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Figures: 52 

 53 

Fig. S1 Results of Chagan Lake area extraction and Yinsong Channel change. The results 54 
achieve an overall accuracy of 94.7% with a Kappa coefficient of 0.917, indicating strong 55 
agreement between the classified data and reference data. 56 

 57 

 58 

Fig. S2 Deformation measurement results for Songyuan region by PS-InSAR and QPS-InSAR. 59 
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 60 

Fig. S3 Water temperature retrieval results of Chagan Lake in 2016-2017. Images were 61 
minimally affected by clouds, allowing for a complete depiction of the 12-month temperature 62 
variations during this period 63 

 64 
Fig. S4 Soil water content and TDS variation in the Dabaosu Profile. 65 

 66 
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 67 
Fig. S5 Images of unfrozen rivers in the Huma River Basin. (a)-(b) Sentinel-2 satellite imagery. 68 
Areas circled in red indicate unfrozen zones. (c) Field photograph of the Huzhong area in the 69 
Huma River Basin, published by Peoples Daily in January 2023 ( https://paper.people.com.cn 70 
/rmrb/html/2023-01/17/nw.D110000renmrb_20230117_3-14.htm). 71 
 72 

 73 

Fig. S6 Deep circulation groundwater recharge path from the Qiangtang Basin moving from 74 
west to east and related research literature(Chen et al., 2014; Chen et al., 2019; Chen et al., 75 
2012; Chen et al., 2004; Chen and Wang, 2009; Jiang and Chen, 2015; Liu et al., 2023; Liu et 76 
al., 2024; Ma et al., 2021; Wang et al., 2017; Wang et al., 2023; Wang et al., 2024; Yong et al., 77 
2021; Zhan et al., 2017; Zhang et al., 2022; Zhang et al., 2023; Zhou et al., 2013). 78 

 79 
 80 

 81 
Fig. S7 Landsat water temperature retrieval and validation with ground measurements. 82 

 83 
 84 
 85 
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Tables 87 
Table. S1 Description of data used in the study 88 

Data set Available time Temporal resolution Spatial resolution 
Sentinel-1A SAR 2014-present 6 days 5m*20m 

Landsat 
5 Thematic Mapper 1982-2011 

16 days 30m*30m 8 Operational Land 
Imager 2013-present 

Modis 
MOD11A1 

2000-present every day 
1 km 

MOD09GA 0.5 km 
 89 

 90 
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Table S2 39 interferometric images from June 16, 2018, to December 9, 2021. 92 
Data Polarization baseline（m） Doppler centroid Time interval（Day） 

20180616 VV 3 -0.04 -504 
20180710 VV -24 -0.02 -480 
20180815 VV 13 -0.03 -444 
20180920 VV 23 0.01 -408 
20181014 VV -50 0.03 -384 
20181119 VV -71 0.02 -348 
20181213 VV 13 0 -324 
20190118 VV -52 0.02 -288 
20190211 VV 17 -0.02 -264 
20190319 VV -45 -0.02 -228 
20190412 VV 6 -0.03 -204 
20190518 VV -117 -0.02 -168 
20190705 VV -56 -0.04 -120 
20190810 VV -20 0 -84 
20191009 VV 18 0.01 -24 
20191102 VV 0 0.01 0 
20191220 VV -27 -0.01 47 
20200125 VV -126 0.03 83 
20200218 VV -33 0.02 107 
20200313 VV -13 -0.03 131 
20200418 VV -65 -0.04 167 
20200430 VV 22 -0.05 179 
20200617 VV -63 -0.05 228 
20200711 VV 27 -0.02 252 
20200828 VV -48 0 300 
20200921 VV -41 0.01 324 
20201015 VV -33 0 348 
20201214 VV -141 -0.02 408 
20210119 VV 27 -0.02 444 
20210320 VV 81 0.02 504 
20210413 VV 1 -0.02 528 
20210519 VV -18 -0.05 564 
20210612 VV -69 -0.06 588 
20210718 VV 22 -0.05 624 
20210811 VV 22 -0.04 648 
20210916 VV -5 -0.01 684 
20211010 VV -29 0.03 708 
20211115 VV -82 -0.01 744 
20211209 VV -54 0 768 

 93 
 94 
 95 
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Technical Specifications 96 
Specifics of IDCSTFN： 97 

IDCSTFN employs an "encoder-fusion-decoder" architecture. This network consists of four 98 
main modules: the High Temporal but Low Spatial (HTLS) encoder, Low Temporal but High Spatial 99 
(LTHS) encoder, feature fusion, and reconstruction decoder. The HTLS and LTHS modules are used 100 
to extract features from MODIS and Landsat images, respectively. The HTLS is composed of 101 
convolutional layers and deconvolutional layers. MODIS images pass through two 3×3 102 
convolutional layers to extract features. Then, a deconvolutional layer expands the low-dimensional 103 
feature maps to match the size of the Landsat images. The LTHS consists of four convolutional 104 
layers and a max-pooling layer. After two convolutional layers, the max-pooling layer downsamples 105 
the Landsat image feature maps. This process compresses them to match the size of the MODIS 106 
feature maps while retaining essential feature information. 107 

The feature fusion network primarily consists of two parts: feature fusion and attention 108 
residuals. First, the cosine similarity of the MODIS image features is calculated and normalized 109 

with a size of 80 80 1× × . Second, the number of channels is expanded to 2C  to match the size of 110 

the input feature maps. At this point, the difference feature map between the reference image and 111 
the predicted image is obtained, and the fused feature map is as follows: 112 

 
0 00 0( ) (1 ) ( 1)

k kt k t t k tFL w FL FM w FM k= + + − ≠  (1) 

where, FL  and FM  represent the features extracted by the encoder from Landsat and MODIS 113 
images, respectively. Since the fused feature map contains several redundant information, SEBlock 114 
was embed into ResBlock to form an attention residual module, SE-ResBlock, which adaptively 115 
adjusts the weights of each channel. The ResBlock consists of a convolutional layer with a kernel 116 
size of 3 3×  and a batch normalization layer, with the output from the convolutional layer being 117 
processed by the ReLU activation function. SEBlock primarily consists of squeeze and excitation, 118 
which are used to obtain the global average vector and to explore the information between different 119 
channels, respectively. The fused features are fed to the SE-ResBlock, which dynamically adjusts 120 
the weights of each channel, and reduces redundant features in the network. 121 

The reconstruction decoder consists of a deconvolutional layer and two fully connected layers. 122 
The deconvolutional layer restores the feature map to the original Landsat image size. The two 123 
successive fully connected layers reduce the dimensions of the fused feature map, resulting in a 124 
high-resolution fused image. The dataset of IDCSTFN includes 21 Landsat and Modis data pairs.  125 
 126 
Specifics of PS-InSAR： 127 

For the Sentinel-1 satellite, PS-InSAR requires N  scenes of Single Look Complex images. 128 

The i -th image is denoted as ( 1, 2,..., )=is i N . The phase difference  
0
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where 
0,T Th  represents the elevation difference between T  and 0T . 

0,T Tv  is the difference in 132 

deformation rate. ,i k
nB  and ,i k

tB  are the spatial and temporal baselines between the i -th and k -th 133 

images. The elevation and subsidence rate of the target point can be estimated by maximizing the 134 

temporal coherence εT : 135 

 ˆ ˆ, arg(max(| |))ε=T T Th v   (4) 

where, εT  represents the coherence factor of the target, which can be obtained from Equation (5): 136 
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where, ,ϕ j k
T  and ,

,ϕ j k
H T  represent the differential interferometric phase and elevation phase. 137 

,
,ϕ j k

D T is the phase containing the terrain deformation information, expressed as: 138 
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4 ( )πϕ
λ −= +j k i k
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where −non linearDefo  represents the nonlinear deformation included in ,
,ϕ j k

D T  . The temporal 139 

coherence factor εT   in the Equation (5) is approximated as the deviation of the phase residual 140 
2 /2ˆ ϕδε −≈p e  . Consequently, the elevation variance 2δ h   and deformation rate variance 2δ v  141 

estimated by PS-InSAR are expressed as: 142 
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where 2
ϕδ   represents the phase deviation. 2δ

nB   and 2δ
tB   correspond to the spatial and temporal 143 

baseline deviations. 144 
 145 
Specifics of QPS-InSAR： 146 

The PS-InSAR technique has been widely used in interferometric measurements, particularly 147 
in urban areas. Since the irrigated farmland is prevalent, permanent scatterer targets such as 148 
buildings are sparsely distributed in the Chagan Lake region, which limits the application of PS-149 
InSAR. Based on PS-InSAR, QPS-InSAR adopts a network similar to small baseline subset InSAR 150 
and no longer relies on a single image as the master. This topological network maintains temporal 151 

continuity in the interferometric sequence and obtains more dispersed spatial baseline 2δ
nB  and 152 

temporal baseline 2δ
tB , reducing the 2δ h  in the Equation (6) and the 2δ v  in the Equation (7). QPS-153 

InSAR employs spatial filtering to enhance the signal-to-noise ratio of the phase, enabling reliable 154 

information extraction from distributed targets. By substituting the coherence estimate ,γ̂ j k
P  into 155 

the weighting formula, the temporal coherence can be expressed as: 156 
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