

1 **Title: Observed Impacts of Aerosol Regimes on Energy and Carbon Fluxes in the**
2 **Amazon Forest**

3
4 Response (blue color) to anonymous Referee #1 (black). The original manuscript was
5 changed accordingly. The lines indicated in our answers correspond to the track
6 version of the manuscript.

7
8
9 **General comment**

10
11 The manuscript investigates how contrasting aerosol optical depth (AOD) regimes
12 affect surface energy and carbon fluxes over an undisturbed Amazon rainforest using
13 long-term in situ data (2016–2022) from the Amazon Tall Tower Observatory (ATTO).
14 The authors focus on differences between “clean” (AOD < 0.13) and “polluted” (AOD
15 > 0.40) regimes and assess impacts on radiation, sensible and latent heat fluxes, and
16 CO₂ exchange. The topic is highly relevant to ACP because it addresses aerosol–
17 biosphere–atmosphere interactions in one of the planet’s key ecosystems. The study
18 provides new observational insights from a unique long-term dataset and uses
19 appropriate statistical tools (Spearman correlation, Pillai’s trace, Random Forest) to
20 assess nonlinear relationships. I think the paper is well written and it is neatly exposed.
21 The literature cited is adequate.

22
23 We would like to thank Referee #1 for their detailed review of our manuscript and for
24 the positive feedback. We are also grateful for the valuable contributions that helped
25 to clarify the text and refine the analyses.

26
27 The manuscript presents an interesting empirical analysis of aerosol effects on energy
28 and carbon fluxes in the Amazon. However, the methodology lacks quantitative
29 robustness in (i) defining aerosol pollution regimes and in assessing statistical
30 significance of differences between them and improved discussion. The structure and
31 figures are generally clear, but the (ii) discussion often repeats background concepts
32 and lacks a mechanistic synthesis connecting radiation, energy partitioning, and
33 ecosystem carbon exchange.

34
35 We thank the Reviewer #1 for these important comments. They will certainly help to
36 improve the methodology and discussion of the results.

37
38 We would like to begin our responses by stating that in the new version of the
39 manuscript, we regrouped our data in a way that allowed us to include a greater
40 number of runs (half-hour periods). In the previous version of the manuscript, in
41 addition to excluding all periods when clouds were present, which is very common in
42 the Amazon, we also excluded all data from a given day and time when a variable was
43 missing. For example, if we did not have the reflected shortwave radiation
44 measurement for a given time, we removed all other variables for that same time. This
45 resulted in only 523 valid half-hour periods (370 dry season, 153 wet). In the new
46 version of the Manuscript, we decided to regroup the variables so that they did not
47 depend on each other. We first identified the periods in which we had the Clean and
48 Polluted regimes (AOD < 0.13 and AOD > 0.40) and then identified how many runs of

49 each variable were available for each regime. After this procedure, the number of runs
50 increased substantially, as shown in Table R1, comparison between the dataset used
51 in the first version of the manuscript (single database) and the dataset used for this
52 new version (database by variable).

53
54 Table R1: Number of runs (half-hour periods) after all quality controls mentioned in section 2.2.

Variables	Single database						Database by variable									
	10:00 -14:00 LT		07:00 -17:00 LT		Total		10:00 -14:00 LT		07:00 -17:00 LT		Total					
	No.	Clean	No.	Polluted	No.	Clean	No.	Polluted	No.	Sample	No.	Clean	No.	Polluted	No.	Sample
SWin(Wm ⁻²)	98	81	219	151	370	301	204	736	459	1195						
SWout(Wm ⁻²)	98	81	219	151	370	301	204	736	459	1195						
LWatm(Wm ⁻²)	98	81	219	151	370	301	200	733	453	1186						
LWterr(Wm ⁻²)	98	81	219	151	370	301	204	735	459	1194						
Rn(Wm ⁻²)	98	81	219	151	370	301	200	733	453	1186						
H(Wm ⁻²)	98	81	219	151	370	197	192	455	389	844						
LE(Wm ⁻²)	98	81	219	151	370	183	180	447	386	833						
FCO ₂ (μmol m ⁻² s ⁻¹)	98	81	219	151	370	247	195	596	405	1001						
G(Wm ⁻²)	98	81	219	151	370	301	218	741	487	1228						

55
56 In the new version of the manuscript, we rewrote L107:

57
58
59 “After filtering, the resulting dataset is summarized in Table S1 and S2.”

60
61 (i) In the previous version of the manuscript the classification into “Clean” and
62 “Polluted” regimes was based on the 10th and 90th percentiles of the AOD distribution
63 at ATTO. However, following the reviewer’s recommendation, we performed a
64 sensitivity analysis by applying the statistical test using three percentile thresholds
65 (10th/90th, 15th/85th, and 20th/80th) to quantitatively assess the robustness of the
66 regime separation (Table R2). The results show that the 10th/90th and 15th/85th
67 percentile thresholds provide stronger physical contrasts between aerosol regimes,
68 expressed as larger differences in median values of key variables, and are associated
69 with statistically significant differences. Conversely, the 20th/80th threshold leads to a
70 loss of statistical significance for several variables, indicating a dilution of the physical
71 contrast between regimes. Based on these tests, the threshold was maintained to the
72 10th/90th percentiles, as this choice preserves physically meaningful differences
73 between aerosol regimes.

74
75 Table R2. Results of the statistical test comparing all analyzed variables between clean and polluted
76 aerosol regimes for three AOD thresholds. Panels correspond to: 10th–90th percentiles (top), 15th–85th
77 percentiles (middle), and 20th–80th percentiles (bottom).

78

Main Stage - Percentil 10 (AOD≤0.13), Percentil 90 (AOD≥0.40)										
Variable	N Clean	Mean Clean	SD Clean	N Polluted	Mean Polluted	SD Polluted	U Statistic	p-value	Significance	
SWin(Wm ⁻²)	301	836.5	165.2	204	813.5	124.4	35391	0.004	**	
SWout(Wm ⁻²)	301	92.8	19.7	204	95.9	15.1	27859	0.077	ns	
LWatm(Wm ⁻²)	301	431.5	10.4	200	432.1	9.4	29439	0.677	ns	
LWterr(Wm ⁻²)	301	484.7	14.0	204	483.6	10.8	34148	0.032	*	
Rn(Wm ⁻²)	301	659.3	137.8	200	632.8	100.8	35671	0.000	***	
H(Wm ⁻²)	197	160.6	67.8	192	138.9	61.4	22611	0.001	***	
LE(Wm ⁻²)	183	426.7	136.8	180	417.8	146.7	17246	0.438	ns	
FCO ₂ (μmolm ⁻² s ⁻¹)	247	-12.5	8.0	195	-17.4	8.6	32125	0.000	***	
G(Wm ⁻²)	301	1.8	1.6	218	0.8	1.4	43719	0.000	***	

Wide Stage - Percentil 15 (AOD≤0.14), Percentil 85 (AOD≥0.36)										
Variable	N Clean	Mean Clean	SD Clean	N Polluted	Mean Polluted	SD Polluted	U Statistic	p-value	Significance	
SWin(Wm ⁻²)	423	829.1	166.2	272	816.6	131.5	62510	0.054	ns	
SWout(Wm ⁻²)	423	91.8	20.1	272	95.7	15.6	50534	0.007	**	
LWatm(Wm ⁻²)	423	432.7	10.0	268	433.2	9.4	55655	0.688	ns	
LWterr(Wm ⁻²)	423	484.1	14.5	272	484.5	11.0	59785	0.382	ns	
Rn(Wm ⁻²)	423	654.7	138.0	268	634.7	107.7	64197	0.003	**	
H(Wm ⁻²)	281	157.5	70.0	258	139.0	62.7	42045	0.001	**	
LE(Wm ⁻²)	265	422.3	133.9	241	419.8	145.7	32675	0.651	ns	
FCO ₂ (μmolm ⁻² s ⁻¹)	354	-12.6	8.2	263	-16.7	8.5	60056	0.000	***	
G(Wm ⁻²)	427	1.8	1.6	298	0.9	1.4	83989	0.000	***	

Alternative Stage - Percentil 20 (AOD≤0.16), Percentil 80 (AOD≥0.32)										
Variable	N Clean	Mean Clean	SD Clean	N Polluted	Mean Polluted	SD Polluted	U Statistic	p-value	Significance	
SWin(Wm ⁻²)	547	822.9	172.0	372	828.2	132.4	103274	0.698	ns	
SWout(Wm ⁻²)	547	91.1	20.4	372	96.3	15.4	85935	0.000	***	
LWatm(Wm ⁻²)	544	433.4	9.8	366	433.6	9.5	98174	0.723	ns	
LWterr(Wm ⁻²)	547	483.7	14.6	372	485.2	11.0	100283	0.712	ns	
Rn(Wm ⁻²)	544	650.5	144.8	366	644.3	112.1	105788	0.109	ns	
H(Wm ⁻²)	377	155.9	71.0	350	140.8	64.5	74993	0.001	**	
LE(Wm ⁻²)	355	416.4	135.7	331	420.4	148.0	58402	0.893	ns	
FCO ₂ (μmolm ⁻² s ⁻¹)	472	-12.7	8.3	364	-16.0	8.5	105109	0.000	***	
G(Wm ⁻²)	567	1.9	1.6	411	1.0	1.5	150612	0.000	***	

79
80

81 We clarified this point in the revised manuscript as follows:

82

83 Section 2.3:

84 L134-137: "Daily averages of AOD values were obtained to investigate seasonal
85 variability. Our analysis distinguishes two contrasting atmospheric conditions at the
86 ATTO site, defined as "Clean" and "Polluted" using AOD thresholds derived from the
87 dry-season AOD distribution. The Clean and Polluted regimes correspond to the 10th
88 (AOD ≤ 0.13) and 90th (AOD ≥ 0.40) percentiles, respectively. Further details on the
89 seasonal aerosol analysis are provided in Section 3.1 and Table S3."

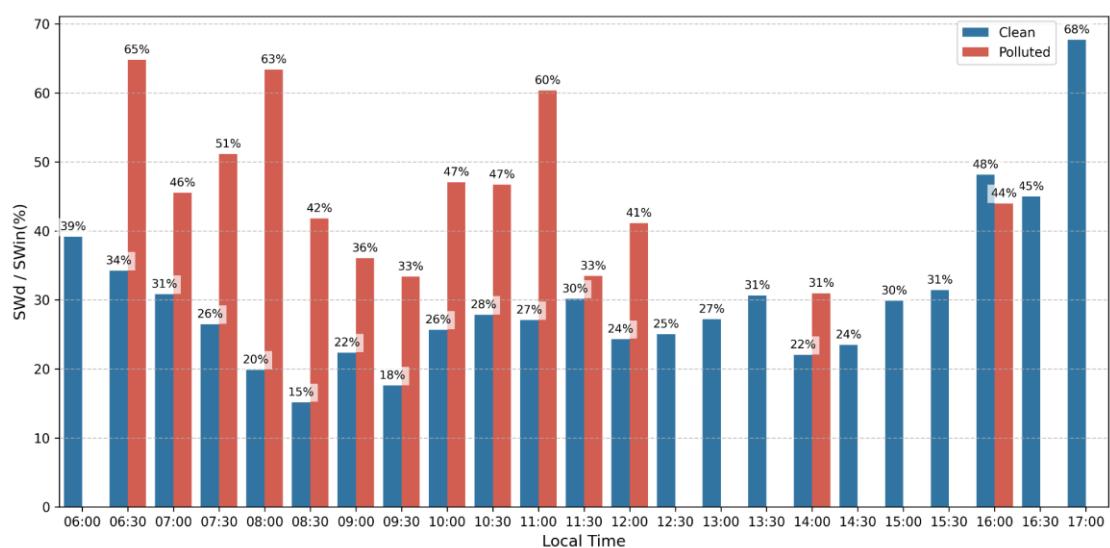
90

91 Section 3.1:

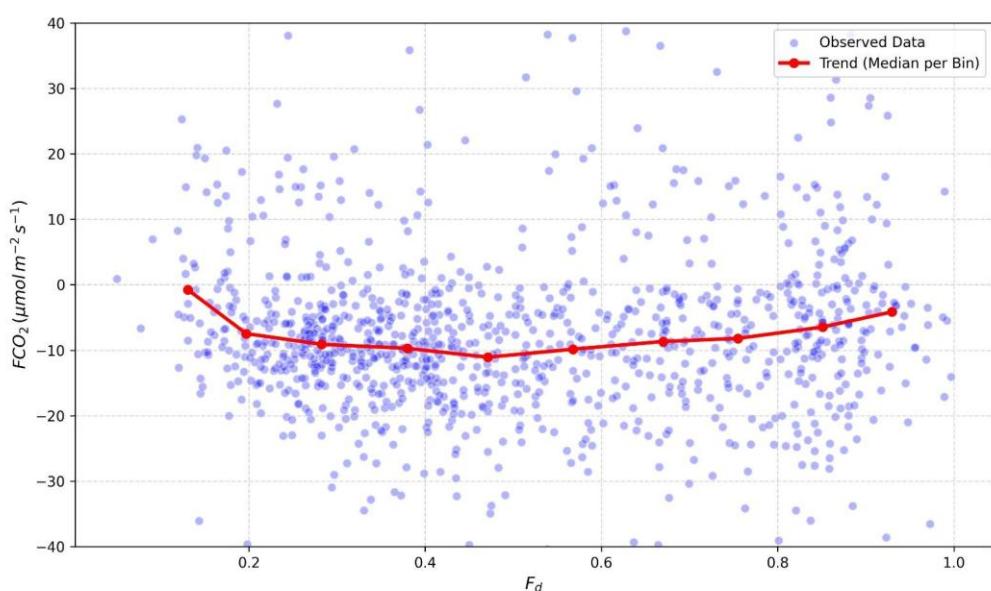
92 L201-207: "As the main goal of this work is to investigate the impact of aerosols on
93 surface turbulent fluxes, the analysis focuses on data from the dry season. In addition,
94 during the dry season there is more aerosol data since the could interference is much

95 less pronounced than during the wet season. Two aerosol regimes were defined based
96 on percentile thresholds of the dry-season AOD distribution. Several percentile
97 combinations were tested to assess the robustness of the regime separation. Based
98 on this analysis, the 10th and 90th percentiles were selected to define the Clean (AOD
99 ≤ 0.13) and Polluted (AOD ≥ 0.40) regimes, respectively, as they preserve physically
100 meaningful differences between aerosol regimes (See table S1)."

101
102 (ii) In the new version of the manuscript, we improved the methodology by adding a
103 statistical analysis for the definition of Clean and Polluted regimes. We also improved
104 the discussion of the results to avoid repeating background concepts.


105
106 In its present form, I recommend **major revisions** according to my specific comments
107 before the manuscript can be considered for publication in ACP.

108 109 **Specific comments**


110
111 The study contributes observational evidence from a rare, pristine tropical forest site.
112 The long-term dataset and the combination of aerosol and flux measurements are
113 strengths. Nevertheless, the novelty is moderate, as the main conclusions - reduction
114 of net radiation and turbulent fluxes under high AOD, accompanied by enhanced CO₂
115 assimilation - are qualitatively consistent with previous literature (e.g., Cirino et al.
116 2014; Braghieri et al. 2020; Palácios et al. 2022). (i) The novelty would be
117 strengthened by including a quantitative analysis of diffuse versus direct radiation, or
118 by exploring seasonally resolved patterns rather than aggregating all data into two
119 AOD categories. (ii) Defining "Clean" (AOD < 0.13) and "Polluted" (AOD > 0.40) purely
120 from percentiles is arbitrary. Include a sensitivity test or physical rationale for these
121 cutoffs. (iii) To increase the scientific value of the study, the authors should
122 demonstrate, through appropriate statistical testing, whether the observed reductions
123 ($\approx 10\%$) are robust across years and not driven by interannual variability.

124
125 (i) We thank the reviewer for their valuable comment. Diffuse radiation (SWd)
126 measurements are available only for the year 2021 for our experimental site. Prior to
127 this period, SWd was not measured at the ATTO site, and in 2022 the sensor
128 experienced technical issues that affected data quality. Nevertheless, to address the
129 reviewer's suggestion, we quantified the diffuse radiation fraction ($F_d = SWd/SWin$) for
130 the available period (2021) and compared F_d between Clean and Polluted aerosol
131 regimes. Our results indicate higher F_d values under Polluted regime compared to
132 Clean regime (Figure R1). Specifically between 10:00 and 14:00 LT, the mean F_d
133 values were 0.43 and 0.27 for Polluted and Clean regime, respectively, indicating an
134 absolute difference of 0.16 between the two regimes ($p < 0.05$). This is consistent with
135 enhanced scattering of solar radiation associated with increased aerosol loading
136 (Giorgi et al., 2002; Seinfeld and Pandis, 2016; Ezhova et al., 2018). Moreover,
137 daytime CO₂ fluxes showed a non-linear dependence on F_d , with net CO₂ uptake
138 increasing up to an F_d threshold (≈ 0.6) and decreasing at higher F_d values (Figure
139 R2). This behaviour was consistent with the response of NEE (net ecosystem
140 exchange) for diffuse radiation reported by Deng et al. (2022) for four forest sites in
141 China and aligns with the global-scale mechanisms proposed by Mercado et al. (2009).

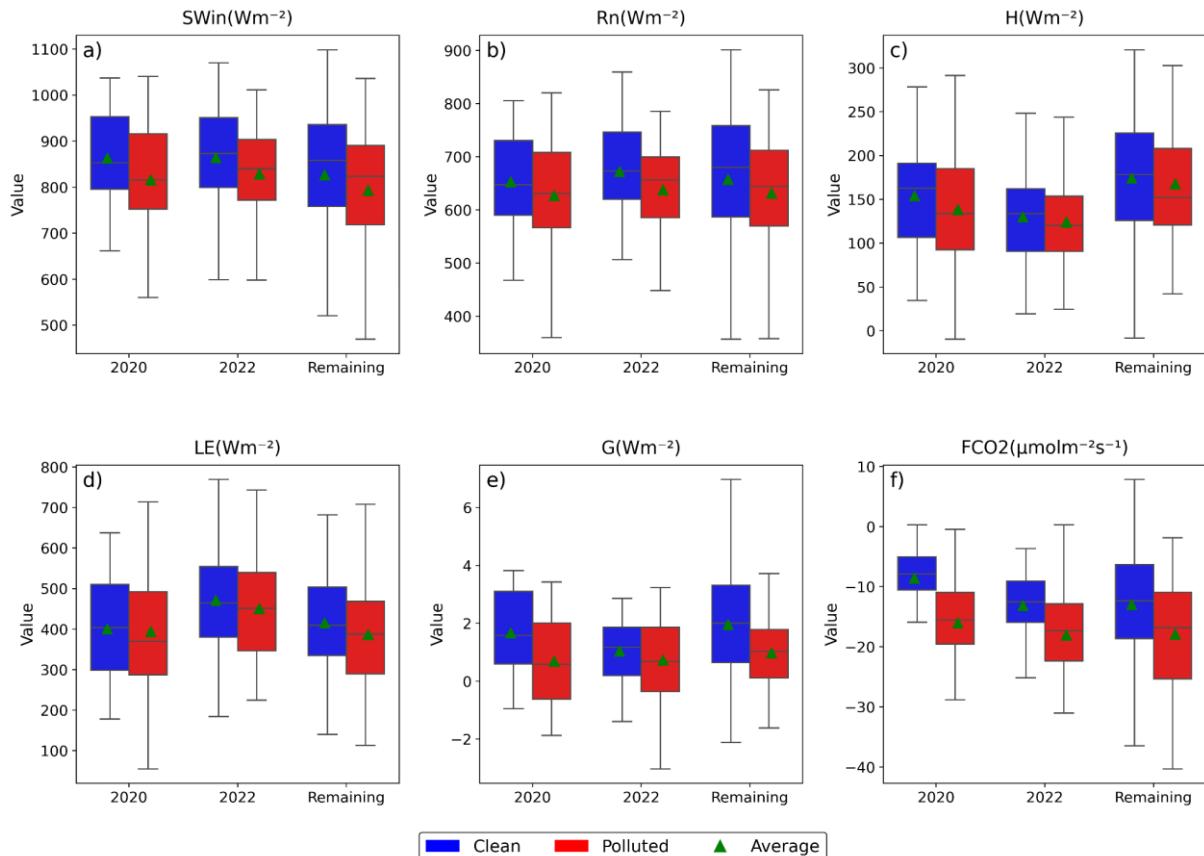
142 These results provide observational support for the proposed mechanism linking
143 aerosol loading, radiation partitioning, and ecosystem carbon exchange.
144

145
146 Figure R1. Diffuse radiation fraction ($F_d = SWd/SWin$) under Clean and Polluted aerosol regimes during
147 2021.
148

149
150 Figure R2. The relationship between CO₂ flux and diffuse radiation fraction (F_d) during 2021 at ATTO
151 site.
152

153 The Methodology and Results sections have been updated in the new version of the
154 manuscript as follows:
155

156 L87-90: "Additionally, diffuse shortwave radiation (SWd) was measured using a SPN1
157 Pyranometer (Delta-T Devices) installed at 75 m above ground level. However, SWd
158 data were available only for 2021, prior to this year, SWd was not measured at the
159 ATTO site, and data from 2022 were excluded due to technical issues with the sensor."
160


L328-337: "We quantified the diffuse radiation fraction ($F_d = SW_d/SW_{in}$) for the available period (2021) and compared F_d between Clean and Polluted aerosol regimes. Our results indicate higher F_d values under the Polluted regime compared to Clean regime (Figure S1). Specifically for the 10:00 and 14:00 LT interval, the mean F_d values were 0.43 and 0.27 for Polluted and Clean regime, respectively, indicating an absolute difference of 0.16 between the two regimes ($p<0.05$). This is consistent with enhanced scattering of solar radiation associated with increased aerosol loading (Giorgi et al., 2002; Seinfeld and Pandis, 2016; Ezhova et al., 2018). Moreover, daytime CO_2 fluxes showed a non-linear dependence on F_d , with net CO_2 uptake increasing up to an F_d threshold (~ 0.6) and decreasing at higher F_d values (Figure S2). This behaviour was consistent with the response of net ecosystem exchange for diffuse radiation reported by Deng et al. (2022) for four forest sites in China, and aligns with the global-scale mechanisms proposed by Mercado et al. (2009). These results provide observational support for the proposed mechanism linking aerosol loading, radiation partitioning, and ecosystem carbon exchange."

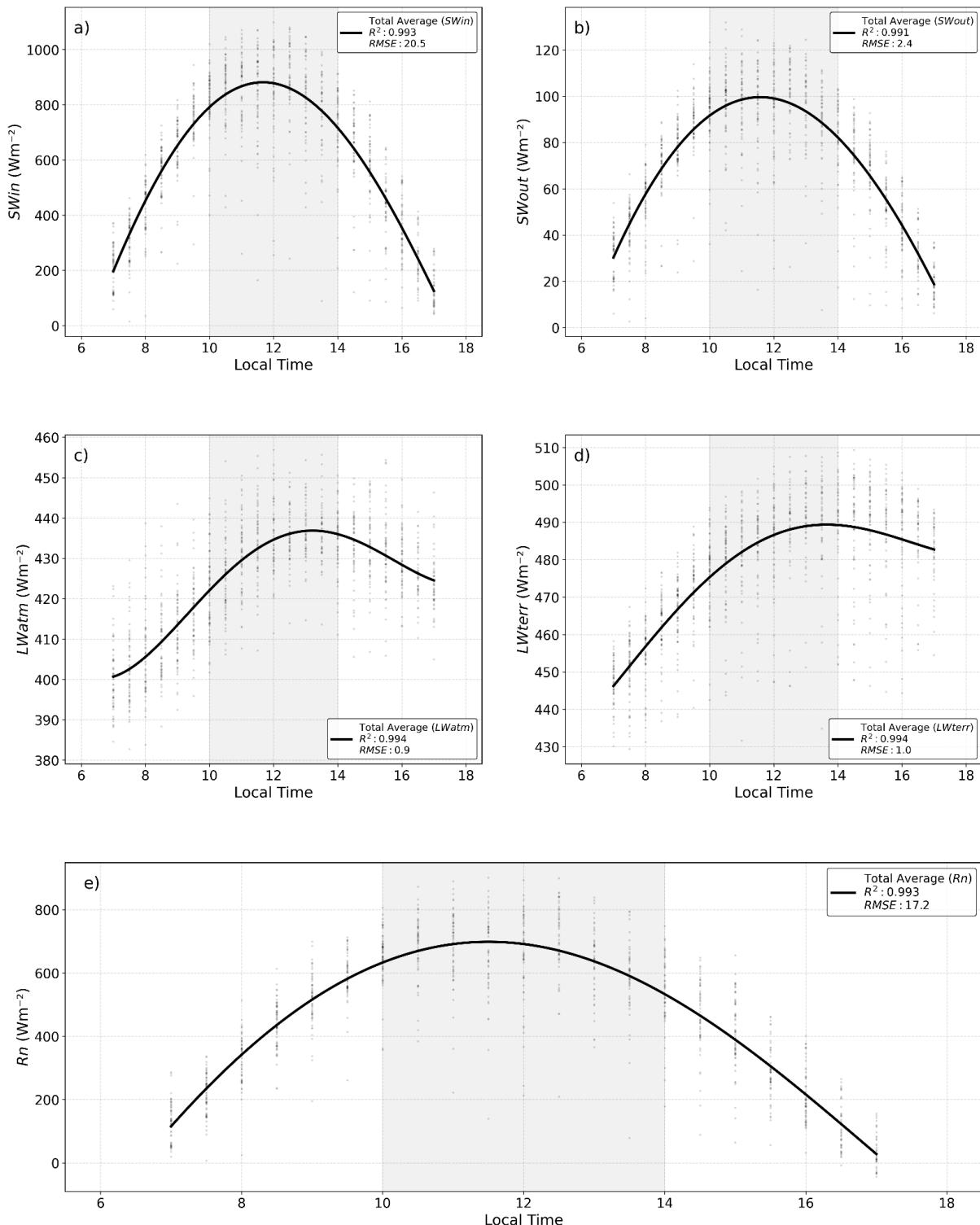
(ii) We assessed the robustness of our results in relation to different regime thresholds as detailed in the General comment (L59-71 and Table R2 of this document).

(iii) We analyzed 2020 and 2022 separately due to higher data availability, while the remaining years (2016, 2017, 2018, 2019, and 2021), which had lower data availability, were grouped into a single category (Remaining). The pattern observed in the preliminary version of the manuscript (Figs. 5 and 6) was consistent across individual years (Figure R3). That is, under polluted conditions, reductions in SW_{in} lead to a decrease in R_n , followed by decreases in H , LE , G , and FCO_2 .

The following sentence has been added to the revised manuscript.

L293: "The reductions in H , LE , G , and FCO_2 shown in Fig. 6 and Fig. 7 were also observed across individual years (see Fig. S3)."

192
193 **Figure R3.** Box plots of a) incoming shortwave radiation (SWin), b) net radiation (Rn), c) sensible heat
194 flux (H), d) latent heat flux (LE), e) ground heat flux (G), f) CO₂ flux (FCO₂). All variables under clean
195 and polluted (red) aerosol regimes for 2020, 2022, and the remaining years (2016, 2017, 2018,
196 2019 and 2021), grouped due to limited data availability. Triangles indicate the mean value.


197
198 Line 94-97. Only 523 valid half-hour periods (370 dry season, 153 wet) are quite small
199 relative to the six-year period. The statistical representativeness and interannual
200 variability need further discussion.

201
202 We modified our methodology to obtain as much data as possible, as detailed in lines
203 L36-50 and Table R1 of this document.

204
205 Line 173-174. The section on radiative fluxes should include a graph of the full diurnal
206 cycle of SW, LW, and Rn to visually demonstrate the 10:00 - 14:00 LT maximum. This
207 would strengthen the rationale for focusing on that time window.

208
209 We thank Reviewer #1 for this valuable comment. As recommended, we have included
210 Figure R4 in Section 3.2 of the manuscript (Figure 4 in the new version of the
211 manuscript), which shows the full diurnal cycles of shortwave (SW), longwave (LW),
212 and net radiation (Rn), and highlights the maximum between 10:00 and 14:00 LT.

213

214
215
216
217
218
219
220
221
222

Figura R4. Diurnal cycles of radiative fluxes during the dry season from 2016 to 2022: (a) incoming (SWin) and (b) outgoing (SWout) shortwave radiation, (c) incoming atmospheric (LWatm) and (d) outgoing terrestrial (LWterr) longwave radiation, and (e) net radiation (Rn). Markers indicate observed data, and solid lines represent fourth-order polynomial fits, with the corresponding R^2 and RMSE.

In the revised version of the manuscript, we have added Figure R4 and the following paragraph to clarify the choice of the analysis period:

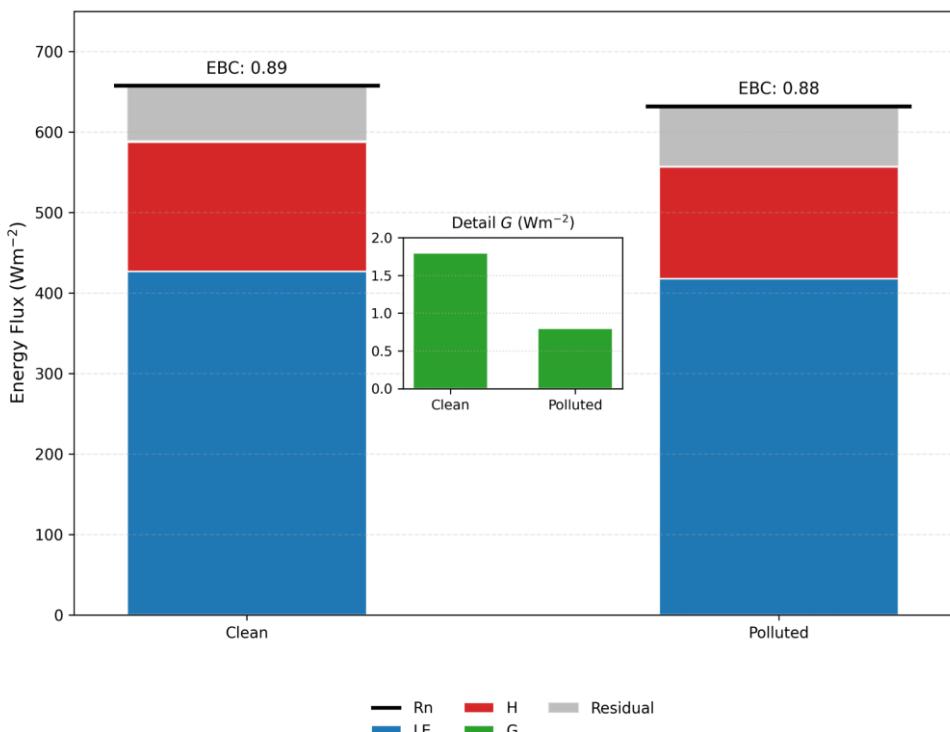
223 L209-212 : "As described in Section 2.3, the comparisons between Clean and Polluted
224 regimes were restricted to the 10:00–14:00 LT period, corresponding to the maximum
225 net radiation. The full diurnal cycles of shortwave, longwave, and net radiation during
226 the dry season (2016–2022) show that the maximum values occur between 10:00 and
227 14:00 LT (Figure 4), supporting the choice of this time window for the subsequent
228 analyses."

229
230 Line 203-204. The physical interpretation of the longwave radiation components
231 (LWatm and LWterr) is interesting, but it would benefit from quantitative support - for
232 instance, by including a vertical temperature profile or an estimate of surface and
233 atmospheric emissivity.

234
235 We used the Stefan–Boltzmann equation: $LW = \varepsilon\sigma T^4$, where LW is the longwave
236 radiation (Wm^{-2}), ε is the emissivity, σ is the Stefan–Boltzmann constant (5.67×10^{-8}
237 $Wm^{-2}K^{-4}$) e T is the absolute temperature (K).

238
239 Using this relationship, separately for the Clean and Polluted regimes, we estimated
240 the surface emissivity (ε_s) from the measured outgoing longwave radiation (LWterr)
241 and the infrared surface temperature (T_s), and the atmospheric emissivity (ε_a) from
242 the measured incoming longwave radiation (LWatm) and air temperature (T_a). The
243 resulting emissivity values are shown in Table 3. The emissivities exhibit very similar
244 values under both regimes, suggesting that the differences in aerosol conditions were
245 not sufficient to affect the surface emissivity or the atmospheric emissivity.

246
247 Table R3: Mean values of incoming and outgoing longwave radiation (LWatm and LWterr), air
248 temperature (T_a), surface infrared temperature (T_s), and the corresponding atmospheric (ε_a) and
249 surface (ε_s) emissivities, under Clean and Polluted regimes for the 10:00 and 14:00 LT interval.


	LWatm (Wm^{-2})	LWterr (Wm^{-2})	T_a ($^{\circ}C$)	T_s ($^{\circ}C$)	ε_a	ε_s
Clean	431.5	484.74	30.3	32.6	0.898	0.978
Polluted	432.1	483.60	30.0	31.7	0.902	0.988

250
251 Line 227-232. The manuscript would benefit from a discussion of the energy balance
252 closure, specifically addressing the discrepancy between R_n and the sum of H, LE,
253 and G. Reporting the residuals for both clean and polluted regimes would provide a
254 clearer evaluation of data quality and potential systematic biases.

255
256 We thank the reviewer for this important comment. Following this suggestion, we
257 updated the manuscript by adding the following text:

258
259 L278-281: "The surface energy balance closure was 0.89 for the Clean regime and
260 0.88 for the Polluted regime, comparable to values reported in the literature (Mauder
261 et al., 2024). The corresponding residuals were of similar magnitude (70 Wm^{-2} for
262 Clean and 75 Wm^{-2} for Polluted), indicating that the observed differences in energy
263 fluxes are not related to differences in energy balance closure."

264

265
266 **Figura R5.** Energy balance closure for Clean and Polluted regimes during the dry season from 2016 to
267 2022, considering the 10:00–14:00 local time.

268
269 Figure 6. The fourth-order polynomial fits to the diurnal cycles provide a useful visual
270 comparison, but the authors should complement them with statistical analyses to
271 confirm that the apparent differences between regimes are statistically significant.

272
273 We thank the reviewer for this comment. The statistical analyses comparing Clean and
274 Polluted aerosol regimes were performed for all analyzed variables, including those
275 shown in Figure 6. The results are presented in Table R1, as requested in the General
276 Comments.

277
278 Line 250-255. The connection between aerosol effects and water-use efficiency (WUE)
279 is largely speculative because WUE is not quantitatively evaluated in the manuscript.
280 The authors should consider calculating WUE (for example, as GPP/ET using FCO_2
281 and LE data) or presenting an appropriate proxy to substantiate this aspect of the
282 discussion.

283
284 We thank the reviewer for this important comment. Following this suggestion, we now
285 quantify water-use efficiency (WUE) using $|\text{FCO}_2| / \text{LE}$ as a proxy, and performed
286 statistical analyses comparing Clean and Polluted aerosol regimes (Table R4).

287
288 Table R4: Mean water-use efficiency (WUE) calculated as $|\text{FCO}_2| / \text{LE}$ (μmolJ^{-1}), under polluted and
289 clean regimes for individual years (2020 and 2022), the remaining years (2016, 2017, 2018, 2019 and
290 2021) and all years combined.

Year	AOD Regime	$ FCO_2 / LE (\mu\text{molJ}^{-1})$
2020	Clean	0.022
2020	Polluted	0.042
2022	Clean	0.031
2022	Polluted	0.044
Remaining	Clean	0.026
Remaining	Polluted	0.049
All Years	Clean	0.029
All Years	Polluted	0.042

291

292 In the new version of the Manuscript we added the follow sentence:

293

294 L304-307: *"In this study, WUE was estimated using FCO_2/LE as a proxy. WUE was*
 295 *significantly higher under Polluted compared to Clean regime (mean values of 0.042*
 296 *and 0.029, respectively, $p < 0.05$). This indicates that under Polluted regime,*
 297 *vegetation assimilates more carbon per unit of water lost, consistent with the observed*
 298 *reduction in latent heat flux (Figure 6) despite enhanced CO_2 uptake (Figure 7)."*

299

300 Line 242-245. It seems to me that there is some inconsistency throughout the
 301 manuscript regarding the sign convention of CO_2 flux. The authors should clearly state
 302 that CO_2 uptake by the ecosystem corresponds to a negative flux, while positive flux
 303 values indicate a CO_2 emission to the atmosphere. Accordingly, a "drop" or decrease
 304 in FCO_2 should represent reduced carbon uptake, not enhanced assimilation. In the
 305 Abstract, for example, Authors should clarify the meaning of "decrease in CO_2 fluxes
 306 by 58%" (does this mean more negative flux, i.e., greater uptake?). Clarifying this point
 307 is essential for avoiding misinterpretation of the results and ensuring consistency
 308 across figures, tables, and the discussion.

309

310 We thank the reviewer for pointing out this important issue. To avoid any ambiguity,
 311 we have clarified throughout the manuscript that negative CO_2 fluxes indicate net
 312 ecosystem uptake. The text has been revised as follows:

313

314 L290-292: *"In addition to their effect on energy fluxes, aerosols were found to have a*
 315 *significant influence on the CO_2 flux, becoming more negative by an average of 4.9*
 316 *$\mu\text{mol m}^{-2}\text{s}^{-1}$ (39.5 %) in the polluted regime compared to clean conditions between*
 317 *10:00 and 14:00 LT."*

318

319 Abstract: *"We find that enhanced aerosol presence reduces both sensible heat flux*
 320 *and energy available for evapotranspiration by approximately 13.5 % and 2.1%*
 321 *respectively, while increasing CO_2 uptake (i.e., CO_2 flux becoming more negative) by*
 322 *about 39.5 %."*

323

324 The figures are generally clear and well designed, but they would benefit from the
 325 inclusion of confidence intervals or error bars to convey the statistical variability of the
 326 data. Adding uncertainty information would allow readers to better assess the
 327 robustness of the observed differences between regimes and the reliability of the fitted
 328 curves.

329

330 We thank the reviewer for this suggestion. Figures 4, 5, and 6 (Fig. 5, 6, 7 in the new
331 version of the manuscript) have been revised to include the observed data points
332 underlying the averaged curves, allowing a direct visualization of the data variability.

333

334 **Minor comments**

335

336 All physical variables (Rn, H, LE, FCO₂, AOD, etc.) should be written in italics or
337 formatted with the equation editor for consistency and readability.

338

339 The entire manuscript was revised to ensure consistent formatting of all physical
340 variables. Thanks.

341

342 Throughout the manuscript, several acronyms are not explicitly defined (ARF24h,
343 LWterr), which may affect readability. I recommend defining each acronym upon first
344 use.

345

346 The entire manuscript was revised to ensure that all acronyms are explicitly defined at
347 their first occurrence. Thanks.

348

349 Line 191. "ARF24h", did Authors refer to daily mean? It should be clarified

350

351 Yes, in the revised manuscript, we have removed the term *ARF24h* to avoid ambiguity
352 as follows:

353

354 L227-230: "Consistent with these findings, Paláncios et al. (2022) estimated an average
355 ARF of $-20.77 \pm 5.04 \text{ Wm}^{-2}$ for the dry season in the central Amazon. Procopio et al.
356 (2004) found daily ARF values ranging from -21 to -74 Wm^{-2} in the deforestation arc,
357 an area with higher levels of pollution than the central Amazon. Rizzo et al. (2011)
358 investigated this central region and reported a daily ARF value of -32 Wm^{-2} ."

359

360 Line 187-188. The phrase "In contrast" seems used incorrectly; the studies cited do
361 not contradict one another, showing similar ARF values (within the estimated errors).
362 The Authors should revise wording.

363

364 We thank the reviewer for this comment. The term "*In contrast*" was replaced by
365 "*Consistent with these findings*" as detailed in previous comment (L352-356 in this
366 document).

367

368 Table3. Caption. FCO should be replaced by FCO2

369

370 The caption of Table 3 has been revised.

371

372 Line 299. As before, CO \rightarrow CO2

373

374 The text has been updated accordingly.

375

376 **References**

377

378 Aguilos, M., Stahl, C., Burban, B., Héault, B., Courtois, E., Coste, S., Wagner, F.,
379 Ziegler, C., Takagi, K., and Bonal, D.: Inter-annual and Seasonal Variations in
380 Ecosystem Transpiration and Water Use Efficiency in a Tropical Rainforest, *Forests*,
381 10, 14, <https://doi.org/10.3390/f10010014>, 2018.

382 Botía, S., Komiya, S., Marshall, J., Koch, T., Gałkowski, M., Lavric, J., Gomes-Alves,
383 E., Walter, D., Fisch, G., Pinho, D. M., Nelson, B. W., Martins, G., Luijkx, I. T., Koren,
384 G., Florentie, L., Carioca de Araújo, A., Sá, M., Andreae, M. O., Heimann, M., Peters,
385 W., and Gerbig, C.: The CO₂ record at the Amazon Tall Tower Observatory: A new
386 opportunity to study processes on seasonal and inter-annual scales, *Global Change
387 Biology*, 28, 588–611, <https://doi.org/10.1111/gcb.15905>, 2021.

388 Braghieri, R. K., Yamasoe, M. A., Évora do Rosário, N. M., Ribeiro da Rocha, H., de
389 Souza Nogueira, J., and de Araújo, A. C.: Characterization of the radiative impact of
390 aerosols on CO₂ and energy fluxes in the Amazon deforestation arch using artificial
391 neural networks, *Atmospheric Chemistry and Physics*, 20, 3439–3458,
392 <https://doi.org/10.5194/acp-20-3439-2020>, 2020.

393 Cirino, G. G., Souza, R. A. F., Adams, D. K., and Artaxo, P.: The effect of atmospheric
394 aerosol particles and clouds on net ecosystem exchange in the Amazon, *Atmospheric
395 Chemistry and Physics*, 14, 6523–6543, <https://doi.org/10.5194/acp-14-6523-2014>,
396 2014.

397 Deng, X., Zhang, J., Che, Y., Zhou, L., Lu, T., and Han, T.: The Effect of Diffuse
398 Radiation on Ecosystem Carbon Fluxes Across China From FLUXNET Forest
399 Observations, *Frontiers in Earth Science*, 10,
400 <https://doi.org/10.3389/feart.2022.906408>, 2022.

401 Ezhova, E., Ylivinkka, I., Kuusk, J., Komsaare, K., Vana, M., Krasnova, A., Noe, S.,
402 Arshinov, M., Belan, B., Park, S. B., Lavric, J. V., Heimann, M., Petäjä, T., Vesala, T.,
403 Mammarella, I., Kolari, P., Bäck, J., Rannik, U., Kerminen, V. M., and Kulmala, M.:
404 Direct effect of aerosols on solar radiation and gross primary production in boreal and
405 hemiboreal forests, *Atmospheric Chemistry and Physics*, 18, 17 863–17 881,
406 <https://doi.org/10.5194/acp-18-17863-2018>, 2018.

407 Giorgi, F., Bi, X., and Qian, Y.: Direct radiative forcing and regional climatic effects of
408 anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol
409 model study, *Journal of Geophysical Research Atmospheres*, 107, AAC 7–1–AAC 7–
410 18,425 <https://doi.org/10.1029/2001JD001066>, 2002.

411 Mercado, L. M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, M., and Cox,
412 P. M.: Impact of changes in diffuse radiation on the global land carbon sink, *Nature*,
413 458, 1014–1017, <https://doi.org/10.1038/nature07949>, 2009.

414 Palácios, R. d. S., Artaxo, P., Cirino, G. G., Nakale, V., Morais, F. G., Rothmund, L.
415 D., Biudes, M. S., Machado, N. G., Curado, L. F. A., Marques, J. B., and Nogueira, J.
416 d. S.: Long-term measurements of aerosol optical properties and radiative forcing
417 (2011–2017) over Central Amazonia, *Atmosfera*, 35, 143–163,
418 <https://doi.org/10.20937/atm.52892>, 2022.

419 Procopio, A. S., Artaxo, P., Kaufman, Y. J., Remer, L. A., Schafer, J. S., and Holben,
420 B. N.: Multiyear analysis of amazonian biomass burning smoke radiative forcing of
421 climate, *Geophysical Research Letters*, 31, <https://doi.org/10.1029/2003gl018646>,
422 2004.

423 Rizzo, L. V., Correia, A. L., Artaxo, P., Procópio, A. S., and Andreae, M. O.: Spectral
424 dependence of aerosol light absorption over the Amazon Basin, *Atmospheric*
425 *Chemistry and Physics*, 11, 8899–8912, <https://doi.org/10.5194/acp-11-8899-2011>,
426 2011.

427 Seinfeld, J. H. and Pandis, S. N.: *Atmospheric chemistry and physics: from air pollution*
428 *to climate change.*, John Wiley Sons, 3rd edn., 2016.