
 

Title: Observed Impacts of Aerosol Regimes on Energy and Carbon Fluxes in the 1 
Amazon Forest 2 

  3 

Response (blue color) to anonymous Referee #3 (black). The original manuscript was 4 

changed accordingly. The lines indicated in our answers correspond to the track 5 

version of the manuscript. 6 

 7 

  8 

General comment 9 

  10 

This comment was prepared as part of MSc course work at Wageningen University 11 

under supervision of Prof Wouter Peters. They were uploaded as a comment as they 12 

were regarded to be of good quality, and likely helpful to the authors and editor in the 13 

review process. 14 

  15 

We would like to express our sincere gratitude to Professor Wouter Peters and his 16 

students for their interest in our manuscript. Their comments help us to improve our 17 

results and discussion. 18 

  19 

This study examines how aerosol regimes affect energy and carbon fluxes in a pristine 20 

central Amazon forest. Using 2016–2022 meteorological and flux data from the 21 

Amazon Tall Tower Observatory (ATTO) and AOD (500 nm) from AERONET, it tests 22 

whether aerosol loading alters latent heat (LE), net radiation (Rn), and CO₂ fluxes 23 

(FCO₂). The study focuses on the dry season (August–November), when biomass 24 

burning elevates aerosol concentrations across the southern Amazon Basin. The 25 

authors define two aerosol regimes: clean (AOD < 0.13) and polluted (AOD > 0.40), 26 

consistent with previous studies such as Steiner et al. (2013) and Ross Herbert & Stier 27 

(2023). This threshold-based approach, derived from data percentiles, provides a 28 

simple yet robust framework for distinguishing contrasting aerosol loading conditions. 29 

Their analysis focuses on the 10:00–14:00 LT period to examine energy partitioning 30 

under contrasting aerosol regimes. Authors interestingly present, VPD vs Temperature 31 

(Figure 4), a combination of variables that I have not encountered in other studies 32 

reviewed during this process. It is particularly valuable, as it effectively illustrates—33 

through the observed variables of VPD and temperature—the realistic delay caused 34 

by reduced shortwave incoming radiation (SWin) during polluted periods. They report 35 

a delay in the rise of temperature and VPD under polluted conditions, highlighting the 36 

moderating effect of aerosols. They conclude by confirming the well-documented 37 

finding that, paradoxically, CO₂ uptake increases under polluted conditions—by about 38 

57.7% in this case—due to the diffuse radiation effect, where scattered sunlight 39 

enhances photosynthesis within shaded canopy layers. This result is in strong 40 

agreement with previous studies on Amazonian aerosol dynamics, particularly 41 

Rodrigues et al. (2024) and Cirino et al. (2014), which similarly observed elevated 42 



 

carbon uptake under high-AOD conditions. The study concludes by emphasizing the 43 

nonlinear and complex interactions between AOD and surface fluxes, demonstrated 44 

through MANCOVA and Random Forest Model analyses, underlining however the 45 

need for further investigation. 46 

  47 

Remarks on several aspects: 48 

  49 

(1) Midday Averaging 50 

  51 

The authors assess the effects of aerosols on surface energy and carbon fluxes by 52 

averaging 30-minute flux measurements over the 10:00–14:00 LT period and then 53 

calculating percentage reductions between clean and polluted aerosol regimes. This 54 

time window is identified as representing the period of strongest radiative and 55 

convective activity (line 173). However, the diurnal cycle plots (Figs. 5 and 6) reveal 56 

uneven flux patterns, with noticeable uninvestigated areas ( Figure 5 & 6 “white 57 

spaces”, outside 10:00–14:00 LT window) within both the clean and polluted regimes. 58 

As a starting point, Figure 4 clearly shows a delay in the increase of temperature and 59 

vapor pressure deficit (VPD). Because natural processes evolve non-uniformly 60 

throughout the day, using a short and non-equidistant time subset which may bias the 61 

calculated percentage reductions and misrepresent the actual aerosol influence.  The 62 

paper’s methodology follows Steiner et al. (2013), who also analyzed fluxes over the 63 

10:00–14:00 LT period and compared similar aerosol optical depth (AOD) regimes 64 

(AOD < 0.3 vs. > 0.5). However, within the text, fluxes reductions’ comparisons are 65 

made with studies that employed different approaches to assess aerosol-load effects. 66 

For example, Rodrigues et al. (2024) and Cirino et al. (2014) estimated flux reductions 67 

under specific irradiance conditions, distinguishing Solar Zenith Angle (SZA) zones 68 

and thereby incorporating the time-of-day variability, rather than relying on a fixed 69 

midday average. A closer examination of Figures 5 and 6, which depict sensible, latent, 70 

and ground heat fluxes, reveals an interesting but unexamined pattern during i.e. the 71 

morning transition (06:00–10:00 LT). Both H and G occasionally exceed their 72 

respective values under polluted conditions, while the consistent dominance of the 73 

clean regime in LE appears to be underestimated. Early-morning CO₂ uptake (Figure 74 

6) also exhibits a more dynamic behavior, with pronounced transitions between clean 75 

and polluted regimes. To better capture the full evolution of the phenomena and 76 

associated fluxes, the authors could integrate the area under the fluxes’ curves over 77 

the 06:00–17:00 LT period and compare the resulting averages between the clean and 78 

polluted aerosol regimes. Alternatively, if there is sufficient data outside the window 79 

10:00-14:00 LT the authors could consider reporting morning (06:00-10:00 LT) and 80 

afternoon sub-period (14:00-17:00 LT) averages separately to capture diurnal 81 

variability better. Analyzing relative irradiance would require substantially more 82 

methodological development and investigation by the authors; therefore, it is not 83 

recommended. 84 



 

 85 

We thank the Referee #3 for this comment. We agree that surface fluxes exhibit 86 

variable features outside the 10:00–14:00 LT window. However, during these periods, 87 

flux variability may be influenced by boundary-layer dynamics and low solar elevation 88 

angles, which can affect H, LE, and FCO2 and complicate the isolation of the radiative 89 

effects of aerosols. Moreover, radiometer uncertainties (typically within ~5%) are less 90 

significant when radiation levels are high. At low solar elevation angles (early morning 91 

and late afternoon), radiation magnitudes are smaller, which increases the relative 92 

importance of measurement errors and energy balance closure uncertainties. For 93 

these reasons, the 10:00–14:00 LT period provides more favorable conditions for 94 

isolating aerosol-induced radiative effects.  95 

 96 

In the revised manuscript, we have added Figure 4 showing the full diurnal cycles of 97 

shortwave, longwave, and net radiation during the dry season (2016–2022). This figure 98 

demonstrates that peak net radiation consistently occurs between 10:00 and 14:00 LT, 99 

supporting our choice of this time window. 100 

 101 

(2) Gaps Manipulation 102 

  103 

The authors state that their initial dataset comprised 10,890 half-hourly observations 104 

(line 87), which, after several filtering steps, was reduced to 523 rows—of which only 105 

370 belong to the dry season (lines 94–96). However, the paper does not clarify how 106 

these 10,890 records were originally obtained.  Figure 2 further raises questions about 107 

data representativeness and statistical treatment: the monthly boxplots show means 108 

much higher than medians, indicating positive skewness, while the number of valid 109 

data points per month is not reported. The data filtering process is clearly described, 110 

resulting in 523 rows of 30-minute averaged meteorological, flux, and AOD values. 111 

However, the dataset distribution across years is highly uneven, as also noted by the 112 

authors (line 97: “The distribution…effects of aerosol”). Specifically, years contributing 113 

less than 5 % of the total dataset are treated equivalently to years such as 2020 and 114 

2022 (42,4% and 29,2% data coverage respectively), despite potentially different 115 

atmospheric and surface conditions. This raises concerns regarding the robustness of 116 

the study’s conclusions. Evidentially, no quantitative assessment of data 117 

representativeness or uncertainty is provided. Similar studies (e.g., Schmitt et al., 118 

2023) have explicitly visualized monthly data availability and included “fraction of 119 

missing data”. Moreover, the extremely low number of data rows for certain years 120 

warrants further examination, as such sparse temporal coverage could substantially 121 

affect the robustness of the Random Forest Model (RFM) used later in the statistical 122 

analysis. Limited data availability may lead to overfitting, biased feature importance 123 

when training and validation subsets are unevenly represented. It is recommended that 124 

the authors include the fraction of valid rows per month, which could be directly 125 

incorporated into Figure 2. Furthermore, the manuscript should clearly describe the 126 



 

origin of the initial 10,890 observations—specifying the time period covered, sampling 127 

frequency, and measured variables—to better contextualize the subsequent data 128 

filtering process. 129 

  130 

We thank the Referee #3 for these important comments. They will certainly help to 131 
improve the methodology and discussion of the results. 132 
 133 

We would like to begin our responses by stating that in the new version of the 134 
manuscript, we regrouped our data in a way that allowed us to include a greater 135 
number of runs (half-hour periods).  In the previous version of the manuscript, in 136 

addition to excluding all periods when clouds were present, which is very common in 137 
the Amazon, we also excluded all data from a given day and time when a variable was 138 
missing. For example, if we did not have the reflected shortwave radiation 139 
measurement for a given time, we removed all other variables for that same time. This 140 
resulted in only 523 valid half-hour periods (370 dry season, 153 wet). In the new 141 

version of the Manuscript, we decided to regroup the variables so that they did not 142 
depend on each other. We first identified the periods in which we had the Clean and 143 
Polluted regimes and then identified how many runs of each variable were available 144 

for each regime. After this procedure, the number of runs increased substantially, as 145 
shown in Table R1, comparison between the dataset used in the first version of the 146 
manuscript (single database) and the dataset used for this new version (database by 147 

variable). 148 

 149 
Table R1: Number of runs (half-hour periods) after all quality controls mentioned in 150 
section 2.2. 151 

 152 
 153 
The initial number of 10,890 observations does not represent the full raw eddy-154 
covariance dataset, which contains 122,734 half-hourly records over 2016–2022. 155 

Instead, this number corresponds to the subset of 30-minute periods for which aerosol 156 
optical depth (AOD) data from AERONET (version 3, level 2) were available and could 157 

be matched with surface flux and radiation measurements. The text has been updated 158 
accordingly to improve clarity (Section 2.2 in the revised version of the manuscript). 159 
 160 

L95-107: “To eliminate cloud interference and investigate the role of aerosols in surface 161 

energy fluxes, the central objective of this study, we used data from the Aerosol 162 

Robotic Network (AERONET) at the ATTO site, specifically AOD (version 3, level 2). 163 
These data are free of cloud contamination due to pre and post-field calibration (Giles 164 
et al., 2019). Based on this, 30-minute averages were calculated between 2016 and 165 



 

2022 for which AOD data from AERONET were available, the initial combined dataset 166 
comprised 10,890 observations, including all variables listed in Table 1. This matched 167 
dataset served as the starting point for the subsequent quality control and filtering 168 
procedures. First, the turbulent fluxes underwent quality control based on Foken et al. 169 
(2004). Only data with flags "0" (best quality) and "1" (acceptable for general analysis) 170 

were used; data with flag "2" (poor quality) were discarded. Second, this study only 171 
considered the daytime period (from 7:00 to 17:00 LT) because the highest Rn values 172 
occur during this time. After filtering, the resulting dataset is summarized in Table S1 173 
and S2.” 174 
 175 

As described in the previous comment, we regrouped our data in a way that allowed 176 
us to include a greater number of runs (half-hour periods). Based on this updated 177 

dataset, Figure R1 was revised and now includes the number of samples per month 178 
(n). The mean values are higher than the medians, particularly during the dry season, 179 
reflecting the influence of episodic high-AOD events (e.g., biomass burning, smoke 180 
intrusions) that shift the distributions toward positive skewness. We additionally verified 181 
that the main seasonal contrasts remain qualitatively unchanged when using median 182 

AOD instead of mean AOD. 183 

 184 

 185 
Figure R1. Box plot showing monthly AOD 500 nm values measured at the ATTO site between 2016 186 
and 2022. The box represents the central 50% of the data, the whiskers represent the smallest and 187 
largest non-outlier values, while the means are indicated by the green triangles and the medians are the 188 
lines inside the box. Numbers above each month indicate the sample size (n) (Figure 2 in the revised 189 
version of the manuscript). 190 

 191 

(3) Statistical Analysis 192 

  193 



 

The study explores the relationship between aerosol optical depth (AOD) and surface 194 

fluxes (Rn, H, LE, FCO₂) implementing Spearman correlations, multivariate 195 

MANCOVA testing assessed by Pillai test and a Random Forest Model (RFM) to 196 

quantify nonlinear dependencies and variable importance. However, several 197 

methodological lack in processes or data-handling limitations seem to weaken the 198 

robustness of the conclusions. The manuscript provides a general introduction to the 199 

application of Pillai’s test and outlines the advantages of using the Random Forest 200 

Model (RFM) to investigate nonlinear and complex interactions between variables and 201 

systems. However, it remains unclear to what extent these principles—particularly in 202 

the case of RFM—have been appropriately implemented and demonstrated in the 203 

study. In comparable RFM environmental works, such as Miao et al. (2018) and Zhang 204 

et al. (2023), linear correlation analyses were explicitly conducted to assess collinearity 205 

among key variables by providing comprehensive correlation matrices, providing direct 206 

linear insights. In contrast, Rocha et al. (2025) only briefly mention in line 272 that “the 207 

statistical relationships show low intensity or no statistical significance,” without offering 208 

supporting analyses or graphical evidence. Furthermore, while Miao et al. (2018) 209 

thoroughly examined their multivariate equations and reported the statistical 210 

significance of their models and variables, Rocha et al. (2025) limit the discussion to 211 

the significance of Pillai’s test (line 275), suggesting the absence of linear interactions 212 

without presenting sufficient analytical support or methodological transparency. 213 

Another major concern is data volume, as mentioned in major argument 2. Miao et al. 214 

(2018) utilized approximately 7,000 samples, and Zhang et al. (2023) worked with 215 

about 60,000 samples. In contrast, Rocha et al. (2025) rely on only 370 rows of data 216 

for the dry period, which raises serious concerns about potential overfitting of the RFM. 217 

Moreover, although the manuscript mentions a cross-validation approach in Table 3, it 218 

does not specify the technique used or report its results. Finally, the model assessment 219 

presented in Table 3 appears inadequate and leaves substantial uncertainty regarding 220 

the RFM’s reliability. In the referenced studies, Miao et al. (2018) implemented multiple 221 

factor matrices, and Zhang et al. (2023) validated their models through scatter density 222 

plots and strong statistical metrics across training and testing datasets, including mean 223 

absolute error (MAE) and percentage variation analyses. Rocha et al. 2025 attempt to 224 

employ a RFM to capture the nonlinear influence of aerosols on surface fluxes. 225 

However, this approach lacks sufficient methodological justification and statistical 226 

robustness. The authors do not provide any evidence of cross-validation or other 227 

procedures to assess model generalisability. Furthermore, the dataset used for 228 

training—only 370 observations—is several orders of magnitude smaller than what is 229 

typically required for stable Random Forest performance, raising serious concerns 230 

about overfitting and the reliability of the reported metrics. Consequently, the predictive 231 

results presented in Table 3 should be interpreted with caution, as their statistical 232 

validity is uncertain. Given the limited dataset, the application of the Random Forest 233 

Model (RFM) in this study does not appear to add substantial value to the results or 234 

discussion. With such a small sample size, the model’s capacity to generalise is 235 



 

minimal, and its predictive performance cannot be reliably validated. Moreover, the 236 

manuscript provides no detailed explanation of the model evaluation or validation 237 

procedures, which further undermines confidence in the reported outcomes. To 238 

strengthen the analysis, I suggest replacing or complementing the RFM with a 239 

correlation matrix to explicitly reveal potential collinearity among variables, particularly 240 

regarding the influence of AOD (as in Table 3). Additionally, presenting multivariate 241 

regression equations and reporting their levels of statistical significance would offer a 242 

clearer and more interpretable understanding of how other environmental factors 243 

interacts with AOD. Such an approach could also serve as a solid foundation for future 244 

studies investigating aerosol impacts on surface fluxes under polluted regimes. 245 

 246 

We sincerely thank the MSc students at Wageningen University, under the supervision 247 

of Prof Wouter Peters, for their detailed and constructive feedback regarding our 248 

statistical methodology.  249 

 250 

We agree with the referee and have removed the RFM analysis from the revised 251 

manuscript. We emphasize that the RFM was originally intended as a complementary 252 

exploratory tool, and its removal does not affect the main results or interpretations of 253 

the study. In the revised version, to assess whether clean and polluted regimes exhibit 254 

statistically significant differences in radiation and surface energy and CO2 fluxes, we 255 

apply the Mann–Whitney U test, which is well suited for non-normally distributed data 256 

and unequal sample sizes. These revisions provide a clearer and more robust 257 

statistical framework to support our conclusions regarding aerosol impacts on surface–258 

atmosphere interactions. 259 

  260 

Minor arguments and typos: 261 

  262 

Minor issue 1: Several sentences are poorly structured or ambiguous, leading to 263 

confusion or misinterpretation. Examples include lines 74–75, 97, 99–101, 112–113, 264 

134, and 247–248, as well as the descriptions for Figures, especially 2 and 4, where I 265 

suggest rephrasing or clarifying. 266 

 267 

L76: “The climate is tropical humid and characterized by two seasons (wet and dry), 268 

driven by seasonal shifts of the Intertropical Convergence Zone over the Amazon Basin 269 

(Andreae et al., 2015).” 270 

 271 

L299: “However, analysis of LE, which represents the fraction of available energy 272 

converted into evapotranspiration, shows a consistent decrease in the polluted regime 273 

compared to the clean regime (Figure 6), which contradicts this expectation.” 274 

 275 

Additionally, Section 2.3 (Analysis Methods) has been revised to address all the 276 

reviewer’s comments. 277 



 

 278 

Minor issue 2: Several statements lack adequate justification or references, I suggest 279 

further elaboration on the statements: 280 

  281 

Line 114: The use of a fourth-order polynomial is mentioned but not explained or 282 

visualized. 283 

 284 

The polynomial fit shown in Figs. 4–6 was applied solely as a smoothing technique for 285 

visualization purposes. In the revised manuscript, we have included the 30-min 286 

observed data points in the figures to better illustrate data variability. This clarification 287 

has been incorporated into the manuscript as follows: 288 

 289 

L139-141: “To facilitate the visualization of the mean diurnal patterns, a 4th-order 290 

polynomial curve was applied exclusively as a smoothing technique to the 291 

observational data. This curve fitting was used solely for graphical purposes and does 292 

not represent a physical or predictive model. All analyses were based on the measured 293 

data.” 294 

  295 

Lines 135–136: Require citation or elaboration. 296 

 297 

We appreciate your suggestion, but we have removed the RFM. 298 

 299 

Lines 220–222: Could be expanded with a brief example of the described method. 300 

 301 

The expansion was carried out as follows: 302 

 303 

L261-267: “They identified a correlation between relative irradiance, air temperature, 304 

and VPD. Meanwhile, Herbert and Stier (2023) and Palácios et al. (2024) reinforce the 305 

idea that AOD significantly influences temperature variations, particularly on a regional 306 

scale. For instance, Palácios et al. (2024) observed positive linear correlations 307 

between AOD and air temperature across distinct climatic phases, attributed to the 308 

absorption of solar radiation by biomass burning emissions resulting in atmospheric 309 

heating. Similarly, Herbert and Stier (2023) utilized reanalysis data to demonstrate that 310 

2-meter air temperature increases as a function of AOD, consistent with localized 311 

heating of the smoke layer due to strong absorption of solar radiation.” 312 

 313 

Minor Issue 3: Some methodological descriptions (e.g., line 12 in the Abstract; lines 314 

87–90 on data filtering; lines 137–144 on the RFM methodology) could be condensed, 315 

as they do not add substantial value to the manuscript. 316 

 317 

We thank the referee for this comment. The RFM analysis has been removed from the 318 

revised manuscript, as detailed in lines 251-259 of this document. 319 



 

 320 

Minor Issue 4: GPP is mentioned in the Abstract and Conclusion but is neither 321 

discussed nor analyzed in the main text. 322 

 323 

The Abstract and Conclusion has been updated, and references to GPP have been 324 

removed in the revised manuscript. 325 

  326 

Minor Issue 5: The manuscript refers to two towers at the ATTO site but does not 327 

specify which tower’s data are used in the analyses and figures. 328 

 329 

Thanks for this comment. The text has been revised to specify that the analyses are 330 

based on data from the Instant Tower (81 m). 331 

 332 

L66: “The data used in this study were collected as part of the ATTO project, a bilateral 333 

initiative between Brazil and Germany. Since 2012, ATTO has carried out continuous 334 

measurements, as described by Andreae et al. (2015), located in an area of pristine 335 

tropical forests in the central Amazon (Figure 1), which contains the Instant Tower of 336 

81 meters (-2.1441°S, -58.9999°W).” 337 

 338 

P1, line 12: The last sentence of the Abstract adds no clear value to the manuscript 339 

and could be removed. 340 

 341 

The text has been removed from the abstract in the new version of the manuscript. 342 

 343 

P3, line 81: Change LiCor to LI-COR for correct company citation. 344 

 345 

The text has been updated accordingly. Thanks. 346 

 347 

P5, line 112: The text states that hourly averages are used, while figures show 30-348 

minute values—this inconsistency should be corrected. 349 

 350 

Section 2.3 (Analysis Methods) has been revised accordingly. 351 

  352 

P14, Table 3 description: Typo — change FCO to FCO₂. 353 

 354 

The table description has been updated accordingly. Thanks. 355 

  356 

P15, line 312: Typo — change aerossol to aerosol. 357 

 358 

The text has been updated accordingly. Thanks. 359 

  360 
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