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Key Points:

« We developed horizontal two-dimensional inverse models for turbidity currents us-
ing deep neural networks.

« The models successfully reconstructed flow conditions from the observed charac-
teristics of experimental turbidites.

e The proposed inverse modeling approach is applicable to field-scale turbidity cur-
rents over complex deep-sea topography.
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Abstract

Turbidites have been widely studied as indicators of the occurrences and magnitudes of
paleo-tsunamis and paleo-earthquakes. Inversion to estimate the flow ¢ onditions from
turbidites offers v aluable i nsights i nto t he m agnitudes o f p aleo-seismic a nd t sunami events.
However, conventional one-dimensional inverse models are insufficient fo r ca pturing the
behavior of turbidity currents in tectonically active margins, where the seafloor topog-
raphy is typically complex. Here, we developed a horizontal two-dimensional inverse model
of turbidity currents based on a deep neural network (DNN) and evaluated its perfor-
mance using both synthetic and flume e xperiment d a tasets. T he m odel s uccessfully es-
timated the model input parameters with a symmetric mean absolute percentage error
(SMAPE) of less than 32.5%, except for the density-equivalent sediment concentration
for saline water at the inlet. When applied to experimental data, the model reasonably
reconstructed the flow c onditions, y ielding S MAPE v alues between 5 1.7 and 8 6.2%, de-
spite the potential uncertainties introduced by sampling disturbances, data processing,
and forward model limitations. The spatial distribution of bed thickness was also well
predicted, except in cases where most of the suspension bypassed the depositional zone.
Overall, the proposed inverse model demonstrated accuracy comparable to the previous
one-dimensional model while offering g reater a pplicability t o c omplex s eafloor geome-
tries and maintaining low computational costs. These results suggest that the proposed
method is well-suited for the field-scale i nversion o f t urbidity ¢ urrents i n r ealistic geo-
logical settings.

Plain Language Summary

Turbidity currents are sediment-laden flows t hat t ransport m aterial f rom shallow
marine environments to the deep-sea floor. T hese fl ows ar e of ten tr iggered by natural
disasters such as earthquakes and tsunamis. Understanding the magnitude of turbidity
currents is therefore essential for reconstructing the size and frequency of past seismic
and tsunami events. In this study, a deep neural network model was developed to esti-
mate the scale of turbidity currents propagating over complex seafloor t o pography. The
model’s performance was evaluated using both synthetic and experimental datasets. The
results demonstrate that the model can accurately estimate turbidity current magnitudes
with low computational cost. This deep learning approach holds promise for estimating
the scale of ancient turbidity currents in deep-sea environments and, in turn, for improv-
ing assessments of the recurrence intervals of large earthquakes and tsunamis.

1 Introduction

Turbidity currents are sediment-gravity flows d riven by t he e xcess d ensity o f sus-
pended sediment supported by fluid t u rbulence. T urbidity ¢ urrents a re t he p rimary mech-
anism supplying sediment to the deep sea floor (Piperetal., 1999; Tallinget al., 2012)
and are known to form large-scale submarine topography such as submarine canyons and
submarine fans (Kuenen & Migliorini, 1950).

Turbidites, the deposits of turbidity currents, are widely recognized as valuable archives

of past geohazard events, as those currents can be triggered by various catastrophic phe-
nomena, including storms, river floods, or t s unamis. For i nstance, Araietal. (2013) es-
timated that the tsunami-induced turbidity currert ssociated with the 2011 Tohoku-

Oki earthquake had an exceptional scale, extendir z= n area at least 90 km wide and 100 km

long. The head velocity of this flow r anged from 2 .4-7.1 m /s, and t he m aximum veloc-
ity in the flow hady was e stimated tobe 8 .0m /s. Poloniaet al. (2013) r eported t hat the

365 AD Cretan i« mami (M, 8.3-8.5) generated a turbidity current that resulted in a widely

distributed turbidite (about 375 km) and thick turbidite (1.84 m). In the 1929 Grand
Banks earthquake, which has M, of 7.2+0.3 (Bent, 1995), a landslide triggered
a large-scale turbidity current with estimated velocity of 19 m/s and greater than 150km?
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sediment transport (Piper & Aksu, 1987). Hsu et al. (2008) reported that the 2006 Ping-

tung earthquake in Taiwan (M, 7.0) generated a turbidity current with velocity 3.7-20.0m/s.

Reconstructing the flow conditions of such earthquake- or tsunami-induced turbidity cur-
rents offers the potential to infer past large-scale earthquakes, thereby contributing to
our understanding of long-term risks of geohazards.

Therefore, the quantitative estimation of the flow conditions of ancient turbidity
currents remains a major challenge in sedimentary and geohazard research (e.g., Komar,
1985; Hiscott, 1994). Because these flow events cannot be directly observed, researchers
must rely on inverse analysis from their resulting deposits. Falcini et al. (2009), for ex-
ample, applied a forward model of turbidity currents based on the shallow water equa-
tion to the Lower Messinian Laga Formation in Italy and performed inverse analysis. How-
ever, their approach assumed a steady-state flow to derive an analytical solution, lim-

iting its applicability to turbidites formed under unsteady flow conditions. In contrast, Lesshafft

et al. (2011) developed an inverse model using a direct simulation as the forward model,
coupled with the surrogate management method for parametric optimization. Although
their method achieved reasonable accuracy when tested on synthetic data, its high com-
putational load renders it impractical for field-scale applications. Parkinson et al. (2017)
proposed a more computationally efficient approach using a one-dimensional shallow-water

turbidity current model and the adjoint method. Their inverse model, applied to the Miocene

Marnoso-arenacea Formation in Italy, yielded initial flow heights of 3950 m under a uni-
form grain-size assumption and 0.00192 m for a two-size-class assumption. These val-
ues are difficult to reconcile with realistic flow conditions. More recently, Nakao et al.
(2020) employed a genetic algorithm as the optimization method for inverse analysis of
a turbidite in the Kiyosumi Formation, Boso Peninsula, Japan. Although their model
produced more plausible flow conditions, the model reliability could not be tested be-
cause of the high computational load of the repeated forward model calculations. A com-
mon limitation across these studies is the substantial computational burden of inverse
modeling, which often involves repeated forward simulations that are difficult to paral-
lelize. This constraint hampers the systematic evaluation of model accuracy across mul-
tiple synthetic or real-world datasets.

To overcome these limitations, Naruse and Nakao (2021) recently proposed an in-
verse analysis framework based on deep learning. Their approach comprises two primary
steps. First, a large training dataset is generated by a numerical simulation of turbid-
ity currents under randomly sampled initial conditions. Unlike the iterative forward cal-
culations required in conventional inverse modeling, this data generation process is in-
herently parallelizable, significantly reducing computational costs. Second, a fully con-
nected deep neural network (DNN) is trained to learn the relationship between the ini-
tial flow conditions and the resulting deposit characteristics, such as the thickness and
grain size distributions. Once trained, the DNN serves as an efficient inverse model ca-
pable of instantly predicting the initial conditions from the observable features of un-
known turbidites. This method avoids the need for simplifying assumptions in the for-
ward model and simultaneously achieves high inversion accuracy with reduced compu-
tational demand. The trained DNN’s rapid prediction capability further enables system-
atic validation of inversion performance using a large number of test datasets. Cai and
Naruse (2021) validated this methodology and demonstrated its effectiveness in estimat-
ing initial conditions from both synthetic 1D data and flume experiments. Furthermore,
this deep learning-based framework has also been extended to the analysis of tsunami
deposits, successfully estimating tsunami inundation depths and deposit characteristics
in agreement with field observations (Mitra et al., 2020, 2021, 2024).

Despite the significant progress achieved through DNN-based inversion methods,
a key limitation remains. Previous studies have primarily employed one-dimensional (or
vertic |t vo-dimensional) forward models, which are only applicable to turbidity currents
occurring in flat, laterally uniform sedimentary basins or submarine channels. Conse-
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quently, these models cannot be readily extended to environments with complex, undu-
lating bathymetry, such as deep-sea fans. An attempt to address this limitation was made
by Cai (2022), who developed a horizontally two-dimensional inverse model using a DNN
and applied it to turbidites observed in the Anno Formation of the Awa Group. How-

ever, the proposed method has not yet been validated against known flow conditions. Since
direct measurements of ancient turbidity currents are unavailable, it is essential to com-
pare model predictions with well-constrained flume experiments to assess the accuracy

and reliability of newly proposed inverse models (Cai & Naruse, 2021).

In response to these challenges, this study aims to develop a horizontal two-dimensional
inverse model based on DNNs and to validate its performance using flume experiment
data. First, the inverse model was trained and tested on synthetically generated datasets
to evaluate its baseline performance. Second, flume experiments simulating turbidity cur-
rents were conducted to obtain detailed measurements of flow conditions—including ve-
locity, flow height, suspended sediment concentration, and duration—as well as the re-
sulting bed thickness and the grain-size distribution. Finally, the trained inves== mod-
els were applied to the experimental turbidites and to datasets from the prev 2 study,
and their accuracy was evaluated by comparing the predicted flow parameters with the
corresponding measured values.

2 Methods
2.1 Flume Experiments

Flume experiments were performed to verify the performance of the inverse mod-
els. Two experimental series were conducted under different conditions for this purpose.
All of these experiments were conducted using the experimental flume at the Graduate
School of Science, Kycta.Tniversity (Figure 1). The flume was 4.5 m long, 2.2 m wide,
and 1.8 m deep. A duinniag tank was installed at the downstream end to prevent the
reflection of turbidity currents. During the experiment, the water was drained from the
dumpir ¢ fank at the downstream end to keep the water level in the flume constant. Plas-
tic (melamine) particles were used in these experiments. The particle density was 1490 kg/m?®.
Sediment and salt water (only in Experimental Series 1) were mixed in mixing tanks (0.45
m3) using propellers and a pump. A diffuser pipe with a diameter of 0.06 m and a length
of 0.61 m was installed as a flow inlet at the upstream end. In total, 22 holes with a di-
ameter of 5.0x1073 mm were opened on the side of the pipe. The acrylic cover, which
is 0.30 m long, 0.64 m wide, and 0.20 m high, was installed at the inlet (Figure 1). This
cover was slightly moved from the inlet due to the jet in Run 2 of the Experimental Se-
ries 1. The sediment-water mixtures were injected from the mixing tanks using a pump.
The non-erodible plastic plate 1.9 m wide and 4.5 m long was installed in the flume. The
slope was set to 10% from the inlet to 1.2 m downstream, and 5% to the downstream
end.

2.1.1 Ezxperimental settings

In Series 1, two runs were conducted. Run 1 was performed over the initial flat to-
pography, and Run 2 was performed over the deposit formed in Run 1. In Series 1, salt
water was used to increase the flow density, which approximates fine materials (i.e., clays)
in actual turbidity currents. The flow discharge in the pipe connected to the inlet was
kept constant at 3.0 x 1073 m?/s. The durations of Runs 1 and 2 of Series 1 were 116
and 113 seconds for Runs 1 and 2, respectively. The total volumetric concentration in
the mixing tanks Ciapn was 3.76% and 3.04% in Runs 1 and 2, respectively. The den-
sity of salt water in the mixing tanks was 1060 kg/m® in both Runs 1 and 2 of Series 2
(Table 1). The flow discharge was expected to rapidly increase at the inlet due to the
entrainment of ambient water around the injection jets, resulting in the dilution of the
suspended sediment. The mean and standard deviation of the grain size in the mixing
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Figure 1. Schematic diagram of the experimental setup in Series 1 and 2 conducted in this

study.

tank were 1.6 x 10”4 m and 6.8 x 104 m, respectively, in Run 1 in Series 1; and 1.2 x
10~*m and 5.8 x 10~*m in Run 2 in Series 1 (Figure 2). The initial topography and
sediment composition of Series 2 were the same as those of Series 1. This series also com-
prised two runs. As in Series 1, Run 1 flowed over the initial flat topography, and Run

2 flowed over the topography formed by Run 1. The mix*==ss of fresh water and plas-
tic particles were released into the flume using a pump. “lo v discharge was constant at
1.4 x 107 m?3/s in Run 1, and 2.0 x 107 m?/s in Run2.The flow durations were 279
and 230 seconds for Runs 1 and 2, respectively. The total volumetric concentration in
11i-ing tanks was 4.96% and 4.41% in Runs 1 and 2, respectively. The mean grain size
and standard deviation of particles in the mixing tank were 1.8x10~™%m and 6.6x10~%m
in Run 1 of Series 2; and 1.4x10~*m and 5.8x10~% m in Run 2 in Series 2. (Figure 2).
The inverse analysis was performed only for Run 2 because the velocity data could not
be obtained in Run 1 of Series 2.

2.1.2 Measurement of flow conditions

This study measured flow velocity using the acoustic Doppler velocimetry (ADV)
Nortek Vectrino and the acoustic Doppler velocity profiler (ADVP) Nortek Vectrino Pro-
filer. The ADVP used in this study can measure the flow velocity in a vertical range of
0.03 m with a resolution of 1 mm, whereas the ADV can only measure the velocity at
a single point. Both facilities were moved vertically during the experiments using an elec-
tric actuator to cover the entire flow velocity profile. The velocity data were time-averaged
over at least 15 seconds each.
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Table 1. Experimental condition of Series 1 and Series 2 conducted in this study.

Series 1 Run1l Run 2
Concentration in the mixing tank 0.0376  0.0304
Density of salt water (kg/m?) 1060 1060
Density of sediment particle (kg/m?) 1490 1490
Temperature (°C) 16.3 14.8
Series 2 Run1l Run 2
Concentration in the mixing tank 0.0496 0.0441
Density of sediment particle (kg/m3) 1490 1490
Temperature (°C) 22.0 24.7

17.54 — Run 1 of Series 1
~— Run 2 of Series 1
. 15.01 — Run 1 of Series 2
§ — Run 2 of Series 2
+— 125
c
Q
© 10.0
s
— 75
<
2 45
(0] A
=
25
0.0
0 1 2 3 4 5
Grain size (¢)

Figure 2. Grain-size distribution of sediment used in Series 1 and Series 2 conducted in this

study. The sediment was sampled from the mixing tank before each run.
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In Series 1, flow velocity measurements were conducted at the center in the v h
direction and 2.1 m from the upstream end in the longitudinal direction (Figure 3). The
ADV measured the flow velocity in Run 1 of Series 1, moving vertically every 0.03 m to
measure the velocity profile from the bottom to 0.18 m above the bed. In Run 2 of Se-
ries 2, the ADVP was used to measure the flow velocity profile. The vertical ranges mea-
sured in this run were 0-0.03 m, 0.02-0.05 m, 0.08-0.11 m, and 0.14-0.17 m above the
bed. In Series 2, the flow velocity profile was also obtained using the ADVP at the cen-
ter in the width direction and 1.2 m from the upstream end in the longitudinal direc-
tion. Flow velocities were measured in this run at 0-0.02 m, 0.01-0.04 m, 0.03-0.06 m,
and 0.07-0.10 m above the bed (Figure 3).

Width (m)

0 1.2 1.5 21 24 4.5 5.7
Distance from the upstream end (m)

Series 1 Series 2
Run1 Run?2 Run 2

Flow velocity meter [ ] [ ) Flow velocity meter @
Siphon O (@) Siphon (@)

Figure 3. Measurement points of flow velocity and sampling points of suspended sediment in

Series 1 and Series 2 performed in this study.

To measure suspended sediment concentrations, suspensions were sampled using
10 siphon tubes spaced every 0.01 m, ranging from 0.01 m to 0.1 m from the bottom.
The sampling interval of the suspended sediment was constant in all experiments. The
suspension was sampled at the center of the flume in the width direction. In the longi-
tudinal direction, it was sampled at 2.4 m and 1.5 m from the upstream end for Series
1 and 2, respectively (Figure 3).

The sampled water and suspended sediment mixtures were accumulated in 300 mL
beakers and weighed immediately after each run. In Series 1, the density of sampled wa-
ter was measured using a digital density meter (DA-130N, Kyoto Electronics Manufac-
turing Co., Ltd.). The weights were measured again after drying to obtain the dried weight
of suspended sediment. The grain size distributions of the accumulated sediment were
measured using settling tubes with the open-source software Stube (Naruse, 2005).

The suspended sedim: 11 concentration for the ith grain size class was calculated
from the measured values using the following equation:

;= prsti
! psMw + prs ’

—T7—
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where M,, and M denotes the mass of the fluid (saline or freshwater) and dried suspended
sediment, respectively. Fj; denotes the fraction of the ith grain-size class in the sampled
suspended sediment. The pr and ps are the density of the fluid and sediment, respectively.

2.1.3 Data processing

In this study, the layer-averaged flow velocities and suspended sediment concen-
trations were calculated from the profiles measured by the ADVP and siphons during
the experiment. The layer-averaged velocity U, flow height h, layer-averaged suspended
sediment concentration of the ith grain size class C;, and layer-averaged total suspended
sediment concentration Ct were calculated using the following equations (Ellison & Turner,
1959):

Uh:/ udz, (2)
0

U%:/ u?dz, (3)

0

UC;h = / uc;dz, (4)
0

Cr=>» C

where u and ¢; denote the measured flow velocity and the suspended sediment concen-
tration of the ith grain size class at the height z from the bed, respectively. To calcu-
late Equations (2)—(4), the measured values were linearly interpolated to obtain the val-
ues at evenly spaced intervals. The flow velocity and suspended sediment concentration
were extrapolated to obtain the values outside the measured regions using linear fitting
to the two uppermost and lowermost measurement points.

In Run 1 of Series 1, the flow velocity could only be measured near the bed. For

this run, the U, C;, and h were calculated based on the following empirical relationship (Altinakar

et al., 1996) using the values at the maximum velocity height:

Umax
=13 6
U ’ ()
Chi
29 7
o=2 7)
hm
7 =03 (8)

where Up,ax denotes the maximum value in the vertical flow velocity profile, cy,; denotes
suspended sediment concentration of ith grain-size class at 0.05h, and h,, denotes the
height from the bed that is Uy ax.-

The layer-averaged density-equivalent sediment concentration for saline water Cg
(hereafter the equivalent concentration) was defined as the particle concentration with
zero settling velocity that would give the same excess density of the saline water. In Se-
ries 1, the density of siphon-sampled saline water was measured at suspended sediment
sampling points (Figure 3). Assuming that the submerged specific density of particles
R (= ps/pr—1) is 0.49, the same as for the plastic particles, the density-equivalent sed-
iment concentration cg is calculated as follows:

psw - pw
—_— 9
T, (9)

Cs =

where py, and psy denote densities of fresh water and saline water, respectively. In this
study, the density of fresh water was set to 1000 kg/m3. Subsequently, the layer-averaged
equivalent sediment concentration (Cs) was calculated by applying Equation (4) to cs.
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2.1.4 Calculations of dimensionless parameters

The densimetric Froude, Reynolds, particle Reynolds, Shields, and critical Shields
numbers were calculated from the hydraulic parameters averaged over the layers. The

densimetric Froude number, F'rq, is defined as follows:
U
Fro= —2 (10)
l)cp—[)w gh

where p; is the density of a turbidity current. The turbidity current density p; can be
obtained from:

pt = psCt + psw(l — Cr). (11)
The parameter g is the gravity acceleration.

The Reynolds number was calculated using the following equation:

U

v

Re (12)
Here, v denotes the kinematic viscosity of water. Judging from the measured water tem-
perature, the values of this variable were estimated to be 1.099 x 1076, 1.144 x 1076,

and 0.896x 1076 for Run 1 and Run 2 of Series 1, and in Series 2, respectively (Nezu,
2019). The water temperature in Spychala et al. (2020) was not provided in their study;
therefore, the kinematic viscosity of water at 20°C, 1.002x107%, was used to calculate

the Reynolds number (Nezu, 2019).

The Shields number 7;* was calculated using the following equation:

u2

* = * 13
Tl Rg.DSZ ’ ( )

where

u, = /tU. (14)

Here, where Dy; exhibits the grain diameter of sediment particles of the ith grain-size
class. The parameter ¢ is the basal friction coefficient, which was calculated using the

following equation:
cr = ! In 11ﬁ - (15)
f = P k's )

where x denotes the Karman constant, which was set to 0.4. The roughness height of
the bed ks was calculated by ks = 2Dg50 using mean grain-size Dgsq.

The critical Shields number 7}; was calculated using the following empirical rela-
tionship (Parker et al., 2003):

1 —o.
7= 5 (0:22Re; 2 4006 x 1077 7R (16)

C

where Rep; is a particle Reynolds number, which is defined as follows:

U*Dsi

Repi = (17)

2.1.5 Topography and experimental deposits

Photographs of the experimental topographies were taken before and after the run,
and digital elevation models (DEMs) of the experimental topographies were generated
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(a) Run 1 of Series 1 (b) Run 2 of Series 1

00 05 1.0 15 2.0 25 30 35 4.0 00 05 1.0 15 20 25 3.0 35 4.0
Distance from the inlet (m) Distance from the inlet (m)
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-0.02  0.00 0.02 0.04 0.06
Bed thickness (m)

Figure 4. Sampling points of deposits in Series 1 and 2 conducted in this study. The white
circles indicate the sampling points. (a) Sampling points in Run 1 of Series 1. (b) Sampling

points in Run 2 of Series 1. (¢) Sampling points in Run 2 of Series 2.

from these images (see details in Appendix A). The bed thickness nt was then measured
from the difference in elevation between the topography before and after each run.

After the topography was photographed, the experimental deposits were sampled
from the flume floor, where water was drained using a drainage pump. The sampling in-
tervals were changed according to the distribution of bed thickness of the experimental
deposits. Dense sampling was performed in areas where bed thickness changed rapidly,

and samples were collected at sparse intervals in areas where bed thickness gradually changed.

We collected 54 samples from the experimental deposit of Series 1 at approximately equal
intervals (Figures 4a, 4b). The sampling interval was approximately 10 c¢m in the lon-
gitudinal direction and 40-50 cm in the lateral direction. From the experimental deposit
of Series 2, we collected 60 samples (Figure 4c¢). The sampling density was approximately
10 cm intervals in the upstream region, whereas it ranged from approximately 40 to 100
cm intervals in the downstream region.

The sediment volume (including porosity) per unit area of ith grain-size class 7;
was then calculated at sampling points using the following equation:

1 = Vainr, (18)

where V;; and nr represent the sediment volume fraction of the ith grain-size class and
bed thickness, respectively.

—10—
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Figure 5. Measurement points of velocities and locations where bed thickness was extracted
from bed thickness distribution datasets of Spychala et al. (2020). (a) Measurement points of
flow velocities. (b) Locations at which bed thickness values were extracted from the distribution
datasets provided by Spychala et al. (2020). The extracted bed thickness values were used as

input for the inverse model.

2.2 Flume Experiment in Spychala et al. (2020)

The flume experimental dataset of Run 1 of Series 1 in the existing study (Spychala
et al., 2020) was also used to verify the performance of the inverse model. The exper-
iments in Spychala et al. (2020) were conducted in Eurotank at Utrecht University, which
has a length of 11 m and a width of 6 m. Before the experiment, a channel was created
in the upstream region as an initial topography. The water and sediment particles were
mixed in the mixing tank before being released into the flume. The median grain size
of the sediment particles used in this experiment was 133 pm, and the suspended sed-
iment concentration in the mixing tank was set to 17%. A turbidity current flowed into
the flume with a constant flow discharge of 30 m3 /s for 80-100 seconds. During the ex-
periment, flow velocities were measured at 7 points using Ultrasonic Velocity Profilers
(Figure 5a).

The experimental flow conditions and bed thickness were obtained from the liter-

ature (Spychala et al., 2020). The layer-averaged flow conditions were not described in Spychala

et al. (2020); therefore, we calculated the layer-averaged values of the flow velocity and
height from the maximum flow velocities and their measured heights using Equations

(6) and (8). The suspended sediment concentration in the experimental flume was not
measured in the experiment of Spychala et al. (2020). Thus, the layer-averaged suspended
sediment concentration was not compared with the predictions in this study. The bed
thickness was calculated from the difference between the DEMs of the experimental to-
pography before and after the run, which were provided by Spychala et al. (2020). In

this study, a total of 60 points were sampled from the bed thickness distribution obtained
from the DEM and used as input for the inverse model (Figure 5b).
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2.3 Forward Model

This section describes the forward model of turbidity currents used to generate the
training datasets for the inverse models. A 2D horizontal shallow-water equation model
considering suspended sediment transport of the mixed grain-size classes was used to cal-
culate the sediment volume per unit area of a turbidite for each grain-size class under
the given model input parameters.

2.3.1 Governing equations

The model employed in this study is based on the four-equation model of turbid-
ity currents proposed by Parker et al. (1986), which considers the momentum, mass, and
turbulent kinetic energy conservation of the flow.

The governing equations of the model are as follows (Naruse, 2020):

Oh OUh 0OVh
- - - = 2 2 1
ot o T 5 ewV U2+ V2, (19)

dC:h  dUCh . dVCih
- +

5 o By = wyi(Fies; — roCi), (20)
OUh  OU%h  OUVh 1. 9CTh? onr
ot T or T oy a9, tReCrhT -
UL 82Vh
—aUVU2+V2 41 gUw  OVh ; (21)
Ox? Oy?
OVh OUVh 0V2h 1. 9CTh? onr
ot T Tar T ey - 2y, TH9OrhT
UL 82Vh
—VVU2+V2 4+ a—U+a—v , (22)
Ox? Oy?

OKh n OUKhR N OVKh
ot or dy

1
(Cf + Zew) U3 — eoh — Rgwg;Crh

1 1
— §RQCT]7,U€W — §Rghwsi(esi - TOCT)v (23)

where x and y are the horizontal bed-attached Cartesian coordinates, respectively, and

t represents time. The parameter h denotes the flow height. C; and Ct are the suspended
sediment concentration of ith grain-size class and the total sediment concentration, re-
spectively. The density-equivalent sediment concentration for saline water Cy was regarded
as one of these concentrations in this study. The parameters U and V denote the layer-
averaged flow velocities in the x and y directions, respectively. The layer-averaged tur-
bulent kinetic energy is represented by K. The parameter nr denotes the bed thickness.
The volume fraction of the ith grain-size class in the active layer is denoted as Fj, and
the dimensionless entrainment rates of the ambient fluid and basal sediment of ith grain-
size class are expressed by ey, €gi, respectively. The parameter wg; denotes the settling
velocity of ith grain-size of a sediment particle of the ith grain-size class. The gravity
acceleration g was set to 9.81m/s? in this study. The parameter ¢; denotes the friction
coefficient, which was set at 0.004 and vy denotes the horizontal eddy viscosity. The pa-
rameter rq is the ratio of the near-bed concentration to the layer-averaged concentra-
tion, which was set to 2.0 in this study. The dissipation rate of the layer-averaged tur-
bulent kinetic energy K is denoted as €g. Equation (19) represents the fluid mass con-
servation, and Equation (20) represents suspended sediment mass conservation. Equa-
tions (21) and (22) exhibit the flow momentum conservation in z and y directions. Equa-
tion (23) exhibits turbulent kinetic energy conservation.
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The settling and entrainment fluxes of the sediment of the ith grain size class are
calculated by the following equation:
Oni _ wsi (roCi — Fiesi)
ot =X ’

(24)

where 7; is the sediment volume per unit area of the i¢th grain-size class, A, denotes the
porosity of the bed, which was set to 0.4 in this study. Thus, the temporal change in the
total bed thickness 5 (i.e., deposition and erosion) is given by the Exner equation, which
takes the following form:

e _ =0, (25)

ot ot

The grain-size fraction F; of the bed surface (i.e., the active layer) is required to calcu-
late Equation (24). Assuming that the thickness of the active layer L, is constant, the
following equation denoting the mass conservation of the ith grain-size class in the ac-
tive layer was used to obtain the temporal variation of the grain-size fraction F; (Hirano,
1971; Cai & Naruse, 2021; Naruse & Nakao, 2021):

OF; F; (977'1‘ _ Ws;
A A WL (26)

In this study, L, was set to 0.003m (Cai & Naruse, 2021; Cai, 2022).

2.3.2 Closure Equations
The following equations were employed to close the governing equations.

The friction velocity u, was assumed to be related to the turbulent kinetic energy
K following Parker et al. (1986). This assumption leads to the following relationship (Parker
et al., 1986):
u? = oK. (27)

*

Here, the coefficient o was set to 0.6 in this study (Salinas et al., 2019).

The mean dissipation rate of the layer-averaged turbulent kinetic energy ¢ is given
by the following;:

K1.5
€0 = ﬁ h 5 (28)
where s
ol
B =—. (29)

The eddy viscosity v for the horizontal diffusion term of the momentum is calcu-
lated by the following empirical formulation:

1
v = Efsu*h. (30)

Here, k denotes the Karman constant, which is set to 0.4.

The settling velocity of ith grain-size class wy; was calculated by the equation of Ferguson
and Church (2004):
— RgDZ
Xyv + (0.75X5RgD3)™""

Ws;

(31)

The kinematic viscosity of water v was set to 1.099x10~% was used in Run 1 of Series

1, 1.144x107% in Run 2 in Series 1, 0.896x107% in Series 2, and 1.002x107% in Spychala
et al. (2020) as in 2.1.4. The empirical coefficients X; and X5 are 18.0 and 1.0, respec-
tively.
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The empirical formulation of the entrainment rate of ambient fluid e, takes the form (Parker

et al., 1987):

L 0.075 (32)

V1 + T18RZY

where R; denotes the bulk Richardson number, which is defined as:

RgCTh
R, = 7z (33)
To obtain the basal sediment entrainment rate of the ith grain-size class eg;, the
following empirical relationship was employed in this study (Kostic & Parker, 2006),
aZ®
W= 34
ST &7 34
7 = a1 Re (35)
Ws; pr?
(0.586,1.23) Re,; < 2.36
(ah Oég) = P 5 (36)
(1.0,0.6) Rey; > 2.36
where a = 1.3 x 1077, Re,,; denotes the particle Reynolds number which is defined as
Vv R DsiDsi
Repi = 79 . (37)

14

The computation of the model described above was implemented as the open-source
software turb2d (Naruse, 2020). The turb2d employs the CIP-CUP method for the nu-
merical scheme (Yabe & Wang, 1991), which solves the advection and pressure terms by
the CIP and the implicit scheme, respectively. The artificial viscosity was used to sta-
bilize the numerical results (Jameson et al., 1981; Ogata & Yabe, 1999). The wet-dry
boundary condition was solved by the scheme of Yang et al. (2016).

2.4 Sensitivity Tests of the Forward Model against Input Model Param-
eters

To check the effect of the input model parameters on the depositional features, a
sensitivity test was conducted. Case 1 was set as the standard case, and the cases were
created in which Cy; (Case 2), Uy (Case 6), ho (Case 7), and T4 (Case 8) of Case 1 were
doubled, respectively (Table 2). In terms of Cy g, Cases 3, 4, and 5 used values that were
two, four and eight times greater than that of Case 1, respectively. The other conditions
were the same as those of Run 1 of Series 1 in this study.

2.5 Inverse Model

In this study, deep neural networks (DNNs) were used to perform inverse analy-
ses to estimate the flow conditions (i.e., model parameters) from the depositional fea-
tures. These DNNs were trained using datasets generated by the forward calculations.
After the training, the inverse model performances were tested using the test datasets
produced independently from the training datasets. These processes are described in de-
tail below.

2.5.1 Generation of Training Datasets

The training datasets for training the inverse models were generated by the for-
ward model calculations. The size of the calculation domain and topographic setting were
the same as those of the experimental tank used in Series 1 and 2 in this study and Run
1 of Series 1 in Spychala et al. (2020).
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Table 2. Input parameters of forward model used in sensitivity test.

Casel Case2 Case3 Cased Caseb Case6 Case7 Case8

Coa 0.001  0.002 0.001 0001 0.001 0.0l 0.001 0.001
Co 0.001  0.002 0.001 0.001 0.001 0.0l 0.001 0.001
Cos 0.001  0.002 0.001 0.001 0.001 0001 0.001 0.001
Cou 0.001  0.002 0.001 0001 0.001 0001 0.001 0.001
Cos 0.001  0.001 0.002 0.004 0.008 0.0l 0.001 0.001
Up (m/s) 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1
ho(m) 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1
Ty (s 100 100 100 100 100 100 100 200

The size of the calculation domain for experimental Series 1 and 2 was set to 4.2 m
in length and 1.9 m in width, with a grid spacing of 0.05 m. The experimental flume was
4.5 m long, but 0.3 m from the upstream end was an inlet area, so the region was ex-
cluded from the calculation domain. In Run 1, the flat setting with 10% slope from the
upstream end to 1.2 m and 5% from 1.2 m to the downstream end was set as the initial
topography. The topography measured after the end of Run 1 of Series 1 was used as
the initial topographic setting for Run 2 of Series 1. Similarly, the topography measured
after the end of Run 1 of Series 2 was used for Run 2 of Series 2. The representative di-
ameters of the four grain-size classes 1-4 of suspended sediment were set to be 210 pm,
149 pm, 105 pm, and 74.3 pm for both Series 1 and Series 2, respectively. The parame-
ters C1, Co, C3, and C4 denote the suspended sediment concentration for these grain-
size classes.

To generate the training datasets for Run 1 of Series 1 in the existing study (Spychala
et al., 2020), we used the initial topography obtained from a DEM measured before the
experiment. The calculation domain had a length of 7.2 m from the inlet and a width
of 1.9 m. The representative diameter of the suspended sediment was the same as the
median diameter of the sediment particles used in the experiment, which was 133 pm.

Thus, the upstream boundary conditions of the calculation domain were the Dirich-
let boundary condition, where the flow height hq, the flow velocity Uy, the suspended
sediment concentration of ith grain-size class Cj ;, and the equivalent salt concentration
Co,s were set to be fixed values. The inflow conditions at the upstream end were kept
constant for Ty seconds in the forward model calculation. As described above, salt wa-
ter was not used in Series 2 performed in this study and Run 1 of Series 1 in Spychala
et al. (2020) so that the value of Cj s was zero in the calculation domain for these Se-
ries. The flow inlet was set to be 0.64 m in width at the upstream end in the experiments
performed in this study and 0.45 m in Series in Spychala et al. (2020). Neumann bound-
ary conditions were used for the right, left, and downstream boundaries, where the gra-
dients of all variables were set to zero. In summary, the forward model requires the fol-
lowing input parameters: hg, Uy, Co,;, Cos (only for Series 1 performed in this study),
and Ty. These parameters were subjected to the inverse analysis.

The training, validation, and test datasets for the inverse model were generated through
iterations of the forward model calculation. The model input parameters described above
were randomly generated from a uniform distribution with the prescribed ranges (Ta-
ble 3), and the forward model calculation was repeated to produce the datasets of the
sediment volume per unit area according to the given input parameters. The combined
datasets of the calculated deposits and the model input parameters were split into train-
ing, validation, and test datasets, which were used to train and test the inverse model.

In this study, the inverse models were trained using 10000 training datasets. During train-
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ing, 20% of the training datasets were used as validation datasets. The performances of
the inverse models were evaluated using 100 artificial test datasets generated indepen-
dently of the training and validation datasets.

Table 3. Range of model input parameters at the inlet to generate training datasets.

Series 1 Series 2 Spychala et al. (2020)
Min value Max value Min value Max value Min value Max value
Co,i 0.0001 0.005 0.0001 0.005 0.01 0.15
Cos 0.001 0.03 - - - -
Up (m/s) 0.005 0.5 0.005 0.5 0.1 2.0
ho (m) 0.01 0.5 0.01 0.5 0.01 0.5
Ta (s) 30 400 30 400 30 200

2.5.2 Training of Deep Neural Networks

This study employed DNNs as inverse models (Figure 6). A fully connected (dense)
neural network was adopted as the network structure. The inputs of the DNN were the
thickness and grain-size distributions of the turbidites deposited in the calculation do-
main. Thus, the input values for the neural network were the volumes per unit area of
four grain-size classes at the sampling points, and the network outputs the estimated in-
put parameters of the forward model, including the flow height, flow velocity, sediment
concentration for each grain size class, equivalent concentration, and flow duration. The
equivalent concetration was excluded as the subject of inversion for Series 2 because it
was conducted without salt water. The number of hidden layers and number of nodes
per hidden layer were set to 4 and 4000, respectively. Rectified Linear Unit (ReLU) was
employed as an activation function for the hidden layers for Series 1 and Series 2 con-
ducted in this study (Nair & Hinton, 2010), In the run in Spychala et al. (2020), the sed-
iment volume per unit area could be negative because the velocity of the current was very
fast, and the current could erode the bed sediment. Therefore, when the input is neg-
ative, the use of ReLU may lead to vanishing gradients. Thus, Exponential Linear Unit
(eLU) (Clevert et al., 2016), which produces non-zero outputs even for negative inputs,
was used as an activation function for the hidden layer. The activation function in the
output layer was ReLU in all experiment. These neural networks were implemented us-
ing Python 3.7 and TensorFlow 2.4.1.

Sediment volume per unit area
of each grain-size class

Concentration Co;

Sampling of deposit Equivalent concentration Cos

Inlet

Turbidite Flow duration Ty

Flow
{A®D — height ho

Figure 6. Schematic diagram of the inverse model structure. The inverse model takes as
input the sediment volumes per unit area for each grain-size class at the sampling points. The

outputs are the estimated model input parameters.
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The training conditions were as follows. All hyperparameters for training were de-
termined by trial and error. The Mean Squared Error (MSE) was employed as a loss func-
tion, and Adagrad was used as the optimizer of weight coefficients (Duchi et al., 2011).

To prevent overlearning, the dropout method was employed (Srivastava et al., 2014), which
deactivates 50% of the nodes randomly during training for Series 1 and Series 2 performed
in this study, and 30% of the nodes deactivates for Spychala et al. (2020). The batch size
and learning rate were set to 64 and 0.032, respectively. Under these conditions, the DNNs
were trained for 10,000 epochs.

2.5.3 Test of Inverse Models

The inverse models were tested using 100 test datasets generated independently
of the training datasets. The root mean squared error (RMSE), the bias (b) and sym-
metric mean absolute percentage error (SMAPE) were calculated for each model input
parameter to evaluate the inverse model predictions. The RMSE, b, and SMAPE were
defined as follows:

RMSE = \/ % Z (Ypi — 0)°, (38)
b= % Z (Ypi — ¥i) (39)

100 2|y,‘ — ypi|
SMAPE = —— 21 — Ypil 40
N 2l T (0

where N denotes the number of test datasets. The variables y; and y,; denote true and
model-predicted values, respectively.

2.6 Inversion of experimental deposits

The inverse models developed in this study were applied to the experimental de-
posits to evaluate the performance of the inverse model for actual turbidity currents and
reconstruct the experimental flow conditions and horizontal two-dimensional distribu-
tion of deposits. Inverse analyses were performed on three experimental deposits formed
by experiments in this study (Runs 1 and 2 of Series 1 and Run 2 of Series 2) and one
deposit formed in Spychala et al. (2020) by inputting the sediment volume per unit area
of each grain-size class at the sampling points.

To obtain the flow conditions at the measurement point, forward calculations were
performed using the model input parameters estimated by the inverse models. The es-
timated layer-averaged flow velocities, suspended sediment concentrations, flow heights,
and flow durations were compared with the measured values to verify the performance
of the inverse models. The verification of inverse models was based on the SMAPE and
normalized percentage error (NPE). The NPE was calculated using the following equa-
tion:
21y — Yol
|yl + lyp

Here, ym and y, denote the measured and predicted values, respectively. Regarding the
flow duration Ty reported by Spychala et al. (2020), which ranged from 80 to 100 sec-
onds, the SMAPE and NPE were calculated using both the minimum and maximum val-
ues.

NPE = 100 x (41)

The distributions of bed thickness obtained from numerical calculations using the
predicted model input parameters were compared with the measured bed thickness. In
this study, the calculations were conducted with a grid spacing of 0.05 m, so variations
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of bed thickness with wavelengths smaller than this could not be reproduced. Accord-
ingly, the comparisons between the predicted and measured bed thickness were performed
at 0.05 m intervals.

3 Results
3.1 Experimental flow behaviors and topographic features

The experimental turbidity currents flowed downstream from the inlet and later-
ally spread. The heights of the currents increased as they flowed downstream due to the
entrainment of ambient fluid. The turbidity current reached the downstream end at 23
and 28 seconds after the initiation of the flow injection in Runs 1 and 2 of Series 1. On
the other hand, it took 180 seconds for the flow to reach the downstream end in Run 2
of Series 2. Each flow was maintained at a constant flow discharge for a specified period,
and no significant changes in the flow behaviors were observed during the experiments
after they reached the downstream end.

The topographies developed from the experimental turbidity currents differed sig-
nificantly between experimental Series 1 and 2. In Series 1, a channel-levee-like topog-
raphy was developed, where the erosional depression was located near the flow inlet, and
lobate deposits were formed in the downstream area. In contrast, the topography in Se-
ries 2 was smooth and exhibited no depressions around the flow inlet. In all runs, it was
difficult to distinguish the influence of those topographies on the flow behavior with the
naked eye. The ripples were observed in the experimental deposits in all runs. In Run
1 and Run 2 of Series 1, the ripples were formed on the lobe deposits in the downstream
area, whereas they were observed in the upstream area near the flow inlet in Series 2.

3.2 Measured profiles of experimental turbidity currents

In all velocity profiles at the measured point (Figure 3), the flow velocities increased
upward above the bottom surface, and after it reached the maximum velocity, the ve-
locities subsequently decreased upward gradually (Figures 7a, 7c, Te). The maximum flow
velocities were observed at a height of 0.06 m in Run 1 of Series 1 and 0.0405 m above
the bed in Series 1, while they were observed at a height of 0.0201 m above the bed in
Series 2 (Figures 7a, 7c, 7Te). The maximum velocity in Run 1 and Run 2 of Series 1 were
0.288 m/s and 0.393 m/s, respectively. In Run 1 of Series 2, the flow velocity was lower
than that of Series 1, which was 0.0902 m/s.

The layer-averaged flow velocity U was estimated from the measured velocity pro-
files, which were 0.222 m/s in Run 1 of Series 1 and 0.254 m/s in Run 2 of Series 1 (Ta-
ble 4). The layer-averaged flow velocity in Run 2 of Series 2 was lower than in Series 1,
which was 0.0506 m/s (Table 4). The flow heights h were also calculated as 0.2 m, 0.254 m,
and 0.200 m in Runs 1 and 2 of Series 1 and Run 1 of Series 2, respectively (Table 4).

The suspended sediment concentration at the measured points in all runs exhib-
ited an exponential decrease upward (Figures 7b, 7d, 7f). The maximum values of to-
tal suspended sediment concentration recorded at the lowest elevation (1 cm above the
bed) in Runs 1 and 2 of Series 1 were 0.00482 and 0.00344, respectively. In Run 1 of Se-
ries 2, the maximum value of suspended sediment concentration was 0.00515.

The layer-averaged values of total suspended sediment concentrations Ct were the
same order of magnitude in all experimental series (Table 4). The Runs 1 and 2 of Se-
ries 1 were 2.41x1073 and 1.90x1073 in the layer-averaged concentration, respectively.
The layer-averaged total concentration was 1.38 x 1072 in Run 1 of Series 2.

Focusing on the layer-averaged concentration by grain size, Runs of Series 1 showed
that the concentration increased with larger grain size (Table 4). The layer-averaged con-
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Figure 7. Vertical velocity and concentration profiles. (a) Time-averaged vertical velocity

profile in Run 1 of Series 1. (b) Suspended sediment concentration profile in Run 1 Series 1. (c)
Time-averaged vertical velocity profile in Run 2 of Series 1. (d) Suspended sediment concentra-
tion profile in Run 2 of Series 1. (e) Time-averaged vertical velocity profile in Run 2 of Series 2.

(f) Suspended sediment concentration profile in Run 2 of Series 2.
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Table 4.

Layer-averaged flow conditions of flume experiments conducted in this study.

Series 1 Series 2

Run 1 Run 2 Run 2
Cy 9.66 x 107% 5.71 x 107* 5.87 x 10~°
Cy 6.81 x 107* 4.65 x 10~* 4.08 x 10~*
Cs 554 x 107* 4.78 x 10~* 5.50 x 10~*
C, 2.08x107* 387x107* 3.64x107*
Cr 241 x 1073 1.90x10~3% 1.38 x 10~3
Cs 520 x 1073 7.43 x 1073 -
U(m/s) 0.222 0.254 0.00501
h (m) 0.2 0.168 0.420

centration of the largest grain size class (210 pm) were 9.66x10~%, while the layer-averaged
concentration of smallest grain size class (74.3 pm) was 2.08x10~%. In contrast, the con-
centrations of Series 2 showed no clear trend, with the layer-averaged values ranging from
5.87 x 1075 for C; to 5.50 x 10~* for Cs.

3.3 Dimensionless parameters of the experimental flows

The calculated dimensionless parameters Frq and Re indicated that all experimen-
tal turbidity currents were fully turbulent and supercritical flows (Tables 5, 6). The den-
simetric Froude numbers Frq of Runs 1 and 2 of Series 1 conducted in this study were
3.13 and 3.68, respectively. Although these values were slightly larger than that of Se-
ries 2, which was 1.62, F'rq of all runs were significantly larger than unity. In addition,
the Reynolds numbers Re ranged from 2080 to 46400, indicating that all experimental
turbidity currents in this study and Spychala et al. (2020) were fully turbulent.

The Shields numbers 7;* and particle Reynolds number Rey; showed that the re-
suspension of the transported sediment hardly occurred at around the measurement points
in the experiments conducted in this study (Table 5). The particle Reynolds numbers
Rey; were smaller than 5 in experimental runs in this study, indicating that these runs
were performed under hydraulically smooth conditions (Garcia, 2008). The Shields num-
bers of ith grain-size classes 7;° in Series 1 ranged from 0.0465-0.132, which were slightly
smaller than the threshold for motion (the critical Shields number 7%). In addition, the
Shields numbers 7 in Series 2 were significantly smaller than the critical Shields num-
ber.

In the experiment in Spychala et al. (2020) whose datasets were utilized in this study,
the resuspension of the bed sediment could occur in the area along the central line of the
flow. The Shields number 7* was larger than 7 near the Points 4-7 which were near the
center of the flume, while 7* was smaller than 7 Points 1-3 near the edge of flume (Fig-
ure ba, Table 6). The particle Reynolds numbers Rep,; ranged from 0.628 to 4.43, indi-
cating that the flow regime was hydraulically smooth, as was the case in the runs con-
ducted in this study.

3.4 Influence of input model parameters on depositional features

The numerical experiments indicated that the input parameters Cy ;, Up, ho, and
Ty significantly affect the depositional features of the experimental turbidity currents.
Case 2 (two times greater than Cj; in Case 1) resulted in preferential deposition around
the upstream region of the calculation domain, which was significantly thicker than that
of Case 1 (standard case) (Figures 8a, 8b, 9). The flow velocity Uy also largely affected
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Table 5. Densimetric Froude number, Reynolds number, Particle Reynolds number, Shields

number, and critical Shields number in the experiments.

Series 1 Series 2

Runl Run2 Run 2
Frq 3.12 3.68 1.62
Re 40300 37500 13100
Rep 1.93 2.12 0.532
Repo 1.37 1.50 0.377
Repz  0.962 1.06 0.266
Reps  0.681 0.749 0.188

T 0.0465 0.0424 0.00509

Ty 0.0656 0.0598 0.00718
T4 0.0931 0.0849 0.0102
T 0.132 0.120 0.0144
T 0.0742 0.0701 0.161
T 0.0912 0.0862 0.197
TS 0.1125 0.106 0.244
() 0.138  0.131 0.300

Table 6.

number in the experiment in Spychala et al. (2020).

Reynolds number, particle Reynolds number, Shields number, and critical Shields

Spychala et al. (2020)

Point 1 Ponit 2 Point 3 Point 4 Point 5 Point 6 Point 7
Re 2080 3940 16300 46400 20200 14000 9750
Re, 0.628 0.870 2.11 4.43 3.26 2.12 1.57
T* 0.0104  0.0200 0.118 0.517 0.280 0.118 0.0650
T 0.145 0.120 0.0703 0.451 0.0541 0.0702  0.0839
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the bed thickness. When Uy was doubled (Case 6), the sediment was almost bypassed
near the inlet, and the bed thickness was extremely thinner than that of Case 1 from the
inlet to 0.9 m (Figures 8f, 9).

On the other hand, when the flow duration Ty was changed, the geometry of the
deposits remained unchanged, but the overall thickness varied, which was clearly indi-
cated in the result of Case 8 (Figures 8a, 8h, 9). The calculation result was slightly less
sensitive to the flow height hg (Case 7) than other parameters, such as Cp;, Uy and Ty.
Nevertheless, the bed geometry distinctively differed from the base case (Case 1) when
ho was doubled (Figures 8a, 8g, 9).

In contrast, the equivalent salt concentration Cj s did not significantly affect the
turbidite bed geometry compared with the other input parameters (Figures 8c, 8d, 8e,
9). Even though the parameter Cj ¢ increased twice or four times greater than that of
Case 1, Cases 3 and 4 produced almost the same profiles of bed thickness as Case 1. Case
5, which set Cy s to eight times greater than that of Case 1, produced a slightly thinner
deposit than that of Case 1, but the difference in bed thickness between Cases 1 and 5
was not significant.

3.5 Training and Tests of Inverse Models

The DNN models were sufficiently trained without significant overlearning (Fig-
ure 10). In the training histories of all DNN models, the validation loss decreased in tan-
dem with the training loss. The value of the loss function decreased rapidly in the first
1000 epochs, and the learning curve became almost flat after 8000 epochs.

The DNN model predictions for the test datasets indicated that the developed in-
verse models precisely estimated the flow conditions, including the suspended sediment
concentrations Cy ;, flow velocity Uy, flow height ho, and flow duration Ty (Figures 11,
12, 13, 14; Tables 7, 8, 9). The flow height hy and flow duration Ty were reproduced with
high accuracy, showing the range of SMAPE from 13.9% to 24.8% and from 18.5% to
23.6%, respectively (Figures 11g-11h, 12g-12h, 13f-13g, 14c-14d; Tables 7, 8, 9). Re-
garding the biases, the estimated flow duration was slightly underestimated in all runs.
The suspended sediment concentrations Cy ; were also estimated with small SMAPEs,
ranging from 17.6% to 28.4% (Figures 11a-11d, 12a-11d, 13a-11d, 14a; Tables 7, 8, 9).
The RMSEs and biases of Cp; ranged from 107° to 10~ in Series 1 and Series 2 per-
formed in the present study, and the RMSE and bias were 0.0134 and -0.00232, respec-
tively, in Spychala et al. (2020) (Tables 7, 8, 9). The flow velocity Uy was well estimated,
with SMAPE values ranging from 15.0% to 32.5%, and RMSEs of U, were 0.0489 m/s
or less (Figures 11f, 12f, 13e, 14b; Tables 7, 8, 9).

In contrast, estimating the equivalent concentration Cy ¢ was difficult compared with
the other parameters (Figures 11le, 12e, Table 7). The SMAPE values of Cj ¢ in Run 1
and Run 2 of Series 1 were 71.2% and 66.0%, respectively. These corresponded to RM-
SEs of 5.45 x 1072 and 1.06 x 103, respectively.

3.6 Experimental Verification of Inverse Models

The inverse models developed in this study estimated the flow conditions of exper-
imental turbidity currents from deposits within reasonable ranges (Figure 15; Tables 10,
11, 12, 13). The SMAPE values showed that the layer-averaged flow velocities U were
most accurately reproduced, with a SMAPE of 51.7% (Table 14). The flow heights h and
flow durations T4 were also estimated with reasonable accuracy. The normalized per-
centage errors of h and Ty were 15.7%-90.4% and 38.5%—86.3%, respectively (Tables 11,
12, 13). The SMAPE of the suspended sediment concentrations of ith grain-size class
C; and the total suspended sediment concentration Ct were also estimated reasonably,
but were slightly larger than those of the other flow conditions. In addition, the normal-
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Table 7. RMSE, bias, and SMAPE of testing results of the inverse model for Series 1.
Series 1
Run 1 Run 2
RMSE Bias SMAPE RMSE Bias SMAPE
Co1  7.34 x 1074 1.33 x 107° 28.2% 5.72x 1074 4.37 x 1075 28.0%
Coa 6.43x107% —2.65x 1074 28.0% 5.19 x 10~* 7.97 x 1075 17.8%
Cos 584x107% —1.64x1075 19.1% 6.23 x 1074 1.12 x 107% 17.6%
Cosa 5.45x107% —1.11x107* 26.1% 5.98 x 107* —7.15x107° 22.0%
Cos 545x1073 —1.38x 1074 71.2% 4.19 x 1073 1.06 x 1073 64.6%
U 0.0443 m/s  -0.0123 m/s 32.5% 0.0489 m/s 1.09 x 107* m/s  26.0 %
ho 0.0637 m 0.0107 m 22.0% 0.0528 m -0.00579 m 24.8%
Ta 50.7 s -20.3 s 23.6% 40.0 s -18.2s 18.5%
Table 8. RMSE, bias, and SMAPE of testing results of the inverse model for Series 2.
Series 2
Run 2
RMSE Bias SMAPE
Co1  4.90 x 1074 8.52 x 1075 18.0%
Coo 4.11x1074 5.93 x 1075 19.5%
Coz 5.60 x 1074 9.75 x 107 19.1%
Coa 519 x 1074 9.14 x 1075 28.4%
U 0.0383 m/s 3.16 x 10~* m/s 20.4%
ho 0.0337 m -0.00476 m 13.9%
Ty 51.1s -34.1s 22.9%
Table 9. RMSE, bias, and SMAPE of testing results of the inverse model for Run 1 of Series 1

in Spychala et al. (2020).

Spychala et al. (2020)

RMSE Bias SMAPE
Coa 0.0134 20.00232  22.1%
Uy 0.123m/s -0.00315m/s  15.0%
ho  0.0266m  -0.00631m  14.7%
Ty 20.3 s 1385 22.5%

—25—



(@ (b)
o 0.005 © 0.005 1
= =
o (]
> 0.004 1 > 0.004
3 3
3 0.003 { 4 0.003;
2 2
4 0.002 % 0.0021
c C
g g
s 0.001 1 3 0.001 1
o o
0.0001, , , 0.0004 , ,
0.000  0.002  0.004 0.000  0.002  0.004
Original Value Original Value
(c) (d) Co.4
© 0.005 © 0.0051
= =
© o
> 0.004 > 0.0041
O o
£ 0003 £ 0.0031
2 2
@ 0.0021 @ 0.0021
C c
3 3
$ 0.001 1 Q 0.0011
o o
0.0001, , , 0.0004, , ,
0.000  0.002  0.004 0.000  0.002  0.004
Original Value Original Value
(e) ()
@ 0.03 e 0.5
=l £
8 S 04
()
3 0.02; > sl
S 3
= S 02
2 0.011 =
o 1
o c 01
s 3
0.00 1 L 0.01
0.00 001 002 003 0.0 0.2 0.4
Original Value Original Value (m/s)
(9) (h) Tq
E 05 2 4001
(]
E 0.4 1 3
S = 300
T 03 3
o S 200
g 0.2 ﬁ
|2 c
5 0.1 g 1001
8 @
@ 0.0 , , &« , ,
0.0 0.2 0.4 200 400

Origirial Value '(m) Original Value (s)
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635

636

ized percentage errors of C; ranged from 4.98% to 157%, which took a wider range of
values than the other flow conditions (Tables 11, 12, 13).

Table 10. Model input parameters estimated by the inverse model applied to flume experi-
ments.
Series 1 Series 2
Run 1 Run 2 Run 2 Spychala et al. (2020)
Co 0.00303  0.00365  0.00275 0.119
Co,2 0.00285  0.00287  0.00192 -
Co,3 0.00437  0.00310  0.00177 -
Co.a 0.00310  0.00176  0.000579 -
Cos 0.0201  0.000101 - -
Up (m/s)  0.300 0.410 0.00501 0.781
ho (m) 0.0789 0.0654 0.420 0.0939
Ty (s) 188 285 404 54
Table 11. Comparison of measured and predicted flow conditions by inverse model in Series 1.
Run 1 Run 2
Measured Predicted NPE (%)  Measured Predicted NPE (%)
Ci 9.66 x 10~*  1.37 x 103 34.9 571 x 107 1.78 x 1072 102.7
Cs 6.81 x 107*  1.49 x 1073 74.4 4.65x107* 1.42x 1073 101.4
Cs 5.54 x 107* 241 x 1073 125 478 x 107* 155 x 1073 105.5
Cy 2.08x107% 1.73x 1073 157 3.87x107* 877 x107* 77.6
Cr 2.41 x 107%  7.00 x 1073 97.6 1.90 x 1073  5.62 x 1073 98.5
U (m/s) 0.222 0.196 12.2 0.254 0.185 31.8
h (m) 0.2 0.0754 90.4 0.168 0.143 16.4
Ta (s) 116 188 47.3 113 285 86.3
637 In addition, the distributions of the experimental deposits were generally recon-
638 structed well for Run 1 of Series 1, Run 2 of Series 2 of the present study, and Run 1 of
639 Series 1 of the existing study; however, the reconstruction of Run 2 of Series 1 in this
640 study was more challenging, as the condition was nearly bypassing flow (Figure 16, 17,
6a1 18, 19).
642 In Run 1 of Series 1, the channel-levee-like geomorphology was produced in both
643 experimental and predicted topography (Figures 16a, 16b). As seen in the longitudinal
644 section (along the A-A’ line in Figure 16b), the topographic depression where almost no
645 deposition occurred in the upstream area was well reproduced in the numerical predic-
646 tion (Figure 16¢). The predicted thick lobate deposits in the downstream region also matched
647 the experimental result (Figure 16¢). In addition, the cross-section (along the B-B’ line
648 in Figure 16b) showed similarity between the experimental and predicted topographies.
649 The bed thickness was minimal in the central area, while two peaks were observed on
650 both sides (Figure 16d).
651 The predicted topography for Run 2 of Series 2 also precisely reproduced the mea-

652 sured bed thickness (Figures 18a, 18b). The predicted bed thickness along the longitu-
653 dinal profile (A-A’ line in Figure 18b) agreed well with the measured bed thickness. It
654 reproduced the characteristic of being thicker in the upstream region and thinner in the
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Table 12. Comparison of measured and predicted flow conditions by inverse model in Series 2.

Measured Predicted NPE (%)

Ci 5.87 x 107°  3.96 x 10~* 152
Cs 4.08 x 107% 5.97 x 107 37.6
Cs 5.50 x 1074 8.65 x 1074 44.6
Cy 3.64 x10~* 3.35x10°* 8.38
Cr 1.38 x 1073 2.19 x 1073 45.6
U (m/s) 0.0587 0.120 68.7
h (m) 0.200 0.0880 77.6
Ty (s) 230 404 54.8

Table 13. Comparison of measured and predicted flow conditions by inverse model in Spychala
et al. (2020). The flow duration was reported as a range in Spychala et al. (2020), so the NPE
is also calculated as a range. The subscript of number indicates the measurement point in the

experiment (Figure 5).

Measured Predicted NPE (%)

Uy (m/s)  0.0823 0.248 100
U (m/s)  0.118 0.353 99.4
Us (m/s)  0.306 0.575 61.0
Uy (m/s)  0.665 0.924 32.6
Us (m/s)  0.461 0.711 42.7
Us (m/s)  0.302 0.419 32.7
Ur (m/s)  0.222 0.381 52.6
hy (m) 0.0253 0.0643 86.9
hy (m) 0.0333 0.0590 55.6
hs (m) 0.0533 0.0679 24.0
hs (m) 0.0700 0.132 61.6
hs (m) 0.0440 0.0777 55.3
he (m) 0.04467  0.0959 69.1
hz (m) 0.0440 0.0741 51.0
Ty (s 80-100 54 38.5-59.4

Table 14. SMAPE values of predicted flow conditions from experimental deposits in the
present study and in Cai and Naruse (2021).

Cl 02 C 3 C 4 OT U h Td

This study 85.4 64.5 80.6 86.2 66.7 51.7 581 56.7-62.0
Cai and Naruse (2021) 113 78.3 76.2 93.7 855 24.2 247 43.1

—32—



655

656

657

658

659

660

661

662

663

664

665

666

668

669

670

671

673

674

675

676

677

678

679

680

681

682

684

685

686

687

689

690

691

692

694

695

697

698

699

700

701

702

703

704

downstream region (Figure 18c). The predicted bed thickness along the cross-section (B-
B’ line in Figure 18b) also reproduced the feature of measured bed thickness, whose dis-
tribution exhibited a thicker deposit in the center, thinning laterally (Figure 18d).

The depositional feature observed in the experiment by Spychala et al. (2020) was
also reconstructed well (Figure 19). The horizontal two-dimensional distribution of bed
thickness was successfully predicted, including the eroded area inside the upstream chan-
nel and thick deposit at the channel terminus (Figures 19a, 19b). The bed thickness along
the longitudinal section (A-A’ line in Figure 19b) approximates the measured bed thick-
ness (Figure 19¢), and the cross section (B-B’ line in Figure 19b) accurately captured
the feature of the measured bed thickness, characterized by a thick deposit at the cen-
ter and thinner deposits towards the edges (Figure 19d).

It was more challenging to reconstruct the distribution of the bed thickness in Run
2 of Series 1 than those in the other runs, while the channel-levee-like geomorphology
was reproduced in the predicted topography (Figures 17a, b). The thicker deposits at
the downstream area of the bypass zone occurred in both the measured and predicted
results (Figures 17a-17d). Meanwhile, the predicted bed thickness was overestimated,
more than ten times thicker than the measured values of bed thickness (Figure 17), which
were 0—5 mm.

4 Discussion
4.1 Inverse Model Performance Verified with Artificial Datasets

The inverse models developed in this study were able to estimate the model input
parameters with reasonable accuracy. The inversion results were particularly precise in
the reconstruction of the s ended sediment concentration Cj ;, flow velocity Uy, flow
height hg, and flow durati Tq.

The inverse model performance pro that the characteristics of turbidites are sen-
sitive to these flow conditions of turbidity currents. Indeed, the sensitivity tests of the
forward model, as well as previous studies, suggested that these parameters have a sub-
stantial influence on the depositional features (Figures 8, 9), consistent with the inver-
sion verification results. In the sensitivity test, increasing the suspended sediment con-
centration at the inlet and extending the flow duration resulted in a thick deposition near
the inlet. The same trend was observed in experimental runs in past studies (e.g., Gar-
cia, 1994). The experiments in Poppeschi et al. (2023) exhibited that a high flow veloc-
ity at the inlet caused a large bypass zone near the inlet, as observed in the sensitivity
test in this study. In Ge et al. (2018), three-dimensional simulations of turbidity currents
were performed on a field scale. Their results indicated that the deposit thickness increases
as the flow height increases. Judging from the geomorphological responses to the flow
conditions of the experimental and field-scale currents, the inverse modeling approach
proposed in this study can be expected to estimate those hydraulic conditions from the
actual turbidites within a reasonable range of errors.

The only parameter that was challenging to estimate was the equivalent sediment
concentration for saline water Cj 5, which served as an analog to washloads in the ac-
tual flows. Reconstruction of this parameter exhibited larger errors than the other pa-
rameters (Figures 11e, 12e; Table 7), consistent with the sensitivity test exhibiting that
the saline density is less influential on the depositional characteristics, as shown in Fig-
ures 8c—8e and 9. Although the washloads, which are fine-grained and do not remain as
sediment, affect the flow dynamics in terms of fluid density, they have a negligible effect
on the topography. The actual turbidity currents that transport fine-grained materials
and have high flow velocities often bypass the upstream regions withc i leposition (Peakall
et al., 2000; Rowland et al., 2010; Stevenson et al., 2013). Thus, inveirs¢.nodels inevitably
fail to accurately estimate conditions for bypassing flows.
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Figure 16. Measured and predicted bed thickness of Run 1 of Series 1. (a) 2D horizontal
distribution of the measured deposit. (b) 2D horizontal distribution of the predicted deposit. (c)
A-A’ cross-section of the predicted and measured bed thicknesses. (d) B-B’ cross-section of the

predicted and measured bed thicknesses.
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Figure 17. Measured and predicted bed thickness of Run 2 of Series 1. (a) 2D horizontal
distribution of the measured deposit. (b) 2D horizontal distribution of the predicted deposit. (c)
A-A’ cross-section of the predicted and measured bed thicknesses. (d) B-B’ cross-section of the

predicted and measured bed thicknesses.
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Figure 18. Measured and predicted bed thickness of Run 2 of Series 2. (a) 2D horizontal
distribution of the measured deposit. (b) 2D horizontal distribution of the predicted deposit. (c)
A-A’ cross-section of the predicted and measured bed thicknesses. (d) B-B’ cross-section of the

predicted and measured bed thicknesses.
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Figure 19. Measured and predicted bed thickness of Spychala et al. (2020). (a) 2D horizontal
distribution of the measured deposit. (b) 2D horizontal distribution of the predicted deposit. (c)
A-A’ cross-section of the predicted and measured bed thicknesses. (d) B-B’ cross-section of the

predicted and measured bed thicknesses.
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4.2 Inversion of Experimental Turbidity Currents

The proposed two-dimensional inverse model of turbidity currents demonstrated
reasonable performance even over complex topography, in contrast to the previous one-
dimensional models (e.g., Cai & Naruse, 2021), which were limited to flat topography.

The SMAPE values of C; and Cr (64.5%-86.2%) were lower than those of the previous

1D inverse model developed by Cai and Naruse (2021) (76.2% —-113%). The SMAPE val-
ues of the flow velocity U, flow height h, and flow duration Ty in this study (51.7 to 62.0%)
were also nearly equivalent to those in the previous study (24.2-43.1%). These results
highlight the practical applicability and improved robustness of the proposed 2D inverse
model in reconstructing turbidity current dynamics over complex seabed topography.

The possible origins of the estimation errors were the measurement accuracy of the
experimental conditions. The extrapolation of vertical profiles of the parameters to ob-
tain the layer-averaged flow conditions can also potentially cause measurement errors.
This study also estimated the layer-averaged flow velocities and flow heights in Run 1
of Series 1 and the experiment of Spychala et al. (2020) using the empirical formula pro-
posed by Altinakar et al. (1996) (Equation 6 and 8). However, (Sequeiros et al., 2010)
pointed out that the ratio Upax/U and hy, /h in supercritical flows ranges from 1.36 to
1.60 and 0.165 to 0.628, respectively, which can cause the measurement uncertainty rang-
ing from -4.41% to -18.7% in flow velocities and from -52.2% to 81.8% in flow heights.
The predictions in the layer-averaged concentrations tend to exhibit larger errors at the
grain size classes with very low concentrations (e.g., C3 and Cy in Run 1 of Series 1, and
C in Run 2 of Series 2). These errors could be attributed to the difficulty in measur-
ing small sample amounts in siphon-sampled specimens.

The uncertainties of the forward model can also contribute to the difference between
the predicted and measured values. The four-equation model employed in this study as-
sumed that the values of flow velocity, suspended sediment concentration, and turbu-
lent kinetic energy are constant in the region 0 < z < h (i.e., “top-hat” assumption) (Parker
et al., 1987). However, Parker et al. (1986) indicated that the shape factors obtained from
the experimental flow differed from the values (unity or zero) assumed in the model by
-38% to 18%. The other experimental studies (Parker et al., 1987; Islam & Imran, 2010;
Sequeiros et al., 2010) also obtained values that deviated from the top-hat assumption,
ranging from -54% to 45%. Skevington and Dorrell (2025) reported that the shape fac-
tors obtained from experimental and natural turbidity currents datasets were concen-
trated in significantly different values from the top-hat assumption. The shape factor,
with an extensive range of measurements, is 7y, which is defined as the ratio of the near-
bed sediment concentration to the layer-averaged concentration. This value affects the
settling rates of sediment. This study set this parameter to be 2.0 based on Kostic and
Parker (2006), while Skevington and Dorrell (2025) showed that ro can take a range from
about 0.8 to 5.0. As pointed out by Dorrell et al. (2014), these shape factors affect the
model predictions of all flow parameters. A numerical model of turbidity currents that
considers arbitrary shape factors Skevington and Dorrell (2025) is expected to overcome
these issues, thereby improving the performance of the inverse model in future studies.

Despite various potential sources of uncertainty in measurements and modeling de-
scribed above, the inverse model developed in this study effectively estimated flow con-
ditions within an acceptable margin of error (SMAPE < 100%), demonstrating its suit-
ability for reconstructing approximate turbidity current dynamics from depositional records.

4.3 Reproducibility of depositional features from inversion results

The inverse models developed in this study successfully reconstructed the exper-
imental depositional features from the estimated model input parameters, proving that
the model adequately captured the flow morphodynamic behaviors. The predicted bed
thickness distributions approximated most of the experimental results except for Run
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1 of Series 2 (Figures 16, 17, 18, 19). Fine topographic features, such as ripples, were not
reproduced because the shallow water equations employed in the forward model of this
study average velocity and suspended sediment concentration in the depth direction, as-
suming the long-wave approximation for flow dynamics. In addition, two mounds were
formed in the upstream region of Run 2 of Series 2, but the model did not reproduce them.
These mounds were caused by the heterogeneous distribution of the flow velocity in the
width direction at the inlet (Poppeschi et al., 2023), which was not considered in the model
calculations.

The discrepancy between the predicted and measured bed thickness in Run 2 of
Series 1 was probably caused by the bypassing conditions of the flow. The bed thickness
of this experiment was only about 1 mm on average; thus, the sediment was almost by-
passed. Under such conditions, accurately reproducing the flow conditions and the ge-
ometry of the deposits would not be easy even with an adequately trained inverse model.
This result is consistent with the testing results of the artificial datasets discussed in Sec-
tion 4.1, indicating that inverse analysis is difficult if the suspended sediment is not suf-
ficiently preserved in the deposit, as pointed out in a previous study (Naruse & Nakao,
2021).

The inversion framework proposed in this study can potentially be utilized for es-
timating the spatial distribution of ancient deposits. Indeed, the inverse model predicted
the two-dimensional distribution of bed thickness only from the limited sampling points.
In general, it is challenging to estimate spatial distributions of ancient turbidites because
of the limited number of available outcrops and coring sites. However, suppose the paleo-
hydraulic conditions of turbidity currents are estimated by inverse analysis, the forward
model can reconstruct the flow behavior of turbidity currents outside the surveyed area,
thereby obtaining the entire geometry of turbidites. Such estimates of the distributions
of coarse-grained deposits are essential for addressing the economic demands of carbon
capture and storage and hydrocarbon exploration (Nygard et al., 2006; Maiorana et al.,
2024).

4.4 Applicability to Field Data

Although the two-dimensional inverse model proposed in this study was applied
to turbidity currents flowing over complex topography, no significant performance degra-

dation was observed compared to the one-dimensional inverse model in the previous study (Cai

& Naruse, 2021), which considers turbidity currents flowing on a flat bed in a straight
channel. Therefore, the inverse model developed in this study can be applied to the cur-
rents flowing over the natural complex topography at the deep-sea floor, such as the trench
slope at an active margin and the minibasins formed by salt diapirs at a passive mar-

gin.

The DNN-based 2D inverse model developed in this study is more efficient and yields
reasonable results for field data than other optimization methods. Most previous stud-
ies have employed optimization methods that require iterative computation for inverse
analyses of gravity currents, such as the genetic algorithm (Nakao et al., 2020), the Markov
Chain Monte Carlo method (Moretti et al., 2020; Kameda & Okamoto, 2021), the sur-
rogate management method (Lesshafft et al., 2011), and the adjoint method (Parkinson
et al., 2017). However, these optimization methods have high computational loads be-
cause they require many iterations. In addition, the results of the optimization meth-
ods are not always reasonable. For example, Parkinson et al. (2017) estimated the flow
thickness of a turbidity current from the actual turbidite bed as 0.00192 m or 3950 m
because the oversimplified assumptions for the forward model needed to iterate the model
calculations. In contrast, the inverse model developed in this study can perform inverse
analysis almost instantly once the training process is complete, yielding reasonable re-
sults. Although the production of the training datasets takes a relatively long time, the
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forward model computation in this procedure can be entirely parallelized, allowing the
models with high computational load to be employed in our inversion framework. There-
fore, the 2D inverse model developed in this study is more suitable for the field-scale tur-
bidity current than previous inverse methods, which employed classical optimization meth-
ods.

The primary feature of the inverse analysis framework in this study is that it al-
lows easy modification of the forward model to a formulation that is more suitable for
the field conditions. Since the inverse model is trained on datasets generated by the for-
ward model, improving the forward model can improve the performance of the inverse
model. For example, a two-layer model that reproduces long-runout turbidity currents
was recently proposed (Ma et al., 2025). Turbidity currents traveling over 1130 kmn have
been observed in the Congo Submarine Canyon and its associated channel (Talling et
al., 2022); however, a single-layer model is difficult to predict such behavior of turbid-
ity currents flowing over a long distance, as they decelerate due to the entrainment of
the surrounding water. A two-layered formulation, where the lower driving and upper
dilute layers comprise a turbidity current, can predict the long-runout flows because the
ambient water entrainment occurs only in the dilute layer, and the main driving force
of the flow is maintained in the lower layer. Therefore, it is appropriate to use a two-layer
model for performing inversion for large-scale submarine geomorphology. Not limited to
such cases, the inverse model framework proposed in this study is open to employing var-
ious types of forward models.

5 Conclusions

This study developed horizontal two-dimensional inverse models based on a deep
neural network (DNN) to estimate turbidity currents flow parameters from turbidite char-
acteristics. Validation with synthetic datasets demonstrated that the inverse models suc-
cessfully estimated most input parameters with a symmetric mean absolute percentage
error (SMAPE) below 32.5% and minimal biases, except for the layer-averaged density-
equivalent sediment concentration for saline water Cys. The difficulty in estimating Cj ¢
in Series 1 likely stems from its limited imprint on the resulting deposit.

The inverse model also reconstructed the flow conditions of the experimental tur-
bidity currents with reasonable accuracy. The normalized percentage error (NPE) of the
layer-averaged suspended sediment concentration and total suspended sediment concen-
tration ranged from 4.98% to 157%, and from 45.6% to 98.5%, respectively. For flow ve-
locity and height, the NPEs ranged from 12.2% to 100% and 24.0% to 90.4%, while the
NPE of flow duration ranged from 38.5% to 86.3%. The SMAPE values for suspended
sediment concentration were comparable to those reported by Cai and Naruse (2021).
Although the SMAPE values for flow velocities, heights, and durations were slightly higher
than those of the previous one-dimensional inverse model, they remained within accept-
able ranges, considering uncertainties such as profile extrapolation, sampling disturbance,
and forward model assumptions.

The spatial distribution of the bed thickness was also well reproduced. In Run 1
of Series 1, the forward model calculation using the estimated conditions successfully re-
constructed a channel-levee-like deposit. In Run 2 of Series 2, it captured the general
trend of thick upstream deposits and thinner downstream deposits. Furthermore, the model
accurately reconstructed the deposits of the experiment by Spychala et al. (2020), in-
cluding the upstream channel erosion and the thick terminal deposits. Although the bed
thickness was slightly overestimated in Run 2 of Series 2 due to the thinness of the de-
posits, the characteristic morphology was still reasonably reproduced.

Overall, the proposed horizontally two-dimensional inverse model achieved perfor-
mance comparable to that of the previous one-dimensional DNN-based model while of-
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fering substantially lower computational cost than the conventional optimization-based
methods. This demonstrates the efficiency and practical applicability of the model to
field-scale inverse analysis. Since the proposed inverse model framework is independent
of the choice of forward models, it can be readily adapted to incorporate more advanced
numerical models. This flexibility suggests that the method can be extended to reliably
reconstruct field-scale flows over complex topography.

Appendix A Generation of the digital elevation models

To obtain the digital elevation models (DEMs) by the structure from motion (SfM)
technique (Fonstad et al., 2013), the experimental topographies in the flume were pho-
tographed before and after each run. The images were captured using a waterproof dig-
ital camera (OM SYSTEM TOUGH TG-6 and TOUGH TG-7) in subaqueous positions
without draining water to avoid topographic deformation. To take clear underwater im-
ages, the flume was left untouched for 2-3 days after the experimental run before tak-
ing photographs. Colored sands were spread over the experimental deposits to add the
reference points of images to be used in the SfM method. The spatial interval between
the acquisition of images was 0.15 m in the longitudinal direction and 0.1 m in the lat-
eral direction of the flume. The camera angle was changed to three different positions
to capture the three-dimensional geometry of the topography. As a result, in Series 1,
978 and 844 photographs were taken for Runs 1 and 2, respectively. In Series 2, 2868 and
1937 photographs were taken for Runs 1 and 2, respectively.

Subsequently, three-dimensional point clouds representing the elevation of the ex-
perimental topography were produced using the subaqueous photographs. The commer-
cial software Agisoft Metashape 1.8.4 was used to generate point clouds. To guarantee
the accuracy of the topographic elevations, the ground control points (GCPs) were set
on the side of the flume (Figure Al; Table A1), and the coordinates of those GCPs were
given to the software for the SfM analysis. All GCPs were used to reconstruct the to-
pography in Series 1. In Series 2, however, the GCP 1-1 located on the right-bank side
of the upstream end was not used in the analysis because this GCP marker toppled over
during the experiment.

Preprocessing, including outlier removal, was conducted to ensure the reliability
of the point-cloud data. Since the point cloud near the inlet was sparse due to the dif-
ficulty in the image references by the light reflection, only the point cloud data after 0.35 m
from the upstream end was used in Series 1. The outlier points were removed after gen-
erating point clouds using the k-nearest neighbor algorithm (Cover & Hart, 1967). Python
3.7 and Open3D 0.11.2 packages were used for this purpose. The number of the neigh-
bor points K to judge the outlier points was set to 100 in Series 1 and 500 in Series 2,
and the threshold coefficient m for the standard deviation of the elevation was set to 0.1
in this study.

Finally, DEMs were created from the point-cloud datasets. Before producing the
DEM, the voxel downsampling procedure was applied to the point cloud dataset to re-
duce the excessive information. The point clouds composed of a large number of points
were summarized into a limited number of collections of points averaged for every sam-
pling boxes (i.e., voxel) by this procedure. The voxel size was 0.001 m in both series. Fol-
lowing this, the radial basis function (RBF) interpolation was performed with SciPy 1.7.3
to produce the digital elevation model with a constant grid spacing of 0.001 m in both
series.
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Table A1l. Coordinates of Ground Control Points.
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Figure Al.

Notation

¢; Time-averaged flow velocity
M, Mass of fluid
M, Mass of suspended sediment

F,; Fraction of the ith grain-size class in sampled suspended sediment

pe Density of fluid
ps Density of sediment particle

Location of ground control points.

U Layer-averaged flow velocity in x-direction
V Layer-averaged flow velocity in y-direction
C; Layer-averaged suspended sediment concentration of ith grain-size class

Ct Layer-averaged total suspended
h Flow height
z Height above the bed

sediment concentration

Umax Maximum value of vertical flow velocity profile
cp; Suspended sediment concentration of ith grain-size at 0.05h,
hy,, Height above the bed at which the flow velocity reaches Uy ax

Cs Layer-averaged density-equivalent sediment concentration for saline water

cs Density-equivalent sediment conc
pw Density of fresh water
Psw Density of saline water

entration for saline water

R Submerged specific density of sediment particles

Fryq Densimetric Froude number
pt Density of turbidity current

g Gravity acceleration

Re Reynolds number
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v Kinematic viscosity of water

7; Shields number

7, Critical Shields number of ith grain-size class

Dyg; Grain diameter of sediment particles of ith grain-size class
ce Friction coefficient

x Karman constant

ks Roughness height

Dgso Mean grain diameter

Rey; Particle Reynolds number

7; Sediment volume per unit area for ith grain-size class

Vsi Sediment volume fraction of ith grain-size class at sampling point
nt Bed thickness

t Time

x Bed-attached horizontal coordinate

y Bed-attached horizontal coordinate

K Layer-averaged turbulent kinetic energy

F; Volume fraction of the ith grain-size class in active layer

ew Entrainment rates of ambient water

es; Entrainment rates of basal sediment of ith grain-size class
wg; Settling velocity of a sediment particle of ith grain-size class
vy Horizontal eddy viscosity

€o Dissipation rate of turbulent kinetic energy

Ap Porosity of bed sediment

ro Ratio of the near-bed concentration to layer-averaged concentration
L, Thickness of active layer

u, Friction velocity

R; Bulk Richardson number

Uy Layer-averaged flow velocity at inlet

Co,; Layer-averaged concentration of ith grain-size class at inlet

Co,s Layer-averaged density-equivalent sediment concentration for saline water at in-

let
ho Flow height at inlet
Ty Flow duration

Data Availability Statement

The training and test datasets for the inversion model, the inversion results, the
flume experiment results, and the scripts used to produce the figures from the data are
available from Zenodo at https://doi.org/10.5281/zenodo.16751886 under the Creative
Commons Attribution 4.0 International license (Fujishima, 2025). The nninvld used to
develop the DNN-based inverse models in this study is a modified version of the one used
in (Naruse & Nakao, 2021), adapted specifically for the purposes of this research. The
version of 1.0.0 of nninvld (Fujishima & Naruse, 2025a) used in this study is archived
at https://doi.org/10.5281/zenodo.16731283. The source code of nninvld is available un-
der MIT Licence and is openly maintained at https://github.com/fujishimaseiya/nninv1d.
The version 1.0.0 of turb2d (Fujishima & Naruse, 2025b) used for forward model calcu-
ation is preserved at https://doi.org/10.5281/zenodo.16730833, available via MIT Licence

and developed openly at https://github.com/fujishimaseiya/turb2d.
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