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18 Supplementary Figure 1. Fraction of available data during the summer months for the Upper Kuparuk
19 (a), Goose (b), and Ptarmigan (c) catchments. Solid markers indicate discharge data availability, while
20 open circle markers represent material fluxes data availability. Among the three sites, Upper Kuparuk (a)
21 has the most consistent coverage, with over 95% discharge data availability in most years. In contrast,



22 both Goose (b) and Ptarmigan (c) catchments at Cape Bounty include material flux data but have less

23 consistent overall coverage.
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26 Supplementary Figure 2. Time series of potential explanatory variables for runoff response at Upper
27 Kuparuk. Each color represents a distinct year and is used consistently throughout the manuscript. To
28 improve visual grouping, we use light to dark shading within a color family to represent three



29 consecutive years before switching to a new base color. We evaluate 12 potential explanatory variables:
30 (a) total summer precipitation, (b) total summer rainfall, (c ) average rainfall intensity, (d) average

31 temperatures during the preceding winter and spring, (e) average rainfall intensity of the previous

32 summer, (f) total snowfall, (g) total summer precipitation of the previous summer, (h) cumulative

33 number of degree days above OOC, (i) average summer temperature, (j) maximum spring streamflow, (k)
34 maximum snow depth, and (l) rate of thawing. The plot titles correspond to the y-axis. Full descriptions
35 of how each variable was derived are provided in the Methods section. Note that maximum snow depth
36 and rate of thawing are only available for five years and are included as context.
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43 Supplementary Figure 3. Linear regression between each explanatory variable in Supp. Fig. 2 and

44 runoff response distribution (RRD) peak height at Upper Kuparuk. The potential explanatory variables
45 are shown along the x-axis: (a) total summer precipitation, (b) total summer rainfall, (c ) average rainfall
46 intensity, (d) average temperatures during the preceding winter and spring, (e) average rainfall intensity
47 of the previous summer, (f) total snowfall, (g) total summer precipitation of the previous summer, (h)

48 cumulative number of degree days above OOC, (i) average summer temperature, (j) maximum spring
49 streamflow, (k) maximum snow depth, and (I) rate of thawing. Note that maximum snow depth and rate
50 of thawing are only available for five years and are included as context.
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56 Supplementary Figure 4. Peak runoff response as a function of antecedent streamflow, showing that
57 runoff is more sensitive to antecedent streamflow than to the month in which it occurs. We bin peak
58 runoff responses by antecedent streamflow and compare the results across June, July, and August. The
59 antecedent streamflow binning is the same as in Man. Fig. 2. In all months, peak runoff response

60 increases with antecedent streamflow, except in the highest bin, which is based on fewer events: 44 for
61 June, 38 for July, and only 11 for August. By contrast, the other bins each contain an average of 50

62 events. Across all bins, the months exhibit similar peak runoff responses, with the lowest responses

63 occurring at the lowest antecedent streamflow. June displays the highest peak runoff response at high
64 antecedent streamflow levels.
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66 Supplementary Figure 5. Rainfall and temperature patterns across summer months (June is red, July is
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67 orange, and August is yellow). (a) The average precipitation for each hour with nonzero precipitation;
68 cumulative monthly precipitation is shown above each boxplot. (b) Hourly temperature distribution for
69 each month. (c) Average hourly precipitation by precipitation type, classified by temperature during
70 precipitation. (d) Average precipitation rate per hour with rain. Note that higher precipitation rates in
71 July (panel d) do not necessarily yield proportionally higher monthly totals (panel a), as total

72 precipitation also depends on the duration of rainfall events. Circle, cross and star correspond to rain,
73 mixed precipitation, and snow, respectively, in (b) and (d).
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Supplementary Figure 6.Time-series
comparison of daily precipitation,
discharge, and material fluxes at the
Ptarmigan catchment (with active layer
detachments (ALDs), orange) and the
Goose catchment without ALDs, green).
The light-brown shading (late-2007 to
2011) delineates the interval when active
layer detachments (ALDs) are actively
eroding at Ptarmigan. Panel (a) shows
daily totals of summer precipitation
(black) and discharge (blue). Panels (b)—(e)
present dissolved organic carbon (DOC),
total dissolved solids (TDS), suspended
sediment (SS), and particulate organic
carbon (POC) fluxes, respectively; fluxes
are calculated as concentration multiplied
by discharge and are expressed as
milligrams of material per area per day
(mg m?2d"). During the ALD interval, DOC
flux is elevated at Ptarmigan but
subsequently declines such that Goose
becomes the larger DOC source. TDS flux is
persistently higher at Ptarmigan and rises
further while the slides are active. SSC and
POC fluxes at Ptarmigan increase by an
order of magnitude during ALD activity,
whereas both fluxes remain minimal at
Goose throughout the record.
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105 Supplementary Figure 7. Correlation between precipitation [(a)-(d)] and discharge [(e)-(h)] with

106 material fluxes [(a)-(h)] and concentrations [(i)-(I)] in the Ptarmigan catchment (with active layer

107 detachments [ALDs], orange) and the Goose catchment (without ALDs, green). Panels show dissolved
108 organic carbon (DOC), total dissolved solids (TDS), suspended sediment (SS), and particulate organic

109 carbon (POC) fluxes and concentrations. Panels [(i) - (I)] are log-log scale. There is no clear correlation
110 between precipitation and material fluxes, as well as, discharge and material concentrations at either
111 catchment. In contrast, discharge shows a positive correlation with material flux, particularly for TDS, SS,
112 and POC at Ptarmigan. Goose shows higher DOC flux with increasing discharge, while Ptarmigan exhibits
113 greater TDS, SS, and POC fluxes.



