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Abstract. Accurate, high-resolution 3D fields of nitrogen dioxide (NO>) are critical for air quality management
and satellite retrievals, yet traditional chemistry-transport models (CTMs) face challenges in fine-scale modeling.
Machine learning (ML) alternatives often struggle with generalization and transferability, inheriting biases from
CTMs or being limited by sparse surface measurements. We present the Deep Atmospheric Chemistry NO, model
(DACNOy), a deep learning model that generates daily 2 km 3D NO; fields over Western Europe. The model's
three-phase and multi-constraint training strategy begins by pre-training on European Copernicus Atmosphere
Monitoring Service (CAMS) reanalysis data to learn large-scale atmospheric patterns, then fine-tunes with both
CAMS and in-situ European Environmental Agency (EEA) surface data to correct biases and refine local detail,
and completes with an adaptive fine-tuning to capture evolving trends. An evaluation for 2023 shows that
DACNO; reproduces broad-scale 3D CAMS fields (R? = 0.90) while improving agreement with independent EEA
stations over the CAMS reanalysis (R? enhanced from 0.61 to 0.66; bias reduced from -1.15 to -0.38 pg/m?). The
model resolves more spatial detail and learns physically interpretable relationships. This hybrid training approach
fuses the physical consistency of a process-based model with the real-world accuracy of surface measurements,
overcoming the limitations of using either constraint data alone. Applying DACNO, a-priori profiles to
TROPOMI retrievals increases tropospheric NO; columns by 3% on average over those using European CAMS
profiles, with larger enhancements over emission hotspots. These results demonstrate the framework's potential

to advance air quality monitoring and satellite remote sensing.
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1. Introduction

Nitrogen dioxide (NOy) is a key atmospheric pollutant with significant impacts on air quality, human health,
ecosystems, and atmospheric chemistry. Primary sources include traffic, industrial activities, and energy
production, with additional contributions from natural emissions (Crippa et al., 2018). Accurate characterization
of the spatiotemporal distribution of NO is critical for both air pollution management and atmospheric chemistry

research.

Chemistry Transport Models (CTMs) such as GEOS-Chem (Bey et al., 2001), TM5-MP (Krol et al., 2005;
Williams et al., 2017; Huijnen et al., 2010), WRF-Chem (Grell et al., 2005), and the Copernicus Atmosphere
Monitoring Service (CAMS) (Peuch et al., 2022; Inness et al., 2019) are widely used to simulate atmospheric NO»
based on physical and chemical processes. However, most CTMs operate at coarse spatial resolution due to
computational constraints and the limited availability of high-resolution emission inventories. This restricts their
ability to represent fine-scale NO, variability and often results in spatial smoothing and underestimation,
particularly in urban environments. Emission inventories are usually outdated and may omit localized and small-
scale sources (Lu et al., 2025), contributing to uncertainties and discrepancies between bottom-up and top-down
emission estimates (Kuik et al., 2018; Yang et al., 2021). While regional high-resolution CTMs are available, such
as CAMS at 10 km (Douros et al., 2023; Talongo et al., 2020) and regional WRF-Chem at 3 km (Kuhn et al.,
2024b), challenges remain in accurately capturing urban and fine-scale NO; patterns (Meleux et al., 2024), and

model optimization is often resource-intensive (Kuhn et al., 2024a; Kuhn et al., 2024b).

CTM outputs also serve as a-priori NO, profiles for satellite retrievals (Palmer et al., 2001; Douros et al., 2023;
Yang et al., 2023), supporting large-scale NO, monitoring. Over the past three decades, satellite NO, observations
have been advancing toward higher spatiotemporal resolution. Satellite instruments such as the TROPOspheric
Monitoring Instrument (TROPOMI, 7 x 3.5 km?, 5.5 x 3.5 km? since August 2019) on Sentinel-5P (Veefkind et
al., 2012), the Geostationary Environment Monitoring Spectrometer (GEMS, 3.5 x 8 km?) (Kim et al., 2020),
Tropospheric emissions: Monitoring of pollution (TEMPO, 2 x 4.75 km?) (Zoogman et al., 2017), Sentinel-4 (8
x 8 km?) (Gulde et al., 2017), Sentinel-5 (7.5 x 7.5 km?) (Bézy et al., 2014), Twin ANthropogenic Greenhouse

Gas Observers (TANGO, 300 X 300 m?) (Landgraf et al., 2020), and the Copernicus Anthropogenic Carbon

Dioxide Monitoring constellation (CO2M, 2 X 2 km?) (Bernd et al., 2021) are advancing spaceborne NO»

observations to kilometer-scale resolution. This progress has increased demand for high-resolution a priori profiles,
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55 which can improve the sensitivity of satellite NO, products to near-surface concentrations and emission hotspots.
However, CTM-based profiles remain constrained by the limitations mentioned above, highlighting the need for

alternative modeling approaches.

Machine learning (ML) provides an efficient alternative for high-resolution NO; estimation. ML techniques have
60 been widely applied for surface NO, mapping (Sun et al., 2024; Kim et al., 2021; Wei et al., 2022), and recent
studies have extended these approaches for 3D NO, modeling above the surface. These studies have trained
models on process-based 3D NO fields generated by CTMs (Bodnar et al., 2024; Kuhn et al., 2024a), on vertical
profiles from MAX-DOAS observations (Zhang et al., 2025; Zhang et al., 2022b; Jiang et al., 2025), and on a
combination of process-based CTM outputs with satellite observations (Li and Xing, 2024). While these studies
65 demonstrate the feasibility of ML-based 3D NO, modeling, challenges remain in achieving high spatial resolution,
robust generalization, and transferability. Process-based data carries inherent biases and has relatively coarse
resolution. Ground-based observations are sparse and unevenly distributed, limiting the model’s spatial
generalization. While Li and Xing (2024) combine process-based NO, fields with satellite NO» observations from
the Ozone Monitoring Instrument (OMI) to train the ML model, the resulting product is still limited to a coarse

70 resolution (27 km).

In this study, we present the Deep Atmospheric Chemistry NO> model (DACNO), a deep learning model
developed to produce daily, high-resolution (2 km) 3D NO: fields with high accuracy, robust generalization, and
transferability. DACNO; integrates multi-source inputs, including emissions, geography, meteorology, and
75 temporal indicators. The model is trained using a phased, multi-constraint approach that combines process-based
CAMS fields with ground-based EEA measurements. This method enables the model to reproduce broad-scale,
process-based NO; patterns and capture local NO, gradients. The training strategy consists of three phases: pre-
training, multi-constraint fine-tuning, and adaptive fine-tuning. Western Europe (5°W-9°E, 42°N—54°N) is

chosen as the study region, given its diverse topography, high urbanization, and substantial industrial activity.

80
This study addresses two key research questions: (1) Can a deep learning framework combining multi-constraint
and phased training overcome the resolution, bias, and generalization limitations of current CTM and ML
approaches for 3D NO; modeling? (2) Does the DACNO; 2 km product improve fine-scale NO; representation to
support applications in regional air quality management and satellite retrievals?

85
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The remainder of this paper is organized as follows. Section 2 describes the DACNO; development framework,
including dataset preparation, model architecture, and training strategy. Section 3 evaluates model performance.

Section 4 discusses broader insights and implications. Conclusions and outlook are provided in Section 5.
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2. Development Framework for DACNO:

90 2.1 Framework Overview
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Figure 1. Overview of the DACNO:2 model development framework. The framework integrates multiple input data
streams: temporal indicators, emission inventories and proxies, geography, and ERAS meteorological data, with two
target datasets: process-based NOz from CAMS European air quality reanalysis and ground-based in-situ EEA NO:
95 measurements. The training is organized in three sequential phases: pre-training on process-based CAMS NO2, multi-
constraint fine-tuning with both CAMS and EEA data, and adaptive fine-tuning to recent NO: trends. The resulting
model generates daily, high-resolution (2 km) 3D NO: fields. Arrows indicate the data flow and phased training process.

DACNO:; is developed to provide daily 3D NO, fields at high spatial resolution (2 km) with improved accuracy
and generalizability by integrating multi-source data, physically consistent process-based datasets, and real-world
100 measurements. The overall framework, illustrated in Fig. 1, combines diverse data streams with a phased training

strategy.

DACNO; uses five groups of input features: temporal indicators, emission inventories and proxies, geographic
data, ERAS single-level meteorological variables, and ERAS multi-level meteorological variables. Together, they
105 provide complementary information on spatial and temporal NO; variability. For model training, the targets are

process-based NO; fields from the CAMS European air quality reanalyses (Inness et al., 2019; Peuch et al., 2022)
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and real-world surface NO, measurements from the EEA AirBase network (European Environment Agency, 2024).
CAMS supplies physically consistent large-scale 3D NO; distributions, while EEA data constrain the model to
match local concentration patterns. Details on data preparation are provided in Section 2.2.

110
To effectively learn NO, patterns from diverse datasets, DACNO; employs an encoder—decoder architecture with
five dedicated encoder branches, each tailored to a specific group of input features. The model structure is

described in Section 2.3.

115 Model training is organized into three sequential phases. In Phase 1, a baseline model is pre-trained on process-
based CAMS data. In Phase 2, the model is further trained with both process-based and measurement data,
improving its ability to represent local NO, gradients. In Phase 3, the model is fine-tuned using recent
measurements to reflect current NO; trends and support real-world applications. Details of the training approach

are provided in Section 2.4.
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120 2.2 Dataset Preparation
2.2.1 Input Features

DACNO: utilizes 38 input datasets, organized into five groups: temporal indicators, emission inventories and
proxies, geography, single-level meteorology, and multi-level meteorology. Details of all input features and their
sources are provided in Table 1.
125
The temporal indicator group consists of the day of the week and the daily number of flights. The day of the week
captures regular human activity cycles, reflecting variability between weekdays and weekends. Data on the daily
number of flights, aggregated for nine countries in the study area (Eurocontrol, 2025), can indicate irregular
activity such as holiday periods or major events, which may help explain the irregular changes in NO, emissions.
130 Emission inventories and proxies include anthropogenic NOx emission inventories, road density, population
density, and nighttime light. These features provide direct and indirect measures of NOx emissions, with high-
resolution proxies complementing inventories at finer spatial scales. All datasets are resampled to a 2 km grid

using interpolation, averaging, or rasterization methods.

135 Geographic datasets include land elevation and land cover, providing terrain context to the ML model. Elevation
influences atmospheric transport by creating physical barriers that can trap pollutants (Giovannini et al., 2020),
while land cover serves as a proxy for the location and type of surface emissions (Beelen et al., 2013). Land cover
is categorized into five classes: artificial surfaces, agricultural areas, forests and semi-natural areas, wetlands, and
water bodies, aggregated from the original 44 categories by the mode method (the most frequently occurring land

140 cover type). Both elevation and land cover data are resampled to a 2 km grid.

Meteorological features provide atmospheric information from the surface through the free troposphere, obtained
from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERAS hourly single-level and multi-
level (pressure-level) datasets (Hersbach et al., 2020). We use 24-hour meteorological features for the target day.
145 Meteorological data are horizontally resampled to a 16 km grid, for three reasons: (1) the native ERAS resolution
(0.25°, approximately 25 km) is coarser than 2 km, and bilinear interpolation would mainly introduce artificial
smoothness rather than genuine fine-scale gradients; (2) retaining many meteorological variables at 2 km would
impose a significant computational burden; and (3) the DACNO; architecture uses a hierarchical encoder-decoder,

where upscaling and downscaling follow a factor-of-two scaling scheme (e.g., 2 km, 4 km, 8 km, 16 km). Although
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150 the ERAS-Land data can provide higher resolution (0.1°, approximately 9 km), it only covers the continental areas,

which is not consistent with the model application scope.

The day-of-week feature is normalized using sine and cosine transforms to retain its cyclical nature. Land cover
is one-hot encoded to convert categorical data into a numerical format. All other input features are normalized

155 with z-scores, based on the mean and standard deviation of the training set.

Notably, satellite-derived NO» products were deliberately excluded from the input features for two key reasons.
First, frequent data gaps in satellite products, due to cloud cover and quality control, would propagate into the
model's output, preventing the generation of continuous, gap-free fields. Second, this exclusion allows for an
160 independent evaluation of the model against satellite observations and preserves the potential to use satellite data

as an independent constraint in future work.
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Table 1. Summary of inputs and training targets for the DACNO: model development.

EGUsphere\

. . Temporal . .
Group Data Spatial Resolution ) Dimension Data Source
Resolution
Inputs
Temporal Daily number of flights - Daily 1D (Eurocontrol, 2025)
indicator Day of week - - (time) -
Anthropogenic
sector -
CAMS global emission
. ) (0.1°x0.1°) (average for (Soulie et al., 2024)
inventories o
Shipping sector 2018)
(0.25° x 0.25°)
o Global Roads Inventory Project
Emission Road networks (five
) . Vector data - (GRIP) global roads database
inventories and types) B
) (Meijer et al., 2018)
proxies
Annual global Visible Infrared
S Imaging Radiometer Suite
Nighttime light 500 m (average for 2D
(VIIRS) dataset
2019 t0 2022)  (latitude x
) (Elvidge et al., 2021)
longitude) .
JRC-GEOSTAT 2018 gridded
Population 1 km -
dataset (Silva et al., 2021)
Multi-Error-Removed Improved-
Terrain digital elevation models
Land elevation 90 m - .
(MERIT DEM) (Yamazaki et al.,
2017)
Geography
Coordination of Information on
Land cover
the Environment (CORINE)
(resampled to 5 classes 100m -
Land Cover 2018
via mode aggregation)
(Feranec et al., 2016)
Boundary layer height
Mean boundary layer European Center for Medium-
dissipation . Range Weather Forecasts
Surface pressure (ECMWF) ERAS hourly time-
) (latitude x ) )
Meteorology Dewpoint Temperature 0.25° Hourly lonitud series data on single levels from
ongitude X
2m Temperature g ) 1940 to the present (Hersbach et
time

10 m U and V wind
Leaf area index (for low

and high vegetation)

al., 2020)
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165

170

175

Mean evaporation rate
Mean snow rate
Mean surface net
radiation flux (short and
long wave)

Mean total precipitation

rate

Geopotential

4D
Vorticity
0.25° (latitude x ECMWF ERAS hourly data on
Relative humidity
8 layers from 1000 longitude X pressure levels from 1940 to the
Temperature .
hPa to 550 hPa height x present
U and V wind ]
time)
Vertical velocity
Training targets
0.1° 3P
Process-based CAMS European air (latitude x (Peuch et al., 2022; Inness et al.,
8 layers from the
data quality reanalysis NO, Daily (average  longitude X 2019)
surface to 5000 m
from hourly) height)
) Hourly 2D EEA AirBase network
Surface EEA AirBase surface ) .
- (latitude x (European Environment Agency,
measurements NO,
longitude) 2024)
2.2.2 Training Targets

The training targets include CAMS European air quality reanalysis profile data (CAMS NO;) and in-situ
measurements from the EEA AirBase network (EEA NO;). The datasets are both listed in Table 1. CAMS NO,
offers extensive and continuous 3D NO; data aligned with physical and chemical processes, while EEA NO,

provides ground-based in-situ measurements from sparsely distributed monitoring stations.

CAMS NO:; is the median ensemble of 11 different regional models (Inness et al., 2019; Peuch et al., 2022). The
dataset provides hourly NO, distributions at eight vertical heights above the surface (surface, S0m, 100m, 250m,
500m, 750m, 1000m, 2000m, 3000m, and 5000m) and has a horizontal resolution 0of 0.1° x 0.1° (10 km x 10 km).
CAMS NO:; has assimilated EEA observations and includes both interim and validated reanalyses. Interim data
relies on near-real-time observations without full validation, whereas validated data undergo rigorous quality
control with an additional delay. In this study, we used CAMS NO; data from 2019 to 2023, where the 2019-2021

data are validated reanalysis data and the 2022-2023 data are interim reanalysis data, based on data availability.

10
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CAMS NO; was processed by averaging hourly data to daily values and by bilinearly interpolating its horizontal
resolution from 10 km to 8 km to match the model's scaling scheme. In addition, CAMS NO; concentrations at
each vertical level were rescaled by multiplying them by the inverse of the ratio between the mean NO,
concentration at that level and the mean surface-level NO, concentration, where the ratio was calculated from the
180 training dataset. This adjustment ensures that the model gives adequate attention to higher-altitude NO,
concentrations, which are otherwise much lower than surface values and could be neglected during training (Li
and Xing, 2024; Kuhn et al., 2024a). During model inference, the predicted NO, concentrations at each level were

multiplied by the corresponding ratio to restore the original vertical profile.

185 EEA NO; was collected from background and industrial monitoring stations (European Environment Agency,
2024) and mapped onto a 2 km grid. Traffic stations were excluded because their measurements represent a very
local area, significantly smaller than the 2 km grid cells of our study. If multiple stations were located within the
same grid cell, their values were averaged. When both background and industrial stations existed in a grid cell,
the cell was classified as background. In total, 773 grid cells with measurements were identified, with 575 assigned

190 for training and 198 for final evaluation. Because background EEA NO; is assimilated into CAMS, the split of
background stations followed the CAMS model assimilation system (Copernicus Atmosphere Monitoring Service,
2024) to prevent data leakage, while industrial stations were randomly split. All EEA NO, data were converted

from hourly to daily averages.

2.2.3 Patch-Based Data Processing and Reconstruction

195 To balance the model’s receptive field and computational efficiency, we used a patching method. Specifically, all
datasets except the temporal indicator were divided into patches of 512 km % 512 km with partial overlap. This
produced grid sizes of 32 x 32 for ERAS meteorological data, 64 x 64 for CAMS NO; data, and 256 x 256 for
emission inventories and proxies, geographic data, and EEA NO; data. In this study, each patch was treated as a
single input sample for the model, and 12 samples were generated for one day. More samples can be generated as

200 needed by reducing the stride of the sliding window. During model inference, the output patches were merged
using a weighted averaging scheme based on a 2D Hann window (Oppenheim, 1999), which assigns lower weights
to patch edges and higher weights to central regions. For each grid cell, weighted values from all overlapping
patches were summed and normalized by the total weights. This reconstruction method reduced edge artifacts in

overlapping areas and ensured smooth transitions across patch boundaries.

11
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205 2.3 Model Architecture and Design
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Figure 2. DACNO: model architecture. The model features a multi-branch encoder—decoder design for daily 3D NO:
prediction. Five input groups are processed separately: ERAS single-level meteorological variables (ConvLSTM-2D),
ERAS multi-level meteorological variables (ConvLSTM-3D), emission inventories and proxies (2D CNN), geography

210 (2D CNN), and temporal features (MLP-based embedding fusion). Outputs from all encoder branches are fused and
passed into a unified 3D CNN decoder to generate high-resolution NO: fields. The architecture enables the extraction
of spatial, temporal, and multi-level atmospheric features, supporting fine-scale NO2 modeling. Input and output
dimensions are indicated for each module.

215 The architecture of the DACNO, model is illustrated in Fig. 2. The model adopts an encoder—decoder framework
with residual connections (He et al., 2016) to map multi-source input features to the daily 3D NO, field. DACNO,
integrates several types of neural network modules, including multilayer perceptron (MLP), convolutional neural
network (CNN), and convolutional long short-term memory (ConvLSTM), to process and fuse heterogencous
input tensors. Each module is chosen for its specific strengths in handling different data structures. ConvLSTM is

220 for spatiotemporal sequences, CNN is for spatial hierarchies, and MLP is for tabular feature vectors. Inception-
style structures are applied in several neural network modules to enable the model to capture both local-scale and

broader-scale spatial features.

12
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2.3.1 Encoder and Decoder

DACNO; encodes ERAS5 single-level (hourly 2D) and multi-level (hourly 3D) meteorological data using
225 ConvLSTM-2D and ConvLSTM-3D modules, respectively. Both modules are based on the ConvLSTM
architecture proposed by Shi et al. (2015), which combines convolutional layers for spatial feature extraction with
long short-term memory (LSTM) units for temporal sequence modeling. ERAS5 data are processed using a
progressive upscaling strategy, where the horizontal grid size increases stepwise from 32 x 32 to 64 x 64,
128 x 128, and 256 x 256, while the vertical dimension remains at 8 for multi-level inputs. This upscaling
230 preserves spatial detail and enables residual connections to the decoder, unlike conventional encoders that
downsample feature maps. To manage computational cost, the temporal sequence length is halved after each
ConvLSTM block through subsampling, resulting in sequence lengths of 24, 12, 6, and 3 at successive stages. At

each stage, the last time slice is extracted for feature fusion.

235 Emission and geographic variables are encoded by dedicated 2D CNN blocks, which extract hierarchical spatial
features as the resolution decreases from 256 x 256 to 32 x 32. At the 32 x 32 latent stage, features from all four
branches are passed through CNN-based transition layers, each forming a 3D tensor. For each branch, feature
values are assigned only to physically relevant vertical levels within the tensor, while all other levels are set to
zero. Specifically, emission and geographic features are assigned to the surface level, ERAS single-level features

240 are placed in the lowest five levels, and ERAS multi-level features span all vertical levels. The resulting tensors
are concatenated along the channel dimension and fused using a 3D CNN block. Temporal indicators are encoded
by an MLP, then expanded to match the latent spatial dimensions, and integrated at this stage, allowing the model
to capture both spatial and temporal context. The same feature fusion scheme is applied to residual connections
between the encoder and decoder at multiple spatial scales, although temporal embedding is used only at the

245 32 x 32 stage.

The decoder uses 3D CNN modules with hierarchical upscaling from 32 x 32 to 256 X 256 in the horizontal
dimension, while maintaining a vertical size of 8. This structure learns spatial correlations across multiple altitude
levels and captures both horizontal and vertical dependencies in NO» distributions. All 2D and 3D CNN blocks
250 use the sigmoid linear unit (SiLU) activation function (Elfwing et al., 2017), while the output layer uses the

softplus activation function to ensure non-negative estimates of the 3D NO; field.

13
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2.3.2 Inception-Based Modules

To enhance multi-scale feature extraction, DACNO, incorporates inception modules throughout its architecture
(Fig. 2), inspired by the work of inception architecture (Szegedy et al., 2014; Szegedy et al., 2015). The core
255 concept of this architecture is to use parallel convolutional operations with varying kernel sizes, enabling the
model to efficiently capture both fine-scale and broad features simultaneously. In the ConvLSTM-2D and
ConvLSTM-3D branches, each inception block applies parallel convolutional operations with varying kernel sizes
(1x1, 3x3, 5x5) and a max-pooling branch, enabling the model to capture both local and broader spatiotemporal
patterns. The 2D CNN modules extend this approach, combining parallel 1x1, 3x3, and 5%5 convolutions, a
260 factorized 7x7 path (decomposed into 1x7 and 7x1 convolutions), and a pooling branch. For 3D CNN modules,
inception blocks use parallel convolutions with different spatial and vertical kernel shapes, such as 1 x1x1, 1x3x3,
and 3x1x1, along with a pooling branch. In all cases, each parallel branch includes its own batch normalization,
activation, and dropout, after which the outputs are concatenated along the channel dimension. A similar design
has been applied in a previous deep learning model for NO; estimation (Zhang et al., 2022a). It enables the model
265 to effectively integrate information across multiple spatial and vertical scales, improving the representation of

complex atmospheric NO; distributions.

14
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2.4 Three-Phase Training Strategy

The DACNO, model development employs a three-phase training strategy, including pre-training, multi-
constraint fine-tuning, and adaptive fine-tuning. Such a strategy enables the model to learn general patterns (e.g.,
270 a-priori knowledge) from a broad dataset and then transfer this internal knowledge to improve its performance on
a new, more specific task. Similar approaches have been widely adopted in the development of artificial
intelligence (AI) models across various domains such as earth system modeling, large language models, and

biomedical image analysis (Zhuang et al., 2019; Zhou et al., 2017; Ding et al., 2023; Bodnar et al., 2024).

2.4.1 Phase-1

275 In the first phase, the DACNO, model was pre-trained on the CAMS NO; data. This dataset provides physically
consistent 3D NO, distributions by assimilating real-world observations into chemical transport models (Inness
et al., 2019), enabling the model to learn comprehensive 3D NO; patterns governed by broad-scale atmospheric
processes. This approach is inspired by recent progress in Al weather modeling (Bi et al., 2023; Lam et al., 2023)
and the earth system foundation model (Bodnar et al., 2025), which uses ERAS and CAMS data for 3D forecasting

280 of weather and air quality.

In this step, the training loss is defined as the sum of the Mean Squared Error (MSE) loss and the Structural
Similarity Index Measure (SSIM) loss (Zhao et al., 2017; Zhou et al., 2004) between the DACNO; prediction and
the CAMS NO; data at 8 km resolution.

285 Loss = LossMSEDACNOZ_CAMS + LossSSIMDACNOZ_CAMS @))]
MSE quantifies the absolute differences in NO, concentrations, while SSIM evaluates the similarity of spatial
patterns between model outputs and the CAMS reference. SSIM is computed independently at each vertical level
by comparing normalized 2D horizontal slices of the predicted and reference NO fields. Specifically, each slice
is min-max normalized to the range of 0 to 1 prior to SSIM calculation, ensuring that the SSIM loss reflects only

290 structural similarity rather than magnitude differences. The final SSIM loss is calculated as one minus the mean
SSIM across all vertical levels. This dual-loss formulation encourages the model to match both the overall

concentration values and the detailed spatial structures of 3D NO; fields.

The model was trained and validated using a random sample split from the 2019, 2021, and 2022 datasets (80%

295 for training, 20% for validation), with 2023 reserved as an independent test set. Data from 2020 was excluded
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from this process because a preliminary experiment showed that its inclusion substantially degraded the model
performance on the unknown period (i.e., 2022 data, which was initially held out as an independent validation
year in that experiment). This might be due to the unexpectedly higher NO» concentrations above 1000 m in that
year (Fig. S1), which is also documented in the CAMS Evaluation and Quality Control (EQC) report (Meleux et

300 al., 2023). While the cause remains unclear, we speculate that this anomaly is related to the substantial decrease
in NOy emissions during 2020 due to the COVID-19 pandemic (Levelt et al., 2022) and not well accounted for in
the CAMS model. We evaluate and discuss DACNO, performance for that special year in Section 4.4.

2.4.2 Phase-2

In the second phase, we fine-tuned DACNO,-Phase-1 by introducing an additional MSE constraint based on EEA
305 NO,, while maintaining the CAMS NO, constraints, as shown in Equation (2). The EEA NO, MSE was computed
at the surface level and only for 2 km grids with available EEA data
Loss = LossMSEp scno,—cams + LOSSSSIMp acno,-cams + LOSSMSEp acno,—EEa 2)
The EEA NO; data were split into training and validation sets using the same spatiotemporal alignment as the
CAMS NO:; split. Most training settings remained consistent with the first phase, except that the learning rate was
310 reduced and the EEA NO; MSE term was added to both the training loss and the validation metric. The model
with the best validation performance was selected and is referred to as DACNO;-Phase-2 for subsequent use.
Although Phase-2 includes the same CAMS constraint as Phase-1, which may make Phase-1 appear redundant,
we recommend retaining Phase-1. Skipping directly to Phase-2 can cause the model to overfit local EEA

observations and limit its ability to learn generalizable NO, patterns from process-based data.

315 2.4.3 Phase-3

Recent changes in air quality policies and emission technologies (Castellanos and Boersma, 2012; Wang et al.,
2021; Chang et al., 2023) may introduce systematic NO, variations that are not well represented in the historical
training dataset. To ensure the DACNO, model remains adaptable to such real-world changes, we introduced a
third phase. In this step, we adopted a strategy inspired by the data assimilation system in the CAMS model (Inness
320 et al., 2019). DACNO,-Phase-2 was fine-tuned using only EEA NO; data from training stations during the test
period (2023 in this study), to mimic real-world application. To maintain spatial patterns learned from earlier
phases, a regularization term based on SSIM was added to both the training loss and validation metric. SSIM was

computed at 8 km resolution between predictions from the updated model and DACNO»-Phase-2 (equation 3):

Loss = LossMSEp acno, (new)-ga + LOSSSSIMp acno, (new)-pacno, (Phase-2) (3)
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325 This approach allows the updated model to adjust prediction magnitudes in response to new measurements while
preserving spatial patterns established in previous phases, since the CAMS constraint is no longer available in
Phase-3. The model with the best validation performance was selected and is referred to as DACNO,-Phase-3,
which incorporates recent real-world NO; variations while retaining consistency with patterns learned during

earlier training.

330 2.4.4 Training and Implementation

DACNO; was trained and implemented in Python using PyTorch on two NVIDIA A30 GPUs. Training was
performed with a batch size of 56, achieved by gradient accumulation. The first and second training phases each
required approximately three weeks to complete 200 epochs on three years of data. The third training phase
required about one week for 100 epochs on a single year of data. Once trained, the model generates daily NO,
335 estimates for the whole area within minutes. Further efficiency improvements are possible through hardware

upgrades or model optimization.
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3. Assessing DACNO: Performance and Evolution
3.1 Model Performance Across Training Phases

Table 2. Performance of DACNO: on the 2023 test dataset.

EGUsphere\

DACNO;-Phase-1 DACNO;-Phase-2 DACNO:;-Phase-3 CAMS-2km
RMSE bias RMSE bias RMSE bias RMSE bias
EEA r R? r R? r R? r R?
(ug/m?) (ug/m’) (ug/m?) (ug/m’) (ug/m?) (ug/m’) (ug/m?*) (ug/m?)
Total 5.88 0.75 0.52 -093 5.81 0.79 0.54 1.67 499 0.82 0.66 -0.38 5.32 0.80 0.61 -1.15
Urban 645 0.76 047 -2.57 5.64 0.80 0.59 0.49 534 0.82 0.64 -1.42 589 0.82 0.56 -2.89
Suburban 5.11 0.79 0.58 -0.04 6.01 0.81 042 2.87 4.55 0.83 0.67 0.58 4.39 0.84 0.69 -0.23
Rural 522 076 042 196 596 0.76 0.25 3.17 4.59 0.78 0.55 1.05 4.79 0.80 0.51 1.98
DACNO:-10km
Total
099 096 091 -0.05 1.17 096 0.87 0.25 1.02 0.95 0.90 -0.10
levels
LO 1.92 094 0.85 -0.36 2.29 0.93 0.79 0.75 194 0.93 0.85 -0.63
L50 1.58 095 0.88 -0.25 194 0.94 0.82 0.66 1.62 0.94 0.87 -0.31
CAMS (10km)
1250 1.05 093 0.83 0.10 1.19 093 0.78 0.41 1.09 0.93 0.82 0.01
L500 0.70 092 0.79 0.09 0.71 092 0.79 0.16 0.79 0.90 0.74 0.05
L1000 031 0.89 0.72 0.03 0.30 0.89 0.74 0.03 0.39 0.86 0.56 0.06
L2000 0.08 0.81 0.61 -0.01 0.08 0.81 0.64 -0.01 0.09 0.79 0.48 0.00
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L3000 0.04 0.78 0.55 -0.01 0.03 0.77 0.58 0.00 0.04 0.74 0.40 0.00

L5000 0.01 0.67 0.31 0.00 0.01 0.66 0.34 0.00 0.02 0.61 -0.01 0.00

340  Note: For the comparison against EEA NO (shown in the upper panel), both DACNO; outputs and CAMS NO;
were evaluated at 2 km grids. The CAMS NO; data was interpolated to a 2 km resolution (CAMS-2km) and used
as a baseline in this comparison. For evaluating DACNO; using CAMS NO: (shown in the lower panel), DACNO;
outputs were downsampled and evaluated at the original 10 km resolution of CAMS across all vertical levels as
well as for individual levels.

345
The performance of the DACNO; model was evaluated using both EEA NO, and CAMS NO; test data from 2023.
For the comparison against EEA NO; (results in the upper panel of Table 2), both DACNO; outputs and CAMS
NO, were evaluated at 2 km grids. The CAMS NO, data was interpolated to 2 km resolution (CAMS-2km) and
served as a baseline in this comparison. For the evaluation of DACNO; using CAMS NO; (results in the lower

350 panel of Table 2), DACNO:; outputs were evaluated at the CAMS original 10 km resolution across all vertical
levels as well as for individual levels. Evaluation metrics included root mean squared error (RMSE), Pearson

correlation coefficient (), coefficient of determination (R?), and bias.

Comparisons with EEA NO; indicate progressive improvement across DACNO; training phases. DACNO,-
355  Phase-3 achieves the best overall agreement (RMSE = 4.99 ug/m?, r = 0.82, R? = 0.66, bias = -0.38 ug/m?),
outperforming both DACNO,-Phase-1 (RMSE = 5.88 ug/m®, r = 0.75, R? = 0.52, bias = -0.93 ug/m?®) and
DACNO>-Phase-2 (RMSE = 5.81 ug/m?, r = 0.79, R? = 0.54, bias = -1.67 ug/m®). This demonstrates the added
value of incorporating local EEA constraints and adaptive fine-tuning. Compared to the interpolated CAMS-2km
dataset (RMSE = 5.32 ug/m3,r=0.80, R?=0.61, bias =-1.15 ug/m?), DACNO,-Phase-3 shows improved accuracy
360 and reduced bias. Station-type analysis further highlights the advantages of DACNQO;-Phase-3, especially at urban
and rural sites. For urban locations, DACNO,-Phase-3 achieves better agreement (RMSE = 5.34 ug/m?, r = 0.82,
R? = 0.64, bias = -1.42 ug/m®) compared with CAMS-2km (RMSE = 5.89 ug/m?, r = 0.82, R> = 0.56, bias = -2.89
ug/m?). In rural areas, DACNO»-Phase-3 reduces the bias (RMSE = 4.59 ug/m3, bias = 1.05 ug/m®) compared to
CAMS-2km (RMSE = 4.79 ug/m?, bias = 1.98 ug/m?). These results suggest that DACNO; is more effective than
365 CAMS at capturing localized emission patterns and small-scale spatial variability in areas with either dense

emission sources or diffuse background levels.
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Comparisons with CAMS NO; across all levels show that DACNO, effectively learns and preserves 3D NO,
distributions across all training phases. Near the surface (Level 0 m), DACNO;-Phase-3 maintains strong
370  agreement with CAMS (RMSE = 1.94 pg/m?, r = 0.93, R? = 0.85, bias = -0.63 ug/m?), and performance remains
robust at mid-altitudes (Level 500 m: RMSE = 0.79 ug/m?, r = 0.90, R? = 0.74, bias = 0.05 ug/m?), similar to
earlier phases. At higher levels, particularly 5000 m, the agreement decreases, with DACNO,-Phase-3 yielding a
near-zero R? (-0.01) compared to 0.31 in DACNO»-Phase-1 and 0.34 in DACNO»-Phase-2. However, Pearson
correlation remains moderate (r > 0.6), indicating that differences at these heights are mainly due to magnitude
375 adjustment rather than loss of spatial structure. The very low NO, concentrations (approximately 0.1 pg/m?* at
3000 m and 0.03 pg/m?® at 5000 m; see Fig. S1) at these high levels also increase relative noise and contribute to
metric variability. This reduction in agreement at upper levels mainly reflects the greater uncertainty and lack of

direct constraints at high altitudes, which remains a key challenge for ML-based 3D air quality modeling.
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3.2 Model Evolution in the Multi-constraint Strategy
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Figure 3. Spatial comparison of surface NO: estimates for 2023 from multiple models. (a) Annual mean surface NO:

fields over the entire study region from DACNO:-Phase-1, DACNO:-Phase-2, DACNO:-Phase-3, CAMS (10 km), and

CAMS-2km (bilinearly interpolated to 2 km). (b—d) Enlarged views for three representative local areas: (b) Paris, (c)

the northern region (NO:2 hotspot area encompassing the Netherlands, Belgium, and the Ruhr area), and (d) the Alpine
385 region.

To further illustrate the evolution of estimated NO; spatial distributions achieved through a phased training, multi-
constraint strategy, Fig. 3 compares average surface NO, estimates for 2023 from DACNO;-Phase-1, DACNO:-
Phase-2, DACNO;-Phase-3, CAMS, and CAMS-2km. Results are shown for the full study region and three
390 representative local areas of Paris, the northern region (NO; hotspot area encompassing the Netherlands, Belgium,

and the Ruhr area), and the Alpine region.

Across the study region (Fig. 3a), all models exhibit broad and similar NO, patterns over land and ocean,

consistent with the high spatial agreement between DACNO, and CAMS NO, reported in Section 3.1.
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395 Nonetheless, DACNO;-Phase-2 and DACNO,-Phase-3 yield sharper spatial contrasts and more clearly defined
local NO; hotspots than CAMS and DACNO;-Phase-1. As an additional experiment, we trained the model using
only EEA NO; data, resulting in the DACNO;-onlyobs version. As shown in Fig. S2, this model yields effective
NO; estimates primarily limited to the land surface and cannot reproduce the shipping track patterns, which are
visible in the CAMS and DACNO: results. Meanwhile, this model produces obvious artifacts over the ocean and

400 at higher altitudes due to the lack of training constraints. These differences highlight the significance of the CAMS

NO; constraint in facilitating broad spatial generalization in ML-based models.

Differences between models become more pronounced when focusing on local regions (Figs. 3b—d). CAMS NO,
exhibits visible pixelation effects in these areas due to its coarse native resolution. While bilinear interpolation (as
405 in CAMS-2km) can smooth these effects, it does not introduce additional spatial detail, resulting in oversmoothed
patterns. DACNO,-Phase-1 shows a spatial NO, distribution similar to CAMS-2km, despite using high-resolution
input features from emission proxies and geography. This indicates that constraints from CAMS NO, alone are
insufficient for the model to capture fine-scale local NO, variability. Incorporating the EEA NO; constraint in
DACNO,-Phase-2 addresses this limitation, inspired by approaches in recent ML-based high-resolution surface
410 NO; modeling studies using ground measurements as targets (Sun et al., 2024; Wei et al., 2022; Kim et al., 2021;
Ghahremanloo et al., 2023). DACNO;-Phase-2 reconstructs spatial patterns of NO, that better match urban layout
in Paris (Fig. 3b), identifies more small-scale emission hotspots in the northern region (Fig. 3¢), and enhances
hotspot signals in the Alpine region (Fig. 3d). DACNO,-Phase-3 retains these spatial characteristics and primarily
adjusts concentration magnitudes by assimilating new measurements to better represent actual NO; levels during
415 the application period. For example, the average surface NO, concentration estimate in Paris decreases from 11.89
pg/m® in DACNO»-Phase-2 to 10.08 pg/m® in DACNO»-Phase-3. This evolution demonstrates the value of

integrating multiple constraints and adaptive fine-tuning for high-resolution NO; estimation.
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3.3 Global and Local Differences Between DACNQO: and CAMS
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420 Figure 4. Annual mean NO: distributions for 2023 estimated from DACNOQO:-Phase-3 (2 km) and CAMS (10 km) at
multiple vertical levels. Level-wise average NO: distributions over (a) Western Europe (entire study region), (b) Paris,
(c) the northern region, and (d) the Alpine region.

To further analyze differences in 3D NO; estimates between DACNO; and CAMS, Fig. 4 compares their annual

average NO; distributions for 2023 across all vertical levels over the entire study region and three selected local
425 areas. At the regional scale (Fig. 4a), DACNO, and CAMS show strong overall agreement at all altitudes,

demonstrating that DACNO; effectively learns and reproduces large-scale 3D NO, structures from CAMS.

However, DACNO; provides enhanced spatial detail, presenting sharper gradients and better-defined urban and

industrial hotspots, particularly from the surface up to 250 m. At higher altitudes, the differences between the two

models gradually diminish, accompanied by a decrease in NO; concentrations. Nevertheless, subtle magnitude
430 discrepancies persist, with DACNO, estimates reaching lower values, sometimes approaching zero.

Local-scale comparisons further highlight the advantages of DACNO; (Figs. 4b—d). In the Paris region (Fig. 4b),
DACNO:; provides finer spatial detail and stronger NO; signals at lower altitudes (e.g., 0 m: 10.08 pug/m?; 50 m:
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8.94 pg/m3; 250 m: 4.65 pg/m?), whereas CAMS results remain coarser with generally lower estimates (0 m:

435  8.43 pg/m?; 50 m: 7.15 pg/m3; 250 m: 3.63 pg/m?). In the northern region (Fig. 4c), DACNO, more distinctly
resolves localized emission sources at low levels, capturing a greater number of hotspots than CAMS. As a result,
the average NO» concentration from DACNO: is elevated throughout the boundary layer (up to 1000 m), with
mean values 8.8% higher than those from CAMS. In the Alpine region (Fig. 4d), DACNO; more effectively
represents terrain-driven gradients and captures NO, signals within mountainous areas, demonstrating greater

440 sensitivity to complex topographic influences. At higher altitudes, fine-scale variability diminishes in both models
and their predicted NO; fields become more similar. This is because the influence of local emissions and surface
features weakens, while regional-scale processes and long-range transport dominate (see Section 4.1). This
reduced difference is also accompanied by much lower NO, concentrations at higher altitudes.
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4. Insights and Implications of DACNO:>

445 4.1 Feature Importance and Data-driven Insights
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Figure 5. Relative importance of each input feature group for DACNO: model predictions, evaluated using the
integrated gradients (IG) method. (a) Feature group contributions to RMSE between DACNO: surface NO2 estimates
and EEA ground-based measurements for 2023. (b) Feature group contributions to RMSE between DACNO:2 and

450 CAMS NO: estimates at different vertical levels for 2023. The five feature groups are: temporal indicators, emission
inventories and proxies, geography, ERAS single-level meteorology, and ERAS multi-level meteorology. Results are
shown for each model training phase (Phase-1, Phase-2, and Phase-3), illustrating how the relative influence of input
feature groups varies with training constraints and altitude. See Figure S3 for the contributions of individual features
within each group.

455 We assessed the relative importance of input feature groups in DACNO, using the integrated gradients (IG)
method (Sundararajan et al., 2017) implemented via the Captum interpretability library (Kokhlikyan et al., 2020).
IG quantifies the effect of varying each input feature from a zero baseline to its actual value on a selected target
function. In this analysis, we computed IG at two targets: (1) the RMSE between DACNO, predictions and 2023
EEA NO:; training measurements at the surface, and (2) the RMSE between DACNO; predictions and 2023 CAMS
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460 NO; at multiple vertical levels. Feature group results are shown in Fig. 5, and results for individual features are

provided in Fig. S3.

For surface NO; predictions evaluated against EEA measurements, DACNO; relies primarily on emission proxies,
geographic features, and multi-level meteorological variables, while temporal indicators and single-level
465 meteorological features play a lesser role. The addition of the EEA NO> constraint in Phase-2 and Phase-3
increases the importance of geographic data, highlighting its value for high-resolution surface NO, estimation. As
shown in Fig. S3, land cover emerges as the most influential single feature in DACNO,-Phase-3, accounting for
36.6% of the total importance. Multi-level meteorological variables dominate the meteorological contribution,
although the radiation variable from the single-level meteorology group also remains relevant (1.0% in Phase-3,
470 Fig. S3). This likely reflects some redundancy between single-level and multi-level meteorological features, with

multi-level data providing more comprehensive atmospheric information.

For NO, estimates by level evaluated against CAMS, the distribution of input feature importance at lower levels
(up to 1000 m) is similar to that for surface NO, evaluated against EEA, suggesting that DACNO, remains
475 relatively stable across training phases with different constraints. Differences between the three-phase models are
most apparent near the surface but gradually diminish with height. The importance of geographic features steadily
decreases as height increases, while emission features reach their highest influence around 500 m before declining.
Above 3000 m, both become negligible, reflecting the transition from the Planetary Boundary Layer (PBL), which
is influenced by local surface features, into the free troposphere, which is dominated by broad-scale processes.
480
In contrast, temporal indicators, single-level meteorology, and especially multi-level meteorological features
become increasingly important with height. For example, in DACNO,-Phase-3, the contribution from multi-level
meteorology rises from 16.5% at the surface to 71.8% at 5000 m, while temporal indicators and single-level
meteorology also show steady increases. This shift highlights the greater reliance on temporal and large-scale
485 atmospheric information for NO; estimates at higher levels. Among these features, radiation flux (3.3% at 3000
m, 2.4% at 5000 m) primarily drives the increase in single-level meteorology, while wind becomes the dominant
variable among all meteorological features (approximately 21% at both 3000 m and 5000 m, Fig. S3). Given the
consistently low overall contribution of single-level meteorological variables, future model development may

consider reducing or refining the use of this feature group to streamline the input space.
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490 4.2 Enhanced Vertical NO: Profile Representation
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Figure 6. Comparison of NO2 profile estimates from DACNO: (2 km resolution) and CAMS (10 km resolution) for the
Paris and Alpine regions in 2023. Regional average vertical profiles and surface NO: distributions for Paris (a) and the
Alpine region (b), with results shown over Google Earth imagery. Interpixel variability of NO: profiles from DACNO:

495 and CAMS along a 100 km transect (black boxes) in the Paris area (c) and a 200 km transect in the Alpine region (d),
illustrating local-scale differences in vertical structure.

Fig. 6 compares the average 2023 NO; profile estimates from DACNO; (2 km) and CAMS (10 km) for the Paris

and Alpine regions, with results overlaid on Google Earth imagery for geographic context. In Paris, the regional
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average profile (Fig. 6a) indicates that DACNO; yields higher near-surface NO, concentrations and steeper
500 vertical gradients compared to CAMS. This enhancement likely results from DACNO:’s use of high-resolution
emission proxies and land cover information, allowing the model to resolve smaller and more localized emission
sources (Kuik et al., 2018; Shahrokhishahraki et al., 2022). At the local scale, we take transect over the grids of
100 km over Paris to compare the interpixel profile variability from CAMS (10 km) and DACNO: (2 km) (Fig. 6c).
It is observed that DACNO, more clearly distinguishes spatial variability in the vertical structure, showing sharper
505 contrasts and more pronounced local peaks than CAMS, particularly below 250 m. The regional average profiles
for the Alpine area are similar between DACNO, and CAMS (Fig. 6b), which is due to the overall lower
concentrations over this region with limited emission sources. However, local differences remain visible across a
200 km transect (Fig. 6d). DACNO: captures higher NO> concentrations around urban and small-scale hotspots,
especially in valleys and canyons where pollutants tend to accumulate. Conversely, DACNO; provides lower NO,
510 estimates in areas between the mountains with few sources. Overall, DACNO, provides more spatially detailed
3D NO; fields, revealing greater variability in the vertical profiles across different grids in this complex terrain.
This refinement is important, as small point and line sources can contribute significant NO, in mountainous

regions (Kim et al., 2021).
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Figure 7. Impact of a-priori profile selection on TROPOMI tropospheric NO: column retrievals for 2023. (a) Annual
mean TROPOMI NO: columns retrieved using the original TM5 (about 100 km), CAMS-S5P (10 km), and DACNO:-
S5P (2 km) a-priori profiles. (b) Spatial distribution of the relative difference (%) in TROPOMI NO: columns retrieved
with three profiles. (c) The relative change in retrieved NO2 columns across three subregions (the northern region,
520 Paris, and the Alpine region) when using DACNO:-S5P versus CAMS-S5P profiles.

To assess the potential of DACNO; for satellite NO; product improvement and development, we tested its use as

a source of a-priori NO; profiles in TROPOMI retrievals. For this, a dedicated version of the model (DACNO,-
S5P) was developed for the TROPOMI overpass time, predicting a 3-hour average NO; (11:00-13:00 UTC) using

the same three-phase strategy. The model targets, named CAMS-S5P and EEA-SSP, represent process-based and

525 measured NO; data during this period.
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Model evaluation (Table S1) shows DACNO,-S5P agrees well with CAMS-S5P (RMSE = 0.98 pg/m?, r = 0.94,

R? = 0.88, bias = 0.03 ug/m?) at 10 km grids. Compared to EEA-S5P measurements, DACNO,-S5P achieves

better agreement (RMSE = 5.07 pg/m’, r = 0.77, R?> = 0.59, bias = 0.05 pg/m?®) than CAMS-S5P (RMSE =
530 5.27 ug/m?, r=0.76, R* = 0.55, bias = -0.94 pg/m>).

We replaced the original TMS a-priori profiles (about 100 km resolution) in the TROPOMI retrievals with CAMS-
S5P and DACNO,-S5P profiles, following the approach described in Douros et al. (2023) and focusing on the
troposphere. Fig. 7a presents the annual mean TROPOMI NO, columns retrieved using these different a priori
535 profiles, with inter-comparisons shown in Figs. 7b and 7c. Both CAMS-S5P and DACNO,-S5P profiles lead to
substantial increases in the retrieved NO, columns, by 36.2% and 39.8% on average, respectively. The increase
associated with CAMS-S5P is consistent with previous findings (Douros et al., 2023) and is primarily attributable
to the improved spatial resolution of the a-priori profile, which enhances the sensitivity of TROPOMI retrievals
to NO; hotspots (Tack et al., 2021; Talongo et al., 2020).
540
Compared to the CAMS-S5P profile, using DACNO,-S5P as the a priori increases retrieved NO, columns by
about 3.0% on average (Fig. 7b), associated with the reduced negative bias against EEA-S5P measurements
reported above. In central-western France (0°E-2.6°E, 45.6°N—46.3°N), a distinct southwest-to-northeast line of
reinforced NO; columns appears because DACNO>-S5P enhances the emission signals from the cities of
545 Angouléme, Guéret, and Montlugon. Regional comparisons (Fig. 7c) show that the DACNO,-S5P profile leads to
a 1.8% increase in the northern region and 5.9% in Paris, with the most significant increases surrounding major
emission hotspots. This is likely due to DACNO,'s enhanced ability, based on finer resolution, to capture small-
scale emission sources and resolve strong spatial gradients around NO; hotspots. In the Alpine region, the average
increase reaches 1.7%, ranging from -18.1% (5th percentile) to +24.1% (95th percentile) between the surrounding
550 areas and the central mountains, with a similar pattern observed in the Pyrenees. The absolute difference remains
small, ranging from -3.94 x 10'* molecules/cm? (5th percentile) to 5.39 x 10'* molecules/cm? (95th percentile).
This large fluctuation reflects the complex NO, distribution in the mountainous region and benefits from high-
resolution modeling, as DACNO; estimates can reach lower background values or enhance the hotspots signal in
this region.

555
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These results illustrate the potential of using DACNO, profiles to improve satellite NO; retrievals, particularly
for evolving high-resolution instruments. However, the DACNO; product remains a prototype, and a roadmap for

operational deployment is outlined in the conclusion.
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4.4 Generalization Capability and Data Quality: Insights from the COVID-19 Period

560 Table 3. Performance of DACNO: on the 2020 dataset.

Year 2020 DACNO:;-Phase-2 DACNO:;-Phase-3-2020 CAMS-2020-2km
RMSE bias RMSE bias RMSE bias
EEA r R? r R? r R?
(ug/m?*) (ug/m’)  (ug/m*) (ug/m*)  (ug/m’) (ug/m’)
Total 5.78 0.80 0.63 -0.27 547 082 0.67 0.01 499 088 0.73 -2.05
Urban 6.06 0.81 0.63 -1.53 562 083 0.68 -128 583 0.88 0.65 -3.44

Suburban 5.81 0.80 0.58 1.12 563 082 0.60 1.55 397 091 0.80 -1.08

Rural 4.97 0.81 0.63 1.08 484 082 065 124 380 0.8 0.78 0.14

DACNO>-10km

Total levels 1.66 091 0.80 -0.43 1.2 091 0.81 -034

L0 218 093 084 043 209 094 086 048
L50 195 093 084 057 206 094 082 0.77
L250 197 089 074 -070 189 088 0.76 -0.50
CAMS-2020 (10 km)
L500 206 083 050 -1.01 194 082 055 -0.81
L1000 1.64 072 000 -1.01 157 070 0.09 -0.93
L2000 142 049 -0.81 -1.01 140 047 -0.77 -0.99
L3000 0.81 046 -099 -059 080 045 -0.95 -0.59
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L5000 0.17 0.55 -0.70 -0.12  0.17 056 -0.64 -0.12

Note: Similar to Table 2, but for the year 2020.

As noted in Section 2.4.1, CAMS NO; data for 2020 were excluded from the training set based on preliminary
experiments showing that their inclusion substantially reduced model generalization at higher levels. Since 2020

565 was marked by the COVID-19 pandemic and large reductions in anthropogenic emissions (Levelt et al., 2022),
we specifically evaluated DACNO>’s predictive performance for this atypical year. To this end, the DACNO:-
Phase-2 model was fine-tuned on 2020 EEA NO, data, following the same phased development strategy, to
produce DACNO,-Phase-3-2020.

570 Table 3 summarizes the 2020 evaluation results, following the format of Table 2. Both DACNO,-Phase-2 and
DACNO,-Phase-3-2020 reproduced observed surface NO, concentrations well (e.g., DACNO;-Phase-3-2020:
RMSE = 5.47 pug/m?, r = 0.82, R = 0.67, bias = 0.01 ug/m?), with performance comparable to CAMS (RMSE =
4.99 ng/m3,r=0.88, R2=0.73, bias = -2.05 pg/m?) but notably lower bias. This demonstrates robust generalization
by DACNO; under the emission anomalies of the pandemic year. Agreement between DACNO; and CAMS
575  remains strong at low altitudes (e.g., surface: RMSE = 2.09 ug/m?, r = 0.94, R? = 0.86, bias = 0.48 pg/m?), but
declines rapidly above 1000 m, where R? values approach zero or become negative, indicating a failure to

reproduce high altitude CAMS NO, distributions for 2020.

A comparison of CAMS NO, vertical distributions from 2019 to 2023 (Fig. S1) shows generally consistent annual
580 patterns, except for 2020, which is characterized by anomalously high values above 1000 m. This anomaly is also
noted in the CAMS 2020 annual evaluation report (Meleux et al., 2023), which attributes it to some sub-models
producing unexpectedly high NO, at high levels, resulting in inflated tropospheric column estimates. The
underlying causes remain unresolved and require further investigation. These findings highlight the importance
of data screening, such as checking distributions and identifying outliers, before model training. Including biased
585 or anomalous target data can introduce noise, increase the risk of overfitting, and reduce generalization

performance.
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5. Conclusions and outlook

This study presents the Deep Atmospheric Chemistry NO, model (DACNO,), a deep learning model for daily,
high-resolution (2 km) 3D NO; estimation. DACNO, integrates multi-source and multi-modal input features,
590 including emissions, geography, meteorology, and temporal indicators. It uses a multi-constraint and phased
training approach to learn from both process-based CAMS NO, and measured EEA NO; data. This approach
allows DACNO: to reproduce broad-scale, process-based NO; patterns and capture local NO; gradients. Results
show that DACNO; significantly improves the ability to resolve fine-scale spatial patterns, near-surface NO,
variability, and vertical distribution. It also generalizes well across different spatial areas (urban, rural,
595 mountainous, and emission hotspot regions) and periods of anomalous emissions. Furthermore, the framework
demonstrates transferability and flexibility, allowing the model to be fine-tuned to adapt to future emission

scenarios and to be adjusted to produce outputs for specific satellite overpass times in addition to daily averages.

A systematic evaluation shows that DACNO; outperforms the state-of-the-art regional CAMS product in
600 reproducing measured surface NO; concentrations. Overall, DACNO; achieves a lower RMSE (4.99 vs. 5.32
pg/m?), higher correlation (r = 0.82 vs. 0.80, R? = 0.66 vs. 0.61), and a substantially reduced bias (-0.38 vs. -1.15
pg/m3). The improvement is particularly significant in urban areas with high spatial variability, where DACNO,
yields a higher R? (0.64 vs. 0.56) and halves the negative bias (-1.42 vs. -2.89 ug/m®). In rural areas with very low
background levels, DACNO; also shows a better R? (0.55 vs. 0.51) and maintains a small positive bias, in contrast
605 to the large one from CAMS (1.05 vs. 1.98 ug/m?). Vertical profile analysis indicates that DACNO, provides
greater spatial detail and variation than CAMS, capturing small-scale emission sources and topographic influences
more effectively. Feature importance analysis highlights the contribution of high-resolution emission proxies, land
cover, and multi-level meteorological information to resolving spatial and vertical NO, patterns. In contrast,
single-level meteorological variables contribute minimally, likely because part of their information is already
610 captured by the more comprehensive multi-level data. This redundancy suggests opportunities for future model

optimization.

Application to satellite NO, retrievals demonstrates that using DACNO;-generated a-priori profiles enhances the
sensitivity of TROPOMI NO; products to near-surface concentrations and emission hotspots, particularly in small-
615 scale emission sources and complex geographic regions. These findings underscore the potential of high-
resolution ML-based profiles for future high-resolution satellite retrievals. However, DACNO; remains a

prototype, and further work is needed for operational deployment. First, this would involve extending the model's
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output to continuous hourly profiles over a broader geographic domain. Second, the model would need to be
operated on a robust GPU computational platform with automated data pipelines. Third, a routine validation
620 framework would need to be established to continuously monitor performance against various data, such as
CAMS NO», EEA NO», and vertical measurements (e.g., MAX-DOAS). Finally, this operational system would
require a strategy for periodic model fine-tuning to adapt to evolving emission patterns and maintain long-term

accuracy.

625 Analysis of model performance during COVID-19 indicates that DACNO; consistently generalizes well despite
emission anomalies. The inconsistencies observed in CAMS reanalysis for 2020 at high levels highlight the need
for screening and quality assurance in model training data to avoid learning biased patterns and degrading model

reliability.

630 Future development of DACNO; may include integrating high-resolution 3D process-based NO; fields from
models such as WRF-Chem and column observations from satellites to strengthen constraints at higher altitudes
(e.g., above 2000 m), exploring transformer architectures for improved scalability and multi-modal data
processing, and embedding additional physical constraints into the loss function. Extension to continental or
global applications (including data-poor regions such as the African continent) will further support large-scale air

635 quality management and atmospheric chemistry research.

Data and code availability

The daily number of flights is accessible at https://www.eurocontrol.int/Economics/DailyTraffic Variation-

States.html. The CAMS global emission inventories are accessible at https://ads.atmosphere.copernicus.eu/. The

GRIP global roads database can be downloaded from https://www.globio.info/download-grip-dataset. The VIIRS

640  nighttime light data can be accessed from https://eogdata.mines.edu/products/vnl/. The population dataset is

provided by https://ec.europa.cu/eurostat/web/gisco/geodata/population-distribution/population-grids. The

MERIT DEM data is accessible via https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT _DEM/. The CORINE land

cover dataset can be downloaded from https://land.copernicus.eu/en/products/corine-land-cover/clc2018. The

single-level and multi-level meteorological data are provided by the fifth-generation ECMWF atmospheric

645 reanalysis of the global climate product (ERAS), which can be accessed via https://cds.climate.copernicus.cu/.

The CAMS European air quality reanalyses dataset is accessible via https://ads.atmosphere.copernicus.cu/. The
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EEA AirBase dataset can be downloaded from https://ecadmz]-downloads-webapp.azurewebsites.net/. The

official  TROPOMI NO; product is accessible via the Copernicus Data Space Ecosystem

(https://dataspace.copernicus.cu/). The data generated for this study can be accessed from the Zenodo data archive

650 (Sun et al. (2025), https://doi.org/10.5281/zenodo.16986854).

The DACNO; model and its framework are built using the Pytorch library (https:/pytorch.org/) in the Python

environment. All code related to model design and data processing is available upon request from the

corresponding author.
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