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Key Points:7

• We developed horizontal two-dimensional inverse models for turbidity currents us-8

ing deep neural networks.9

• The models successfully reconstructed flow conditions from the observed charac-10
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rents over complex deep-sea topography.13
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Abstract
Turbidites have been widely studied as indicators of the occurrences and magnitudes of 
paleo-tsunamis and paleo-earthquakes. Inversion to estimate the flow c onditions from 
turbidites offers valuable i nsights i nto t he m agnitudes o f p aleo-seismic a nd t sunami events. 
However, conventional one-dimensional inverse models are insufficient fo r ca pturing the 
behavior of turbidity currents in tectonically active margins, where the seafloor topog-
raphy is typically complex. Here, we developed a horizontal two-dimensional inverse model 
of turbidity currents based on a deep neural network (DNN) and evaluated its perfor-
mance using both synthetic and flume e xperiment d a tasets. T he m odel s uccessfully es-
timated the model input parameters with a symmetric mean absolute percentage error
(SMAPE) of less than 32.5%, except for the density-equivalent sediment concentration
for saline water at the inlet. When applied to experimental data, the model reasonably 
reconstructed the flow c onditions, y ielding SMAPE v alues b etween 5 1.7 a nd 8 6.2%, de-
spite the potential uncertainties introduced by sampling disturbances, data processing,
and forward model limitations. The spatial distribution of bed thickness was also well 
predicted, except in cases where most of the suspension bypassed the depositional zone. 
Overall, the proposed inverse model demonstrated accuracy comparable to the previous 
one-dimensional model while offering g reater a pplicability t o c omplex s eafloor geome-
tries and maintaining low computational costs. These results suggest that the proposed 
method is well-suited for the field-scale i nversion o f t urbidity c urrents i n r ealistic geo-
logical settings.

Plain Language Summary

Turbidity currents are sediment-laden flows t hat t ransport m aterial f rom shallow 
marine environments to the deep-sea floor. T hese fl ows ar e of ten tr iggered by  natural 
disasters such as earthquakes and tsunamis. Understanding the magnitude of turbidity 
currents is therefore essential for reconstructing the size and frequency of past seismic
and tsunami events. In this study, a deep neural network model was developed to esti-
mate the scale of turbidity currents propagating over complex seafloor t o pography. The 
model’s performance was evaluated using both synthetic and experimental datasets. The 
results demonstrate that the model can accurately estimate turbidity current magnitudes 
with low computational cost. This deep learning approach holds promise for estimating
the scale of ancient turbidity currents in deep-sea environments and, in turn, for improv-
ing assessments of the recurrence intervals of large earthquakes and tsunamis.

1 Introduction

Turbidity currents are sediment-gravity flows d riven b y t he e xcess d ensity o f sus-
pended sediment supported by fluid t u rbulence. Turbidity c urrents a re t he p rimary mech-
anism supplying sediment to the deep sea floor ( Piper e t a l., 1 999; Talling e t a l., 2012)
and are known to form large-scale submarine topography such as submarine canyons and 
submarine fans (Kuenen & Migliorini, 1950).

Turbidites, the deposits of turbidity currents, are widely recognized as valuable archives 
of past geohazard events, as those currents can be triggered by various catastrophic phe-
nomena, including storms, river floods, o r t s unamis. For i nstance, A rai e t a l. ( 2013) es-
timated that the tsunami-induced turbidity current associated with the 2011 Tohoku-
Oki earthquake had an exceptional scale, extending an area at least 90 km wide and 100 km 
long. The head velocity of this flow r anged f rom 2 .4–7.1 m /s, a nd t he m aximum veloc-
ity in the flow b ody w as e stimated t o b e  8 .0 m / s. P olonia e t a l. ( 2013) r eported t hat the 
365 AD Cretan tsunami (Mw 8.3–8.5) generated a turbidity current that resulted in a widely 
distributed turbidite (about 375 km) and thick turbidite (1.84 m). In the 1929 Grand 
Banks earthquake, which has Mw of 7.2 ± 0.3 (Bent, 1995), a landslide triggered
a large-scale turbidity current with estimated velocity of 19 m/s and greater than 150 km3

63
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sediment transport (Piper & Aksu, 1987). Hsu et al. (2008) reported that the 2006 Ping-64

tung earthquake in Taiwan (Mw 7.0) generated a turbidity current with velocity 3.7–20.0m/s.65

Reconstructing the flow conditions of such earthquake- or tsunami-induced turbidity cur-66

rents offers the potential to infer past large-scale earthquakes, thereby contributing to67

our understanding of long-term risks of geohazards.68

Therefore, the quantitative estimation of the flow conditions of ancient turbidity69

currents remains a major challenge in sedimentary and geohazard research (e.g., Komar,70

1985; Hiscott, 1994). Because these flow events cannot be directly observed, researchers71

must rely on inverse analysis from their resulting deposits. Falcini et al. (2009), for ex-72

ample, applied a forward model of turbidity currents based on the shallow water equa-73

tion to the Lower Messinian Laga Formation in Italy and performed inverse analysis. How-74

ever, their approach assumed a steady-state flow to derive an analytical solution, lim-75

iting its applicability to turbidites formed under unsteady flow conditions. In contrast, Lesshafft76

et al. (2011) developed an inverse model using a direct simulation as the forward model,77

coupled with the surrogate management method for parametric optimization. Although78

their method achieved reasonable accuracy when tested on synthetic data, its high com-79

putational load renders it impractical for field-scale applications. Parkinson et al. (2017)80

proposed a more computationally efficient approach using a one-dimensional shallow-water81

turbidity current model and the adjoint method. Their inverse model, applied to the Miocene82

Marnoso-arenacea Formation in Italy, yielded initial flow heights of 3950 m under a uni-83

form grain-size assumption and 0.00192 m for a two-size-class assumption. These val-84

ues are difficult to reconcile with realistic flow conditions. More recently, Nakao et al.85

(2020) employed a genetic algorithm as the optimization method for inverse analysis of86

a turbidite in the Kiyosumi Formation, Boso Peninsula, Japan. Although their model87

produced more plausible flow conditions, the model reliability could not be tested be-88

cause of the high computational load of the repeated forward model calculations. A com-89

mon limitation across these studies is the substantial computational burden of inverse90

modeling, which often involves repeated forward simulations that are difficult to paral-91

lelize. This constraint hampers the systematic evaluation of model accuracy across mul-92

tiple synthetic or real-world datasets.93

To overcome these limitations, Naruse and Nakao (2021) recently proposed an in-94

verse analysis framework based on deep learning. Their approach comprises two primary95

steps. First, a large training dataset is generated by a numerical simulation of turbid-96

ity currents under randomly sampled initial conditions. Unlike the iterative forward cal-97

culations required in conventional inverse modeling, this data generation process is in-98

herently parallelizable, significantly reducing computational costs. Second, a fully con-99

nected deep neural network (DNN) is trained to learn the relationship between the ini-100

tial flow conditions and the resulting deposit characteristics, such as the thickness and101

grain size distributions. Once trained, the DNN serves as an efficient inverse model ca-102

pable of instantly predicting the initial conditions from the observable features of un-103

known turbidites. This method avoids the need for simplifying assumptions in the for-104

ward model and simultaneously achieves high inversion accuracy with reduced compu-105

tational demand. The trained DNN’s rapid prediction capability further enables system-106

atic validation of inversion performance using a large number of test datasets. Cai and107

Naruse (2021) validated this methodology and demonstrated its effectiveness in estimat-108

ing initial conditions from both synthetic 1D data and flume experiments. Furthermore,109

this deep learning-based framework has also been extended to the analysis of tsunami110

deposits, successfully estimating tsunami inundation depths and deposit characteristics111

in agreement with field observations (Mitra et al., 2020, 2021, 2024).112

Despite the significant progress achieved through DNN-based inversion methods,113

a key limitation remains. Previous studies have primarily employed one-dimensional (or114

vertical two-dimensional) forward models, which are only applicable to turbidity currents115

occurring in flat, laterally uniform sedimentary basins or submarine channels. Conse-116
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quently, these models cannot be readily extended to environments with complex, undu-117

lating bathymetry, such as deep-sea fans. An attempt to address this limitation was made118

by Cai (2022), who developed a horizontally two-dimensional inverse model using a DNN119

and applied it to turbidites observed in the Anno Formation of the Awa Group. How-120

ever, the proposed method has not yet been validated against known flow conditions. Since121

direct measurements of ancient turbidity currents are unavailable, it is essential to com-122

pare model predictions with well-constrained flume experiments to assess the accuracy123

and reliability of newly proposed inverse models (Cai & Naruse, 2021).124

In response to these challenges, this study aims to develop a horizontal two-dimensional125

inverse model based on DNNs and to validate its performance using flume experiment126

data. First, the inverse model was trained and tested on synthetically generated datasets127

to evaluate its baseline performance. Second, flume experiments simulating turbidity cur-128

rents were conducted to obtain detailed measurements of flow conditions—including ve-129

locity, flow height, suspended sediment concentration, and duration—as well as the re-130

sulting bed thickness and the grain-size distribution. Finally, the trained inverse mod-131

els were applied to the experimental turbidites and to datasets from the previous study,132

and their accuracy was evaluated by comparing the predicted flow parameters with the133

corresponding measured values.134

2 Methods135

2.1 Flume Experiments136

Flume experiments were performed to verify the performance of the inverse mod-137

els. Two experimental series were conducted under different conditions for this purpose.138

All of these experiments were conducted using the experimental flume at the Graduate139

School of Science, Kyoto University (Figure 1). The flume was 4.5 m long, 2.2 m wide,140

and 1.8 m deep. A dumping tank was installed at the downstream end to prevent the141

reflection of turbidity currents. During the experiment, the water was drained from the142

dumping tank at the downstream end to keep the water level in the flume constant. Plas-143

tic (melamine) particles were used in these experiments. The particle density was 1490 kg/m3.144

Sediment and salt water (only in Experimental Series 1) were mixed in mixing tanks (0.45145

m3) using propellers and a pump. A diffuser pipe with a diameter of 0.06m and a length146

of 0.61m was installed as a flow inlet at the upstream end. In total, 22 holes with a di-147

ameter of 5.0×10−3 mm were opened on the side of the pipe. The acrylic cover, which148

is 0.30 m long, 0.64 m wide, and 0.20 m high, was installed at the inlet (Figure 1). This149

cover was slightly moved from the inlet due to the jet in Run 2 of the Experimental Se-150

ries 1. The sediment-water mixtures were injected from the mixing tanks using a pump.151

The non-erodible plastic plate 1.9 m wide and 4.5 m long was installed in the flume. The152

slope was set to 10% from the inlet to 1.2 m downstream, and 5% to the downstream153

end.154

2.1.1 Experimental settings155

In Series 1, two runs were conducted. Run 1 was performed over the initial flat to-156

pography, and Run 2 was performed over the deposit formed in Run 1. In Series 1, salt157

water was used to increase the flow density, which approximates fine materials (i.e., clays)158

in actual turbidity currents. The flow discharge in the pipe connected to the inlet was159

kept constant at 3.0×10−3 m3/s. The durations of Runs 1 and 2 of Series 1 were 116160

and 113 seconds for Runs 1 and 2, respectively. The total volumetric concentration in161

the mixing tanks Ctank was 3.76% and 3.04% in Runs 1 and 2, respectively. The den-162

sity of salt water in the mixing tanks was 1060 kg/m3 in both Runs 1 and 2 of Series 2163

(Table 1). The flow discharge was expected to rapidly increase at the inlet due to the164

entrainment of ambient water around the injection jets, resulting in the dilution of the165

suspended sediment. The mean and standard deviation of the grain size in the mixing166
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Slope 
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ADVP Siphon

0.6 m

0.8 m

3.0 m
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2.2 m

2.2 m

1.8 m

1.9 m

1.5 m

0.
64

 m

0.3 m

0.2 m

0.3 m

Figure 1. Schematic diagram of the experimental setup in Series 1 and 2 conducted in this

study.

tank were 1.6×10−4 m and 6.8×10−4 m, respectively, in Run 1 in Series 1; and 1.2×167

10−4 m and 5.8 × 10−4 m in Run 2 in Series 1 (Figure 2). The initial topography and168

sediment composition of Series 2 were the same as those of Series 1. This series also com-169

prised two runs. As in Series 1, Run 1 flowed over the initial flat topography, and Run170

2 flowed over the topography formed by Run 1. The mixtures of fresh water and plas-171

tic particles were released into the flume using a pump. Flow discharge was constant at172

1.4 × 10−3 m3/s in Run 1, and 2.0 × 10−3 m3/s in Run2.The flow durations were 279173

and 230 seconds for Runs 1 and 2, respectively. The total volumetric concentration in174

mixing tanks was 4.96% and 4.41% in Runs 1 and 2, respectively. The mean grain size175

and standard deviation of particles in the mixing tank were 1.8×10−4 m and 6.6×10−4 m176

in Run 1 of Series 2; and 1.4×10−4 m and 5.8×10−4 m in Run 2 in Series 2. (Figure 2).177

The inverse analysis was performed only for Run 2 because the velocity data could not178

be obtained in Run 1 of Series 2.179

2.1.2 Measurement of flow conditions180

This study measured flow velocity using the acoustic Doppler velocimetry (ADV)181

Nortek Vectrino and the acoustic Doppler velocity profiler (ADVP) Nortek Vectrino Pro-182

filer. The ADVP used in this study can measure the flow velocity in a vertical range of183

0.03 m with a resolution of 1 mm, whereas the ADV can only measure the velocity at184

a single point. Both facilities were moved vertically during the experiments using an elec-185

tric actuator to cover the entire flow velocity profile. The velocity data were time-averaged186

over at least 15 seconds each.187
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Table 1. Experimental condition of Series 1 and Series 2 conducted in this study.

Series 1 Run 1 Run 2

Concentration in the mixing tank 0.0376 0.0304
Density of salt water (kg/m3) 1060 1060
Density of sediment particle (kg/m3) 1490 1490
Temperature (◦C) 16.3 14.8

Series 2 Run 1 Run 2

Concentration in the mixing tank 0.0496 0.0441
Density of sediment particle (kg/m3) 1490 1490
Temperature (◦C) 22.0 24.7

Run 1 of Series 1
Run 2 of Series 1
Run 1 of Series 2
Run 2 of Series 2

0

0.0

2.5

5.0

7.5

10.0

12.5

15.0
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1 2 3 4 5

W
ei
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Figure 2. Grain-size distribution of sediment used in Series 1 and Series 2 conducted in this

study. The sediment was sampled from the mixing tank before each run.
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In Series 1, flow velocity measurements were conducted at the center in the width188

direction and 2.1 m from the upstream end in the longitudinal direction (Figure 3). The189

ADV measured the flow velocity in Run 1 of Series 1, moving vertically every 0.03 m to190

measure the velocity profile from the bottom to 0.18 m above the bed. In Run 2 of Se-191

ries 2, the ADVP was used to measure the flow velocity profile. The vertical ranges mea-192

sured in this run were 0–0.03 m, 0.02–0.05 m, 0.08–0.11 m, and 0.14–0.17 m above the193

bed. In Series 2, the flow velocity profile was also obtained using the ADVP at the cen-194

ter in the width direction and 1.2 m from the upstream end in the longitudinal direc-195

tion. Flow velocities were measured in this run at 0–0.02 m, 0.01–0.04 m, 0.03–0.06 m,196

and 0.07–0.10 m above the bed (Figure 3).

Series 1
Run 1 Run 2

Flow velocity meter
Siphon

Series 2
Run 2

Flow velocity meter
Siphon

W
id

th
 (m

)

Distance from the upstream end (m)

0

0

1.1

1.2 1.5 2.1 2.4 4.5 5.7
2.2

Figure 3. Measurement points of flow velocity and sampling points of suspended sediment in

Series 1 and Series 2 performed in this study.

197

To measure suspended sediment concentrations, suspensions were sampled using198

10 siphon tubes spaced every 0.01 m, ranging from 0.01 m to 0.1 m from the bottom.199

The sampling interval of the suspended sediment was constant in all experiments. The200

suspension was sampled at the center of the flume in the width direction. In the longi-201

tudinal direction, it was sampled at 2.4 m and 1.5 m from the upstream end for Series202

1 and 2, respectively (Figure 3).203

The sampled water and suspended sediment mixtures were accumulated in 300 mL204

beakers and weighed immediately after each run. In Series 1, the density of sampled wa-205

ter was measured using a digital density meter (DA-130N, Kyoto Electronics Manufac-206

turing Co., Ltd.). The weights were measured again after drying to obtain the dried weight207

of suspended sediment. The grain size distributions of the accumulated sediment were208

measured using settling tubes with the open-source software Stube (Naruse, 2005).209

The suspended sediment concentration for the ith grain size class was calculated210

from the measured values using the following equation:211

ci =
ρfMsFsi

ρsMw + ρfMs
, (1)

–7–
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where Mw and Ms denotes the mass of the fluid (saline or freshwater) and dried suspended212

sediment, respectively. Fsi denotes the fraction of the ith grain-size class in the sampled213

suspended sediment. The ρf and ρs are the density of the fluid and sediment, respectively.214

2.1.3 Data processing215

In this study, the layer-averaged flow velocities and suspended sediment concen-216

trations were calculated from the profiles measured by the ADVP and siphons during217

the experiment. The layer-averaged velocity U , flow height h, layer-averaged suspended218

sediment concentration of the ith grain size class Ci, and layer-averaged total suspended219

sediment concentration CT were calculated using the following equations (Ellison & Turner,220

1959):221

Uh =

∫ ∞

0

udz, (2)

U2h =

∫ ∞

0

u2dz, (3)

UCih =

∫ ∞

0

ucidz, (4)

CT =
∑
i

Ci, (5)

where u and ci denote the measured flow velocity and the suspended sediment concen-222

tration of the ith grain size class at the height z from the bed, respectively. To calcu-223

late Equations (2)–(4), the measured values were linearly interpolated to obtain the val-224

ues at evenly spaced intervals. The flow velocity and suspended sediment concentration225

were extrapolated to obtain the values outside the measured regions using linear fitting226

to the two uppermost and lowermost measurement points.227

In Run 1 of Series 1, the flow velocity could only be measured near the bed. For228

this run, the U , Ci, and h were calculated based on the following empirical relationship (Altinakar229

et al., 1996) using the values at the maximum velocity height:230

Umax

U
= 1.3, (6)

cbi
Ci

= 2, (7)

hm

h
= 0.3, (8)

where Umax denotes the maximum value in the vertical flow velocity profile, cbi denotes231

suspended sediment concentration of ith grain-size class at 0.05h, and hm denotes the232

height from the bed that is Umax.233

The layer-averaged density-equivalent sediment concentration for saline water Cs234

(hereafter the equivalent concentration) was defined as the particle concentration with235

zero settling velocity that would give the same excess density of the saline water. In Se-236

ries 1, the density of siphon-sampled saline water was measured at suspended sediment237

sampling points (Figure 3). Assuming that the submerged specific density of particles238

R (= ρs/ρf−1) is 0.49, the same as for the plastic particles, the density-equivalent sed-239

iment concentration cs is calculated as follows:240

cs =
ρsw − ρw
Rρw

, (9)

where ρw and ρsw denote densities of fresh water and saline water, respectively. In this241

study, the density of fresh water was set to 1000 kg/m3. Subsequently, the layer-averaged242

equivalent sediment concentration (Cs) was calculated by applying Equation (4) to cs.243
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2.1.4 Calculations of dimensionless parameters244

The densimetric Froude, Reynolds, particle Reynolds, Shields, and critical Shields245

numbers were calculated from the hydraulic parameters averaged over the layers. The246

densimetric Froude number, Frd, is defined as follows:247

Frd =
U√

ρt−ρw

ρw
gh

, (10)

where ρt is the density of a turbidity current. The turbidity current density ρt can be248

obtained from:249

ρt = ρsCT + ρsw(1− CT). (11)

The parameter g is the gravity acceleration.250

The Reynolds number was calculated using the following equation:251

Re =
Uh

ν
. (12)

Here, ν denotes the kinematic viscosity of water. Judging from the measured water tem-252

perature, the values of this variable were estimated to be 1.099× 10−6, 1.144× 10−6,253

and 0.896×10−6 for Run 1 and Run 2 of Series 1, and in Series 2, respectively (Nezu,254

2019). The water temperature in Spychala et al. (2020) was not provided in their study;255

therefore, the kinematic viscosity of water at 20 ◦C, 1.002×10−6, was used to calculate256

the Reynolds number (Nezu, 2019).257

The Shields number τ∗i was calculated using the following equation:258

τ∗i =
u2
∗

RgDsi
, (13)

where259

u∗ =
√
cfU. (14)

Here, where Dsi exhibits the grain diameter of sediment particles of the ith grain-size260

class. The parameter cf is the basal friction coefficient, which was calculated using the261

following equation:262

cf =

[
1

κ
ln

(
11

h

ks

)]−2

, (15)

where κ denotes the Karman constant, which was set to 0.4. The roughness height of263

the bed ks was calculated by ks = 2Ds50 using mean grain-size Ds50.264

The critical Shields number τ∗ci was calculated using the following empirical rela-265

tionship (Parker et al., 2003):266

τ∗ci =
1

2

(
0.22Re−0.6

pi + 0.06× 10−7.7Re−0.6
pi

)
, (16)

where Repi is a particle Reynolds number, which is defined as follows:267

Repi =
u∗Dsi

ν
. (17)

2.1.5 Topography and experimental deposits268

Photographs of the experimental topographies were taken before and after the run,269

and digital elevation models (DEMs) of the experimental topographies were generated270

–9–
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Figure 4. Sampling points of deposits in Series 1 and 2 conducted in this study. The white

circles indicate the sampling points. (a) Sampling points in Run 1 of Series 1. (b) Sampling

points in Run 2 of Series 1. (c) Sampling points in Run 2 of Series 2.

from these images (see details in Appendix A). The bed thickness ηT was then measured271

from the difference in elevation between the topography before and after each run.272

After the topography was photographed, the experimental deposits were sampled273

from the flume floor, where water was drained using a drainage pump. The sampling in-274

tervals were changed according to the distribution of bed thickness of the experimental275

deposits. Dense sampling was performed in areas where bed thickness changed rapidly,276

and samples were collected at sparse intervals in areas where bed thickness gradually changed.277

We collected 54 samples from the experimental deposit of Series 1 at approximately equal278

intervals (Figures 4a, 4b). The sampling interval was approximately 10 cm in the lon-279

gitudinal direction and 40–50 cm in the lateral direction. From the experimental deposit280

of Series 2, we collected 60 samples (Figure 4c). The sampling density was approximately281

10 cm intervals in the upstream region, whereas it ranged from approximately 40 to 100282

cm intervals in the downstream region.283

The sediment volume (including porosity) per unit area of ith grain-size class ηi284

was then calculated at sampling points using the following equation:285

ηi = VsiηT, (18)

where Vsi and ηT represent the sediment volume fraction of the ith grain-size class and286

bed thickness, respectively.287
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Figure 5. Measurement points of velocities and locations where bed thickness was extracted

from bed thickness distribution datasets of Spychala et al. (2020). (a) Measurement points of

flow velocities. (b) Locations at which bed thickness values were extracted from the distribution

datasets provided by Spychala et al. (2020). The extracted bed thickness values were used as

input for the inverse model.

2.2 Flume Experiment in Spychala et al. (2020)288

The flume experimental dataset of Run 1 of Series 1 in the existing study (Spychala289

et al., 2020) was also used to verify the performance of the inverse model. The exper-290

iments in Spychala et al. (2020) were conducted in Eurotank at Utrecht University, which291

has a length of 11 m and a width of 6 m. Before the experiment, a channel was created292

in the upstream region as an initial topography. The water and sediment particles were293

mixed in the mixing tank before being released into the flume. The median grain size294

of the sediment particles used in this experiment was 133µm, and the suspended sed-295

iment concentration in the mixing tank was set to 17%. A turbidity current flowed into296

the flume with a constant flow discharge of 30m3/s for 80–100 seconds. During the ex-297

periment, flow velocities were measured at 7 points using Ultrasonic Velocity Profilers298

(Figure 5a).299

The experimental flow conditions and bed thickness were obtained from the liter-300

ature (Spychala et al., 2020). The layer-averaged flow conditions were not described in Spychala301

et al. (2020); therefore, we calculated the layer-averaged values of the flow velocity and302

height from the maximum flow velocities and their measured heights using Equations303

(6) and (8). The suspended sediment concentration in the experimental flume was not304

measured in the experiment of Spychala et al. (2020). Thus, the layer-averaged suspended305

sediment concentration was not compared with the predictions in this study. The bed306

thickness was calculated from the difference between the DEMs of the experimental to-307

pography before and after the run, which were provided by Spychala et al. (2020). In308

this study, a total of 60 points were sampled from the bed thickness distribution obtained309

from the DEM and used as input for the inverse model (Figure 5b).310
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2.3 Forward Model311

This section describes the forward model of turbidity currents used to generate the312

training datasets for the inverse models. A 2D horizontal shallow-water equation model313

considering suspended sediment transport of the mixed grain-size classes was used to cal-314

culate the sediment volume per unit area of a turbidite for each grain-size class under315

the given model input parameters.316

2.3.1 Governing equations317

The model employed in this study is based on the four-equation model of turbid-318

ity currents proposed by Parker et al. (1986), which considers the momentum, mass, and319

turbulent kinetic energy conservation of the flow.320

The governing equations of the model are as follows (Naruse, 2020):321

∂h

∂t
+

∂Uh

∂x
+

∂V h

∂y
= ew

√
U2 + V 2, (19)

322

∂Cih

∂t
+

∂UCih

∂x
+

∂V Cih

∂y
= wsi(Fiesi − r0Ci), (20)

323

∂Uh

∂t
+

∂U2h

∂x
+

∂UV h

∂y
=− 1

2
Rg

∂CTh
2

∂x
+RgCTh

∂ηT
∂x

− cfU
√
U2 + V 2 + νt

(
∂2Uh

∂x2
+

∂2V h

∂y2

)
, (21)

324

∂V h

∂t
+

∂UV h

∂x
+

∂V 2h

∂y
=− 1

2
Rg

∂CTh
2

∂y
+RgCTh

∂ηT
∂y

− cfV
√

U2 + V 2 + νt

(
∂2Uh

∂x2
+

∂2V h

∂y2

)
, (22)

325

∂Kh

∂t
+

∂UKh

∂x
+

∂V Kh

∂y
=

(
cf +

1

2
ew

)
U3 − ϵ0h−RgwsiCTh

− 1

2
RgCThUew − 1

2
Rghwsi(esi − r0CT), (23)

where x and y are the horizontal bed-attached Cartesian coordinates, respectively, and326

t represents time. The parameter h denotes the flow height. Ci and CT are the suspended327

sediment concentration of ith grain-size class and the total sediment concentration, re-328

spectively. The density-equivalent sediment concentration for saline water Cs was regarded329

as one of these concentrations in this study. The parameters U and V denote the layer-330

averaged flow velocities in the x and y directions, respectively. The layer-averaged tur-331

bulent kinetic energy is represented by K. The parameter ηT denotes the bed thickness.332

The volume fraction of the ith grain-size class in the active layer is denoted as Fi, and333

the dimensionless entrainment rates of the ambient fluid and basal sediment of ith grain-334

size class are expressed by ew, esi, respectively. The parameter wsi denotes the settling335

velocity of ith grain-size of a sediment particle of the ith grain-size class. The gravity336

acceleration g was set to 9.81m/s2 in this study. The parameter cf denotes the friction337

coefficient, which was set at 0.004 and νt denotes the horizontal eddy viscosity. The pa-338

rameter r0 is the ratio of the near-bed concentration to the layer-averaged concentra-339

tion, which was set to 2.0 in this study. The dissipation rate of the layer-averaged tur-340

bulent kinetic energy K is denoted as ϵ0. Equation (19) represents the fluid mass con-341

servation, and Equation (20) represents suspended sediment mass conservation. Equa-342

tions (21) and (22) exhibit the flow momentum conservation in x and y directions. Equa-343

tion (23) exhibits turbulent kinetic energy conservation.344
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The settling and entrainment fluxes of the sediment of the ith grain size class are345

calculated by the following equation:346

∂ηi
∂t

=
wsi (r0Ci − Fiesi)

1− λp
, (24)

where ηi is the sediment volume per unit area of the ith grain-size class, λp denotes the347

porosity of the bed, which was set to 0.4 in this study. Thus, the temporal change in the348

total bed thickness ηT (i.e., deposition and erosion) is given by the Exner equation, which349

takes the following form:350

∂ηT
∂t

=
∑ ∂ηi

∂t
. (25)

The grain-size fraction Fi of the bed surface (i.e., the active layer) is required to calcu-351

late Equation (24). Assuming that the thickness of the active layer La is constant, the352

following equation denoting the mass conservation of the ith grain-size class in the ac-353

tive layer was used to obtain the temporal variation of the grain-size fraction Fi (Hirano,354

1971; Cai & Naruse, 2021; Naruse & Nakao, 2021):355

∂Fi

∂t
+

Fi

La

∂ηT
∂t

=
wsi

La (1− λp)
(r0Ci − Fiesi) . (26)

In this study, La was set to 0.003m (Cai & Naruse, 2021; Cai, 2022).356

2.3.2 Closure Equations357

The following equations were employed to close the governing equations.358

The friction velocity u∗ was assumed to be related to the turbulent kinetic energy359

K following Parker et al. (1986). This assumption leads to the following relationship (Parker360

et al., 1986):361

u2
∗ = αK. (27)

Here, the coefficient α was set to 0.6 in this study (Salinas et al., 2019).362

The mean dissipation rate of the layer-averaged turbulent kinetic energy ϵ0 is given363

by the following:364

ϵ0 = β
K1.5

h
, (28)

where365

β =
α1.5

√
cf
. (29)

The eddy viscosity νt for the horizontal diffusion term of the momentum is calcu-366

lated by the following empirical formulation:367

νt =
1

6
κu∗h. (30)

Here, κ denotes the Karman constant, which is set to 0.4.368

The settling velocity of ith grain-size class wsi was calculated by the equation of Ferguson369

and Church (2004):370

wsi =
RgD2

si

X1ν + (0.75X2RgD3
si)

0.5 . (31)

The kinematic viscosity of water ν was set to 1.099×10−6 was used in Run 1 of Series371

1, 1.144×10−6 in Run 2 in Series 1, 0.896×10−6 in Series 2, and 1.002×10−6 in Spychala372

et al. (2020) as in 2.1.4. The empirical coefficients X1 and X2 are 18.0 and 1.0, respec-373

tively.374
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The empirical formulation of the entrainment rate of ambient fluid ew takes the form (Parker375

et al., 1987):376

ew =
0.075√

1 + 718R2.4
i

, (32)

where Ri denotes the bulk Richardson number, which is defined as:377

Ri =
RgCTh

U2
. (33)

To obtain the basal sediment entrainment rate of the ith grain-size class esi, the378

following empirical relationship was employed in this study (Kostic & Parker, 2006),379

esi =
aZ5

1 + a
0.3Z

5
, (34)

Z = α1
u∗

wsi
Reα2

pi , (35)

(α1, α2) =

{
(0.586, 1.23) Repi ≤ 2.36

(1.0, 0.6) Repi > 2.36
, (36)

where a = 1.3×10−7. Repi denotes the particle Reynolds number which is defined as380

Repi =

√
RgDsiDsi

ν
. (37)

The computation of the model described above was implemented as the open-source381

software turb2d (Naruse, 2020). The turb2d employs the CIP-CUP method for the nu-382

merical scheme (Yabe & Wang, 1991), which solves the advection and pressure terms by383

the CIP and the implicit scheme, respectively. The artificial viscosity was used to sta-384

bilize the numerical results (Jameson et al., 1981; Ogata & Yabe, 1999). The wet-dry385

boundary condition was solved by the scheme of Yang et al. (2016).386

2.4 Sensitivity Tests of the Forward Model against Input Model Param-387

eters388

To check the effect of the input model parameters on the depositional features, a389

sensitivity test was conducted. Case 1 was set as the standard case, and the cases were390

created in which C0,i (Case 2), U0 (Case 6), h0 (Case 7), and Td (Case 8) of Case 1 were391

doubled, respectively (Table 2). In terms of C0,s, Cases 3, 4, and 5 used values that were392

two, four and eight times greater than that of Case 1, respectively. The other conditions393

were the same as those of Run 1 of Series 1 in this study.394

2.5 Inverse Model395

In this study, deep neural networks (DNNs) were used to perform inverse analy-396

ses to estimate the flow conditions (i.e., model parameters) from the depositional fea-397

tures. These DNNs were trained using datasets generated by the forward calculations.398

After the training, the inverse model performances were tested using the test datasets399

produced independently from the training datasets. These processes are described in de-400

tail below.401

2.5.1 Generation of Training Datasets402

The training datasets for training the inverse models were generated by the for-403

ward model calculations. The size of the calculation domain and topographic setting were404

the same as those of the experimental tank used in Series 1 and 2 in this study and Run405

1 of Series 1 in Spychala et al. (2020).406
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Table 2. Input parameters of forward model used in sensitivity test.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

C0,1 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001
C0,2 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001
C0,3 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001
C0,4 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001
C0,s 0.001 0.001 0.002 0.004 0.008 0.001 0.001 0.001
U0 (m/s) 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1
h0 (m) 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1
Td (s) 100 100 100 100 100 100 100 200

The size of the calculation domain for experimental Series 1 and 2 was set to 4.2 m407

in length and 1.9 m in width, with a grid spacing of 0.05 m. The experimental flume was408

4.5 m long, but 0.3 m from the upstream end was an inlet area, so the region was ex-409

cluded from the calculation domain. In Run 1, the flat setting with 10% slope from the410

upstream end to 1.2 m and 5% from 1.2 m to the downstream end was set as the initial411

topography. The topography measured after the end of Run 1 of Series 1 was used as412

the initial topographic setting for Run 2 of Series 1. Similarly, the topography measured413

after the end of Run 1 of Series 2 was used for Run 2 of Series 2. The representative di-414

ameters of the four grain-size classes 1–4 of suspended sediment were set to be 210 µm,415

149 µm, 105 µm, and 74.3 µm for both Series 1 and Series 2, respectively. The parame-416

ters C1, C2, C3, and C4 denote the suspended sediment concentration for these grain-417

size classes.418

To generate the training datasets for Run 1 of Series 1 in the existing study (Spychala419

et al., 2020), we used the initial topography obtained from a DEM measured before the420

experiment. The calculation domain had a length of 7.2 m from the inlet and a width421

of 1.9 m. The representative diameter of the suspended sediment was the same as the422

median diameter of the sediment particles used in the experiment, which was 133µm.423

Thus, the upstream boundary conditions of the calculation domain were the Dirich-424

let boundary condition, where the flow height h0, the flow velocity U0, the suspended425

sediment concentration of ith grain-size class C0,i, and the equivalent salt concentration426

C0,s were set to be fixed values. The inflow conditions at the upstream end were kept427

constant for Td seconds in the forward model calculation. As described above, salt wa-428

ter was not used in Series 2 performed in this study and Run 1 of Series 1 in Spychala429

et al. (2020) so that the value of C0,s was zero in the calculation domain for these Se-430

ries. The flow inlet was set to be 0.64 m in width at the upstream end in the experiments431

performed in this study and 0.45 m in Series in Spychala et al. (2020). Neumann bound-432

ary conditions were used for the right, left, and downstream boundaries, where the gra-433

dients of all variables were set to zero. In summary, the forward model requires the fol-434

lowing input parameters: h0, U0, C0,i, C0,s (only for Series 1 performed in this study),435

and Td. These parameters were subjected to the inverse analysis.436

The training, validation, and test datasets for the inverse model were generated through437

iterations of the forward model calculation. The model input parameters described above438

were randomly generated from a uniform distribution with the prescribed ranges (Ta-439

ble 3), and the forward model calculation was repeated to produce the datasets of the440

sediment volume per unit area according to the given input parameters. The combined441

datasets of the calculated deposits and the model input parameters were split into train-442

ing, validation, and test datasets, which were used to train and test the inverse model.443

In this study, the inverse models were trained using 10000 training datasets. During train-444
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ing, 20% of the training datasets were used as validation datasets. The performances of445

the inverse models were evaluated using 100 artificial test datasets generated indepen-446

dently of the training and validation datasets.

Table 3. Range of model input parameters at the inlet to generate training datasets.

Series 1 Series 2 Spychala et al. (2020)

Min value Max value Min value Max value Min value Max value

C0,i 0.0001 0.005 0.0001 0.005 0.01 0.15
C0,s 0.001 0.03 - - - -
U0 (m/s) 0.005 0.5 0.005 0.5 0.1 2.0
h0 (m) 0.01 0.5 0.01 0.5 0.01 0.5
Td (s) 30 400 30 400 30 200

447

2.5.2 Training of Deep Neural Networks448

This study employed DNNs as inverse models (Figure 6). A fully connected (dense)449

neural network was adopted as the network structure. The inputs of the DNN were the450

thickness and grain-size distributions of the turbidites deposited in the calculation do-451

main. Thus, the input values for the neural network were the volumes per unit area of452

four grain-size classes at the sampling points, and the network outputs the estimated in-453

put parameters of the forward model, including the flow height, flow velocity, sediment454

concentration for each grain size class, equivalent concentration, and flow duration. The455

equivalent concetration was excluded as the subject of inversion for Series 2 because it456

was conducted without salt water. The number of hidden layers and number of nodes457

per hidden layer were set to 4 and 4000, respectively. Rectified Linear Unit (ReLU) was458

employed as an activation function for the hidden layers for Series 1 and Series 2 con-459

ducted in this study (Nair & Hinton, 2010), In the run in Spychala et al. (2020), the sed-460

iment volume per unit area could be negative because the velocity of the current was very461

fast, and the current could erode the bed sediment. Therefore, when the input is neg-462

ative, the use of ReLU may lead to vanishing gradients. Thus, Exponential Linear Unit463

(eLU) (Clevert et al., 2016), which produces non-zero outputs even for negative inputs,464

was used as an activation function for the hidden layer. The activation function in the465

output layer was ReLU in all experiment. These neural networks were implemented us-466

ing Python 3.7 and TensorFlow 2.4.1.

η4Turbidite

η1

η2

η3

η4

η1

η2

η3

Sampling of deposit

Sediment volume per unit area 
of each grain-size class

Inlet

Concentration C0,i

Flow 
velocity U0

Flow duration Td

Equivalent concentration C0,s

Flow 
height h0

Figure 6. Schematic diagram of the inverse model structure. The inverse model takes as

input the sediment volumes per unit area for each grain-size class at the sampling points. The

outputs are the estimated model input parameters.
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The training conditions were as follows. All hyperparameters for training were de-467

termined by trial and error. The Mean Squared Error (MSE) was employed as a loss func-468

tion, and Adagrad was used as the optimizer of weight coefficients (Duchi et al., 2011).469

To prevent overlearning, the dropout method was employed (Srivastava et al., 2014), which470

deactivates 50% of the nodes randomly during training for Series 1 and Series 2 performed471

in this study, and 30% of the nodes deactivates for Spychala et al. (2020). The batch size472

and learning rate were set to 64 and 0.032, respectively. Under these conditions, the DNNs473

were trained for 10,000 epochs.474

2.5.3 Test of Inverse Models475

The inverse models were tested using 100 test datasets generated independently476

of the training datasets. The root mean squared error (RMSE), the bias (b) and sym-477

metric mean absolute percentage error (SMAPE) were calculated for each model input478

parameter to evaluate the inverse model predictions. The RMSE, b, and SMAPE were479

defined as follows:480

RMSE =

√
1

N

∑
i

(ypi − yi)
2
, (38)

b =
1

N

∑
i

(ypi − yi) , (39)

SMAPE =
100

N

∑
i

2|yi − ypi|
|yi|+ |ypi|

, (40)

where N denotes the number of test datasets. The variables yi and ypi denote true and481

model-predicted values, respectively.482

2.6 Inversion of experimental deposits483

The inverse models developed in this study were applied to the experimental de-484

posits to evaluate the performance of the inverse model for actual turbidity currents and485

reconstruct the experimental flow conditions and horizontal two-dimensional distribu-486

tion of deposits. Inverse analyses were performed on three experimental deposits formed487

by experiments in this study (Runs 1 and 2 of Series 1 and Run 2 of Series 2) and one488

deposit formed in Spychala et al. (2020) by inputting the sediment volume per unit area489

of each grain-size class at the sampling points.490

To obtain the flow conditions at the measurement point, forward calculations were491

performed using the model input parameters estimated by the inverse models. The es-492

timated layer-averaged flow velocities, suspended sediment concentrations, flow heights,493

and flow durations were compared with the measured values to verify the performance494

of the inverse models. The verification of inverse models was based on the SMAPE and495

normalized percentage error (NPE). The NPE was calculated using the following equa-496

tion:497

NPE = 100× 2|ym − yp|
|ym|+ |yp|

. (41)

Here, ym and yp denote the measured and predicted values, respectively. Regarding the498

flow duration Td reported by Spychala et al. (2020), which ranged from 80 to 100 sec-499

onds, the SMAPE and NPE were calculated using both the minimum and maximum val-500

ues.501

The distributions of bed thickness obtained from numerical calculations using the502

predicted model input parameters were compared with the measured bed thickness. In503

this study, the calculations were conducted with a grid spacing of 0.05 m, so variations504
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of bed thickness with wavelengths smaller than this could not be reproduced. Accord-505

ingly, the comparisons between the predicted and measured bed thickness were performed506

at 0.05 m intervals.507

3 Results508

3.1 Experimental flow behaviors and topographic features509

The experimental turbidity currents flowed downstream from the inlet and later-510

ally spread. The heights of the currents increased as they flowed downstream due to the511

entrainment of ambient fluid. The turbidity current reached the downstream end at 23512

and 28 seconds after the initiation of the flow injection in Runs 1 and 2 of Series 1. On513

the other hand, it took 180 seconds for the flow to reach the downstream end in Run 2514

of Series 2. Each flow was maintained at a constant flow discharge for a specified period,515

and no significant changes in the flow behaviors were observed during the experiments516

after they reached the downstream end.517

The topographies developed from the experimental turbidity currents differed sig-518

nificantly between experimental Series 1 and 2. In Series 1, a channel-levee-like topog-519

raphy was developed, where the erosional depression was located near the flow inlet, and520

lobate deposits were formed in the downstream area. In contrast, the topography in Se-521

ries 2 was smooth and exhibited no depressions around the flow inlet. In all runs, it was522

difficult to distinguish the influence of those topographies on the flow behavior with the523

naked eye. The ripples were observed in the experimental deposits in all runs. In Run524

1 and Run 2 of Series 1, the ripples were formed on the lobe deposits in the downstream525

area, whereas they were observed in the upstream area near the flow inlet in Series 2.526

3.2 Measured profiles of experimental turbidity currents527

In all velocity profiles at the measured point (Figure 3), the flow velocities increased528

upward above the bottom surface, and after it reached the maximum velocity, the ve-529

locities subsequently decreased upward gradually (Figures 7a, 7c, 7e). The maximum flow530

velocities were observed at a height of 0.06 m in Run 1 of Series 1 and 0.0405 m above531

the bed in Series 1, while they were observed at a height of 0.0201 m above the bed in532

Series 2 (Figures 7a, 7c, 7e). The maximum velocity in Run 1 and Run 2 of Series 1 were533

0.288 m/s and 0.393 m/s, respectively. In Run 1 of Series 2, the flow velocity was lower534

than that of Series 1, which was 0.0902 m/s.535

The layer-averaged flow velocity U was estimated from the measured velocity pro-536

files, which were 0.222 m/s in Run 1 of Series 1 and 0.254 m/s in Run 2 of Series 1 (Ta-537

ble 4). The layer-averaged flow velocity in Run 2 of Series 2 was lower than in Series 1,538

which was 0.0506 m/s (Table 4). The flow heights h were also calculated as 0.2 m, 0.254 m,539

and 0.200 m in Runs 1 and 2 of Series 1 and Run 1 of Series 2, respectively (Table 4).540

The suspended sediment concentration at the measured points in all runs exhib-541

ited an exponential decrease upward (Figures 7b, 7d, 7f). The maximum values of to-542

tal suspended sediment concentration recorded at the lowest elevation (1 cm above the543

bed) in Runs 1 and 2 of Series 1 were 0.00482 and 0.00344, respectively. In Run 1 of Se-544

ries 2, the maximum value of suspended sediment concentration was 0.00515.545

The layer-averaged values of total suspended sediment concentrations CT were the546

same order of magnitude in all experimental series (Table 4). The Runs 1 and 2 of Se-547

ries 1 were 2.41×10−3 and 1.90×10−3 in the layer-averaged concentration, respectively.548

The layer-averaged total concentration was 1.38× 10−3 in Run 1 of Series 2.549

Focusing on the layer-averaged concentration by grain size, Runs of Series 1 showed550

that the concentration increased with larger grain size (Table 4). The layer-averaged con-551
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Figure 7. Vertical velocity and concentration profiles. (a) Time-averaged vertical velocity

profile in Run 1 of Series 1. (b) Suspended sediment concentration profile in Run 1 Series 1. (c)

Time-averaged vertical velocity profile in Run 2 of Series 1. (d) Suspended sediment concentra-

tion profile in Run 2 of Series 1. (e) Time-averaged vertical velocity profile in Run 2 of Series 2.

(f) Suspended sediment concentration profile in Run 2 of Series 2.
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Table 4. Layer-averaged flow conditions of flume experiments conducted in this study.

Series 1 Series 2

Run 1 Run 2 Run 2

C1 9.66× 10−4 5.71× 10−4 5.87× 10−5

C2 6.81× 10−4 4.65× 10−4 4.08× 10−4

C3 5.54× 10−4 4.78× 10−4 5.50× 10−4

C4 2.08× 10−4 3.87× 10−4 3.64× 10−4

CT 2.41× 10−3 1.90× 10−3 1.38× 10−3

Cs 5.20× 10−3 7.43× 10−3 -
U (m/s) 0.222 0.254 0.00501
h (m) 0.2 0.168 0.420

centration of the largest grain size class (210µm) were 9.66×10−4, while the layer-averaged552

concentration of smallest grain size class (74.3 µm) was 2.08×10−4. In contrast, the con-553

centrations of Series 2 showed no clear trend, with the layer-averaged values ranging from554

5.87× 10−5 for C1 to 5.50× 10−4 for C3.555

3.3 Dimensionless parameters of the experimental flows556

The calculated dimensionless parameters Frd and Re indicated that all experimen-557

tal turbidity currents were fully turbulent and supercritical flows (Tables 5, 6). The den-558

simetric Froude numbers Frd of Runs 1 and 2 of Series 1 conducted in this study were559

3.13 and 3.68, respectively. Although these values were slightly larger than that of Se-560

ries 2, which was 1.62, Frd of all runs were significantly larger than unity. In addition,561

the Reynolds numbers Re ranged from 2080 to 46400, indicating that all experimental562

turbidity currents in this study and Spychala et al. (2020) were fully turbulent.563

The Shields numbers τ∗i and particle Reynolds number Repi showed that the re-564

suspension of the transported sediment hardly occurred at around the measurement points565

in the experiments conducted in this study (Table 5). The particle Reynolds numbers566

Repi were smaller than 5 in experimental runs in this study, indicating that these runs567

were performed under hydraulically smooth conditions (Garcia, 2008). The Shields num-568

bers of ith grain-size classes τ∗i in Series 1 ranged from 0.0465–0.132, which were slightly569

smaller than the threshold for motion (the critical Shields number τ∗ci). In addition, the570

Shields numbers τ∗i in Series 2 were significantly smaller than the critical Shields num-571

ber.572

In the experiment in Spychala et al. (2020) whose datasets were utilized in this study,573

the resuspension of the bed sediment could occur in the area along the central line of the574

flow. The Shields number τ∗ was larger than τ∗c near the Points 4–7 which were near the575

center of the flume, while τ∗ was smaller than τ∗c Points 1–3 near the edge of flume (Fig-576

ure 5a, Table 6). The particle Reynolds numbers Repi ranged from 0.628 to 4.43, indi-577

cating that the flow regime was hydraulically smooth, as was the case in the runs con-578

ducted in this study.579

3.4 Influence of input model parameters on depositional features580

The numerical experiments indicated that the input parameters C0,i, U0, h0, and581

Td significantly affect the depositional features of the experimental turbidity currents.582

Case 2 (two times greater than C0,i in Case 1) resulted in preferential deposition around583

the upstream region of the calculation domain, which was significantly thicker than that584

of Case 1 (standard case) (Figures 8a, 8b, 9). The flow velocity U0 also largely affected585
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Table 5. Densimetric Froude number, Reynolds number, Particle Reynolds number, Shields

number, and critical Shields number in the experiments.

Series 1 Series 2

Run 1 Run 2 Run 2

Frd 3.12 3.68 1.62
Re 40300 37500 13100
Rep1 1.93 2.12 0.532
Rep2 1.37 1.50 0.377
Rep3 0.962 1.06 0.266
Rep4 0.681 0.749 0.188
τ∗1 0.0465 0.0424 0.00509
τ∗2 0.0656 0.0598 0.00718
τ∗3 0.0931 0.0849 0.0102
τ∗4 0.132 0.120 0.0144
τ∗c1 0.0742 0.0701 0.161
τ∗c2 0.0912 0.0862 0.197
τ∗c3 0.1125 0.106 0.244
τ∗c4 0.138 0.131 0.300

Table 6. Reynolds number, particle Reynolds number, Shields number, and critical Shields

number in the experiment in Spychala et al. (2020).

Spychala et al. (2020)

Point 1 Ponit 2 Point 3 Point 4 Point 5 Point 6 Point 7

Re 2080 3940 16300 46400 20200 14000 9750
Rep 0.628 0.870 2.11 4.43 3.26 2.12 1.57
τ∗ 0.0104 0.0200 0.118 0.517 0.280 0.118 0.0650
τ∗c 0.145 0.120 0.0703 0.451 0.0541 0.0702 0.0839
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the bed thickness. When U0 was doubled (Case 6), the sediment was almost bypassed586

near the inlet, and the bed thickness was extremely thinner than that of Case 1 from the587

inlet to 0.9 m (Figures 8f, 9).588

On the other hand, when the flow duration Td was changed, the geometry of the589

deposits remained unchanged, but the overall thickness varied, which was clearly indi-590

cated in the result of Case 8 (Figures 8a, 8h, 9). The calculation result was slightly less591

sensitive to the flow height h0 (Case 7) than other parameters, such as C0,i, U0 and Td.592

Nevertheless, the bed geometry distinctively differed from the base case (Case 1) when593

h0 was doubled (Figures 8a, 8g, 9).594

In contrast, the equivalent salt concentration C0,s did not significantly affect the595

turbidite bed geometry compared with the other input parameters (Figures 8c, 8d, 8e,596

9). Even though the parameter C0,s increased twice or four times greater than that of597

Case 1, Cases 3 and 4 produced almost the same profiles of bed thickness as Case 1. Case598

5, which set C0,s to eight times greater than that of Case 1, produced a slightly thinner599

deposit than that of Case 1, but the difference in bed thickness between Cases 1 and 5600

was not significant.601

3.5 Training and Tests of Inverse Models602

The DNN models were sufficiently trained without significant overlearning (Fig-603

ure 10). In the training histories of all DNN models, the validation loss decreased in tan-604

dem with the training loss. The value of the loss function decreased rapidly in the first605

1000 epochs, and the learning curve became almost flat after 8000 epochs.606

The DNN model predictions for the test datasets indicated that the developed in-607

verse models precisely estimated the flow conditions, including the suspended sediment608

concentrations C0,i, flow velocity U0, flow height h0, and flow duration Td (Figures 11,609

12, 13, 14; Tables 7, 8, 9). The flow height h0 and flow duration Td were reproduced with610

high accuracy, showing the range of SMAPE from 13.9% to 24.8% and from 18.5% to611

23.6%, respectively (Figures 11g–11h, 12g–12h, 13f–13g, 14c–14d; Tables 7, 8, 9). Re-612

garding the biases, the estimated flow duration was slightly underestimated in all runs.613

The suspended sediment concentrations C0,i were also estimated with small SMAPEs,614

ranging from 17.6% to 28.4% (Figures 11a–11d, 12a–11d, 13a–11d, 14a; Tables 7, 8, 9).615

The RMSEs and biases of C0,i ranged from 10−5 to 10−4 in Series 1 and Series 2 per-616

formed in the present study, and the RMSE and bias were 0.0134 and -0.00232, respec-617

tively, in Spychala et al. (2020) (Tables 7, 8, 9). The flow velocity U0 was well estimated,618

with SMAPE values ranging from 15.0% to 32.5%, and RMSEs of U0 were 0.0489 m/s619

or less (Figures 11f, 12f, 13e, 14b; Tables 7, 8, 9).620

In contrast, estimating the equivalent concentration C0,s was difficult compared with621

the other parameters (Figures 11e, 12e, Table 7). The SMAPE values of C0,s in Run 1622

and Run 2 of Series 1 were 71.2% and 66.0%, respectively. These corresponded to RM-623

SEs of 5.45× 10−3 and 1.06× 10−3, respectively.624

3.6 Experimental Verification of Inverse Models625

The inverse models developed in this study estimated the flow conditions of exper-626

imental turbidity currents from deposits within reasonable ranges (Figure 15; Tables 10,627

11, 12, 13). The SMAPE values showed that the layer-averaged flow velocities U were628

most accurately reproduced, with a SMAPE of 51.7% (Table 14). The flow heights h and629

flow durations Td were also estimated with reasonable accuracy. The normalized per-630

centage errors of h and Td were 15.7%–90.4% and 38.5%–86.3%, respectively (Tables 11,631

12, 13). The SMAPE of the suspended sediment concentrations of ith grain-size class632

Ci and the total suspended sediment concentration CT were also estimated reasonably,633

but were slightly larger than those of the other flow conditions. In addition, the normal-634
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Figure 8. Horizontal two-dimensional distribution of deposits obtained from the sensitivity

test. (a) Bed thickness of Case 1. (b) Bed thickness of Case 2. (c) Bed thickness of Case 3. (d)

Bed thickness of Case 4. (e) Bed thickness of Case 5. (f) Bed thickness of Case 6. (g) Bed thick-

ness of Case 7. (h) Bed thickness of Case 8.
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Table 7. RMSE, bias, and SMAPE of testing results of the inverse model for Series 1.

Series 1

Run 1 Run 2

RMSE Bias SMAPE RMSE Bias SMAPE

C0,1 7.34× 10−4 1.33× 10−5 28.2% 5.72× 10−4 4.37× 10−5 28.0%
C0,2 6.43× 10−4 −2.65× 10−4 28.0% 5.19× 10−4 7.97× 10−5 17.8%
C0,3 5.84× 10−4 −1.64× 10−5 19.1% 6.23× 10−4 1.12× 10−4 17.6%
C0,4 5.45× 10−4 −1.11× 10−4 26.1% 5.98× 10−4 −7.15× 10−5 22.0%
C0,s 5.45× 10−3 −1.38× 10−4 71.2% 4.19× 10−3 1.06× 10−3 64.6%
U0 0.0443 m/s -0.0123 m/s 32.5% 0.0489 m/s 1.09× 10−4 m/s 26.0 %
h0 0.0637 m 0.0107 m 22.0% 0.0528 m -0.00579 m 24.8%
Td 50.7 s -20.3 s 23.6% 40.0 s -18.2 s 18.5%

Table 8. RMSE, bias, and SMAPE of testing results of the inverse model for Series 2.

Series 2

Run 2

RMSE Bias SMAPE

C0,1 4.90× 10−4 8.52× 10−5 18.0%
C0,2 4.11× 10−4 5.93× 10−5 19.5%
C0,3 5.60× 10−4 9.75× 10−5 19.1%
C0,4 5.19× 10−4 9.14× 10−5 28.4%
U0 0.0383 m/s 3.16× 10−4 m/s 20.4%
h0 0.0337 m -0.00476 m 13.9%
Td 51.1 s -34.1 s 22.9%

Table 9. RMSE, bias, and SMAPE of testing results of the inverse model for Run 1 of Series 1

in Spychala et al. (2020).

Spychala et al. (2020)

RMSE Bias SMAPE

C0,1 0.0134 -0.00232 22.1%
U0 0.123 m/s -0.00315 m/s 15.0%
h0 0.0266 m -0.00631 m 14.7%
Td 20.3 s -13.8 s 22.5%
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Figure 11. Test results of inverse model for Run 1 of Series 1. Each figure shows the esti-

mation accuracy of the input parameters of the forward model. (a)–(d) Suspended sediment

concentration of each grain-size class at the inlet. (e) Equivalent concentration at the inlet. (f)

Flow velocity at the inlet. (g) Flow height at the inlet. (h) Flow duration.
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Figure 12. Test results of inverse model for Run 2 of Series 1. Each figure shows the esti-

mation accuracy of the input parameters of the forward model. (a)–(d) Suspended sediment

concentration of each grain-size class at the inlet. (e) Equivalent concentration at the inlet. (f)

Flow velocity at the inlet. (g) Flow height at the inlet. (h) Flow duration.
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Figure 13. Test results of inverse model for Run 2 of Series 2. Each figure shows the esti-

mation accuracy of the input parameters of the forward model. (a)–(d) Suspended sediment

concentration of each grain-size class at the inlet. (e) Flow velocity at the inlet. (f) Flow height

at the inlet. (g) Flow duration.
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Figure 14. Test results of inverse model for Spychala et al. (2020). Each figure shows the

estimation accuracy of the input parameters of the forward model. (a) Suspended sediment con-

centration of particles with 133µm at the inlet. (b) Flow velocity at the inlet. (c) Flow height at

the inlet. (d) Flow duration.
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ized percentage errors of Ci ranged from 4.98% to 157%, which took a wider range of635

values than the other flow conditions (Tables 11, 12, 13).636

Table 10. Model input parameters estimated by the inverse model applied to flume experi-

ments.

Series 1 Series 2

Run 1 Run 2 Run 2 Spychala et al. (2020)

C0,1 0.00303 0.00365 0.00275 0.119
C0,2 0.00285 0.00287 0.00192 -
C0,3 0.00437 0.00310 0.00177 -
C0,4 0.00310 0.00176 0.000579 -
C0,s 0.0201 0.000101 - -
U0 (m/s) 0.300 0.410 0.00501 0.781
h0 (m) 0.0789 0.0654 0.420 0.0939
Td (s) 188 285 404 54

Table 11. Comparison of measured and predicted flow conditions by inverse model in Series 1.

Run 1 Run 2

Measured Predicted NPE (%) Measured Predicted NPE (%)

C1 9.66× 10−4 1.37× 10−3 34.9 5.71× 10−4 1.78× 10−3 102.7
C2 6.81× 10−4 1.49× 10−3 74.4 4.65× 10−4 1.42× 10−3 101.4
C3 5.54× 10−4 2.41× 10−3 125 4.78× 10−4 1.55× 10−3 105.5
C4 2.08× 10−4 1.73× 10−3 157 3.87× 10−4 8.77× 10−4 77.6
CT 2.41× 10−3 7.00× 10−3 97.6 1.90× 10−3 5.62× 10−3 98.5
U (m/s) 0.222 0.196 12.2 0.254 0.185 31.8
h (m) 0.2 0.0754 90.4 0.168 0.143 16.4
Td (s) 116 188 47.3 113 285 86.3

In addition, the distributions of the experimental deposits were generally recon-637

structed well for Run 1 of Series 1, Run 2 of Series 2 of the present study, and Run 1 of638

Series 1 of the existing study; however, the reconstruction of Run 2 of Series 1 in this639

study was more challenging, as the condition was nearly bypassing flow (Figure 16, 17,640

18, 19).641

In Run 1 of Series 1, the channel-levee-like geomorphology was produced in both642

experimental and predicted topography (Figures 16a, 16b). As seen in the longitudinal643

section (along the A-A’ line in Figure 16b), the topographic depression where almost no644

deposition occurred in the upstream area was well reproduced in the numerical predic-645

tion (Figure 16c). The predicted thick lobate deposits in the downstream region also matched646

the experimental result (Figure 16c). In addition, the cross-section (along the B-B’ line647

in Figure 16b) showed similarity between the experimental and predicted topographies.648

The bed thickness was minimal in the central area, while two peaks were observed on649

both sides (Figure 16d).650

The predicted topography for Run 2 of Series 2 also precisely reproduced the mea-651

sured bed thickness (Figures 18a, 18b). The predicted bed thickness along the longitu-652

dinal profile (A-A’ line in Figure 18b) agreed well with the measured bed thickness. It653

reproduced the characteristic of being thicker in the upstream region and thinner in the654
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Figure 15. Measured and predicted flow conditions. The horizontal and vertical axes are

the original and predicted values, respectively. A smaller deviation from the diagonal black line

indicates a smaller error between the predicted and measured values. (a) Flow velocity. (b) Sus-

pended sediment concentration. (c) Flow height. (d) Flow duration.

–31–



manuscript submitted to JGR: Machine Learning and Computation

Table 12. Comparison of measured and predicted flow conditions by inverse model in Series 2.

Measured Predicted NPE (%)

C1 5.87× 10−5 3.96× 10−4 152
C2 4.08× 10−4 5.97× 10−4 37.6
C3 5.50× 10−4 8.65× 10−4 44.6
C4 3.64× 10−4 3.35× 10−4 8.38
CT 1.38× 10−3 2.19× 10−3 45.6
U (m/s) 0.0587 0.120 68.7
h (m) 0.200 0.0880 77.6
Td (s) 230 404 54.8

Table 13. Comparison of measured and predicted flow conditions by inverse model in Spychala

et al. (2020). The flow duration was reported as a range in Spychala et al. (2020), so the NPE

is also calculated as a range. The subscript of number indicates the measurement point in the

experiment (Figure 5).

Measured Predicted NPE (%)

U1 (m/s) 0.0823 0.248 100
U2 (m/s) 0.118 0.353 99.4
U3 (m/s) 0.306 0.575 61.0
U4 (m/s) 0.665 0.924 32.6
U5 (m/s) 0.461 0.711 42.7
U6 (m/s) 0.302 0.419 32.7
U7 (m/s) 0.222 0.381 52.6
h1 (m) 0.0253 0.0643 86.9
h2 (m) 0.0333 0.0590 55.6
h3 (m) 0.0533 0.0679 24.0
h4 (m) 0.0700 0.132 61.6
h5 (m) 0.0440 0.0777 55.3
h6 (m) 0.04467 0.0959 69.1
h7 (m) 0.0440 0.0741 51.0
Td (s) 80–100 54 38.5–59.4

Table 14. SMAPE values of predicted flow conditions from experimental deposits in the

present study and in Cai and Naruse (2021).

C1 C2 C3 C4 CT U h Td

This study 85.4 64.5 80.6 86.2 66.7 51.7 58.1 56.7–62.0
Cai and Naruse (2021) 113 78.3 76.2 93.7 85.5 24.2 24.7 43.1
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downstream region (Figure 18c). The predicted bed thickness along the cross-section (B-655

B’ line in Figure 18b) also reproduced the feature of measured bed thickness, whose dis-656

tribution exhibited a thicker deposit in the center, thinning laterally (Figure 18d).657

The depositional feature observed in the experiment by Spychala et al. (2020) was658

also reconstructed well (Figure 19). The horizontal two-dimensional distribution of bed659

thickness was successfully predicted, including the eroded area inside the upstream chan-660

nel and thick deposit at the channel terminus (Figures 19a, 19b). The bed thickness along661

the longitudinal section (A-A’ line in Figure 19b) approximates the measured bed thick-662

ness (Figure 19c), and the cross section (B-B’ line in Figure 19b) accurately captured663

the feature of the measured bed thickness, characterized by a thick deposit at the cen-664

ter and thinner deposits towards the edges (Figure 19d).665

It was more challenging to reconstruct the distribution of the bed thickness in Run666

2 of Series 1 than those in the other runs, while the channel-levee-like geomorphology667

was reproduced in the predicted topography (Figures 17a, b). The thicker deposits at668

the downstream area of the bypass zone occurred in both the measured and predicted669

results (Figures 17a–17d). Meanwhile, the predicted bed thickness was overestimated,670

more than ten times thicker than the measured values of bed thickness (Figure 17), which671

were 0–5 mm.672

4 Discussion673

4.1 Inverse Model Performance Verified with Artificial Datasets674

The inverse models developed in this study were able to estimate the model input675

parameters with reasonable accuracy. The inversion results were particularly precise in676

the reconstruction of the suspended sediment concentration C0,i, flow velocity U0, flow677

height h0, and flow durations Td.678

The inverse model performance proved that the characteristics of turbidites are sen-679

sitive to these flow conditions of turbidity currents. Indeed, the sensitivity tests of the680

forward model, as well as previous studies, suggested that these parameters have a sub-681

stantial influence on the depositional features (Figures 8, 9), consistent with the inver-682

sion verification results. In the sensitivity test, increasing the suspended sediment con-683

centration at the inlet and extending the flow duration resulted in a thick deposition near684

the inlet. The same trend was observed in experimental runs in past studies (e.g., Gar-685

cia, 1994). The experiments in Poppeschi et al. (2023) exhibited that a high flow veloc-686

ity at the inlet caused a large bypass zone near the inlet, as observed in the sensitivity687

test in this study. In Ge et al. (2018), three-dimensional simulations of turbidity currents688

were performed on a field scale. Their results indicated that the deposit thickness increases689

as the flow height increases. Judging from the geomorphological responses to the flow690

conditions of the experimental and field-scale currents, the inverse modeling approach691

proposed in this study can be expected to estimate those hydraulic conditions from the692

actual turbidites within a reasonable range of errors.693

The only parameter that was challenging to estimate was the equivalent sediment694

concentration for saline water C0,s, which served as an analog to washloads in the ac-695

tual flows. Reconstruction of this parameter exhibited larger errors than the other pa-696

rameters (Figures 11e, 12e; Table 7), consistent with the sensitivity test exhibiting that697

the saline density is less influential on the depositional characteristics, as shown in Fig-698

ures 8c–8e and 9. Although the washloads, which are fine-grained and do not remain as699

sediment, affect the flow dynamics in terms of fluid density, they have a negligible effect700

on the topography. The actual turbidity currents that transport fine-grained materials701

and have high flow velocities often bypass the upstream regions without deposition (Peakall702

et al., 2000; Rowland et al., 2010; Stevenson et al., 2013). Thus, inverse models inevitably703

fail to accurately estimate conditions for bypassing flows.704
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Figure 16. Measured and predicted bed thickness of Run 1 of Series 1. (a) 2D horizontal

distribution of the measured deposit. (b) 2D horizontal distribution of the predicted deposit. (c)

A-A’ cross-section of the predicted and measured bed thicknesses. (d) B-B’ cross-section of the

predicted and measured bed thicknesses.
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Figure 17. Measured and predicted bed thickness of Run 2 of Series 1. (a) 2D horizontal

distribution of the measured deposit. (b) 2D horizontal distribution of the predicted deposit. (c)

A-A’ cross-section of the predicted and measured bed thicknesses. (d) B-B’ cross-section of the

predicted and measured bed thicknesses.
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Figure 18. Measured and predicted bed thickness of Run 2 of Series 2. (a) 2D horizontal

distribution of the measured deposit. (b) 2D horizontal distribution of the predicted deposit. (c)

A-A’ cross-section of the predicted and measured bed thicknesses. (d) B-B’ cross-section of the

predicted and measured bed thicknesses.
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Figure 19. Measured and predicted bed thickness of Spychala et al. (2020). (a) 2D horizontal

distribution of the measured deposit. (b) 2D horizontal distribution of the predicted deposit. (c)

A-A’ cross-section of the predicted and measured bed thicknesses. (d) B-B’ cross-section of the

predicted and measured bed thicknesses.
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4.2 Inversion of Experimental Turbidity Currents705

The proposed two-dimensional inverse model of turbidity currents demonstrated706

reasonable performance even over complex topography, in contrast to the previous one-707

dimensional models (e.g., Cai & Naruse, 2021), which were limited to flat topography.708

The SMAPE values of Ci and CT (64.5%–86.2%) were lower than those of the previous709

1D inverse model developed by Cai and Naruse (2021) (76.2% –113%). The SMAPE val-710

ues of the flow velocity U , flow height h, and flow duration Td in this study (51.7 to 62.0%)711

were also nearly equivalent to those in the previous study (24.2–43.1%). These results712

highlight the practical applicability and improved robustness of the proposed 2D inverse713

model in reconstructing turbidity current dynamics over complex seabed topography.714

The possible origins of the estimation errors were the measurement accuracy of the715

experimental conditions. The extrapolation of vertical profiles of the parameters to ob-716

tain the layer-averaged flow conditions can also potentially cause measurement errors.717

This study also estimated the layer-averaged flow velocities and flow heights in Run 1718

of Series 1 and the experiment of Spychala et al. (2020) using the empirical formula pro-719

posed by Altinakar et al. (1996) (Equation 6 and 8). However, (Sequeiros et al., 2010)720

pointed out that the ratio Umax/U and hm/h in supercritical flows ranges from 1.36 to721

1.60 and 0.165 to 0.628, respectively, which can cause the measurement uncertainty rang-722

ing from -4.41% to -18.7% in flow velocities and from -52.2% to 81.8% in flow heights.723

The predictions in the layer-averaged concentrations tend to exhibit larger errors at the724

grain size classes with very low concentrations (e.g., C3 and C4 in Run 1 of Series 1, and725

C1 in Run 2 of Series 2). These errors could be attributed to the difficulty in measur-726

ing small sample amounts in siphon-sampled specimens.727

The uncertainties of the forward model can also contribute to the difference between728

the predicted and measured values. The four-equation model employed in this study as-729

sumed that the values of flow velocity, suspended sediment concentration, and turbu-730

lent kinetic energy are constant in the region 0 ≤ z ≤ h (i.e., “top-hat” assumption) (Parker731

et al., 1987). However, Parker et al. (1986) indicated that the shape factors obtained from732

the experimental flow differed from the values (unity or zero) assumed in the model by733

-38% to 18%. The other experimental studies (Parker et al., 1987; Islam & Imran, 2010;734

Sequeiros et al., 2010) also obtained values that deviated from the top-hat assumption,735

ranging from -54% to 45%. Skevington and Dorrell (2025) reported that the shape fac-736

tors obtained from experimental and natural turbidity currents datasets were concen-737

trated in significantly different values from the top-hat assumption. The shape factor,738

with an extensive range of measurements, is r0, which is defined as the ratio of the near-739

bed sediment concentration to the layer-averaged concentration. This value affects the740

settling rates of sediment. This study set this parameter to be 2.0 based on Kostic and741

Parker (2006), while Skevington and Dorrell (2025) showed that r0 can take a range from742

about 0.8 to 5.0. As pointed out by Dorrell et al. (2014), these shape factors affect the743

model predictions of all flow parameters. A numerical model of turbidity currents that744

considers arbitrary shape factors Skevington and Dorrell (2025) is expected to overcome745

these issues, thereby improving the performance of the inverse model in future studies.746

Despite various potential sources of uncertainty in measurements and modeling de-747

scribed above, the inverse model developed in this study effectively estimated flow con-748

ditions within an acceptable margin of error (SMAPE < 100%), demonstrating its suit-749

ability for reconstructing approximate turbidity current dynamics from depositional records.750

4.3 Reproducibility of depositional features from inversion results751

The inverse models developed in this study successfully reconstructed the exper-752

imental depositional features from the estimated model input parameters, proving that753

the model adequately captured the flow morphodynamic behaviors. The predicted bed754

thickness distributions approximated most of the experimental results except for Run755
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1 of Series 2 (Figures 16, 17, 18, 19). Fine topographic features, such as ripples, were not756

reproduced because the shallow water equations employed in the forward model of this757

study average velocity and suspended sediment concentration in the depth direction, as-758

suming the long-wave approximation for flow dynamics. In addition, two mounds were759

formed in the upstream region of Run 2 of Series 2, but the model did not reproduce them.760

These mounds were caused by the heterogeneous distribution of the flow velocity in the761

width direction at the inlet (Poppeschi et al., 2023), which was not considered in the model762

calculations.763

The discrepancy between the predicted and measured bed thickness in Run 2 of764

Series 1 was probably caused by the bypassing conditions of the flow. The bed thickness765

of this experiment was only about 1 mm on average; thus, the sediment was almost by-766

passed. Under such conditions, accurately reproducing the flow conditions and the ge-767

ometry of the deposits would not be easy even with an adequately trained inverse model.768

This result is consistent with the testing results of the artificial datasets discussed in Sec-769

tion 4.1, indicating that inverse analysis is difficult if the suspended sediment is not suf-770

ficiently preserved in the deposit, as pointed out in a previous study (Naruse & Nakao,771

2021).772

The inversion framework proposed in this study can potentially be utilized for es-773

timating the spatial distribution of ancient deposits. Indeed, the inverse model predicted774

the two-dimensional distribution of bed thickness only from the limited sampling points.775

In general, it is challenging to estimate spatial distributions of ancient turbidites because776

of the limited number of available outcrops and coring sites. However, suppose the paleo-777

hydraulic conditions of turbidity currents are estimated by inverse analysis, the forward778

model can reconstruct the flow behavior of turbidity currents outside the surveyed area,779

thereby obtaining the entire geometry of turbidites. Such estimates of the distributions780

of coarse-grained deposits are essential for addressing the economic demands of carbon781

capture and storage and hydrocarbon exploration (Nyg̊ard et al., 2006; Maiorana et al.,782

2024).783

4.4 Applicability to Field Data784

Although the two-dimensional inverse model proposed in this study was applied785

to turbidity currents flowing over complex topography, no significant performance degra-786

dation was observed compared to the one-dimensional inverse model in the previous study (Cai787

& Naruse, 2021), which considers turbidity currents flowing on a flat bed in a straight788

channel. Therefore, the inverse model developed in this study can be applied to the cur-789

rents flowing over the natural complex topography at the deep-sea floor, such as the trench790

slope at an active margin and the minibasins formed by salt diapirs at a passive mar-791

gin.792

The DNN-based 2D inverse model developed in this study is more efficient and yields793

reasonable results for field data than other optimization methods. Most previous stud-794

ies have employed optimization methods that require iterative computation for inverse795

analyses of gravity currents, such as the genetic algorithm (Nakao et al., 2020), the Markov796

Chain Monte Carlo method (Moretti et al., 2020; Kameda & Okamoto, 2021), the sur-797

rogate management method (Lesshafft et al., 2011), and the adjoint method (Parkinson798

et al., 2017). However, these optimization methods have high computational loads be-799

cause they require many iterations. In addition, the results of the optimization meth-800

ods are not always reasonable. For example, Parkinson et al. (2017) estimated the flow801

thickness of a turbidity current from the actual turbidite bed as 0.00192 m or 3950 m802

because the oversimplified assumptions for the forward model needed to iterate the model803

calculations. In contrast, the inverse model developed in this study can perform inverse804

analysis almost instantly once the training process is complete, yielding reasonable re-805

sults. Although the production of the training datasets takes a relatively long time, the806
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forward model computation in this procedure can be entirely parallelized, allowing the807

models with high computational load to be employed in our inversion framework. There-808

fore, the 2D inverse model developed in this study is more suitable for the field-scale tur-809

bidity current than previous inverse methods, which employed classical optimization meth-810

ods.811

The primary feature of the inverse analysis framework in this study is that it al-812

lows easy modification of the forward model to a formulation that is more suitable for813

the field conditions. Since the inverse model is trained on datasets generated by the for-814

ward model, improving the forward model can improve the performance of the inverse815

model. For example, a two-layer model that reproduces long-runout turbidity currents816

was recently proposed (Ma et al., 2025). Turbidity currents traveling over 1130 km have817

been observed in the Congo Submarine Canyon and its associated channel (Talling et818

al., 2022); however, a single-layer model is difficult to predict such behavior of turbid-819

ity currents flowing over a long distance, as they decelerate due to the entrainment of820

the surrounding water. A two-layered formulation, where the lower driving and upper821

dilute layers comprise a turbidity current, can predict the long-runout flows because the822

ambient water entrainment occurs only in the dilute layer, and the main driving force823

of the flow is maintained in the lower layer. Therefore, it is appropriate to use a two-layer824

model for performing inversion for large-scale submarine geomorphology. Not limited to825

such cases, the inverse model framework proposed in this study is open to employing var-826

ious types of forward models.827

5 Conclusions828

This study developed horizontal two-dimensional inverse models based on a deep829

neural network (DNN) to estimate turbidity currents flow parameters from turbidite char-830

acteristics. Validation with synthetic datasets demonstrated that the inverse models suc-831

cessfully estimated most input parameters with a symmetric mean absolute percentage832

error (SMAPE) below 32.5% and minimal biases, except for the layer-averaged density-833

equivalent sediment concentration for saline water C0,s. The difficulty in estimating C0,s834

in Series 1 likely stems from its limited imprint on the resulting deposit.835

The inverse model also reconstructed the flow conditions of the experimental tur-836

bidity currents with reasonable accuracy. The normalized percentage error (NPE) of the837

layer-averaged suspended sediment concentration and total suspended sediment concen-838

tration ranged from 4.98% to 157%, and from 45.6% to 98.5%, respectively. For flow ve-839

locity and height, the NPEs ranged from 12.2% to 100% and 24.0% to 90.4%, while the840

NPE of flow duration ranged from 38.5% to 86.3%. The SMAPE values for suspended841

sediment concentration were comparable to those reported by Cai and Naruse (2021).842

Although the SMAPE values for flow velocities, heights, and durations were slightly higher843

than those of the previous one-dimensional inverse model, they remained within accept-844

able ranges, considering uncertainties such as profile extrapolation, sampling disturbance,845

and forward model assumptions.846

The spatial distribution of the bed thickness was also well reproduced. In Run 1847

of Series 1, the forward model calculation using the estimated conditions successfully re-848

constructed a channel-levee-like deposit. In Run 2 of Series 2, it captured the general849

trend of thick upstream deposits and thinner downstream deposits. Furthermore, the model850

accurately reconstructed the deposits of the experiment by Spychala et al. (2020), in-851

cluding the upstream channel erosion and the thick terminal deposits. Although the bed852

thickness was slightly overestimated in Run 2 of Series 2 due to the thinness of the de-853

posits, the characteristic morphology was still reasonably reproduced.854

Overall, the proposed horizontally two-dimensional inverse model achieved perfor-855

mance comparable to that of the previous one-dimensional DNN-based model while of-856
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fering substantially lower computational cost than the conventional optimization-based857

methods. This demonstrates the efficiency and practical applicability of the model to858

field-scale inverse analysis. Since the proposed inverse model framework is independent859

of the choice of forward models, it can be readily adapted to incorporate more advanced860

numerical models. This flexibility suggests that the method can be extended to reliably861

reconstruct field-scale flows over complex topography.862

Appendix A Generation of the digital elevation models863

To obtain the digital elevation models (DEMs) by the structure from motion (SfM)864

technique (Fonstad et al., 2013), the experimental topographies in the flume were pho-865

tographed before and after each run. The images were captured using a waterproof dig-866

ital camera (OM SYSTEM TOUGH TG-6 and TOUGH TG-7) in subaqueous positions867

without draining water to avoid topographic deformation. To take clear underwater im-868

ages, the flume was left untouched for 2–3 days after the experimental run before tak-869

ing photographs. Colored sands were spread over the experimental deposits to add the870

reference points of images to be used in the SfM method. The spatial interval between871

the acquisition of images was 0.15 m in the longitudinal direction and 0.1 m in the lat-872

eral direction of the flume. The camera angle was changed to three different positions873

to capture the three-dimensional geometry of the topography. As a result, in Series 1,874

978 and 844 photographs were taken for Runs 1 and 2, respectively. In Series 2, 2868 and875

1937 photographs were taken for Runs 1 and 2, respectively.876

Subsequently, three-dimensional point clouds representing the elevation of the ex-877

perimental topography were produced using the subaqueous photographs. The commer-878

cial software Agisoft Metashape 1.8.4 was used to generate point clouds. To guarantee879

the accuracy of the topographic elevations, the ground control points (GCPs) were set880

on the side of the flume (Figure A1; Table A1), and the coordinates of those GCPs were881

given to the software for the SfM analysis. All GCPs were used to reconstruct the to-882

pography in Series 1. In Series 2, however, the GCP 1–1 located on the right-bank side883

of the upstream end was not used in the analysis because this GCP marker toppled over884

during the experiment.885

Preprocessing, including outlier removal, was conducted to ensure the reliability886

of the point-cloud data. Since the point cloud near the inlet was sparse due to the dif-887

ficulty in the image references by the light reflection, only the point cloud data after 0.35 m888

from the upstream end was used in Series 1. The outlier points were removed after gen-889

erating point clouds using the k-nearest neighbor algorithm (Cover & Hart, 1967). Python890

3.7 and Open3D 0.11.2 packages were used for this purpose. The number of the neigh-891

bor points K to judge the outlier points was set to 100 in Series 1 and 500 in Series 2,892

and the threshold coefficient m for the standard deviation of the elevation was set to 0.1893

in this study.894

Finally, DEMs were created from the point-cloud datasets. Before producing the895

DEM, the voxel downsampling procedure was applied to the point cloud dataset to re-896

duce the excessive information. The point clouds composed of a large number of points897

were summarized into a limited number of collections of points averaged for every sam-898

pling boxes (i.e., voxel) by this procedure. The voxel size was 0.001 m in both series. Fol-899

lowing this, the radial basis function (RBF) interpolation was performed with SciPy 1.7.3900

to produce the digital elevation model with a constant grid spacing of 0.001 m in both901

series.902
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Table A1. Coordinates of Ground Control Points.

1–1 1–2 2–1 2–2 3–1 3–2 4–1 4–2 5–1 5–2

x 0 0 0.9 0.9 1.5 1.5 2.5 2.5 3.5 3.5
y 0 1.9 0 1.9 0 1.9 0 1.9 0 1.9
z 0.565 0.575 0.480 0.465 0.415 0.415 0.375 0.370 0.32 0.325

1-2 2-2

3-1

3-2

4-1

4-2

5-1

5-2

1-1 2-1

Figure A1. Location of ground control points.

Notation903

ci Time-averaged flow velocity904

Mw Mass of fluid905

Ms Mass of suspended sediment906

Fsi Fraction of the ith grain-size class in sampled suspended sediment907

ρf Density of fluid908

ρs Density of sediment particle909

U Layer-averaged flow velocity in x-direction910

V Layer-averaged flow velocity in y-direction911

Ci Layer-averaged suspended sediment concentration of ith grain-size class912

CT Layer-averaged total suspended sediment concentration913

h Flow height914

z Height above the bed915

Umax Maximum value of vertical flow velocity profile916

cbi Suspended sediment concentration of ith grain-size at 0.05h,917

hm Height above the bed at which the flow velocity reaches Umax918

Cs Layer-averaged density-equivalent sediment concentration for saline water919

cs Density-equivalent sediment concentration for saline water920

ρw Density of fresh water921

ρsw Density of saline water922

R Submerged specific density of sediment particles923

Frd Densimetric Froude number924

ρt Density of turbidity current925

g Gravity acceleration926

Re Reynolds number927
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ν Kinematic viscosity of water928

τ∗
i Shields number929

τ∗
ci Critical Shields number of ith grain-size class930

Dsi Grain diameter of sediment particles of ith grain-size class931

cf Friction coefficient932

κ Karman constant933

ks Roughness height934

Ds50 Mean grain diameter935

Repi Particle Reynolds number936

ηi Sediment volume per unit area for ith grain-size class937

Vsi Sediment volume fraction of ith grain-size class at sampling point938

ηT Bed thickness939

t Time940

x Bed-attached horizontal coordinate941

y Bed-attached horizontal coordinate942

K Layer-averaged turbulent kinetic energy943

Fi Volume fraction of the ith grain-size class in active layer944

ew Entrainment rates of ambient water945

esi Entrainment rates of basal sediment of ith grain-size class946

wsi Settling velocity of a sediment particle of ith grain-size class947

νt Horizontal eddy viscosity948

ϵ0 Dissipation rate of turbulent kinetic energy949

λp Porosity of bed sediment950

r0 Ratio of the near-bed concentration to layer-averaged concentration951

La Thickness of active layer952

u∗ Friction velocity953

Ri Bulk Richardson number954

U0 Layer-averaged flow velocity at inlet955

C0,i Layer-averaged concentration of ith grain-size class at inlet956

C0,s Layer-averaged density-equivalent sediment concentration for saline water at in-957

let958

h0 Flow height at inlet959

Td Flow duration960

Data Availability Statement961

The training and test datasets for the inversion model, the inversion results, the962

flume experiment results, and the scripts used to produce the figures from the data are963

available from Zenodo at https://doi.org/10.5281/zenodo.16751886 under the Creative964

Commons Attribution 4.0 International license (Fujishima, 2025). The nninv1d used to965

develop the DNN-based inverse models in this study is a modified version of the one used966

in (Naruse & Nakao, 2021), adapted specifically for the purposes of this research. The967

version of 1.0.0 of nninv1d (Fujishima & Naruse, 2025a) used in this study is archived968

at https://doi.org/10.5281/zenodo.16731283. The source code of nninv1d is available un-969

der MIT Licence and is openly maintained at https://github.com/fujishimaseiya/nninv1d.970

The version 1.0.0 of turb2d (Fujishima & Naruse, 2025b) used for forward model calcu-971

ation is preserved at https://doi.org/10.5281/zenodo.16730833, available via MIT Licence972

and developed openly at https://github.com/fujishimaseiya/turb2d.973
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