

1 **Title: Observed Impacts of Aerosol Regimes on Energy and Carbon Fluxes in the**
2 **Amazon Forest**

3
4 Response (blue color) to anonymous Referee #3 (black). The original manuscript was
5 changed accordingly. The lines indicated in our answers correspond to the track
6 version of the manuscript.

7
8 **General comment**

9
10 This comment was prepared as part of MSc course work at Wageningen University
11 under supervision of Prof Wouter Peters. They were uploaded as a comment as they
12 were regarded to be of good quality, and likely helpful to the authors and editor in the
13 review process.

14
15 We would like to express our sincere gratitude to Professor Wouter Peters and his
16 students for their interest in our manuscript. Their comments help us to improve our
17 results and discussion.

18
19 This study examines how aerosol regimes affect energy and carbon fluxes in a pristine
20 central Amazon forest. Using 2016–2022 meteorological and flux data from the
21 Amazon Tall Tower Observatory (ATTO) and AOD (500 nm) from AERONET, it tests
22 whether aerosol loading alters latent heat (LE), net radiation (Rn), and CO₂ fluxes
23 (FCO₂). The study focuses on the dry season (August–November), when biomass
24 burning elevates aerosol concentrations across the southern Amazon Basin. The
25 authors define two aerosol regimes: clean (AOD < 0.13) and polluted (AOD > 0.40),
26 consistent with previous studies such as Steiner et al. (2013) and Ross Herbert & Stier
27 (2023). This threshold-based approach, derived from data percentiles, provides a
28 simple yet robust framework for distinguishing contrasting aerosol loading conditions.
29 Their analysis focuses on the 10:00–14:00 LT period to examine energy partitioning
30 under contrasting aerosol regimes. Authors interestingly present, VPD vs Temperature
31 (Figure 4), a combination of variables that I have not encountered in other studies
32 reviewed during this process. It is particularly valuable, as it effectively illustrates—
33 through the observed variables of VPD and temperature—the realistic delay caused
34 by reduced shortwave incoming radiation (SWin) during polluted periods. They report
35 a delay in the rise of temperature and VPD under polluted conditions, highlighting the
36 moderating effect of aerosols. They conclude by confirming the well-documented
37 finding that, paradoxically, CO₂ uptake increases under polluted conditions—by about
38 57.7% in this case—due to the diffuse radiation effect, where scattered sunlight
39 enhances photosynthesis within shaded canopy layers. This result is in strong
40 agreement with previous studies on Amazonian aerosol dynamics, particularly
41 Rodrigues et al. (2024) and Cirino et al. (2014), which similarly observed elevated
42

43 carbon uptake under high-AOD conditions. The study concludes by emphasizing the
44 nonlinear and complex interactions between AOD and surface fluxes, demonstrated
45 through MANCOVA and Random Forest Model analyses, underlining however the
46 need for further investigation.

47

48 **Remarks on several aspects:**

49

50 (1) Midday Averaging

51

52 The authors assess the effects of aerosols on surface energy and carbon fluxes by
53 averaging 30-minute flux measurements over the 10:00–14:00 LT period and then
54 calculating percentage reductions between clean and polluted aerosol regimes. This
55 time window is identified as representing the period of strongest radiative and
56 convective activity (line 173). However, the diurnal cycle plots (Figs. 5 and 6) reveal
57 uneven flux patterns, with noticeable uninvestigated areas (Figure 5 & 6 “white
58 spaces”, outside 10:00–14:00 LT window) within both the clean and polluted regimes.
59 As a starting point, Figure 4 clearly shows a delay in the increase of temperature and
60 vapor pressure deficit (VPD). Because natural processes evolve non-uniformly
61 throughout the day, using a short and non-equidistant time subset which may bias the
62 calculated percentage reductions and misrepresent the actual aerosol influence. The
63 paper’s methodology follows Steiner et al. (2013), who also analyzed fluxes over the
64 10:00–14:00 LT period and compared similar aerosol optical depth (AOD) regimes
65 (AOD < 0.3 vs. > 0.5). However, within the text, fluxes reductions’ comparisons are
66 made with studies that employed different approaches to assess aerosol-load effects.
67 For example, Rodrigues et al. (2024) and Cirino et al. (2014) estimated flux reductions
68 under specific irradiance conditions, distinguishing Solar Zenith Angle (SZA) zones
69 and thereby incorporating the time-of-day variability, rather than relying on a fixed
70 midday average. A closer examination of Figures 5 and 6, which depict sensible, latent,
71 and ground heat fluxes, reveals an interesting but unexamined pattern during i.e. the
72 morning transition (06:00–10:00 LT). Both H and G occasionally exceed their
73 respective values under polluted conditions, while the consistent dominance of the
74 clean regime in LE appears to be underestimated. Early-morning CO₂ uptake (Figure
75 6) also exhibits a more dynamic behavior, with pronounced transitions between clean
76 and polluted regimes. To better capture the full evolution of the phenomena and
77 associated fluxes, the authors could integrate the area under the fluxes’ curves over
78 the 06:00–17:00 LT period and compare the resulting averages between the clean and
79 polluted aerosol regimes. Alternatively, if there is sufficient data outside the window
80 10:00–14:00 LT the authors could consider reporting morning (06:00–10:00 LT) and
81 afternoon sub-period (14:00–17:00 LT) averages separately to capture diurnal
82 variability better. Analyzing relative irradiance would require substantially more
83 methodological development and investigation by the authors; therefore, it is not
84 recommended.

85
86 We thank the Referee #3 for this comment. We agree that surface fluxes exhibit
87 variable features outside the 10:00–14:00 LT window. However, during these periods,
88 flux variability may be influenced by boundary-layer dynamics and low solar elevation
89 angles, which can affect H, LE, and FCO₂ and complicate the isolation of the radiative
90 effects of aerosols. Moreover, radiometer uncertainties (typically within ~5%) are less
91 significant when radiation levels are high. At low solar elevation angles (early morning
92 and late afternoon), radiation magnitudes are smaller, which increases the relative
93 importance of measurement errors and energy balance closure uncertainties. For
94 these reasons, the 10:00–14:00 LT period provides more favorable conditions for
95 isolating aerosol-induced radiative effects.

96
97 In the revised manuscript, we have added Figure 4 showing the full diurnal cycles of
98 shortwave, longwave, and net radiation during the dry season (2016–2022). This figure
99 demonstrates that peak net radiation consistently occurs between 10:00 and 14:00 LT,
100 supporting our choice of this time window.

101
102 (2) Gaps Manipulation

103
104 The authors state that their initial dataset comprised 10,890 half-hourly observations
105 (line 87), which, after several filtering steps, was reduced to 523 rows—of which only
106 370 belong to the dry season (lines 94–96). However, the paper does not clarify how
107 these 10,890 records were originally obtained. Figure 2 further raises questions about
108 data representativeness and statistical treatment: the monthly boxplots show means
109 much higher than medians, indicating positive skewness, while the number of valid
110 data points per month is not reported. The data filtering process is clearly described,
111 resulting in 523 rows of 30-minute averaged meteorological, flux, and AOD values.
112 However, the dataset distribution across years is highly uneven, as also noted by the
113 authors (line 97: “The distribution...effects of aerosol”). Specifically, years contributing
114 less than 5 % of the total dataset are treated equivalently to years such as 2020 and
115 2022 (42,4% and 29,2% data coverage respectively), despite potentially different
116 atmospheric and surface conditions. This raises concerns regarding the robustness of
117 the study’s conclusions. Evidentially, no quantitative assessment of data
118 representativeness or uncertainty is provided. Similar studies (e.g., Schmitt et al.,
119 2023) have explicitly visualized monthly data availability and included “fraction of
120 missing data”. Moreover, the extremely low number of data rows for certain years
121 warrants further examination, as such sparse temporal coverage could substantially
122 affect the robustness of the Random Forest Model (RFM) used later in the statistical
123 analysis. Limited data availability may lead to overfitting, biased feature importance
124 when training and validation subsets are unevenly represented. It is recommended that
125 the authors include the fraction of valid rows per month, which could be directly
126 incorporated into Figure 2. Furthermore, the manuscript should clearly describe the

127 origin of the initial 10,890 observations—specifying the time period covered, sampling
128 frequency, and measured variables—to better contextualize the subsequent data
129 filtering process.

130

131 We thank the Referee #3 for these important comments. They will certainly help to
132 improve the methodology and discussion of the results.

133

134 We would like to begin our responses by stating that in the new version of the
135 manuscript, we regrouped our data in a way that allowed us to include a greater
136 number of runs (half-hour periods). In the previous version of the manuscript, in
137 addition to excluding all periods when clouds were present, which is very common in
138 the Amazon, we also excluded all data from a given day and time when a variable was
139 missing. For example, if we did not have the reflected shortwave radiation
140 measurement for a given time, we removed all other variables for that same time. This
141 resulted in only 523 valid half-hour periods (370 dry season, 153 wet). In the new
142 version of the Manuscript, we decided to regroup the variables so that they did not
143 depend on each other. We first identified the periods in which we had the Clean and
144 Polluted regimes and then identified how many runs of each variable were available
145 for each regime. After this procedure, the number of runs increased substantially, as
146 shown in Table R1, comparison between the dataset used in the first version of the
147 manuscript (single database) and the dataset used for this new version (database by
148 variable).

149

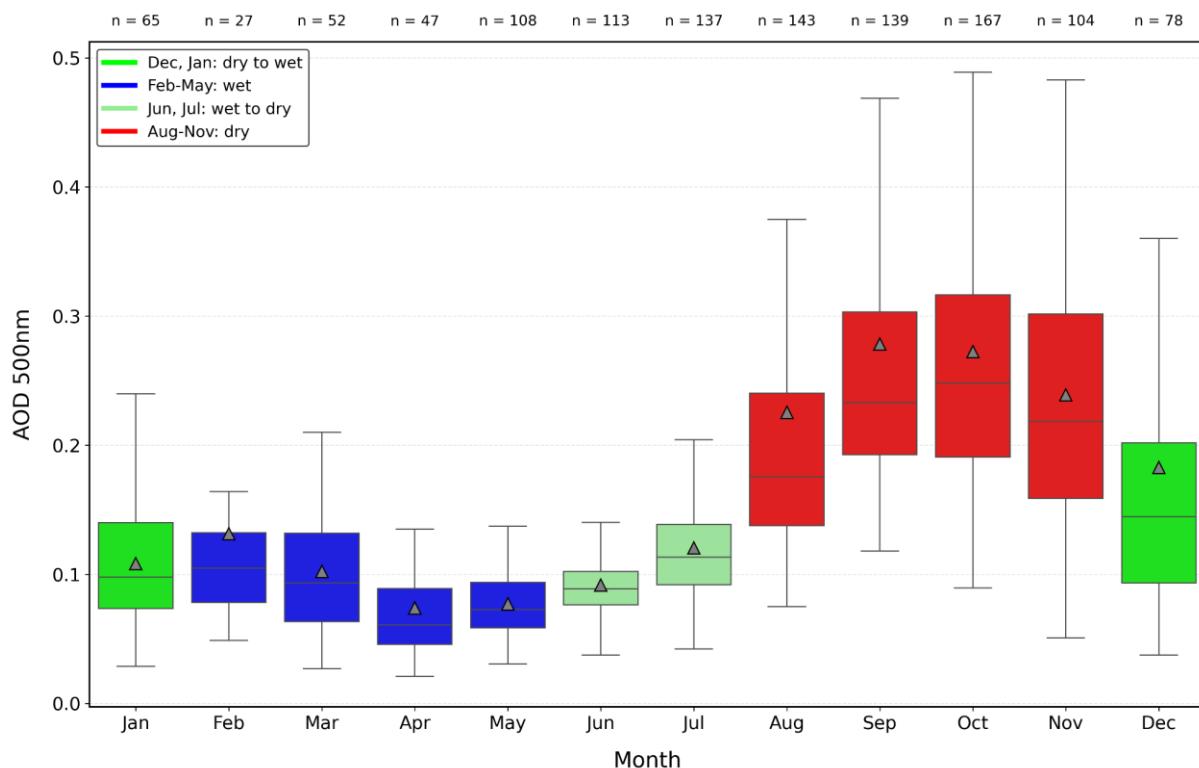
150 Table R1: Number of runs (half-hour periods) after all quality controls mentioned in
151 section 2.2.

Variables	Single database						Database by variable													
	10:00 -14:00 LT		07:00 -17:00 LT		Total		10:00 -14:00 LT		07:00 -17:00 LT		Total									
	No.	Clean	No.	Polluted	No.	Clean	No.	Polluted	No.	Sample	No.	Clean	No.	Polluted	No.	Sample				
SWin(Wm ⁻²)	98	81	219	151	370	301	204	736	459	1195	98	81	219	151	370	301	204	736	459	1195
SWout(Wm ⁻²)	98	81	219	151	370	301	204	736	459	1195	98	81	219	151	370	301	204	736	459	1195
LWatm(Wm ⁻²)	98	81	219	151	370	301	200	733	453	1186	98	81	219	151	370	301	200	733	453	1186
LWterr(Wm ⁻²)	98	81	219	151	370	301	204	735	459	1194	98	81	219	151	370	301	204	735	459	1194
Rn(Wm ⁻²)	98	81	219	151	370	301	200	733	453	1186	98	81	219	151	370	301	200	733	453	1186
H(Wm ⁻²)	98	81	219	151	370	197	192	455	389	844	98	81	219	151	370	197	192	455	389	844
LE(Wm ⁻²)	98	81	219	151	370	183	180	447	386	833	98	81	219	151	370	183	180	447	386	833
FCO ₂ (μmol m ⁻² s ⁻¹)	98	81	219	151	370	247	195	596	405	1001	98	81	219	151	370	247	195	596	405	1001
G(Wm ⁻²)	98	81	219	151	370	301	218	741	487	1228	98	81	219	151	370	301	218	741	487	1228

152

153

154 The initial number of 10,890 observations does not represent the full raw eddy-
155 covariance dataset, which contains 122,734 half-hourly records over 2016–2022.
156 Instead, this number corresponds to the subset of 30-minute periods for which aerosol
157 optical depth (AOD) data from AERONET (version 3, level 2) were available and could
158 be matched with surface flux and radiation measurements. The text has been updated
159 accordingly to improve clarity (Section 2.2 in the revised version of the manuscript).


160

161 L95-107: “To eliminate cloud interference and investigate the role of aerosols in surface
162 energy fluxes, the central objective of this study, we used data from the Aerosol
163 Robotic Network (AERONET) at the ATTO site, specifically AOD (version 3, level 2).
164 These data are free of cloud contamination due to pre and post-field calibration (Giles
165 et al., 2019). Based on this, 30-minute averages were calculated between 2016 and

166 2022 for which AOD data from AERONET were available, the initial combined dataset
 167 comprised 10,890 observations, including all variables listed in Table 1. This matched
 168 dataset served as the starting point for the subsequent quality control and filtering
 169 procedures. First, the turbulent fluxes underwent quality control based on Foken et al.
 170 (2004). Only data with flags "0" (best quality) and "1" (acceptable for general analysis)
 171 were used; data with flag "2" (poor quality) were discarded. Second, this study only
 172 considered the daytime period (from 7:00 to 17:00 LT) because the highest Rn values
 173 occur during this time. After filtering, the resulting dataset is summarized in Table S1
 174 and S2."

175
 176 As described in the previous comment, we regrouped our data in a way that allowed
 177 us to include a greater number of runs (half-hour periods). Based on this updated
 178 dataset, Figure R1 was revised and now includes the number of samples per month
 179 (n). The mean values are higher than the medians, particularly during the dry season,
 180 reflecting the influence of episodic high-AOD events (e.g., biomass burning, smoke
 181 intrusions) that shift the distributions toward positive skewness. We additionally verified
 182 that the main seasonal contrasts remain qualitatively unchanged when using median
 183 AOD instead of mean AOD.

184

185
 186 Figure R1. Box plot showing monthly AOD 500 nm values measured at the ATTO site between 2016
 187 and 2022. The box represents the central 50% of the data, the whiskers represent the smallest and
 188 largest non-outlier values, while the means are indicated by the green triangles and the medians are the
 189 lines inside the box. Numbers above each month indicate the sample size (n) (Figure 2 in the revised
 190 version of the manuscript).

191

192 (3) Statistical Analysis

193

194 The study explores the relationship between aerosol optical depth (AOD) and surface
195 fluxes (Rn, H, LE, FCO₂) implementing Spearman correlations, multivariate
196 MANCOVA testing assessed by Pillai test and a Random Forest Model (RFM) to
197 quantify nonlinear dependencies and variable importance. However, several
198 methodological lack in processes or data-handling limitations seem to weaken the
199 robustness of the conclusions. The manuscript provides a general introduction to the
200 application of Pillai's test and outlines the advantages of using the Random Forest
201 Model (RFM) to investigate nonlinear and complex interactions between variables and
202 systems. However, it remains unclear to what extent these principles—particularly in
203 the case of RFM—have been appropriately implemented and demonstrated in the
204 study. In comparable RFM environmental works, such as Miao et al. (2018) and Zhang
205 et al. (2023), linear correlation analyses were explicitly conducted to assess collinearity
206 among key variables by providing comprehensive correlation matrices, providing direct
207 linear insights. In contrast, Rocha et al. (2025) only briefly mention in line 272 that "the
208 statistical relationships show low intensity or no statistical significance," without offering
209 supporting analyses or graphical evidence. Furthermore, while Miao et al. (2018)
210 thoroughly examined their multivariate equations and reported the statistical
211 significance of their models and variables, Rocha et al. (2025) limit the discussion to
212 the significance of Pillai's test (line 275), suggesting the absence of linear interactions
213 without presenting sufficient analytical support or methodological transparency.
214 Another major concern is data volume, as mentioned in major argument 2. Miao et al.
215 (2018) utilized approximately 7,000 samples, and Zhang et al. (2023) worked with
216 about 60,000 samples. In contrast, Rocha et al. (2025) rely on only 370 rows of data
217 for the dry period, which raises serious concerns about potential overfitting of the RFM.
218 Moreover, although the manuscript mentions a cross-validation approach in Table 3, it
219 does not specify the technique used or report its results. Finally, the model assessment
220 presented in Table 3 appears inadequate and leaves substantial uncertainty regarding
221 the RFM's reliability. In the referenced studies, Miao et al. (2018) implemented multiple
222 factor matrices, and Zhang et al. (2023) validated their models through scatter density
223 plots and strong statistical metrics across training and testing datasets, including mean
224 absolute error (MAE) and percentage variation analyses. Rocha et al. 2025 attempt to
225 employ a RFM to capture the nonlinear influence of aerosols on surface fluxes.
226 However, this approach lacks sufficient methodological justification and statistical
227 robustness. The authors do not provide any evidence of cross-validation or other
228 procedures to assess model generalisability. Furthermore, the dataset used for
229 training—only 370 observations—is several orders of magnitude smaller than what is
230 typically required for stable Random Forest performance, raising serious concerns
231 about overfitting and the reliability of the reported metrics. Consequently, the predictive
232 results presented in Table 3 should be interpreted with caution, as their statistical
233 validity is uncertain. Given the limited dataset, the application of the Random Forest
234 Model (RFM) in this study does not appear to add substantial value to the results or
235 discussion. With such a small sample size, the model's capacity to generalise is

236 minimal, and its predictive performance cannot be reliably validated. Moreover, the
237 manuscript provides no detailed explanation of the model evaluation or validation
238 procedures, which further undermines confidence in the reported outcomes. To
239 strengthen the analysis, I suggest replacing or complementing the RFM with a
240 correlation matrix to explicitly reveal potential collinearity among variables, particularly
241 regarding the influence of AOD (as in Table 3). Additionally, presenting multivariate
242 regression equations and reporting their levels of statistical significance would offer a
243 clearer and more interpretable understanding of how other environmental factors
244 interacts with AOD. Such an approach could also serve as a solid foundation for future
245 studies investigating aerosol impacts on surface fluxes under polluted regimes.

246

247 We sincerely thank the MSc students at Wageningen University, under the supervision
248 of Prof Wouter Peters, for their detailed and constructive feedback regarding our
249 statistical methodology.

250

251 We agree with the referee and have removed the RFM analysis from the revised
252 manuscript. We emphasize that the RFM was originally intended as a complementary
253 exploratory tool, and its removal does not affect the main results or interpretations of
254 the study. In the revised version, to assess whether clean and polluted regimes exhibit
255 statistically significant differences in radiation and surface energy and CO₂ fluxes, we
256 apply the Mann–Whitney U test, which is well suited for non-normally distributed data
257 and unequal sample sizes. These revisions provide a clearer and more robust
258 statistical framework to support our conclusions regarding aerosol impacts on surface–
259 atmosphere interactions.

260

261 **Minor arguments and typos:**

262

263 **Minor issue 1:** Several sentences are poorly structured or ambiguous, leading to
264 confusion or misinterpretation. Examples include lines 74–75, 97, 99–101, 112–113,
265 134, and 247–248, as well as the descriptions for Figures, especially 2 and 4, where I
266 suggest rephrasing or clarifying.

267

268 L76: “*The climate is tropical humid and characterized by two seasons (wet and dry),*
269 *driven by seasonal shifts of the Intertropical Convergence Zone over the Amazon Basin*
270 *(Andreae et al., 2015).*”

271

272 L299: “*However, analysis of LE, which represents the fraction of available energy*
273 *converted into evapotranspiration, shows a consistent decrease in the polluted regime*
274 *compared to the clean regime (Figure 6), which contradicts this expectation.*”

275

276 Additionally, Section 2.3 (Analysis Methods) has been revised to address all the
277 reviewer’s comments.

278

279 **Minor issue 2:** Several statements lack adequate justification or references, I suggest
280 further elaboration on the statements:

281

282 Line 114: The use of a fourth-order polynomial is mentioned but not explained or
283 visualized.

284

285 The polynomial fit shown in Figs. 4–6 was applied solely as a smoothing technique for
286 visualization purposes. In the revised manuscript, we have included the 30-min
287 observed data points in the figures to better illustrate data variability. This clarification
288 has been incorporated into the manuscript as follows:

289

290 L139-141: “*To facilitate the visualization of the mean diurnal patterns, a 4th-order*
291 *polynomial curve was applied exclusively as a smoothing technique to the*
292 *observational data. This curve fitting was used solely for graphical purposes and does*
293 *not represent a physical or predictive model. All analyses were based on the measured*
294 *data.*”

295

296 Lines 135–136: Require citation or elaboration.

297

298 We appreciate your suggestion, but we have removed the RFM.

299

300 Lines 220–222: Could be expanded with a brief example of the described method.

301

302 The expansion was carried out as follows:

303

304 L261-267: “*They identified a correlation between relative irradiance, air temperature,*
305 *and VPD. Meanwhile, Herbert and Stier (2023) and Palácios et al. (2024) reinforce the*
306 *idea that AOD significantly influences temperature variations, particularly on a regional*
307 *scale. For instance, Palácios et al. (2024) observed positive linear correlations*
308 *between AOD and air temperature across distinct climatic phases, attributed to the*
309 *absorption of solar radiation by biomass burning emissions resulting in atmospheric*
310 *heating. Similarly, Herbert and Stier (2023) utilized reanalysis data to demonstrate that*
311 *2-meter air temperature increases as a function of AOD, consistent with localized*
312 *heating of the smoke layer due to strong absorption of solar radiation.*”

313

314 **Minor Issue 3:** Some methodological descriptions (e.g., line 12 in the Abstract; lines
315 87–90 on data filtering; lines 137–144 on the RFM methodology) could be condensed,
316 as they do not add substantial value to the manuscript.

317

318 We thank the referee for this comment. The RFM analysis has been removed from the
319 revised manuscript, as detailed in lines 251-259 of this document.

320
321 **Minor Issue 4:** GPP is mentioned in the Abstract and Conclusion but is neither
322 discussed nor analyzed in the main text.
323
324 The Abstract and Conclusion has been updated, and references to GPP have been
325 removed in the revised manuscript.
326
327 **Minor Issue 5:** The manuscript refers to two towers at the ATTO site but does not
328 specify which tower's data are used in the analyses and figures.
329
330 Thanks for this comment. The text has been revised to specify that the analyses are
331 based on data from the Instant Tower (81 m).
332
333 L66: *"The data used in this study were collected as part of the ATTO project, a bilateral
334 initiative between Brazil and Germany. Since 2012, ATTO has carried out continuous
335 measurements, as described by Andreae et al. (2015), located in an area of pristine
336 tropical forests in the central Amazon (Figure 1), which contains the Instant Tower of
337 81 meters (-2.1441°S, -58.9999°W)."*
338
339 P1, line 12: The last sentence of the Abstract adds no clear value to the manuscript
340 and could be removed.
341
342 The text has been removed from the abstract in the new version of the manuscript.
343
344 P3, line 81: Change LiCor to LI-COR for correct company citation.
345
346 The text has been updated accordingly. Thanks.
347
348 P5, line 112: The text states that hourly averages are used, while figures show 30-
349 minute values—this inconsistency should be corrected.
350
351 Section 2.3 (Analysis Methods) has been revised accordingly.
352
353 P14, Table 3 description: Typo — change FCO to FCO₂.
354
355 The table description has been updated accordingly. Thanks.
356
357 P15, line 312: Typo — change aerossil to aerosol.
358
359 The text has been updated accordingly. Thanks.
360

361 [References](#):

362

363 Andreae, M. O., Acevedo, O. C., Araújo, A., Artaxo, P., Barbosa, C. G. G., Barbosa,
364 H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., da Silva, N. F., Dias, N. L.,
365 Dias-Júnior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., Heimann, M.,
366 Hoffmann, T., Kesselmeier, J., Könemann, T., Krüger, M. L., Lavric, J. V., Manzi, A.
367 O., Lopes, A. P., Martins, D. L., Mikhailov, E. F., Moran-Zuloaga, D., Nelson, B. W.,
368 Nölscher, A. C., Santos Nogueira, D., Piedade, M. T. F., Pöhlker, C., Pöschl, U.,
369 Quesada, C. A., Rizzo, L. V., Ro, C.-U., Ruckteschler, N., Sá, L. D. A., de Oliveira Sá,
370 M., Sales, C. B., dos Santos, R. M. N., Saturno, J., Schöngart, J., Sörgel, M., de Souza,
371 C. M., de Souza, R. A. F., Su, H., Targhetta, N., Tóta, J., Trebs, I., Trumbore, S., van
372 Eijck, A., Walter, D., Wang, Z., Weber, B., Williams, J., Winderlich, J., Wittmann, F.,
373 Wolff, S., and Yáñez-Serrano, A. M.: The Amazon Tall Tower Observatory (ATTO):
374 overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and
375 aerosols, *Atmospheric Chemistry and Physics*, 15, 10 723–10 776,
376 <https://doi.org/10.5194/acp-15-10723-2015>, 2015.

377 Cirino, G. G., Souza, R. A. F., Adams, D. K., and Artaxo, P.: The effect of atmospheric
378 aerosol particles and clouds on net ecosystem exchange in the Amazon, *Atmospheric
379 Chemistry and Physics*, 14, 6523–6543, <https://doi.org/10.5194/acp-14-6523-2014>,
380 2014.

381 Foken, T., Göockede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W.: *Post-Field
382 Data Quality Control*, pp. 181–208, Kluwer Academic Publishers, ISBN 1402022646,
383 https://doi.org/10.1007/1-4020-2265-4_9, 2004.

384 Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck,
385 T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and
386 Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3
387 database— automated near-real-time quality control algorithm with improved cloud
388 screening for Sun photometer aerosol optical depth (AOD) measurements,
389 *Atmospheric Measurement Techniques*, 12, 169–209, <https://doi.org/10.5194/amt-12-169-2019>, 2019.

391 Miao, S., Zhang, X., Han, Y., Sun, W., Liu, C. and Yin, S.: Random Forest Algorithm
392 for the Relationship between Negative Air Ions and Environmental Factors in an Urban
393 Park, *Atmosphere*, vol. 9, no. 12, Art. no. 463, doi:10.3390/atmos9120463, 2018.

394 NASA JPL: NASADEM Merged DEM Global 1 arc second V001, [Data set],
395 https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001, accessed
396 2020-12-30, 2020.

397 Palácios, R., Castagna, D., Barbosa, L., Souza, A. P., Imbiriba, B., Zolin, C. A.,
398 Nassarden, D., Duarte, L., Morais, F. G., Franco, M. A., Cirino, G., Kuhn, P., Sodré,
399 G., Curado, L., Basso, J., Roberto de Paulo, S., and Rodrigues, T.: ENSO effects on
400 the relationship between aerosols and evapotranspiration in the south of the Amazon
401 biome, Environmental Research, 250, 118–516,
402 <https://doi.org/10.1016/j.envres.2024.118516>, 2024.

403 RAISG: Geospatial Vetor Data of the biomes, limits and cities, [Data set],
404 <https://www.raisg.org/en/maps/>, accessed: 2023-12-01, 2023.

405 Rodrigues, S., Cirino, G., Moreira, D., Pozzer, A., Palácios, R., Lee, S.-C., Imbiriba,
406 B., Nogueira, J., Vitorino, M. I., and Vourlitis, G.: Enhanced net CO₂ exchange of a
407 semideciduous forest in the southern Amazon due to diffuse radiation from biomass
408 burning, Biogeo-sciences, 21, 843–868, <https://doi.org/10.5194/bg-21-843-2024>,
409 2024.

410 Schmitt, A. U., Ament, F., de Araújo, A. C., Sá, M., and Teixeira, P.: Modeling
411 atmosphere–land interactions at a rainforest site – a case study using Amazon Tall
412 Tower Observatory (ATTO) measurements and reanalysis data, Atmospheric
413 Chemistry and Physics, 23, 9323–9346, <https://doi.org/10.5194/acp-23-9323-2023>,
414 2023.

415 Steiner, A. L., Mermelstein, D., Cheng, S. J., Twine, T. E., and Oliphant, A.: Observed
416 Impact of Atmospheric Aerosols on the Surface Energy Budget, Earth Interactions, 17,
417 1–22, <https://doi.org/10.1175/2013ei000523.1>, 2013.

418 Zhang, Y., Fu, R., Yu, H., Dickinson, R. E., Juarez, R. N., Chin, M., and Wang, H.: A
419 regional climate model study of how biomass burning aerosol impacts land-
420 atmosphere interactions over the Amazon, Journal of Geophysical Research: Atmospheres, 113, <https://doi.org/10.1029/2007jd009449>, 2008

