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Figure S1. Distributions of CAMS NO2 concentrations for 2019–2023 at each vertical level. Each panel 

displays the frequency histogram of daily grid cell NO2 values (μg/m3) at various heights (0, 50, 250, 500, 

1000, 2000, 3000, and 5000 m) for each year. Notably, 2020 exhibits a marked shift toward higher NO2 

values above 1000 m compared to other years, indicating anomalies in the data for that year. 

  



 

Figure S2. Annual mean NO2 fields for 2023 from the DACNO2-onlyobs model at eight vertical levels (0, 50, 

250, 500, 1000, 2000, 3000, and 5000 m). This test model was trained exclusively with EEA surface NO2 

measurements, following a similar Phase-2 and Phase-3 process but without CAMS NO2 constraints. 

Results show that effective NO2 estimates are produced primarily near the land surface, while artifacts 

appear at higher levels and over the ocean, highlighting the need for physically consistent simulated data 

to support spatial and vertical constraints in high-resolution 3D NO2 modeling. 
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Figure S3. Relative importance of each individual input feature for DACNO2 model predictions, evaluated 

using the integrated gradients (IG) method. (a) Feature contributions to RMSE between DACNO₂ surface 

NO2 estimates and EEA ground-based measurements for 2023. (b) Feature contributions to RMSE between 

DACNO2 and CAMS NO2 estimates at different vertical levels for 2023. Features are grouped (separated 5 

by dashed lines) into temporal indicators, emission inventories and proxies, geography, ERA5 single-level 

meteorology, and ERA5 multi-level meteorology. Results are shown for each model training phase (i.e., 

Phase-1, Phase-2, and Phase-3), illustrating how the relative influence of individual input features varies 

with training constraints and altitude. Feature definitions and sources are provided in Table 1. 
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Table S1. Evaluation performance of DACNO2-S5P 

Year 2023 

UTC11-13 
DACNO2-S5P CAMS-S5P-2km 

EEA-S5P 
RMSE 

(ug/m3) 
r R2 

Bias 

(ug/m3) 

RMSE 

(ug/m3) 
R R2 

Bias 

(ug/m3) 

Total 5.07 0.77 0.59 0.05 5.27 0.76 0.55 -0.94 

Urban 5.41 0.74 0.54 -0.63 5.60 0.76 0.51 -1.98 

Suburban 5.08 0.79 0.62 0.63 5.24 0.78 0.60 -0.67 

Rural 4.08 0.80 0.61 1.01 4.40 0.78 0.55 1.27 

DACNO2-S5P-10km 

Total levels 0.98 0.94 0.88 0.03 

CAMS-S5P (10 km) 

L0 1.82 0.91 0.82 0.06 

L50 1.52 0.92 0.85 -0.06 

L250 1.11 0.92 0.84 0.14 

L500 0.78 0.89 0.80 0.06 

L1000 0.36 0.83 0.68 0.03 

L2000 0.08 0.70 0.49 -0.01 

L3000 0.03 0.63 0.39 0.00 

L5000 0.01 0.53 0.22 0.00 

Note: This table is similar to Tables 2 and 3. The DACNO2-S5P model is a Phase-3 model developed for the 

TROPOMI overpass time, predicting a 3-hour average NO2 (11:00–13:00 UTC) using the three-phase strategy. 

CAMS-S5P and EEA-S5P represent process-based and measured NO2 data during overpass time. CAMS-S5P-

2km is derived by bilinearly interpolating the CAMS-S5P data. 15 


