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Abstract. Accurate, high-resolution 3D fields of nitrogen dioxide (NO2) are critical for air quality management 

and satellite retrievals, yet traditional chemistry-transport models (CTMs) face challenges in fine-scale modeling. 

Machine learning (ML) alternatives often struggle with generalization and transferability, inheriting biases from 10 

CTMs or being limited by sparse surface measurements. We present the Deep Atmospheric Chemistry NO2 model 

(DACNO2), a deep learning model that generates daily 2 km 3D NO2 fields over Western Europe. The model's 

three-phase and multi-constraint training strategy begins by pre-training on European Copernicus Atmosphere 

Monitoring Service (CAMS) reanalysis data to learn large-scale atmospheric patterns, then fine-tunes with both 

CAMS and in-situ European Environmental Agency (EEA) surface data to correct biases and refine local detail, 15 

and completes with an adaptive fine-tuning to capture evolving trends. An evaluation for 2023 shows that 

DACNO2 reproduces broad-scale 3D CAMS fields (R2 = 0.90) while improving agreement with independent EEA 

stations over the CAMS reanalysis (R2 enhanced from 0.61 to 0.66; bias reduced from -1.15 to -0.38 µg/m3). The 

model resolves more spatial detail and learns physically interpretable relationships. This hybrid training approach 

fuses the physical consistency of a process-based model with the real-world accuracy of surface measurements, 20 

overcoming the limitations of using either constraint data alone. Applying DACNO2 a-priori profiles to 

TROPOMI retrievals increases tropospheric NO2 columns by 3% on average over those using European CAMS 

profiles, with larger enhancements over emission hotspots. These results demonstrate the framework's potential 

to advance air quality monitoring and satellite remote sensing.  
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1. Introduction 25 

Nitrogen dioxide (NO2) is a key atmospheric pollutant with significant impacts on air quality, human health, 

ecosystems, and atmospheric chemistry. Primary sources include traffic, industrial activities, and energy 

production, with additional contributions from natural emissions (Crippa et al., 2018). Accurate characterization 

of the spatiotemporal distribution of NO2 is critical for both air pollution management and atmospheric chemistry 

research. 30 

 

Chemistry Transport Models (CTMs) such as GEOS-Chem (Bey et al., 2001), TM5-MP (Krol et al., 2005; 

Williams et al., 2017; Huijnen et al., 2010), WRF-Chem (Grell et al., 2005), and the Copernicus Atmosphere 

Monitoring Service (CAMS) (Peuch et al., 2022; Inness et al., 2019) are widely used to simulate atmospheric NO2 

based on physical and chemical processes. However, most CTMs operate at coarse spatial resolution due to 35 

computational constraints and the limited availability of high-resolution emission inventories. This restricts their 

ability to represent fine-scale NO2 variability and often results in spatial smoothing and underestimation, 

particularly in urban environments. Emission inventories are usually outdated and may omit localized and small-

scale sources (Lu et al., 2025), contributing to uncertainties and discrepancies between bottom-up and top-down 

emission estimates (Kuik et al., 2018; Yang et al., 2021). While regional high-resolution CTMs are available, such 40 

as CAMS at 10 km (Douros et al., 2023; Ialongo et al., 2020) and regional WRF-Chem at 3 km (Kuhn et al., 

2024b), challenges remain in accurately capturing urban and fine-scale NO2 patterns (Meleux et al., 2024), and 

model optimization is often resource-intensive (Kuhn et al., 2024a; Kuhn et al., 2024b). 

 

CTM outputs also serve as a-priori NO2 profiles for satellite retrievals (Palmer et al., 2001; Douros et al., 2023; 45 

Yang et al., 2023), supporting large-scale NO2 monitoring. Over the past three decades, satellite NO2 observations 

have been advancing toward higher spatiotemporal resolution. Satellite instruments such as the TROPOspheric 

Monitoring Instrument (TROPOMI, 7 × 3.5 km2, 5.5 × 3.5 km2 since August 2019) on Sentinel-5P (Veefkind et 

al., 2012), the Geostationary Environment Monitoring Spectrometer (GEMS, 3.5 × 8 km2) (Kim et al., 2020), 

Tropospheric emissions: Monitoring of pollution (TEMPO, 2 × 4.75 km2) (Zoogman et al., 2017), Sentinel-4 (8 50 

× 8 km2) (Gulde et al., 2017), Sentinel-5 (7.5 × 7.5 km2) (Bézy et al., 2014), Twin ANthropogenic Greenhouse 

Gas Observers (TANGO, 300 × 300 m2) (Landgraf et al., 2020), and the Copernicus Anthropogenic Carbon 

Dioxide Monitoring constellation (CO2M, 2 × 2 km2) (Bernd et al., 2021) are advancing spaceborne NO2 

observations to kilometer-scale resolution. This progress has increased demand for high-resolution a priori profiles, 
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which can improve the sensitivity of satellite NO2 products to near-surface concentrations and emission hotspots. 55 

However, CTM-based profiles remain constrained by the limitations mentioned above, highlighting the need for 

alternative modeling approaches. 

 

Machine learning (ML) provides an efficient alternative for high-resolution NO2 estimation. ML techniques have 

been widely applied for surface NO2 mapping (Sun et al., 2024; Kim et al., 2021; Wei et al., 2022), and recent 60 

studies have extended these approaches for 3D NO2 modeling above the surface. These studies have trained 

models on process-based 3D NO2 fields generated by CTMs (Bodnar et al., 2024; Kuhn et al., 2024a), on vertical 

profiles from MAX-DOAS observations (Zhang et al., 2025; Zhang et al., 2022b; Jiang et al., 2025), and on a 

combination of process-based CTM outputs with satellite observations (Li and Xing, 2024). While these studies 

demonstrate the feasibility of ML-based 3D NO2 modeling, challenges remain in achieving high spatial resolution, 65 

robust generalization, and transferability. Process-based data carries inherent biases and has relatively coarse 

resolution. Ground-based observations are sparse and unevenly distributed, limiting the model’s spatial 

generalization. While Li and Xing (2024) combine process-based NO2 fields with satellite NO2 observations from 

the Ozone Monitoring Instrument (OMI) to train the ML model, the resulting product is still limited to a coarse 

resolution (27 km). 70 

 

In this study, we present the Deep Atmospheric Chemistry NO2 model (DACNO2), a deep learning model 

developed to produce daily, high-resolution (2 km) 3D NO2 fields with high accuracy, robust generalization, and 

transferability. DACNO2 integrates multi-source inputs, including emissions, geography, meteorology, and 

temporal indicators. The model is trained using a phased, multi-constraint approach that combines process-based 75 

CAMS fields with ground-based EEA measurements. This method enables the model to reproduce broad-scale, 

process-based NO2 patterns and capture local NO2 gradients. The training strategy consists of three phases: pre-

training, multi-constraint fine-tuning, and adaptive fine-tuning. Western Europe (5°W–9°E, 42°N–54°N) is 

chosen as the study region, given its diverse topography, high urbanization, and substantial industrial activity. 

 80 

This study addresses two key research questions: (1) Can a deep learning framework combining multi-constraint 

and phased training overcome the resolution, bias, and generalization limitations of current CTM and ML 

approaches for 3D NO2 modeling? (2) Does the DACNO2 2 km product improve fine-scale NO2 representation to 

support applications in regional air quality management and satellite retrievals? 

 85 
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The remainder of this paper is organized as follows. Section 2 describes the DACNO2 development framework, 

including dataset preparation, model architecture, and training strategy. Section 3 evaluates model performance. 

Section 4 discusses broader insights and implications. Conclusions and outlook are provided in Section 5.  
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2. Development Framework for DACNO2 

2.1 Framework Overview 90 

 

Figure 1. Overview of the DACNO2 model development framework. The framework integrates multiple input data 

streams: temporal indicators, emission inventories and proxies, geography, and ERA5 meteorological data, with two 

target datasets: process-based NO2 from CAMS European air quality reanalysis and ground-based in-situ EEA NO2 

measurements. The training is organized in three sequential phases: pre-training on process-based CAMS NO2, multi-95 
constraint fine-tuning with both CAMS and EEA data, and adaptive fine-tuning to recent NO2 trends. The resulting 

model generates daily, high-resolution (2 km) 3D NO2 fields. Arrows indicate the data flow and phased training process. 

DACNO2 is developed to provide daily 3D NO2 fields at high spatial resolution (2 km) with improved accuracy 

and generalizability by integrating multi-source data, physically consistent process-based datasets, and real-world 

measurements. The overall framework, illustrated in Fig. 1, combines diverse data streams with a phased training 100 

strategy. 

 

DACNO2 uses five groups of input features: temporal indicators, emission inventories and proxies, geographic 

data, ERA5 single-level meteorological variables, and ERA5 multi-level meteorological variables. Together, they 

provide complementary information on spatial and temporal NO2 variability. For model training, the targets are 105 

process-based NO2 fields from the CAMS European air quality reanalyses (Inness et al., 2019; Peuch et al., 2022) 
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and real-world surface NO2 measurements from the EEA AirBase network (European Environment Agency, 2024). 

CAMS supplies physically consistent large-scale 3D NO2 distributions, while EEA data constrain the model to 

match local concentration patterns. Details on data preparation are provided in Section 2.2. 

 110 

To effectively learn NO2 patterns from diverse datasets, DACNO2 employs an encoder–decoder architecture with 

five dedicated encoder branches, each tailored to a specific group of input features. The model structure is 

described in Section 2.3. 

 

Model training is organized into three sequential phases. In Phase 1, a baseline model is pre-trained on process-115 

based CAMS data. In Phase 2, the model is further trained with both process-based and measurement data, 

improving its ability to represent local NO2 gradients. In Phase 3, the model is fine-tuned using recent 

measurements to reflect current NO2 trends and support real-world applications. Details of the training approach 

are provided in Section 2.4.  
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2.2 Dataset Preparation 120 

2.2.1 Input Features 

DACNO2 utilizes 38 input datasets, organized into five groups: temporal indicators, emission inventories and 

proxies, geography, single-level meteorology, and multi-level meteorology. Details of all input features and their 

sources are provided in Table 1. 

 125 

The temporal indicator group consists of the day of the week and the daily number of flights. The day of the week 

captures regular human activity cycles, reflecting variability between weekdays and weekends. Data on the daily 

number of flights, aggregated for nine countries in the study area (Eurocontrol, 2025), can indicate irregular 

activity such as holiday periods or major events, which may help explain the irregular changes in NO2 emissions. 

Emission inventories and proxies include anthropogenic NOx emission inventories, road density, population 130 

density, and nighttime light. These features provide direct and indirect measures of NOx emissions, with high-

resolution proxies complementing inventories at finer spatial scales. All datasets are resampled to a 2 km grid 

using interpolation, averaging, or rasterization methods. 

 

Geographic datasets include land elevation and land cover, providing terrain context to the ML model. Elevation 135 

influences atmospheric transport by creating physical barriers that can trap pollutants (Giovannini et al., 2020), 

while land cover serves as a proxy for the location and type of surface emissions (Beelen et al., 2013). Land cover 

is categorized into five classes: artificial surfaces, agricultural areas, forests and semi-natural areas, wetlands, and 

water bodies, aggregated from the original 44 categories by the mode method (the most frequently occurring land 

cover type). Both elevation and land cover data are resampled to a 2 km grid. 140 

 

Meteorological features provide atmospheric information from the surface through the free troposphere, obtained 

from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 hourly single-level and multi-

level (pressure-level) datasets (Hersbach et al., 2020). We use 24-hour meteorological features for the target day. 

Meteorological data are horizontally resampled to a 16 km grid, for three reasons: (1) the native ERA5 resolution 145 

(0.25˚, approximately 25 km) is coarser than 2 km, and bilinear interpolation would mainly introduce artificial 

smoothness rather than genuine fine-scale gradients; (2) retaining many meteorological variables at 2 km would 

impose a significant computational burden; and (3) the DACNO2 architecture uses a hierarchical encoder-decoder, 

where upscaling and downscaling follow a factor-of-two scaling scheme (e.g., 2 km, 4 km, 8 km, 16 km). Although 
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the ERA5-Land data can provide higher resolution (0.1˚, approximately 9 km), it only covers the continental areas, 150 

which is not consistent with the model application scope. 

 

The day-of-week feature is normalized using sine and cosine transforms to retain its cyclical nature. Land cover 

is one-hot encoded to convert categorical data into a numerical format. All other input features are normalized 

with z-scores, based on the mean and standard deviation of the training set. 155 

 

Notably, satellite-derived NO2 products were deliberately excluded from the input features for two key reasons. 

First, frequent data gaps in satellite products, due to cloud cover and quality control, would propagate into the 

model's output, preventing the generation of continuous, gap-free fields. Second, this exclusion allows for an 

independent evaluation of the model against satellite observations and preserves the potential to use satellite data 160 

as an independent constraint in future work.   
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Table 1. Summary of inputs and training targets for the DACNO2 model development. 

Group Data Spatial Resolution 
Temporal 

Resolution 
Dimension Data Source 

Inputs 

Temporal 

indicator 

Daily number of flights  - Daily 1D  

(time) 

(Eurocontrol, 2025) 

Day of week - - - 

Emission 

inventories and 

proxies 

CAMS global emission 

inventories 

Anthropogenic 

sector  

(0.1° × 0.1°)  

Shipping sector  

(0.25° × 0.25°) 

- 

(average for 

2018) 

2D  

(latitude × 

longitude) 

(Soulie et al., 2024) 

Road networks (five 

types) 
Vector data - 

Global Roads Inventory Project 

(GRIP) global roads database 

(Meijer et al., 2018) 

Nighttime light 500 m 

- 

(average for 

2019 to 2022) 

Annual global Visible Infrared 

Imaging Radiometer Suite 

(VIIRS) dataset  

(Elvidge et al., 2021) 

Population 1 km - 
JRC-GEOSTAT 2018 gridded 

dataset (Silva et al., 2021) 

Geography 

Land elevation 90 m - 

Multi-Error-Removed Improved-

Terrain digital elevation models 

(MERIT DEM) (Yamazaki et al., 

2017) 

Land cover 

(resampled to 5 classes 

via mode aggregation) 

100m - 

Coordination of Information on 

the Environment (CORINE) 

Land Cover 2018  

(Feranec et al., 2016) 

Meteorology 

Boundary layer height 

0.25˚ Hourly 

3D  

(latitude × 

longitude × 

time) 

European Center for Medium-

Range Weather Forecasts 

(ECMWF) ERA5 hourly time-

series data on single levels from 

1940 to the present (Hersbach et 

al., 2020) 

 

Mean boundary layer 

dissipation 

Surface pressure 

Dewpoint Temperature 

2m Temperature 

10 m U and V wind 

Leaf area index (for low 

and high vegetation) 
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Mean evaporation rate 

Mean snow rate 

Mean surface net 

radiation flux (short and 

long wave) 

Mean total precipitation 

rate 

Geopotential 

0.25˚ 

8 layers from 1000 

hPa to 550 hPa 

4D  

(latitude × 

longitude × 

height × 

time) 

ECMWF ERA5 hourly data on 

pressure levels from 1940 to the 

present 

Vorticity 

Relative humidity 

Temperature 

U and V wind 

Vertical velocity 

Training targets 

Process-based 

data 

CAMS European air 

quality reanalysis NO2 

0.1˚ 

8 layers from the 

surface to 5000 m 
Daily (average 

from hourly) 

Hourly 

3D  

(latitude × 

longitude × 

height) 

(Peuch et al., 2022; Inness et al., 

2019) 

Surface 

measurements 

EEA AirBase surface 

NO2 
- 

2D 

(latitude × 

longitude) 

EEA AirBase network 

(European Environment Agency, 

2024) 

2.2.2 Training Targets 

The training targets include CAMS European air quality reanalysis profile data (CAMS NO2) and in-situ 

measurements from the EEA AirBase network (EEA NO2). The datasets are both listed in Table 1. CAMS NO2 165 

offers extensive and continuous 3D NO2 data aligned with physical and chemical processes, while EEA NO2 

provides ground-based in-situ measurements from sparsely distributed monitoring stations. 

 

CAMS NO2 is the median ensemble of 11 different regional models (Inness et al., 2019; Peuch et al., 2022). The 

dataset provides hourly NO2 distributions at eight vertical heights above the surface (surface, 50m, 100m, 250m, 170 

500m, 750m, 1000m, 2000m, 3000m, and 5000m) and has a horizontal resolution of 0.1° × 0.1° (10 km × 10 km). 

CAMS NO2 has assimilated EEA observations and includes both interim and validated reanalyses. Interim data 

relies on near-real-time observations without full validation, whereas validated data undergo rigorous quality 

control with an additional delay. In this study, we used CAMS NO2 data from 2019 to 2023, where the 2019–2021 

data are validated reanalysis data and the 2022–2023 data are interim reanalysis data, based on data availability. 175 
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CAMS NO2 was processed by averaging hourly data to daily values and by bilinearly interpolating its horizontal 

resolution from 10 km to 8 km to match the model's scaling scheme. In addition, CAMS NO2 concentrations at 

each vertical level were rescaled by multiplying them by the inverse of the ratio between the mean NO2 

concentration at that level and the mean surface-level NO2 concentration, where the ratio was calculated from the 

training dataset. This adjustment ensures that the model gives adequate attention to higher-altitude NO2 180 

concentrations, which are otherwise much lower than surface values and could be neglected during training (Li 

and Xing, 2024; Kuhn et al., 2024a). During model inference, the predicted NO2 concentrations at each level were 

multiplied by the corresponding ratio to restore the original vertical profile. 

 

EEA NO2 was collected from background and industrial monitoring stations (European Environment Agency, 185 

2024) and mapped onto a 2 km grid. Traffic stations were excluded because their measurements represent a very 

local area, significantly smaller than the 2 km grid cells of our study. If multiple stations were located within the 

same grid cell, their values were averaged. When both background and industrial stations existed in a grid cell, 

the cell was classified as background. In total, 773 grid cells with measurements were identified, with 575 assigned 

for training and 198 for final evaluation. Because background EEA NO2 is assimilated into CAMS, the split of 190 

background stations followed the CAMS model assimilation system (Copernicus Atmosphere Monitoring Service, 

2024) to prevent data leakage, while industrial stations were randomly split. All EEA NO2 data were converted 

from hourly to daily averages. 

2.2.3 Patch-Based Data Processing and Reconstruction 

To balance the model’s receptive field and computational efficiency, we used a patching method. Specifically, all 195 

datasets except the temporal indicator were divided into patches of 512 km × 512 km with partial overlap. This 

produced grid sizes of 32 × 32 for ERA5 meteorological data, 64 × 64 for CAMS NO2 data, and 256 × 256 for 

emission inventories and proxies, geographic data, and EEA NO2 data. In this study, each patch was treated as a 

single input sample for the model, and 12 samples were generated for one day. More samples can be generated as 

needed by reducing the stride of the sliding window. During model inference, the output patches were merged 200 

using a weighted averaging scheme based on a 2D Hann window (Oppenheim, 1999), which assigns lower weights 

to patch edges and higher weights to central regions. For each grid cell, weighted values from all overlapping 

patches were summed and normalized by the total weights. This reconstruction method reduced edge artifacts in 

overlapping areas and ensured smooth transitions across patch boundaries.  
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2.3 Model Architecture and Design 205 

 

Figure 2. DACNO2 model architecture. The model features a multi-branch encoder–decoder design for daily 3D NO2 

prediction. Five input groups are processed separately: ERA5 single-level meteorological variables (ConvLSTM-2D), 

ERA5 multi-level meteorological variables (ConvLSTM-3D), emission inventories and proxies (2D CNN), geography 

(2D CNN), and temporal features (MLP-based embedding fusion). Outputs from all encoder branches are fused and 210 
passed into a unified 3D CNN decoder to generate high-resolution NO2 fields. The architecture enables the extraction 

of spatial, temporal, and multi-level atmospheric features, supporting fine-scale NO2 modeling. Input and output 

dimensions are indicated for each module. 

 

The architecture of the DACNO2 model is illustrated in Fig. 2. The model adopts an encoder–decoder framework 215 

with residual connections (He et al., 2016) to map multi-source input features to the daily 3D NO2 field. DACNO2 

integrates several types of neural network modules, including multilayer perceptron (MLP), convolutional neural 

network (CNN), and convolutional long short-term memory (ConvLSTM), to process and fuse heterogeneous 

input tensors. Each module is chosen for its specific strengths in handling different data structures. ConvLSTM is 

for spatiotemporal sequences, CNN is for spatial hierarchies, and MLP is for tabular feature vectors. Inception-220 

style structures are applied in several neural network modules to enable the model to capture both local-scale and 

broader-scale spatial features. 
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2.3.1 Encoder and Decoder 

DACNO2 encodes ERA5 single-level (hourly 2D) and multi-level (hourly 3D) meteorological data using 

ConvLSTM-2D and ConvLSTM-3D modules, respectively. Both modules are based on the ConvLSTM 225 

architecture proposed by Shi et al. (2015), which combines convolutional layers for spatial feature extraction with 

long short-term memory (LSTM) units for temporal sequence modeling. ERA5 data are processed using a 

progressive upscaling strategy, where the horizontal grid size increases stepwise from 32 × 32 to 64 × 64, 

128 × 128, and 256 × 256, while the vertical dimension remains at 8 for multi-level inputs. This upscaling 

preserves spatial detail and enables residual connections to the decoder, unlike conventional encoders that 230 

downsample feature maps. To manage computational cost, the temporal sequence length is halved after each 

ConvLSTM block through subsampling, resulting in sequence lengths of 24, 12, 6, and 3 at successive stages. At 

each stage, the last time slice is extracted for feature fusion. 

 

Emission and geographic variables are encoded by dedicated 2D CNN blocks, which extract hierarchical spatial 235 

features as the resolution decreases from 256 × 256 to 32 × 32. At the 32 × 32 latent stage, features from all four 

branches are passed through CNN-based transition layers, each forming a 3D tensor. For each branch, feature 

values are assigned only to physically relevant vertical levels within the tensor, while all other levels are set to 

zero. Specifically, emission and geographic features are assigned to the surface level, ERA5 single-level features 

are placed in the lowest five levels, and ERA5 multi-level features span all vertical levels. The resulting tensors 240 

are concatenated along the channel dimension and fused using a 3D CNN block. Temporal indicators are encoded 

by an MLP, then expanded to match the latent spatial dimensions, and integrated at this stage, allowing the model 

to capture both spatial and temporal context. The same feature fusion scheme is applied to residual connections 

between the encoder and decoder at multiple spatial scales, although temporal embedding is used only at the 

32 × 32 stage. 245 

 

The decoder uses 3D CNN modules with hierarchical upscaling from 32 × 32 to 256 × 256 in the horizontal 

dimension, while maintaining a vertical size of 8. This structure learns spatial correlations across multiple altitude 

levels and captures both horizontal and vertical dependencies in NO2 distributions. All 2D and 3D CNN blocks 

use the sigmoid linear unit (SiLU) activation function (Elfwing et al., 2017), while the output layer uses the 250 

softplus activation function to ensure non-negative estimates of the 3D NO2 field. 
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2.3.2 Inception-Based Modules 

To enhance multi-scale feature extraction, DACNO2 incorporates inception modules throughout its architecture 

(Fig. 2), inspired by the work of inception architecture (Szegedy et al., 2014; Szegedy et al., 2015). The core 

concept of this architecture is to use parallel convolutional operations with varying kernel sizes, enabling the 255 

model to efficiently capture both fine-scale and broad features simultaneously. In the ConvLSTM-2D and 

ConvLSTM-3D branches, each inception block applies parallel convolutional operations with varying kernel sizes 

(1×1, 3×3, 5×5) and a max-pooling branch, enabling the model to capture both local and broader spatiotemporal 

patterns. The 2D CNN modules extend this approach, combining parallel 1×1, 3×3, and 5×5 convolutions, a 

factorized 7×7 path (decomposed into 1×7 and 7×1 convolutions), and a pooling branch. For 3D CNN modules, 260 

inception blocks use parallel convolutions with different spatial and vertical kernel shapes, such as 1×1×1, 1×3×3, 

and 3×1×1, along with a pooling branch. In all cases, each parallel branch includes its own batch normalization, 

activation, and dropout, after which the outputs are concatenated along the channel dimension. A similar design 

has been applied in a previous deep learning model for NO2 estimation (Zhang et al., 2022a). It enables the model 

to effectively integrate information across multiple spatial and vertical scales, improving the representation of 265 

complex atmospheric NO2 distributions.  
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2.4 Three-Phase Training Strategy 

The DACNO2 model development employs a three-phase training strategy, including pre-training, multi-

constraint fine-tuning, and adaptive fine-tuning. Such a strategy enables the model to learn general patterns (e.g., 

a-priori knowledge) from a broad dataset and then transfer this internal knowledge to improve its performance on 270 

a new, more specific task. Similar approaches have been widely adopted in the development of artificial 

intelligence (AI) models across various domains such as earth system modeling, large language models, and 

biomedical image analysis (Zhuang et al., 2019; Zhou et al., 2017; Ding et al., 2023; Bodnar et al., 2024). 

2.4.1 Phase-1 

In the first phase, the DACNO2 model was pre-trained on the CAMS NO2 data. This dataset provides physically 275 

consistent 3D NO2 distributions by assimilating real-world observations into chemical transport models (Inness 

et al., 2019), enabling the model to learn comprehensive 3D NO2 patterns governed by broad-scale atmospheric 

processes. This approach is inspired by recent progress in AI weather modeling (Bi et al., 2023; Lam et al., 2023) 

and the earth system foundation model (Bodnar et al., 2025), which uses ERA5 and CAMS data for 3D forecasting 

of weather and air quality. 280 

 

In this step, the training loss is defined as the sum of the Mean Squared Error (MSE) loss and the Structural 

Similarity Index Measure (SSIM) loss (Zhao et al., 2017; Zhou et al., 2004) between the DACNO2 prediction and 

the CAMS NO2 data at 8 km resolution.  

 𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠MSE𝐷𝐴𝐶𝑁𝑂2−𝐶𝐴𝑀𝑆 + 𝐿𝑜𝑠𝑠SSIM𝐷𝐴𝐶𝑁𝑂2−𝐶𝐴𝑀𝑆 (1) 285 

MSE quantifies the absolute differences in NO2 concentrations, while SSIM evaluates the similarity of spatial 

patterns between model outputs and the CAMS reference. SSIM is computed independently at each vertical level 

by comparing normalized 2D horizontal slices of the predicted and reference NO2 fields. Specifically, each slice 

is min-max normalized to the range of 0 to 1 prior to SSIM calculation, ensuring that the SSIM loss reflects only 

structural similarity rather than magnitude differences. The final SSIM loss is calculated as one minus the mean 290 

SSIM across all vertical levels. This dual-loss formulation encourages the model to match both the overall 

concentration values and the detailed spatial structures of 3D NO2 fields. 

 

The model was trained and validated using a random sample split from the 2019, 2021, and 2022 datasets (80% 

for training, 20% for validation), with 2023 reserved as an independent test set. Data from 2020 was excluded 295 
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from this process because a preliminary experiment showed that its inclusion substantially degraded the model 

performance on the unknown period (i.e., 2022 data, which was initially held out as an independent validation 

year in that experiment). This might be due to the unexpectedly higher NO2 concentrations above 1000 m in that 

year (Fig. S1), which is also documented in the CAMS Evaluation and Quality Control (EQC) report (Meleux et 

al., 2023). While the cause remains unclear, we speculate that this anomaly is related to the substantial decrease 300 

in NOx emissions during 2020 due to the COVID-19 pandemic (Levelt et al., 2022) and not well accounted for in 

the CAMS model. We evaluate and discuss DACNO2 performance for that special year in Section 4.4. 

2.4.2 Phase-2 

In the second phase, we fine-tuned DACNO2-Phase-1 by introducing an additional MSE constraint based on EEA 

NO2, while maintaining the CAMS NO2 constraints, as shown in Equation (2). The EEA NO2 MSE was computed 305 

at the surface level and only for 2 km grids with available EEA data 

  𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠MSE𝐷𝐴𝐶𝑁𝑂2−𝐶𝐴𝑀𝑆 + 𝐿𝑜𝑠𝑠SSIM𝐷𝐴𝐶𝑁𝑂2−𝐶𝐴𝑀𝑆 + 𝐿𝑜𝑠𝑠MSE𝐷𝐴𝐶𝑁𝑂2−𝐸𝐸𝐴 (2) 

The EEA NO2 data were split into training and validation sets using the same spatiotemporal alignment as the 

CAMS NO2 split. Most training settings remained consistent with the first phase, except that the learning rate was 

reduced and the EEA NO2 MSE term was added to both the training loss and the validation metric. The model 310 

with the best validation performance was selected and is referred to as DACNO2-Phase-2 for subsequent use. 

Although Phase-2 includes the same CAMS constraint as Phase-1, which may make Phase-1 appear redundant, 

we recommend retaining Phase-1. Skipping directly to Phase-2 can cause the model to overfit local EEA 

observations and limit its ability to learn generalizable NO2 patterns from process-based data. 

2.4.3 Phase-3 315 

Recent changes in air quality policies and emission technologies (Castellanos and Boersma, 2012; Wang et al., 

2021; Chang et al., 2023) may introduce systematic NO2 variations that are not well represented in the historical 

training dataset. To ensure the DACNO2 model remains adaptable to such real-world changes, we introduced a 

third phase. In this step, we adopted a strategy inspired by the data assimilation system in the CAMS model (Inness 

et al., 2019). DACNO2-Phase-2 was fine-tuned using only EEA NO2 data from training stations during the test 320 

period (2023 in this study), to mimic real-world application. To maintain spatial patterns learned from earlier 

phases, a regularization term based on SSIM was added to both the training loss and validation metric. SSIM was 

computed at 8 km resolution between predictions from the updated model and DACNO2-Phase-2 (equation 3): 

  𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠MSE𝐷𝐴𝐶𝑁𝑂2(𝑛𝑒𝑤)−𝐸𝐸𝐴 + 𝐿𝑜𝑠𝑠SSIM𝐷𝐴𝐶𝑁𝑂2(𝑛𝑒𝑤)−𝐷𝐴𝐶𝑁𝑂2(𝑃ℎ𝑎𝑠𝑒−2) (3) 
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This approach allows the updated model to adjust prediction magnitudes in response to new measurements while 325 

preserving spatial patterns established in previous phases, since the CAMS constraint is no longer available in 

Phase-3. The model with the best validation performance was selected and is referred to as DACNO2-Phase-3, 

which incorporates recent real-world NO2 variations while retaining consistency with patterns learned during 

earlier training. 

2.4.4 Training and Implementation 330 

DACNO2 was trained and implemented in Python using PyTorch on two NVIDIA A30 GPUs. Training was 

performed with a batch size of 56, achieved by gradient accumulation. The first and second training phases each 

required approximately three weeks to complete 200 epochs on three years of data. The third training phase 

required about one week for 100 epochs on a single year of data. Once trained, the model generates daily NO2 

estimates for the whole area within minutes. Further efficiency improvements are possible through hardware 335 

upgrades or model optimization.  
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3. Assessing DACNO2 Performance and Evolution 

3.1 Model Performance Across Training Phases 

Table 2. Performance of DACNO2 on the 2023 test dataset. 

 DACNO2-Phase-1 DACNO2-Phase-2 DACNO2-Phase-3 CAMS-2km 

EEA 
RMSE 

(ug/m3) 

r R2 
bias 

(ug/m3) 

RMSE 

(ug/m3) 

r R2 
bias 

(ug/m3) 

RMSE 

(ug/m3) 

r R2 
bias 

(ug/m3) 

RMSE 

(ug/m3) 

r R2 
bias 

(ug/m3) 

Total 5.88 0.75 0.52 -0.93 5.81 0.79 0.54 1.67 4.99 0.82 0.66 -0.38 5.32 0.80 0.61 -1.15 

Urban 6.45 0.76 0.47 -2.57 5.64 0.80 0.59 0.49 5.34 0.82 0.64 -1.42 5.89 0.82 0.56 -2.89 

Suburban 5.11 0.79 0.58 -0.04 6.01 0.81 0.42 2.87 4.55 0.83 0.67 0.58 4.39 0.84 0.69 -0.23 

Rural 5.22 0.76 0.42 1.96 5.96 0.76 0.25 3.17 4.59 0.78 0.55 1.05 4.79 0.80 0.51 1.98 

DACNO2-10km  

Total 

levels 
0.99 0.96 0.91 -0.05 1.17 0.96 0.87 0.25 1.02 0.95 0.90 -0.10 

CAMS (10km) 

L0 1.92 0.94 0.85 -0.36 2.29 0.93 0.79 0.75 1.94 0.93 0.85 -0.63 

L50 1.58 0.95 0.88 -0.25 1.94 0.94 0.82 0.66 1.62 0.94 0.87 -0.31 

L250 1.05 0.93 0.83 0.10 1.19 0.93 0.78 0.41 1.09 0.93 0.82 0.01 

L500 0.70 0.92 0.79 0.09 0.71 0.92 0.79 0.16 0.79 0.90 0.74 0.05 

L1000 0.31 0.89 0.72 0.03 0.30 0.89 0.74 0.03 0.39 0.86 0.56 0.06 

L2000 0.08 0.81 0.61 -0.01 0.08 0.81 0.64 -0.01 0.09 0.79 0.48 0.00 
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L3000 0.04 0.78 0.55 -0.01 0.03 0.77 0.58 0.00 0.04 0.74 0.40 0.00 

L5000 0.01 0.67 0.31 0.00 0.01 0.66 0.34 0.00 0.02 0.61 -0.01 0.00 

Note: For the comparison against EEA NO2 (shown in the upper panel), both DACNO2 outputs and CAMS NO2 340 

were evaluated at 2 km grids. The CAMS NO2 data was interpolated to a 2 km resolution (CAMS-2km) and used 

as a baseline in this comparison. For evaluating DACNO2 using CAMS NO2 (shown in the lower panel), DACNO2 

outputs were downsampled and evaluated at the original 10 km resolution of CAMS across all vertical levels as 

well as for individual levels. 

 345 

The performance of the DACNO2 model was evaluated using both EEA NO2 and CAMS NO2 test data from 2023. 

For the comparison against EEA NO2 (results in the upper panel of Table 2), both DACNO2 outputs and CAMS 

NO2 were evaluated at 2 km grids. The CAMS NO2 data was interpolated to 2 km resolution (CAMS-2km) and 

served as a baseline in this comparison. For the evaluation of DACNO2 using CAMS NO2 (results in the lower 

panel of Table 2), DACNO2 outputs were evaluated at the CAMS original 10 km resolution across all vertical 350 

levels as well as for individual levels. Evaluation metrics included root mean squared error (RMSE), Pearson 

correlation coefficient (r), coefficient of determination (R2), and bias. 

 

Comparisons with EEA NO2 indicate progressive improvement across DACNO2 training phases. DACNO2-

Phase-3 achieves the best overall agreement (RMSE = 4.99 ug/m3, r = 0.82, R2 = 0.66, bias = -0.38 ug/m3), 355 

outperforming both DACNO2-Phase-1 (RMSE = 5.88 ug/m3, r = 0.75, R2 = 0.52, bias = -0.93 ug/m3) and 

DACNO2-Phase-2 (RMSE = 5.81 ug/m3, r = 0.79, R2 = 0.54, bias = -1.67 ug/m3). This demonstrates the added 

value of incorporating local EEA constraints and adaptive fine-tuning. Compared to the interpolated CAMS-2km 

dataset (RMSE = 5.32 ug/m3, r = 0.80, R2 = 0.61, bias = -1.15 ug/m3), DACNO2-Phase-3 shows improved accuracy 

and reduced bias. Station-type analysis further highlights the advantages of DACNO2-Phase-3, especially at urban 360 

and rural sites. For urban locations, DACNO2-Phase-3 achieves better agreement (RMSE = 5.34 ug/m3, r = 0.82, 

R2 = 0.64, bias = -1.42 ug/m3) compared with CAMS-2km (RMSE = 5.89 ug/m3, r = 0.82, R2 = 0.56, bias = -2.89 

ug/m3). In rural areas, DACNO2-Phase-3 reduces the bias (RMSE = 4.59 ug/m3, bias = 1.05 ug/m3) compared to 

CAMS-2km (RMSE = 4.79 ug/m3, bias = 1.98 ug/m3). These results suggest that DACNO2 is more effective than 

CAMS at capturing localized emission patterns and small-scale spatial variability in areas with either dense 365 

emission sources or diffuse background levels. 
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Comparisons with CAMS NO2 across all levels show that DACNO2 effectively learns and preserves 3D NO2 

distributions across all training phases. Near the surface (Level 0 m), DACNO2-Phase-3 maintains strong 

agreement with CAMS (RMSE = 1.94 μg/m3, r = 0.93, R2 = 0.85, bias = -0.63 ug/m3), and performance remains 370 

robust at mid-altitudes (Level 500 m: RMSE = 0.79 ug/m3, r = 0.90, R2 = 0.74, bias = 0.05 ug/m3), similar to 

earlier phases. At higher levels, particularly 5000 m, the agreement decreases, with DACNO2-Phase-3 yielding a 

near-zero R2 (-0.01) compared to 0.31 in DACNO2-Phase-1 and 0.34 in DACNO2-Phase-2. However, Pearson 

correlation remains moderate (r ≥ 0.6), indicating that differences at these heights are mainly due to magnitude 

adjustment rather than loss of spatial structure. The very low NO2 concentrations (approximately 0.1 µg/m³ at 375 

3000 m and 0.03 µg/m³ at 5000 m; see Fig. S1) at these high levels also increase relative noise and contribute to 

metric variability. This reduction in agreement at upper levels mainly reflects the greater uncertainty and lack of 

direct constraints at high altitudes, which remains a key challenge for ML-based 3D air quality modeling.  
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3.2 Model Evolution in the Multi-constraint Strategy 

 380 

Figure 3. Spatial comparison of surface NO2 estimates for 2023 from multiple models. (a) Annual mean surface NO2 

fields over the entire study region from DACNO2-Phase-1, DACNO2-Phase-2, DACNO2-Phase-3, CAMS (10 km), and 

CAMS-2km (bilinearly interpolated to 2 km). (b–d) Enlarged views for three representative local areas: (b) Paris, (c) 

the northern region (NO2 hotspot area encompassing the Netherlands, Belgium, and the Ruhr area), and (d) the Alpine 

region. 385 

 

To further illustrate the evolution of estimated NO2 spatial distributions achieved through a phased training, multi-

constraint strategy, Fig. 3 compares average surface NO2 estimates for 2023 from DACNO2-Phase-1, DACNO2-

Phase-2, DACNO2-Phase-3, CAMS, and CAMS-2km. Results are shown for the full study region and three 

representative local areas of Paris, the northern region (NO2 hotspot area encompassing the Netherlands, Belgium, 390 

and the Ruhr area), and the Alpine region.  

 

Across the study region (Fig. 3a), all models exhibit broad and similar NO2 patterns over land and ocean, 

consistent with the high spatial agreement between DACNO2 and CAMS NO2 reported in Section 3.1. 
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Nonetheless, DACNO2-Phase-2 and DACNO2-Phase-3 yield sharper spatial contrasts and more clearly defined 395 

local NO2 hotspots than CAMS and DACNO2-Phase-1. As an additional experiment, we trained the model using 

only EEA NO2 data, resulting in the DACNO2-onlyobs version. As shown in Fig. S2, this model yields effective 

NO2 estimates primarily limited to the land surface and cannot reproduce the shipping track patterns, which are 

visible in the CAMS and DACNO2 results. Meanwhile, this model produces obvious artifacts over the ocean and 

at higher altitudes due to the lack of training constraints. These differences highlight the significance of the CAMS 400 

NO2 constraint in facilitating broad spatial generalization in ML-based models. 

 

Differences between models become more pronounced when focusing on local regions (Figs. 3b–d). CAMS NO2 

exhibits visible pixelation effects in these areas due to its coarse native resolution. While bilinear interpolation (as 

in CAMS-2km) can smooth these effects, it does not introduce additional spatial detail, resulting in oversmoothed 405 

patterns. DACNO2-Phase-1 shows a spatial NO2 distribution similar to CAMS-2km, despite using high-resolution 

input features from emission proxies and geography. This indicates that constraints from CAMS NO2 alone are 

insufficient for the model to capture fine-scale local NO2 variability. Incorporating the EEA NO2 constraint in 

DACNO2-Phase-2 addresses this limitation, inspired by approaches in recent ML-based high-resolution surface 

NO2 modeling studies using ground measurements as targets (Sun et al., 2024; Wei et al., 2022; Kim et al., 2021; 410 

Ghahremanloo et al., 2023). DACNO2-Phase-2 reconstructs spatial patterns of NO2 that better match urban layout 

in Paris (Fig. 3b), identifies more small-scale emission hotspots in the northern region (Fig. 3c), and enhances 

hotspot signals in the Alpine region (Fig. 3d). DACNO2-Phase-3 retains these spatial characteristics and primarily 

adjusts concentration magnitudes by assimilating new measurements to better represent actual NO2 levels during 

the application period. For example, the average surface NO2 concentration estimate in Paris decreases from 11.89 415 

μg/m3 in DACNO2-Phase-2 to 10.08 μg/m3 in DACNO2-Phase-3. This evolution demonstrates the value of 

integrating multiple constraints and adaptive fine-tuning for high-resolution NO2 estimation.  
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3.3 Global and Local Differences Between DACNO2 and CAMS 

 

Figure 4. Annual mean NO2 distributions for 2023 estimated from DACNO2-Phase-3 (2 km) and CAMS (10 km) at 420 
multiple vertical levels. Level-wise average NO2 distributions over (a) Western Europe (entire study region), (b) Paris, 

(c) the northern region, and (d) the Alpine region. 

To further analyze differences in 3D NO2 estimates between DACNO2 and CAMS, Fig. 4 compares their annual 

average NO2 distributions for 2023 across all vertical levels over the entire study region and three selected local 

areas. At the regional scale (Fig. 4a), DACNO2 and CAMS show strong overall agreement at all altitudes, 425 

demonstrating that DACNO2 effectively learns and reproduces large-scale 3D NO2 structures from CAMS. 

However, DACNO2 provides enhanced spatial detail, presenting sharper gradients and better-defined urban and 

industrial hotspots, particularly from the surface up to 250 m. At higher altitudes, the differences between the two 

models gradually diminish, accompanied by a decrease in NO2 concentrations. Nevertheless, subtle magnitude 

discrepancies persist, with DACNO2 estimates reaching lower values, sometimes approaching zero. 430 

 

Local-scale comparisons further highlight the advantages of DACNO2 (Figs. 4b–d). In the Paris region (Fig. 4b), 

DACNO2 provides finer spatial detail and stronger NO2 signals at lower altitudes (e.g., 0 m: 10.08 μg/m3; 50 m: 
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8.94 μg/m3; 250 m: 4.65 μg/m3), whereas CAMS results remain coarser with generally lower estimates (0 m: 

8.43 μg/m3; 50 m: 7.15 μg/m3; 250 m: 3.63 μg/m3). In the northern region (Fig. 4c), DACNO2 more distinctly 435 

resolves localized emission sources at low levels, capturing a greater number of hotspots than CAMS. As a result, 

the average NO2 concentration from DACNO2 is elevated throughout the boundary layer (up to 1000 m), with 

mean values 8.8% higher than those from CAMS. In the Alpine region (Fig. 4d), DACNO2 more effectively 

represents terrain-driven gradients and captures NO2 signals within mountainous areas, demonstrating greater 

sensitivity to complex topographic influences. At higher altitudes, fine-scale variability diminishes in both models 440 

and their predicted NO2 fields become more similar. This is because the influence of local emissions and surface 

features weakens, while regional-scale processes and long-range transport dominate (see Section 4.1). This 

reduced difference is also accompanied by much lower NO2 concentrations at higher altitudes.  
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4. Insights and Implications of DACNO2 

4.1 Feature Importance and Data-driven Insights 445 

 

Figure 5. Relative importance of each input feature group for DACNO2 model predictions, evaluated using the 

integrated gradients (IG) method. (a) Feature group contributions to RMSE between DACNO2 surface NO2 estimates 

and EEA ground-based measurements for 2023. (b) Feature group contributions to RMSE between DACNO2 and 

CAMS NO2 estimates at different vertical levels for 2023. The five feature groups are: temporal indicators, emission 450 
inventories and proxies, geography, ERA5 single-level meteorology, and ERA5 multi-level meteorology. Results are 

shown for each model training phase (Phase-1, Phase-2, and Phase-3), illustrating how the relative influence of input 

feature groups varies with training constraints and altitude. See Figure S3 for the contributions of individual features 

within each group. 

We assessed the relative importance of input feature groups in DACNO2 using the integrated gradients (IG) 455 

method (Sundararajan et al., 2017) implemented via the Captum interpretability library (Kokhlikyan et al., 2020). 

IG quantifies the effect of varying each input feature from a zero baseline to its actual value on a selected target 

function. In this analysis, we computed IG at two targets: (1) the RMSE between DACNO2 predictions and 2023 

EEA NO2 training measurements at the surface, and (2) the RMSE between DACNO2 predictions and 2023 CAMS 
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NO2 at multiple vertical levels. Feature group results are shown in Fig. 5, and results for individual features are 460 

provided in Fig. S3. 

 

For surface NO2 predictions evaluated against EEA measurements, DACNO2 relies primarily on emission proxies, 

geographic features, and multi-level meteorological variables, while temporal indicators and single-level 

meteorological features play a lesser role. The addition of the EEA NO2 constraint in Phase-2 and Phase-3 465 

increases the importance of geographic data, highlighting its value for high-resolution surface NO2 estimation. As 

shown in Fig. S3, land cover emerges as the most influential single feature in DACNO2-Phase-3, accounting for 

36.6% of the total importance. Multi-level meteorological variables dominate the meteorological contribution, 

although the radiation variable from the single-level meteorology group also remains relevant (1.0% in Phase-3, 

Fig. S3). This likely reflects some redundancy between single-level and multi-level meteorological features, with 470 

multi-level data providing more comprehensive atmospheric information. 

 

For NO2 estimates by level evaluated against CAMS, the distribution of input feature importance at lower levels 

(up to 1000 m) is similar to that for surface NO2 evaluated against EEA, suggesting that DACNO2 remains 

relatively stable across training phases with different constraints. Differences between the three-phase models are 475 

most apparent near the surface but gradually diminish with height. The importance of geographic features steadily 

decreases as height increases, while emission features reach their highest influence around 500 m before declining. 

Above 3000 m, both become negligible, reflecting the transition from the Planetary Boundary Layer (PBL), which 

is influenced by local surface features, into the free troposphere, which is dominated by broad-scale processes.  

 480 

In contrast, temporal indicators, single-level meteorology, and especially multi-level meteorological features 

become increasingly important with height. For example, in DACNO2-Phase-3, the contribution from multi-level 

meteorology rises from 16.5% at the surface to 71.8% at 5000 m, while temporal indicators and single-level 

meteorology also show steady increases. This shift highlights the greater reliance on temporal and large-scale 

atmospheric information for NO2 estimates at higher levels. Among these features, radiation flux (3.3% at 3000 485 

m, 2.4% at 5000 m) primarily drives the increase in single-level meteorology, while wind becomes the dominant 

variable among all meteorological features (approximately 21% at both 3000 m and 5000 m, Fig. S3). Given the 

consistently low overall contribution of single-level meteorological variables, future model development may 

consider reducing or refining the use of this feature group to streamline the input space. 
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4.2 Enhanced Vertical NO2 Profile Representation 490 

 

Figure 6. Comparison of NO2 profile estimates from DACNO2 (2 km resolution) and CAMS (10 km resolution) for the 

Paris and Alpine regions in 2023. Regional average vertical profiles and surface NO2 distributions for Paris (a) and the 

Alpine region (b), with results shown over Google Earth imagery. Interpixel variability of NO2 profiles from DACNO2 

and CAMS along a 100 km transect (black boxes) in the Paris area (c) and a 200 km transect in the Alpine region (d), 495 
illustrating local-scale differences in vertical structure. 

Fig. 6 compares the average 2023 NO2 profile estimates from DACNO2 (2 km) and CAMS (10 km) for the Paris 

and Alpine regions, with results overlaid on Google Earth imagery for geographic context. In Paris, the regional 
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average profile (Fig. 6a) indicates that DACNO2 yields higher near-surface NO2 concentrations and steeper 

vertical gradients compared to CAMS. This enhancement likely results from DACNO2’s use of high-resolution 500 

emission proxies and land cover information, allowing the model to resolve smaller and more localized emission 

sources (Kuik et al., 2018; Shahrokhishahraki et al., 2022). At the local scale, we take transect over the grids of 

100 km over Paris to compare the interpixel profile variability from CAMS (10 km) and DACNO2 (2 km) (Fig. 6c). 

It is observed that DACNO2 more clearly distinguishes spatial variability in the vertical structure, showing sharper 

contrasts and more pronounced local peaks than CAMS, particularly below 250 m. The regional average profiles 505 

for the Alpine area are similar between DACNO2 and CAMS (Fig. 6b), which is due to the overall lower 

concentrations over this region with limited emission sources. However, local differences remain visible across a 

200 km transect (Fig. 6d). DACNO2 captures higher NO2 concentrations around urban and small-scale hotspots, 

especially in valleys and canyons where pollutants tend to accumulate. Conversely, DACNO2 provides lower NO2 

estimates in areas between the mountains with few sources. Overall, DACNO2 provides more spatially detailed 510 

3D NO2 fields, revealing greater variability in the vertical profiles across different grids in this complex terrain. 

This refinement is important, as small point and line sources can contribute significant NO2 in mountainous 

regions (Kim et al., 2021).  
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4.3 Implications for Satellite NO2 Retrievals 

 515 

Figure 7. Impact of a-priori profile selection on TROPOMI tropospheric NO2 column retrievals for 2023. (a) Annual 

mean TROPOMI NO2 columns retrieved using the original TM5 (about 100 km), CAMS-S5P (10 km), and DACNO2-

S5P (2 km) a-priori profiles. (b) Spatial distribution of the relative difference (%) in TROPOMI NO2 columns retrieved 

with three profiles. (c) The relative change in retrieved NO2 columns across three subregions (the northern region, 

Paris, and the Alpine region) when using DACNO2-S5P versus CAMS-S5P profiles. 520 

To assess the potential of DACNO2 for satellite NO2 product improvement and development, we tested its use as 

a source of a-priori NO2 profiles in TROPOMI retrievals. For this, a dedicated version of the model (DACNO2-

S5P) was developed for the TROPOMI overpass time, predicting a 3-hour average NO2 (11:00–13:00 UTC) using 

the same three-phase strategy. The model targets, named CAMS-S5P and EEA-S5P, represent process-based and 

measured NO2 data during this period. 525 
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Model evaluation (Table S1) shows DACNO2-S5P agrees well with CAMS-S5P (RMSE = 0.98 µg/m3, r = 0.94, 

R2 = 0.88, bias = 0.03 µg/m3) at 10 km grids. Compared to EEA-S5P measurements, DACNO2-S5P achieves 

better agreement (RMSE = 5.07 µg/m3, r = 0.77, R2 = 0.59, bias = 0.05 µg/m3) than CAMS-S5P (RMSE = 

5.27 µg/m3, r = 0.76, R2 = 0.55, bias = -0.94 µg/m3). 530 

 

We replaced the original TM5 a-priori profiles (about 100 km resolution) in the TROPOMI retrievals with CAMS-

S5P and DACNO2-S5P profiles, following the approach described in Douros et al. (2023) and focusing on the 

troposphere. Fig. 7a presents the annual mean TROPOMI NO2 columns retrieved using these different a priori 

profiles, with inter-comparisons shown in Figs. 7b and 7c. Both CAMS-S5P and DACNO2-S5P profiles lead to 535 

substantial increases in the retrieved NO2 columns, by 36.2% and 39.8% on average, respectively. The increase 

associated with CAMS-S5P is consistent with previous findings (Douros et al., 2023) and is primarily attributable 

to the improved spatial resolution of the a-priori profile, which enhances the sensitivity of TROPOMI retrievals 

to NO2 hotspots (Tack et al., 2021; Ialongo et al., 2020). 

 540 

Compared to the CAMS-S5P profile, using DACNO2-S5P as the a priori increases retrieved NO2 columns by 

about 3.0% on average (Fig. 7b), associated with the reduced negative bias against EEA-S5P measurements 

reported above. In central-western France (0°E–2.6°E, 45.6°N–46.3°N), a distinct southwest-to-northeast line of 

reinforced NO2 columns appears because DACNO2-S5P enhances the emission signals from the cities of 

Angoulême, Guéret, and Montluçon. Regional comparisons (Fig. 7c) show that the DACNO2-S5P profile leads to 545 

a 1.8% increase in the northern region and 5.9% in Paris, with the most significant increases surrounding major 

emission hotspots. This is likely due to DACNO2's enhanced ability, based on finer resolution, to capture small-

scale emission sources and resolve strong spatial gradients around NO2 hotspots. In the Alpine region, the average 

increase reaches 1.7%, ranging from -18.1% (5th percentile) to +24.1% (95th percentile) between the surrounding 

areas and the central mountains, with a similar pattern observed in the Pyrenees. The absolute difference remains 550 

small, ranging from -3.94 × 1014 molecules/cm2 (5th percentile) to 5.39 × 1014 molecules/cm2 (95th percentile). 

This large fluctuation reflects the complex NO2 distribution in the mountainous region and benefits from high-

resolution modeling, as DACNO2 estimates can reach lower background values or enhance the hotspots signal in 

this region.  

 555 
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These results illustrate the potential of using DACNO2 profiles to improve satellite NO2 retrievals, particularly 

for evolving high-resolution instruments. However, the DACNO2 product remains a prototype, and a roadmap for 

operational deployment is outlined in the conclusion.  
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4.4 Generalization Capability and Data Quality: Insights from the COVID-19 Period 

Table 3. Performance of DACNO2 on the 2020 dataset. 560 

Year 2020 DACNO2-Phase-2 DACNO2-Phase-3-2020 CAMS-2020-2km 

EEA 
RMSE 

(ug/m3) 

r R2 
bias 

(ug/m3) 

RMSE 

(ug/m3) 

r R2 
bias 

(ug/m3) 

RMSE 

(ug/m3) 

r R2 
bias 

(ug/m3) 

Total 5.78 0.80 0.63 -0.27 5.47 0.82 0.67 0.01 4.99 0.88 0.73 -2.05 

Urban 6.06 0.81 0.63 -1.53 5.62 0.83 0.68 -1.28 5.83 0.88 0.65 -3.44 

Suburban 5.81 0.80 0.58 1.12 5.63 0.82 0.60 1.55 3.97 0.91 0.80 -1.08 

Rural 4.97 0.81 0.63 1.08 4.84 0.82 0.65 1.24 3.80 0.89 0.78 0.14 

DACNO2-10km  

Total levels 1.66 0.91 0.80 -0.43 1.62 0.91 0.81 -0.34 

CAMS-2020 (10 km) 

L0 2.18 0.93 0.84 0.43 2.09 0.94 0.86 0.48 

L50 1.95 0.93 0.84 0.57 2.06 0.94 0.82 0.77 

L250 1.97 0.89 0.74 -0.70 1.89 0.88 0.76 -0.50 

L500 2.06 0.83 0.50 -1.01 1.94 0.82 0.55 -0.81 

L1000 1.64 0.72 0.00 -1.01 1.57 0.70 0.09 -0.93 

L2000 1.42 0.49 -0.81 -1.01 1.40 0.47 -0.77 -0.99 

L3000 0.81 0.46 -0.99 -0.59 0.80 0.45 -0.95 -0.59 
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L5000 0.17 0.55 -0.70 -0.12 0.17 0.56 -0.64 -0.12 

Note: Similar to Table 2, but for the year 2020. 

 

As noted in Section 2.4.1, CAMS NO2 data for 2020 were excluded from the training set based on preliminary 

experiments showing that their inclusion substantially reduced model generalization at higher levels. Since 2020 

was marked by the COVID-19 pandemic and large reductions in anthropogenic emissions (Levelt et al., 2022), 565 

we specifically evaluated DACNO2’s predictive performance for this atypical year. To this end, the DACNO2-

Phase-2 model was fine-tuned on 2020 EEA NO2 data, following the same phased development strategy, to 

produce DACNO2-Phase-3-2020. 

 

Table 3 summarizes the 2020 evaluation results, following the format of Table 2. Both DACNO2-Phase-2 and 570 

DACNO2-Phase-3-2020 reproduced observed surface NO2 concentrations well (e.g., DACNO2-Phase-3-2020: 

RMSE = 5.47 μg/m3, r = 0.82, R2 = 0.67, bias = 0.01 μg/m3), with performance comparable to CAMS (RMSE = 

4.99 μg/m3, r = 0.88, R2 = 0.73, bias = -2.05 μg/m3) but notably lower bias. This demonstrates robust generalization 

by DACNO2 under the emission anomalies of the pandemic year. Agreement between DACNO2 and CAMS 

remains strong at low altitudes (e.g., surface: RMSE = 2.09 μg/m3, r = 0.94, R2 = 0.86, bias = 0.48 μg/m3), but 575 

declines rapidly above 1000 m, where R2 values approach zero or become negative, indicating a failure to 

reproduce high altitude CAMS NO2 distributions for 2020.  

 

A comparison of CAMS NO2 vertical distributions from 2019 to 2023 (Fig. S1) shows generally consistent annual 

patterns, except for 2020, which is characterized by anomalously high values above 1000 m. This anomaly is also 580 

noted in the CAMS 2020 annual evaluation report (Meleux et al., 2023), which attributes it to some sub-models 

producing unexpectedly high NO2 at high levels, resulting in inflated tropospheric column estimates. The 

underlying causes remain unresolved and require further investigation. These findings highlight the importance 

of data screening, such as checking distributions and identifying outliers, before model training. Including biased 

or anomalous target data can introduce noise, increase the risk of overfitting, and reduce generalization 585 

performance.  
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5. Conclusions and outlook 

This study presents the Deep Atmospheric Chemistry NO2 model (DACNO2), a deep learning model for daily, 

high-resolution (2 km) 3D NO2 estimation. DACNO2 integrates multi-source and multi-modal input features, 

including emissions, geography, meteorology, and temporal indicators. It uses a multi-constraint and phased 590 

training approach to learn from both process-based CAMS NO2 and measured EEA NO2 data. This approach 

allows DACNO2 to reproduce broad-scale, process-based NO2 patterns and capture local NO2 gradients. Results 

show that DACNO2 significantly improves the ability to resolve fine-scale spatial patterns, near-surface NO2 

variability, and vertical distribution. It also generalizes well across different spatial areas (urban, rural, 

mountainous, and emission hotspot regions) and periods of anomalous emissions. Furthermore, the framework 595 

demonstrates transferability and flexibility, allowing the model to be fine-tuned to adapt to future emission 

scenarios and to be adjusted to produce outputs for specific satellite overpass times in addition to daily averages. 

 

A systematic evaluation shows that DACNO2 outperforms the state-of-the-art regional CAMS product in 

reproducing measured surface NO2 concentrations. Overall, DACNO2 achieves a lower RMSE (4.99 vs. 5.32 600 

µg/m3), higher correlation (r = 0.82 vs. 0.80, R2 = 0.66 vs. 0.61), and a substantially reduced bias (-0.38 vs. -1.15 

µg/m3). The improvement is particularly significant in urban areas with high spatial variability, where DACNO2 

yields a higher R2 (0.64 vs. 0.56) and halves the negative bias (-1.42 vs. -2.89 µg/m3). In rural areas with very low 

background levels, DACNO2 also shows a better R2 (0.55 vs. 0.51) and maintains a small positive bias, in contrast 

to the large one from CAMS (1.05 vs. 1.98 µg/m3). Vertical profile analysis indicates that DACNO2 provides 605 

greater spatial detail and variation than CAMS, capturing small-scale emission sources and topographic influences 

more effectively. Feature importance analysis highlights the contribution of high-resolution emission proxies, land 

cover, and multi-level meteorological information to resolving spatial and vertical NO2 patterns. In contrast, 

single-level meteorological variables contribute minimally, likely because part of their information is already 

captured by the more comprehensive multi-level data. This redundancy suggests opportunities for future model 610 

optimization. 

 

Application to satellite NO2 retrievals demonstrates that using DACNO2-generated a-priori profiles enhances the 

sensitivity of TROPOMI NO2 products to near-surface concentrations and emission hotspots, particularly in small-

scale emission sources and complex geographic regions. These findings underscore the potential of high-615 

resolution ML-based profiles for future high-resolution satellite retrievals. However, DACNO2 remains a 

prototype, and further work is needed for operational deployment. First, this would involve extending the model's 
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output to continuous hourly profiles over a broader geographic domain. Second, the model would need to be 

operated on a robust GPU computational platform with automated data pipelines. Third, a routine validation 

framework would need to be established to continuously monitor performance against various data, such as 620 

CAMS NO2, EEA NO2, and vertical measurements (e.g., MAX-DOAS). Finally, this operational system would 

require a strategy for periodic model fine-tuning to adapt to evolving emission patterns and maintain long-term 

accuracy. 

 

Analysis of model performance during COVID-19 indicates that DACNO2 consistently generalizes well despite 625 

emission anomalies. The inconsistencies observed in CAMS reanalysis for 2020 at high levels highlight the need 

for screening and quality assurance in model training data to avoid learning biased patterns and degrading model 

reliability. 

 

Future development of DACNO2 may include integrating high-resolution 3D process-based NO2 fields from 630 

models such as WRF-Chem and column observations from satellites to strengthen constraints at higher altitudes 

(e.g., above 2000 m), exploring transformer architectures for improved scalability and multi-modal data 

processing, and embedding additional physical constraints into the loss function. Extension to continental or 

global applications (including data-poor regions such as the African continent) will further support large-scale air 

quality management and atmospheric chemistry research. 635 

Data and code availability 

The daily number of flights is accessible at https://www.eurocontrol.int/Economics/DailyTrafficVariation-

States.html. The CAMS global emission inventories are accessible at https://ads.atmosphere.copernicus.eu/. The 

GRIP global roads database can be downloaded from https://www.globio.info/download-grip-dataset. The VIIRS 

nighttime light data can be accessed from https://eogdata.mines.edu/products/vnl/. The population dataset is 640 

provided by https://ec.europa.eu/eurostat/web/gisco/geodata/population-distribution/population-grids. The 

MERIT DEM data is accessible via https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/. The CORINE land 

cover dataset can be downloaded from https://land.copernicus.eu/en/products/corine-land-cover/clc2018. The 

single-level and multi-level meteorological data are provided by the fifth-generation ECMWF atmospheric 

reanalysis of the global climate product (ERA5), which can be accessed via https://cds.climate.copernicus.eu/. 645 

The CAMS European air quality reanalyses dataset is accessible via https://ads.atmosphere.copernicus.eu/. The 
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EEA AirBase dataset can be downloaded from https://eeadmz1-downloads-webapp.azurewebsites.net/. The 

official TROPOMI NO2 product is accessible via the Copernicus Data Space Ecosystem 

(https://dataspace.copernicus.eu/). The data generated for this study can be accessed from the Zenodo data archive 

(Sun et al. (2025), https://doi.org/10.5281/zenodo.16986854).  650 

 

The DACNO2 model and its framework are built using the Pytorch library (https://pytorch.org/) in the Python 

environment. All code related to model design and data processing is available upon request from the 

corresponding author. 
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