models across various sites during the 

summer season (US-Ne3-S=soybeans, US-Ne3-M=maize). Open circles indicate diurnal O3 variations. 

Respective figures for the other seasons are presented in the supplement.
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Fig 4 Mean diurnal cycle of leaf level sunlit stomatal conductance (Gsun) from the 3 two-leaf models 

(CMAQ_P, TEMIR, and ZHANG) across various sites during the summer season (US-Ne3-S=soybeans, 

US-Ne3-M=maize). Open circles indicate diurnal O3 variations. Respective figures for the other seasons 

are presented in the supplement.

The difference between total and sunlit stomatal flux is examined, and trends of stomatal sunlit flux are 

characterized by different land cover types and climate conditions. Figures 5 and 6 show the (SRAD>50 Wm-2) 

stomatal O3 flux (Fst) and stomatal, sunlit O3 flux (Fst,sun) for different models per season at 9 sites representing 

forest (top), grass (middle), crops (bottom). Thereby, we consider whether Gst and O3 concentration co-variate at 

diurnal and seasonal timescales. Across all land cover types, a large range of Fst (0.05-2 ppb m s-1, Fig. 5) is 

estimated, usually highest in spring and summer and lowest in winter. The largest median of Fst is found at 

Amberd (0.75 ppb m s-1; ZHANG, summer), followed by IT-Cpz (0.60 ppb m s-1; NOAH, spring), and FR-Gri 

(0.60 ppb m s-1; MESSy and NOAH, summer) owing to both higher Gst and O3 concentrations at the respective 
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sites (Fig. 3). Consequently, no general trend can be identified among the sites, i.e flux estimates can differ 

within one land cover type. Namely, the two crop sites show very different Fst estimates (Fig. 5) since they have 

the most different O3 levels across one land cover type. While the FR-Gri site is exposed to an annual mean O3 

of 45 ppb (Table S1) as the lowest O3 level of 25 ppb among all sites. The same applies for the diurnal variation 

of O3 causing either a high (FR-Gri) or a low range (US-Ne3) of flux estimates among all models (in summer 

and spring). The difference is less apparent in the Fst,sun estimates (Fig. 6) which point to the sensitivity of the two

leaves to O3 concentration. Similarly, as seen for the stomatal conductance, three of four models show a very 

good agreement of Fst and Fst,sun among each other. In terms of seasonality, models agree also generally well 

among the grassland sites. Among those (and all land cover types), the maximum annual median Fst,sun was 

estimated for Amberd attributed to the high daytime (7 am - 7 pm) annual O3 concentrations (49.3 ppb, Table 

S1). The most different Fst,sun (and Fst,sun) values are found between the ZHANG (highest) and Web-DO3SE 

model (lowest) due to the difference in Gsun (Fig. 4). Web-DO3SE disagrees the most with the other models and 

predicts very small fluxes at the Peru site following the small Gst and Gsun values (Fig. 3 and 4). 

Among forest sites, spring Fst,sun values are comparably high as summer fluxes following the seasonal variation 

of Gsun (Fig. 6, outside the tropics). The highest spring estimates at PhaDin and Quabbin (forests) are linked to 

the site-specific yearly O3 maximum in this season (Fig. 3). The flux seasonal maximum is more pronounced in 

all four models (ZHANG, CMAQ_P, TEMIR) when the O3 concentration variation during the year is larger at 

the respective site. The highest Fst,sun (0.1 ppb m s-1) is estimated by TEMIR at PhaDin (spring) reflecting the 

high Gsun estimate. In contrast, when considering the total Fst, CMAQ_P shows the highest estimate (Fig. 5) 

which indicates that TEMIR uses a higher sunlit fraction than CMAQ_P as it has been shown for stomatal 

conductance (Fig. 3 and 4). The difference is most apparent at high LAI sites (PhaDin, IT-Cpz, FR-Gri). The 

lowest estimates of Fst,sun (and a very small spread) at the forest sites are shown by the ZHANG model as it has 

been explained for Gst and Gsun. Overall, CMAQ_P has the lowest spread among the models which was also 

found in the multi-model comparison study by Clifton et al. (2023).
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Fig 5: Boxplots of seasonal mean canopy-level total stomatal O3 flux (ppb ms-1) for different models across

various sites (data represent SRAD > 50 W m-2 and the growing period). Asterisks indicate the annual 

mean flux

.
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Fig 6: Boxplots of seasonal mean leaf-level sunlit stomatal O3 flux (ppb ms-1) for different models across 

various sites (data represent SRAD > 50 W m-2 and the growing period). Asterisks indicate the annual 

mean flux.

3.2 Vegetation impact and variation with key input data  

This section presents the PODy calculated from the O3 deposition by different models at 9 different stations to 

identify trends and patterns of PODy among land cover types and climates (Fig. 7, corresponding data in Table 

S9). The critical threshold for ozone damage y differs for the three land cover types. For forests and grass the y 

value is 1 nmol O3 m-2 s-1 (POD1) while O3 damage to crops is assumed to occur only when the y threshold 

exceeds 6  nmol O3 m-2  s-1 (POD6).  By driving the models with changed input data of O3, soil moisture, 

temperature, relative humidity, growing season (Fig. 8) and with changed Vcmax/gmax parameter (Fig. 9) we 
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explore the sensitivity of the PODy estimates. As shown in the previous analysis, the largest O3 uptake and thus 

the highest PODy of 28 mmol O3 m-2 (on average among all models) is estimated over grassland sites (compared 

to forest and crops) (Fig. 7). POD1 increases linearly with time for evergreen grasslands whereas Mt. Kenya 

shows the fastest accumulation (due to the highest Fst in spring and summer). Three of the four models lie in a 

range of 5 mmol O3  m-2 whereas Web-DO3SE predicts a maximum PODy of 10 mmol O3  m-2  at all grassland 

sites. Only at the Peru site, these low values can be reasoned by the significantly lower Gsun  and Fst,sun (compared

to other models). 

For forests, our modelled ensemble POD1 median and maximum values (ranging between 8 and 25 mmol O3 m-

2) are similar in scale to values estimated across broad geographical regions by other studies. Karlsson et al. 

estimated POD1 values across Europe with the highest values in mid-latitude Europe for coniferous (15 to 20 

mmol O3 m-2) and broadleaf (22 to 28 mmol O3 m-2) forests. However, the ZHANG and the Web-DO3SE model 

are estimated to be significantly lower POD1 than CMAQ_P and TEMIR at each site. These estimates average to

16 mmol O3 m-2 . There is no obvious pattern to which models tend to estimate higher or lower POD1 values, but 

these estimates are generally consistent with Gsun (Fig. 4) and Fst,sun (Fig. 6) model estimates explained by 

particular model constructs or parameterisations. For instance, the ZHANG model estimates low stomatal 

deposition and thus also PODy over all forests. Web-DO3SE saw a low O3 uptake only due to the site conditions 

at IT-Cpz. 

For crops, the model estimates of POD6 are a little more consistent, with modelled differences within sites only 

varying between ~ 3 and 11 mmol O3 m-2, however, this could in part be due to the overall lower POD6 values 

due to the use of the higher y threshold. Median model ensemble values range between ~7 and 12 mmol O3 m-2 

across sites. POD6 for staple crops has been estimated in other studies across Europe and globally.  A European 

study (Schucht et al., 2020) on wheat found POD6 values up to ~ 4 mmol O3 m-2 suggesting that our POD6 values

for the FR-Gri site tend to be too high. Feng et al. (2012) estimated maximum POD6 values of up to 8 mmol O3 

m-2 for winter wheat in China though these higher values are likely driven by higher ozone concentrations. 

Similarly, Wang et al. (2022) also found POD6 values for maize of up to 8 mmol O3 m-2. Our models give the 

largest range in POD6 estimates for soybeans at the US-Ne3 site (0 to 11 mmol O3 m-2). A key determinant of the

range in PODy simulated by our models, and also with estimates provided in the literature, is the value chosen 

for gmax (or VCmax depending on the model construct). For example, the multiplicative gsto models used to derive 

flux-response relationships (see Table 5) use gmax values of 450, 126 and 301 mmol O3 m-2 s-1 for wheat, maize 
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and soybeans (UNECE LRTAP, 2017; Peng et al., 2019 and Zhang et al., 2017). By contrast, our modelling uses

a variety of gmax values, for example, the Web-DO3SE model uses 450, 305 and 300 mmol O3 m-2 s-1 for wheat, 

maize and soybeans. A further consideration in parameter selection are local conditions, a study by Stella et al., 

(2013) found a gmax value of 296 mmol O3 m-2 s-1 was most appropriate to describe wheat gsto at the FR-Gri site. 

This variation highlights the importance of selecting appropriate model parameterisation for conditions, as well 

as consistency of parameterisation with models used to develop flux response relationships.

Fig 7: Evolution of PODy (mmol O3 m-2) through the growing seasons at various sites.

From the sensitivity analysis, we found that all models show sensitivity of PODy to changes in O3, specific 

humidity, and temperature with varying degrees over different land cover types possibly due to different 

prescribed values such as the temperature threshold (Fig. 8, corresponding absolute values in Table S10). 

Especially, the PODy at all sites is most significantly changed when modifying the O3 concentration by +-40 % 

(Table S11). Crop is the most sensitive land cover to O3 changes across the different models (8.5 mmol m-2; 76 

% PODy change with respect to the base run), followed by forest (10.0 mmol O3  m-2 ; 59.3%) and grass (14.9 

mmol O3  m-2; 56.1%) which is due to the plant physiognomy (Grulke and Heald et al. ,2020). In a relative sense, 

the average response change in PODy to a 40 % change in O3 concentrations is the greatest in ZHANG (+9.2 
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mmol O3 m-2, corresponding to a 68.1 % PODy change with respect to the base run), followed by CMAQ_P and 

TEMIR (12 and 11.9 mmol O3  m-2  ;64.8 % and 63.5 %), and then by Web-DO3SE (11.4 mmol O3  m-2; 53.0 %). 

Also, the PODy estimate seems to be sensitive to humidity (Q) changes (+-30%) among all models. At forest, the

PODy estimates appear to be the most sensitive (4.6 mmol O3 m-2; 27.3%), followed by crops (2.9 mmol O3  m-2; 

25.9%) and grass (4.6 mmol O3 m-2; 17.3 %). The response is the greatest in TEMIR and CMAQ (between 5.7 

and 6.7 mmol O3 m-2; 30.7-35.8 %), while it is much smaller for ZHANG (usually close to zero on average). The

most non-linear response was shown by Web-DO3SE at IT-Cpz which estimated a 5 times higher PODy response

to increasing humidity than to a humidity decrease pointing towards the strong dryness at this site limiting   If 

temperature is changed by +-3 K the highest sensitivity was found at crops on average (2.7 mmol O3  m-2; 

24.1%), followed by grass (4.6 mmol O3 m-2; 17.2 %) and forest (1.6 mmol O3 m-2; 9.5%). The responses 

unevenly vary in sign depending on the model because the temperature change depends on the optimal 

temperature at the specific sites. Namely most models estimate a PODy decrease when increasing temperature 

(Fig. 5). As described in Hayes et al. (2019), a temperature increase is seen in southern countries where 

temperature could limit stomatal uptake since temperature is already close to the optimum in normal conditions. 

From our sensitivity analysis, temperature impacts on PODy are noticeable only for a few sites (e.g., Ambered, 

Mt. Kenya, and Peru) and models's response to PODy change were different due to different thresholds used for 

the temperature stress factors to stomatal conductance. The greatest changes in magnitude are predicted by Web-

DO3SE (5.1 mmol O3  m-2; 23.7%), followed by CMAQ_P (3.1 mmol O3 m-2; 16.7%), ZHANG (1.9 mmol O3 m-2;

14.1 %) and TEMIR (1.7 mmol O3  m-2; 9.6 %). In contrast, not all models are sensitive to changes of soil water 

content (SWC). The greatest response is seen in CMAQ_P (-6.3 and +1.4 mmol m-2; -34.0% and +7.6%), 

followed by Web-DO3SE (-2.2 and -2.2 mmol O3 m-2; -10.2% and -10.2%), and TEMIR (-1.1 and +0.8 mmol O3 

m-2 ; -5.9% and +4.3%), while ZHANG shows no difference in this regard because it is not sensitive to soil 

moisture. The changes are largest at crops (1.5 mmol O3 m-2; 13.4%), while grass and forest show similar 

responses (2.8 and 1.7 mmol O3 m-2; 10.5 and 10.1 %, respectively). That is in line with De Marco et al. (2020) 

who show that PODy responses to soil water changes increase with higher Y threshold (here crops). The models 

do not appear to be sensitive to LAI 14d shifts, with the only exception of Web-DO3SE, which simulates a lower

PODy for both early and late LAI shifts (-2.6 mmol O3 m-2 on average, across all land covers). LAI is used as a 

proxy for growing seasons in most models whereasWeb-DO3SE considers growing seasons directly.
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Fig 8: Meteorology sensitivity assessment: Absolute change of PODy values with respect to Base run PODy

due to 10 or 20 % variation of the temperature (T), soil water content (SWC), absolute humidity (Q), O3 

and LAI/growing season.

A 20% change of gmax/Vcmax leads to corresponding changes in PODy values. An increase or decrease of the 

parameter leads to very similar changes (in +-) (Fig. 9, corresponding data in Table S12 – S14). The response 

appears to be generally uniform across sites. On average, the results show +28.9 ± 22.4 % PODy change for the 

20 % increase of gmax/Vcmax, and -27.4 ± 13.1 % for the 20 % decrease with the largest absolute changes at 

grassland (up to 8 mmol O3 m-2  , ZHANG). At forests and crops, changes up to 5 and 3 mmol O3 m-2 occur, 
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respectively. Among all sites, noticeably higher (the highest) relative changes were estimated at FR-Gri which 

thus constituted the only relevant source of variability. This change is significantly different to the change at US-

Ne3 (20-30 %) which reflects the contrasting low O3 level at US-Ne3 compared to the highly polluted FR-Gri 

site. Also, the ZHANG model predicts the highest changes at crops while CMAQ_P seems insensitive. The 

ZHANG (and TEMIR) model appears to be the most sensitive model to the changes at most sites due to the 

strong dependency on the gmax/Vcmax parameter (see analysis above). The only climate trend of the response is 

seen by the ZHANG model which shows an average 65 % increase/decrease in wet forests (PhaDin, FI-Hyy) and

only a 40 % change in dry places. Sites with very low estimates (PhaDin in ZHANG, Peru in Web-DO3SE) were

excluded from this sensitivity study.
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Fig 9: Land cover parameterisation sensitivity assessment: Absolute change of PODy values with respect 

to the base run PODy values due to 20 % variation of Gmax or VCmax.

To indicate the likely damage, and range of damage that our modelled values of PODy predict, we have used 

PODy flux-response relationships available in the literature that most closely represent the vegetation type and 

climatic location of each study site (Table 5). To estimate O3 damage to forests we use recently derived flux-

response relationships that relate POD1 values to gross annual increment (Karlsson et al., sub) and hence indicate

the annual change in growth rate caused by O3. The mean model ensemble estimates a percentage reduction in 

gross annual increment of around 5% for FI-Hyy and Pha Din, 6% for IT-Cpz and 14% for Quabbin. However, 

the range in estimates across models is not insignificant and most extreme at the Quabbin site with a minimum 

of 11% and a maximum of 21% around the mean 13% value; this is due to broadleaf deciduous species being 

more sensitive to O3 dose than needleleaf species and hence more sensitive to a range of PODy model 

simulations (Bueker et al., 2015). It should also be emphasised that the Pha Din site uses a European-derived 

flux-response relationship for an Asian forest site.
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PODy

 %
Respons
e

Site Species y Flux-
response
relationship

Response
metric  &
species

min median max min median max Location
of  PODy
relationsh
ip 

Reference

FI-Hyy Scots
pine

1 y = -0.0057x
+ 1.0015

Gross
Annual
Increment
(GAI) % for
Norway
spruce/Scots
pine

2.3 10.2 15.1 1.2 5.6 8.5 Europe Karlsson et al., sub
(to  TOARII
community  special
issue)

Quabbi
n

Birch/
Beech
(Broadle
af
deciduou
s)

1 y = -0.0093x
+ 0.9461

Gross
Annual
Increment
(GAI) % for
Birch/Beech

6.5 9.1 16.8 11.4 13.9 21.0 Europe Karlsson et al., sub
(to  TOARII
community  special
issue)

PhaDin Norway
spruce
(Evergre
en
needlele
af)

1 y = -0.0057x
+ 1.0015

Gross
Annual
Increment
(GAI) % for
Norway
spruce/Scots
pine

0.4 8.1 20.3 0.0 4.5 11.4 Europe Karlsson et al., sub
(to  TOARII
community  special
issue)

IT-Cpz Holm
oak

1 y = -0.0047x
+ 1.001

Gross
Annual
Increment
(GAI) % for
Aleppo
pine/Holm
Oak

2.8 13.3 25.8 1.2 6.2 12.0 Europe Karlsson et al., sub
(to  TOARII
community  special
issue)

FR-Gri winter
wheat

6 y = -0.0385x
+ 1.003

%  grain
yield  loss
for wheat

3.6 6.8 9.3 13.6 25.9 35.5 Europe UNECE  LRTAP
Mapping  Manual
(2017)

US-
Ne3
(Maize
)

Maize 6 y=0.0426x+1 %  grain
yield  loss
for wheat

10.5 12.4 13.6 Peng, J., Shang, B.,
Xu,  Y.,  Feng,  Z.,
Pleijel,  H.  and
Calatayud,  V.,
2019.  Ozone
exposure-and  flux-
yield  response
relationships  for
maize. Environmen
tal  pollution, 252,
pp.1-7.

US-
Ne3
(Soybe
an)

Soybean 6 y  =  -0.033x
+ 1.01

%  relative
seed  yield
loss  per
soybean
plant

0.0 8.3 11.0 0.0 26.4 35.3 China Zhang,  W.,  Feng,
Z.,  Wang, X., Liu,
X.,  Hu,  E.  (2017)
Quantification  of
ozone  exposure-
and  stomatal
uptake-yield
response
relationships  for
soybean  in
Northeast  China.
Sci  of  the  Total
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Env.,  599-600
(710-720)

Amber
d

Grasslan
d

1 y = -0.0062x
+ 0.947

%  total
biomass loss
for
temperate
perennial
grassland

7.9 29.4 34.1 10.2 23.5 26.4 Europe UNECE  LRTAP
Mapping  Manual
(2017)

MKeny
a

Grasslan
d

1 y = -0.0062x
+ 0.947

%  total
biomass loss
for
temperate
perennial
grassland

10.9 31.0 37.4 12.1 24.5 28.5 Europe UNECE  LRTAP
Mapping  Manual
(2017)

Peru Grasslan
d

1 y = -0.0062x
+ 0.947

%  total
biomass loss
for
temperate
perennial
grassland

2.6 22.1 26.6 6.9 19.0 21.8 Europe UNECE  LRTAP
Mapping  Manual
(2017)

Table 5. Estimates of O3 damage (for specific  response metrics)  derived from using the ensemble mean modeled

PODy values (and minimum and maximum values) with appropriate flux-response relationships based on land cover

type. The climatic location within which the flux-response relationships are derived are stated to show the relevance

of their use in estimating damage. Shaded cells denote flux-response relationships that are derived outside of the

broad climate region to which they are applied in this study and hence whose damage estimates should be treated

with caution. 

For crops, flux response relationships are available for wheat, maize and soybeans (UNECE LRTAP, 2917, Peng et al., 2019

and Zhang et al., 2017). These relationships are derived from Europe (wheat) and China (maize and soybean). For wheat, we

see a large range in percentage yield loss with a mean model ensemble of 26 % but a maximum yield loss of 35 %. This is 

driven by high POD6 values derived from CMAQ_P and TEMIR. For maize at US-Ne3 the results are very consistent with 

relative grain yield loss estimates ranging from 1.4 to 1.6 %. For soybeans at US-Ne3, the results are less consistent than 

maize with a minimum and maximum of 0 and 35 % yield around a mean of 26 %. It is important to note that a Chinese-

derived flux-response relationship is used to estimate O3 damage on both US-grown crops. 
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Finally, for grasslands, we estimate total biomass losses of 19, 24 and 23% from the ensemble model mean for Peru, Mt 

Kenya and Amberd respectively. The range in model values is relatively small for Amberd and Mt Kenya. A low minimum 

value of 6 % total biomass loss is estimated for Peru due to the Web-DO3SE model having a very low PODy at this location 

due to a likely oversensitive limitation to O3 uptake caused by low temperatures. 

4. Discussion and Conclusion 

Here we have compared six deposition schemes commonly used in atmospheric chemistry transport models. We have 

focussed on the stomatal component of deposition since this is acknowledged to have a substantial influence on damage to 

vegetation, and ultimately the ability of these six models to estimate the PODy metric designed to indicate the level of O3 

damage to forest, crops and grasslands. The models estimate PODy values of 28, 15 and 9 mmol O3 m-2 for grassland, forests 

and crops, respectively. The multi-model mean estimates are generally in the expected range which suggests that the 

stomatal flux output of these models could be used for O3 impact assessments. We also explored the differences in PODy by 

geographical location. When comparing one vegetation type, we find multiple drivers including O3 concentration. The 

different model types are not the driving force, instead, the models can predict similar results.

There are three key reasons for differences in dry deposition model estimates i. model construct and the inclusion/exclusion 

of important factors that determine Gst and Gsun; ii. model parameterisation which may characterise the land cover types and 

iii. differing model sensitivity to climate variables (seasonal, location effects) in estimates of stomatal deposition. The model 

comparison of stomatal conductance and stomatal dry deposition for ozone helps us to understand the differences between 

models. We found that models simulate generally reasonable stomatal deposition of 0.5 -0.8 cm s-1 in summer whereas the 

different model types often agree very well with each other. The stomatal conductance estimates among the models agree 

with correlation coefficients of 0.75, 0.80 and 0.85 for forests, crops and grasslands. Thereby, the 9 sites selected for this 

study also reflect different climate conditions; however the selection of sites that provide such broad representations also 

means that the analysis and the results cannot be generalized. The global coverage, diverse land types and varying 

meteorological conditions of the 9 sites resulted in widespread model responses to soil moisture (Fig. 8), while appearing to 

be insensitive to changes of LAI (Fig. 9). The former underscored the idiosyncratic features and hence potential limitations 

of individual models, whereas the latter gave us confidence in model capabilities despite the different constructs and 

parameterizations of the models. The model differences, identified during this analysis, can be explained by the model’s 

dependence on the meteorological conditions at sites. Indeed, both model structure (e.g. Raghav, Kumar and Liu 2023) and 

parameters (Fares et al., 2013) can affect the accuracy of stomatal conductance models. However, studies have shown that 

when properly calibrated against field observations, structurally different stomatal models can produce similar stomatal 
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conductance (Fares et al., 2013, Mäkela et al., 2019). Calibrating the key parameters of stomatal conductance models (e.g. 

gmax/Vcmax) is a crucial next step to improve the accuracy of stomatal conductance and PODy estimates, as our sensitivity tests

show direct, and possible non-linear relationship between PODy and gmax/Vcmax (e.g. at FR-Gri). This is possible with the 

recent availability of standardised global eddy flux (FLUXNET, Pastorello et al., 2020) and sap flow (SAPFLUXNET, 

Poyatos et al., 2020) data.  

To estimate PODy for a representative leaf of the upper canopy, the sunlit leaf must be distinguished from the total leaf. 

Since the effects-based community recognised that sunlit leaves contribute most to carbon assimilation throughout the 

growing season or O3-sensitive period (e.g. in wheat, this is considered to be the time from anthesis to maturity) and hence it 

will better represent damaging O3 uptake. All flux response relationships for PODy are developed for such a representative 

leaf. This is an important distinction since previous model comparison studies (e.g.Clifton et al., 2023) have tended to focus 

on whole canopy dynamics. These are important to estimate accurately, but to estimate PODy requires additional canopy 

level processes, which need i. O3 concentration at the top of the canopy, ii. wind speed at the top of the canopy and iii. Gsun of

a representative leaf at the top of the canopy. Studies (Emberson 2020 and references therein) have established thresholds for

different land cover types which are used to provide y values for the selected sites with specific land cover types in this 

study. Some studies suggest that the y threshold for land cover types may vary by global region (e.g. a number of studies 

suggest higher y values of up to 12 nmol O3 m2 s-1 is more appropriate for crops and forest tree species in Asia). In this study,

which focuses on comparing across models, we maintain consistency and use common y threshold values for each land 

cover type. However, this is an aspect that would benefit from further study in the future since estimating PODy values with 

higher thresholds is more challenging for all types of model given the less frequent occurrences of such high O3 doses.

Our models estimate 30-50 % of stomatal O3 deposition at sunlit leaves. Thereby, the model estimates of the total stomatal 

flux are more widespread (during one season) than the estimates of the sunlit only which suggests an important role of the 

model’s partitioning in two big leaves. When calculating PODy model means estimates generally agree with the literature but

most discrepancies between model estimates of PODy ultimately come down to the differences in simulations of stomatal 

conductance. The sensitivity analysis of PODy yields ozone as the most important input variable, to whose changes all 

models respond similarly. Considering all models and sites together, PODy were affected most by the O3 concentration (+-

60-80 % site-dependent, i.e., higher O3 concentration leads to higher PODy), followed by humidity (30-50 % site-dependent 

impact). Soil moisture impacts were also significant for the CMAQ_P and Web-DO3SE model (up to +-68 % and 22 % 

change). The sensitivity to temperature changes varies strongly among the model and its parametrization. As the plant 

canopy acts as a persistent sink of  O3, there is a significant vertical gradient of  O3 within the atmospheric surface layer. For 

example, Travis et al. (2019) show that the midday O3 concentration at 65 m above ground (mid-point of a first vertical layer

of GEOS-Chem v9-02) is 3 ppb higher than the O3 concentration at 10 m above ground (inferred by Monin-Obukhov 

Similarity Theory, MOST) over the Southeastern United States. A mismatch between O3 measurement height and canopy 
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height can lead to inaccurate PODy calculation (Gerosa et al, 2017).  An O3 bias of 2 ppb as estimated by e.g. Tarasick et al. 

(2018) would lead to a change of 6-7 %  in POD1 (Gerosa et al., 2017). Similarly, we show that the errors in O3 

concentrations propagate non-linearly to PODy (i.e. 40% changes in O3 leads to 53 - 68 % changes in PODy), such a 

mismatch should be carefully avoided by applying atmospheric surface layer theories (e.g. MOST) to estimate the vertical 

profile of O3, and therefore the canopy-top O3 concentration, if direct measurement or model output of O3 at canopy top is 

not available. 

Finally, we use flux-response relationships for temperate deciduous (Beech/birch), temperate needleleaf (Norway spruce 

(Picea abies)), crops (wheat (Triticum aestivum), maize (Zea mays) and soybeans (Glycine max)) and grassland (Lolium 

perenne) to give a suggest the potential likely variation of damage estimates by land cover type and climatic region. These 

relationships have predominantly been developed for European and Asia forest and crop species. Therefore, they should be 

applied to other climate regions with caution although recent evidence suggests that tropical forest species may have similar 

sensitivity to O3 as European species (Cheeseman et al. 2024). Although there is rather large variability in PODy values 

estimated by the model, the median values are relatively robust. Unfortunately, there is only statistical or modelled evidence 

of actual O3 damage, and only at a few of the sites investigated. Modelled evidence uses stomatal ozone flux models similar 

to those used in this study, but which have been parameterised for local site conditions (Stella et al., 2013 for FR-Gri wheat).

Simulations with a terrestrial biosphere model suggested an average long-term O3 inhibition of 10.4% for the period 1992–

2011 at the Harvard site (Yue et al 2016); this compares to our model ensemble estimate of 14% GAI biomass loss for 

Quabbin. A significant but small NEP reduction was found during Spring in the Italian Castelporziano forest site (up to -1.37

%) but not at the FI-Hyy or FR-Gri sites (Savi et al., 2020). Our modelling estimated substantially lower PODy values and 

associated damage at Hyy and IT-Cpz than Quabbin though we would expect to see a more substantial O3 effect than that 

demonstrated by the NEP statistical modelling (i.e. 5 and 6% GAI biomass loss at FI-Hyy and IT-Cpz respectively). Similar 

simulations with a different terrestrial biosphere model found only moderate O3 damage effects (GPP reductions of 4–6 %; 

Yue & Unger, 2014). This result is driven by low ambient ozone concentrations but also by the choice of a C4 

photosynthetic mechanism to estimate stomatal conductance which gives relatively high-water use efficiency). These 

simulations also suggested that the US-Ne3 experienced a higher ozone effect on GPP than Harvard which is consistent with 

our modeling for soybeans (but not maize, generally considered an O3 tolerant crop species; Mills et al 2011). According to 

the POD6 estimates made using a SURFATM model, parameterised for Grignon wheat, POD6 values of 1.094 mmol O3 m-2 

were estimated from 1 April to 1 July 2009 which compared with our range of 3.6 to 9.3; the locally parameterised values 

gave estimated crop yield losses of 4.2%, compared to our median model ensemble estimates of 25% for the winter wheat. 

This is most likely due to the lower gmax value used in the local parameterisation (296 mmol O3 m-2 s-1). However, no 
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recording of actual damage is given at the FR-Gri site, so it is not possible to tell which of these simulated damage estimates 

is closer to reality.

The experiments performed here with varying climate and vegetation input data also find a similar sensitivity of PODy to O3. 

It is helpful to have a range of models and model constructs in deposition schemes especially where these have been 

developed for particular land cover types. When used in damage estimates it is important to ensure that key stressors are 

included which may be important for that respective geographical region (such as soil and vapour pressure deficit). 

Recognising that several deposition schemes would be able to reliably predict PODy for different climates and cover types 

once they have been parameterised appropriately will extend the usefulness of flux-response relationships. 

Overall, this study has demonstrated the widespread applicability and consensus among various numerical stomatal flux 

methods. Both semi-mechanistic as well as empirical models can generally represent observed ozone fluxes among different 

land cover types and climates. We identified the key model constructs and parameterisations that cause differences in PODy 

estimates. However, none of the models clearly shows a superior overall performance. Instead, all models can be effectively 

applied, each with its own strengths and weaknesses. Our findings present exciting opportunities to extend applications 

beyond specific sites and growing seasons, enabling comprehensive global stomatal flux studies over longer periods. 

Integrating the TOAR database with the Web-DO3SE model enables automatic model runs for ozone-vegetation impact 

assessment at a large range of sites using the TOAR database. 
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Appendix

Table A1: Abbreviations

Symbol Long name

rsmin Minimum stomatal resistance in [s m-1]

gsmax Maximum stomatal conductance in [m s-1]

RH Relative humidity in [%]

LAI Leaf area index in [m2 m-2]

sd, sn snow depth in [m] and snow cover

ssrd, strd solar and thermal flux at surface in [W m-2]

sw Soil wetness [m]

al_vis: albedo (visible)

cwv canopy water content in [kg m-2]

SWC Soil water content

SM Soil moisture [m3m-3]

wdir geo wind direction [°]

wspeed Wind speed in [m s-1]

cv Vegetation fraction [m2m-2]

P Precipitation in [mm]

P_rate Precipitation rate in [mm h-1], [kg m-2 s-1], [m s-1]

Tair, Tsoil, T2m Air, soil, 2m temperature in [K]

VPD Vapour pressure deficit [kPa]

Pa Air pressure [hPa]

Rn, Gr Net and global radiation [W m-2]

u* Friction velocity [m s-1]

O3, CO2 O3 and CO2 concentration in [ppb] und [ppt]

h_dis, z0 Displacement height [m], roughness length [m]

CF Cloud fraction

LUC Land usage category
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