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 16 

Abstract 17 

In Pacific Rim regions highly exposed to climate variability, accurate projections of soil organic 18 

carbon (SOC) are critical for furture effective land management and climate adaptation 19 

strategies. This study integrated digital soil mapping with CMIP6-based climate projections to 20 

estimate the spatiotemporal distribution of SOC stocks in subtropical (Zhuoshui River) and 21 

tropical (Laonong River) watersheds in Taiwan. We collected 1377 soil samples and data on 22 

18 environmental covariates and modeled SOC stocks at a 20-m resolution through the Cubist 23 

and random forest algorithms, which were also combined with regression kriging. The Cubist-24 

based kriging model was discovered to achieve the highest performance in SOC stock 25 

prediction. Forested areas were found to contain >80% of SOC stocks, and tropical zones were 26 

discovered to store substantially less carbon than subtropical zones. Future emission scenarios 27 

revealed spatial heterogeneity in SOC stock dynamics. In scenario SSP1-2.6, a maximum SOC 28 

stock decline of approximately 20.9% was predicted, particularly for uplands, because of 29 

erosion induced by extreme rainfall events (R95p and R99p), whereas in scenarios SSP2-4.5 30 

and SSP5-8.5, increases of 7.9% to 58% were predicted, respectively; particularly 31 

corresponded to forested areas because of enhanced productivity caused by increased TNx and 32 

TXx (extremes of minimum and maximum temperature). Partial least squares path modeling 33 

revealed a climate–topography interaction in SOC stocks, dominated by topography and 34 

followed by prolonged dry spells. Examining the interactions between climatic extremes, 35 

landscape types, and SOC stocks is essential for enhancing soil resilience and ensuring stable 36 

SOC stocks in the future. 37 

 38 
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1. Introduction  41 

Soil organic carbon (SOC) is one of the largest carbon pools in the global carbon cycle 42 

(Grace, 2004) and is a key concern of agricultural and environmental policies (Johnston et al., 43 

2004). SOC also has a crucial influence on the carbon cycle at the local and global levels (Singh 44 

et al., 2018). Multiple studies have examined whether carbon storage in agricultural soils can 45 

offset global warming, and many scales have been developed for evaluating the dynamics of 46 

SOC. Of these scales, the landscape scale has enabled researchers to consider the interplay 47 

between natural processes, human patterns, and SOC dynamics (Viaud et al., 2010). Therefore, 48 

this scale is the most appropriate for assessing environmental and agricultural ecosystems (Li 49 

et al., 2021). 50 

Changes in climatic conditions such as temperature, carbon dioxide concentration, and 51 

precipitation may influence the dynamics of SOC by affecting the rates of soil processes such 52 

as mineralization, decomposition, leaching, and total carbon loss. In areas prone to climatic 53 

extremes—such as floods, droughts, and heat waves—these conditions may further affect the 54 

dynamics of SOC (Li et al., 2021; Chalchissa et al., 2022). In addition, extreme climate events 55 

may strongly affect the content of SOC, with subsequent effects on agricultural productivity 56 

and ecosystem services. Therefore, before the dynamics of SOC can be evaluated at the 57 

landscape scale in response to climate change, a spatiotemporal technique is required. Zhu and 58 

Lin (2010) argued that in areas with major terrain variation and low sampling density, utilizing 59 

a non-geostatistical approach or a combination of geostatistical and non-geostatistical 60 

approaches can improve prediction ability. 61 

In digital soil mapping (DSM), soil properties in unsampled or partially sampled areas are 62 

predicted through numerical models developed using various statistical methods or algorithms; 63 

these models primarily rely on soil observational data and corresponding environmental factors 64 

(Grunwald, 2009). According to the literature, spatial variations in soil properties play a key 65 

role in model construction (Zhu and Lin, 2010). Two modeling approaches are commonly used 66 

to predict soil properties in unsampled or partially sampled sites: non-geostatistical approaches 67 

and geostatistical approaches. Non-geostatistical approaches are based on the SCORPAN 68 

model (Jenny, 1941; McBratney et al., 2003) and include multiple linear regression (MLR) 69 

models, generalized additive models, Cubist models (Quinlan, 1992), and random forest (RF) 70 

models (Breiman, 2001). Geostatistical approaches account for spatial autocorrelation in data 71 

and include ordinary, simple, and universal kriging. In addition, regression kriging is a hybrid 72 

spatial interpolation approach that combines the results of a regression model (such as Cubist 73 
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and RF) with the spatial interpolation of its residuals (Ma et al., 2017). The performance of a 74 

model is influenced by factors such as spatial scale (Poggio et al., 2010), observation density 75 

(Tsui et al., 2016; Keskin and Grunwald, 2018), and terrain (Zhu and Lin, 2010). Machine 76 

learning algorithms, including MLR, RF, and Cubist, have been widely used for mapping SOC 77 

content and SOC stocks (Lamichhane et al., 2019; Siewert, 2018; Yang et al., 2016; Akpa et 78 

al., 2016; Gray and Bishop, 2016; Rudiyanto et al., 2018). Although regression kriging 79 

provides favorable predictions for RF (Guo et al., 2015) and Cubist (Dorji et al., 2014; Ma et 80 

al., 2017) models, Vaysse and Lagacherie (2015) argued that it does not offer any advantages 81 

in specific scenarios. Therefore, given the absence of a universal model, Lamichhane et al. 82 

(2019) emphasized the importance of meta-analytical evaluations. 83 

Taiwan is located on the frontline of the Pacific Rim and is highly prone to the combined 84 

effects of climate change and El Niño–Southern Oscillation events. The frequency and spatial 85 

variability of extreme climate events in this region are expected to dramatically increase in the 86 

future. Therefore, understanding the combined effects of extreme climate variability and long-87 

term climate change on regional climate and SOC variation is essential for evaluating the 88 

vulnerability of regional agriculture, water resources, and ecosystems. In Taiwan, the Zhuoshui 89 

River Watershed (ZRW) and Laonong River Watershed (LRW) are the two largest and most 90 

crucial agricultural eco-watersheds. The ZRW includes fluvial plains and is one of the most 91 

essential agricultural areas in Taiwan. In the ZRW, rice, vegetables, and other crops are 92 

extensively cultivated. This high agricultural activity underscores the importance of SOC in 93 

sustaining soil fertility and agricultural production. In the LRW, SOC plays an essential role in 94 

supporting the limited amount of agriculture that is practiced. These two watersheds are located 95 

in different climatic zones, which may affect their SOC dynamics. The ZRW is located in 96 

central Taiwan and has a subtropical climate, whereas the LRW is located in southern Taiwan 97 

and has a tropical monsoon climate. Future climate-change-related changes in temperature and 98 

precipitation may substantially affect the content and total stocks of SOC in these two regions, 99 

altering their agricultural production and land use patterns. 100 

Therefore, this study applied digital soil mapping approaches to generate high-resolution 101 

maps of SOC stock distribution in the surface layer (0–30 cm) of the ZRW and LRW in Taiwan, 102 

with the aim of better understanding the spatiotemporal dynamics of SOC under different 103 

emission scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) and various extreme climate indicators 104 

projected for 2050 and 2100. 105 

 106 
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2. Materials and Methods 107 

2.1 Research area 108 

The Zhuoshui River watershed (ZRW) is located in central Taiwan. Its basin covers 109 

Changhua County, Nantou County, Yunlin County, and Chiayi County. The watershed has an 110 

area of 3156.9 km2 and is located in a subtropical climate zone (Fig. 1a and 1b). This area has 111 

an average annual temperature of 8.6–23.6 °C and receives annual cumulative rainfall of 112 

834.6–3693.4 mm. The elevation of the study area ranges from 0 to 3844.2 m above sea level, 113 

and it has diverse topography consisting of mountains (2060.7 km2, 65.2%), hills (843.3 km2, 114 

26.6%), and plains (261.7 km2, 8.2%). In terms of soil classification, the upstream areas are 115 

primarily characterized by stony soils, whereas the western plains are predominantly 116 

characterized by silty alluvial soils. The Laonong River watershed (LRW) is located in southern 117 

Taiwan, representing an upper mainstream area of the Gaoping River. Its basin covers Nantou 118 

County, Kaohsiung City, Pingtung County, and Taitung County. The watershed has an area of 119 

2038 km2 and is located in a tropical climate zone. This area has an average annual temperature 120 

of 19.5 °C, and it received annual cumulative rainfall of 3222.6 mm during the period 2011–121 

2020. According to the 2015 Land Cover Survey, the upper reaches of the basin are 122 

predominantly forested areas (73.3%), whereas the downstream gentle slopes and plains are 123 

predominantly agricultural areas (10.6%; Fig. S1). 124 

 125 

2.2 Soil samples and analyses 126 

Soil survey data for the period 2012–2020 were obtained from the Taiwan Agricultural 127 

Research Institute. A total of 1377 topsoil samples (0–30 cm) were obtained. Each sample’s 128 

location was recorded using a handheld global positioning system device. After the samples 129 

had been air-dried at room temperature, they were sieved through a 35-mesh screen and stored 130 

in plastic containers. They were then analyzed using the loss-on-ignition (LOI) method (Nelson 131 

and Sommers, 1996). Because the LOI method typically overestimates SOC (Li et al., 2021), 132 

a correction function was applied to adjust SOC content from LOI values to those obtained 133 

using a TOC analyzer (solid TOC cube, Elementar). The correction equation is as follows:  134 

 135 

TOC =0.7084 * LOI – 0.0986 (R2 =0.94; P <0.001)                  [1] 136 

 137 

where TOC and LOI refer to the SOC contents (%) determined by the TOC analyzer and 138 

the LOI method, respectively. A sample’s total bulk density was determined using the clod 139 
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method or soil core method (Blake and Hartge 1986). Finally, the soil organic carbon stock 140 

(SOCstock, kg m−2) was calculated using the following equation: 141 

 142 

SOCstock = TOC ∗ ρ ∗ D/10 [2] 

 143 

where TOC is the SOC content (%), ρ is the bulk density of soil (g cm−3), and D is the soil 144 

depth (cm). Owing to the substantial variability in coarse fragment content, this study excluded 145 

them from the calculation of SOC stocks. 146 

 147 

2.3 Environmental covariates 148 

Environmental covariates were categorized on the basis of factors pertaining to soil 149 

formation, including topographical data such as digital elevation models (DEM), satellite 150 

remote sensing imagery, meteorological data, land use survey data, and soil order (Table 1). 151 

All environmental covariates were resampled at a spatial resolution of 20 m by using R 152 

software version 4.0.5 (R Foundation for Statistical Computing, Vienna, Austria). 153 

The DEM was derived from a 20-m grid numerical terrain model established by the 154 

Taiwanese Ministry of the Interior. To create an elevation map, the “Fill Sinks” function of 155 

SagaGIS 8.0.1 was used to smooth the discontinuities in the model. These elevation data were 156 

employed to generate relevant topographical attributes. These attributes included the slope, 157 

aspect, terrain ruggedness index (TRI), terrain position index (TPI), topographic wetness index 158 

(TWI), multiresolution index of valley bottom flatness (MrVBF), multiresolution ridge top 159 

flatness (MrRTF), curvature, flow accumulation, and stream power index (SPI). Ma et al. (2017) 160 

argued that topographical parameters can serve as environmental covariates in organic carbon 161 

prediction models. 162 

The normalized difference vegetation index (NDVI) was calculated using infrared (b4) 163 

and near-infrared (b8) satellite imagery data (Sentinel 2) for the period 2016–2020 to determine 164 

the proportion of space covered by vegetation, which was produced by the Google Earth Engine 165 

at a resolution of 20 m. Climate is one of the key soil-forming factors and, according to 166 

Wiesmeier et al. (2019), a major driver influencing SOC storage. This study used climatic data 167 

from 2011 to 2020, including mean annual temperature (MAT) and total annual precipitation 168 

(TAP), obtained from Taiwan’s Central Weather Bureau. The original resolution of these data 169 

was 1 km. In addition to these factors, land cover type also influences SOC storage 170 

(Edmondson et al., 2014). Therefore, this study used a 2015 land cover map produced by TARI, 171 
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classified into five categories: (1) paddy fields; (2) upland farming (including miscellaneous 172 

grains, tea trees, betel nuts, and bamboo); (3) orchards; (4) forests (including plantations, 173 

primary forests, and high-mountain arrow bamboo forests); and (5) others (miscellaneous and 174 

riverine lands). 175 

 176 

2.4 Climate data in various emission scenarios and with extreme climate indices 177 

Future climate predictors were obtained from CMIP6-based global climate models, 178 

including shared socioeconomic pathways (SSPs) established by the Intergovernmental Panel 179 

on Climate Change (IPCC). Model MIROC6—developed by the Japan Agency for Marine-180 

Earth Science and Technology, Atmosphere and Ocean Research Institute, University of 181 

Tokyo—was selected for predicting SOC stocks from future climate data. The historical and 182 

projected extreme climate indices of CMIP6 were employed for different socioeconomic 183 

pathways, specifically for scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5. These data were used 184 

to examine climate patterns and trends and establish models for predicting the impact of future 185 

climate change on various environments. 186 

In this study, we identified the following six extreme climatic indices: consecutive dry 187 

days (CDD), consecutive wet days (CWD), very wet day precipitation (R95P), extremely wet 188 

day precipitation (R99P), minimum value of daily maximum temperature (TNn), and 189 

maximum value of daily maximum temperature (TXx). These indicators provided valuable 190 

insights into the effects of extreme weather events across the study area. According to 191 

Chalchissa and Kuris (2024), the correlation between these indicators and soil health factors 192 

may offer a comprehensive understanding of soil health and the potential for carbon 193 

sequestration in agricultural systems. 194 

 195 

2.5 Predictive models 196 

Because of research advancements in the field, the techniques used in DSM have evolved 197 

from simple linear models to comprehensive machine learning technologies (Minasny and 198 

McBratney, 2016). In this study, two widely used data mining models, namely Cubist and RF 199 

models, were employed. Both models were further combined with regression kriging to 200 

account for both geographical and non-geographical effects, resulting in the Regression 201 

Kriging with Cubist and Regression Kriging with Random Forest models. Their capabilities in 202 

predicting the spatial distribution of SOC were compared. 203 

The Cubist model is a rule-based classification algorithm proposed by Quinlan (1992). It 204 
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was developed on the basis of the M5 tree model. The Cubist model segregates data into several 205 

subsets on the basis of “if–then” patterns and identifies linear relationships between the target 206 

variables and environmental covariates in each subset. In the present study, we used the Cubist 207 

package in R software version 4.0.5 for model development. We adopted the following 208 

parameters: (1) rules for data classification based on rule count, (2) extrapolation for 209 

determining the model’s degree of extrapolation, and (3) committees that generate multiple 210 

committee models on the basis of the number of samples to be processed in the model (i.e., the 211 

amount of data) to refine the previous prediction and output collective results. We did not set 212 

specific rules or extrapolations but instead relied on Cubist defaults. Committees were 213 

calculated using the caret package and set at 20. 214 

The RF model is an ensemble learning algorithm introduced by Breiman (2001). This 215 

model reconstructs a data set into multiple new sets with identical sample size through random 216 

resampling during model training. For each data set, environmental covariates are randomly 217 

selected for constructing classification or regression trees. In the case of continuous variables, 218 

the model’s predicted value is the average output of all regression trees. In this study, we used 219 

the “randomForest” package of R software version 4.0.5 for model development. We adopted 220 

the following parameters: (1) mtry, which determines the number of environmental covariates 221 

extracted for each new data set in regression tree construction, and (2) ntree, which determines 222 

the number of regression trees in the RF. We also used the caret package and set these 223 

parameters to mtry = 7 and ntree = 500. 224 

 225 

2.6 Model training and validation 226 

Before model development, we employed the “rpart” package in R software version 4.0.5 227 

to extract 70% of the data as the training data set (calibration set), totaling 600 samples. We 228 

used the remaining 301 samples (30%) as the validation data set (validation set) and used it to 229 

determine the model’s predictive performance. The distribution of the two data sets is depicted 230 

in Fig. 2. Model performance was evaluated by comparing the predicted values with the 231 

observed values in the validation group. Root mean square error (RMSE) and coefficient of 232 

determination (R2) values were used as assessment indicators and calculated as follows: 233 

 234 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑜𝑜𝑖𝑖 − 𝑝𝑝𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 , 

[3] 

𝑅𝑅2 = ∑ (𝑝𝑝𝑖𝑖−𝜇𝜇𝑜𝑜)2𝑛𝑛
𝑖𝑖=1

∑ (𝑜𝑜𝑖𝑖−𝜇𝜇𝑜𝑜)2𝑛𝑛
𝑖𝑖=1

, [4] 
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 235 

where pi and oi represent the predicted and observed values, respectively, and μo represents the 236 

mean observed value. Because of the spatial variability of soil properties, effectively 237 

quantifying uncertainty in predictive map outputs is crucial. Therefore, in this study, the 238 

prediction interval was calculated using 90% quantiles of upper and lower limits of prediction 239 

through the bootstrap method (Malone et al., 2014). 240 

 241 

2.7 Geographic information and data analyses 242 

In this study, maps were created and spatial statistical analyses were conducted using the 243 

geographic information system (GIS) software ArcMap 10.8. Data processing and statistical 244 

analyses were conducted using Microsoft Excel 2016 (Microsoft, Redmond, WA, USA) and R 245 

software version 4.0.5. 246 

Redundancy analysis is a multivariate or multiresponse technique similar to regression. In 247 

this study, redundancy analysis was conducted to determine whether extreme climatic indices 248 

and SOC stock changes were associated with the matched grid cells (different land types) 249 

evaluated in our previous study (Jien et al., 2025). All statistical analyses, unless indicated 250 

otherwise, were conducted using SPSS version 18.0 (SPSS, Chicago, IL, USA). A p-value of 251 

<0.05 was considered statistically significant. Partial least squares path modeling (PLS-PM) 252 

was employed to identify the pathways underlying the study variables, including emission 253 

scenarios, extreme climate indices, and SOC stock and land types. A PLS-PM model was 254 

constructed using the “innerplot” function of the “plspm” package. The model’s quality and 255 

performance were evaluated using the goodness-of-fit (GOF) test. Finally, the “ggplot2” 256 

package in R software was used for redundancy analysis and plot generation (Villanueva and 257 

Chen, 2019). 258 

 259 

3. Results 260 

3.1 Statistical description of SOC stock 261 

The sampling sites of this study are presented in Fig. S1(a). The average topsoil SOC 262 

stock across all sampling points was 4.36 kg m−2. In the ZRW, the topsoil SOC stock ranged 263 

from 0.19 to 31.8 kg m−2, with an average of 4.51 kg m−2. In the LRW, the topsoil SOC stock 264 

ranged from 0.41 to 14.4 kg m−2, with an average of 3.80 kg m−2. Although the data for the 265 

LRW were more concentrated, the overall data exhibited positive skewness, with a skewness 266 

value of 0.15. Therefore, a natural logarithm transformation was applied to improve model 267 
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performance by approximating a normal distribution. 268 

 269 

3.2 Model performance in SOC stock prediction 270 

This study constructed SOC stock predictive models using the Cubist, RF, and regression 271 

kriging with the training data set and environmental covariates. Coefficient of determination 272 

(R2) and RMSE values were used to evaluate the performance of these models. Among the 273 

evaluated models, the RF model demonstrated the highest predictive performance in the 274 

training data set. Notably, Shaik and Srinivasan (2019) highlighted the likelihood of overfitting 275 

in RF models, indicating that while the model may predict training data accurately, it may 276 

perform poorly when applied to unseen data outside the training set. Therefore, we focused on 277 

model performance in the prediction of validation data set prior to model selection. In this 278 

respect, the performance indicators of the Cubist model were R2 = 0.43 and RMSE = 0.45 kg 279 

m-2, while those of the RF model were R2 = 0.46 and RMSE = 0.43. After incorporating 280 

regression kriging, the indicators improved to R² = 0.48 and RMSE = 0.42 for the Cubist model, 281 

and remained at R² = 0.46 and RMSE = 0.43 for the RF model (Fig. 2). 282 

 283 

3.3 Importance analysis of environmental covariate  284 

For the variable importance analysis in the RF model, the increase in mean squared error 285 

(MSE) was calculated when each covariate was excluded during the random selection process. 286 

In the Cubist model, the usage ratios of various environmental covariates were computed. 287 

These indicators revealed the key role of environmental covariates in the prediction of SOC 288 

stocks (Fig. 3a). In the RF model, covariates that led to an increase in mean squared error 289 

(IncMSE) greater than 15% included elevation (23%), soil order (20%), annual mean 290 

temperature (19%), and precipitation (15%). In the Cubist model, the primary classification 291 

factors were annual mean temperature (45%), soil order (18%), and elevation (17%). For the 292 

construction of grouped regression equations, all continuous covariates—except for slope 293 

aspect, curvature, and flow accumulation—were utilized by the Cubist model. Among these, 294 

more than half of the data incorporated covariates such as elevation (98%), annual mean 295 

temperature (62%), NDVI (59%), TRI (54%), K-value (53%), and slope (52%). In summary, 296 

the two models identified soil order, elevation, and annual mean temperature as the factors 297 

representing the influence of soil, topography, and climate, respectively, on the SOC stock in 298 

the study areas. 299 

 300 

https://doi.org/10.5194/egusphere-2025-4258
Preprint. Discussion started: 8 October 2025
c© Author(s) 2025. CC BY 4.0 License.



11 
 

3.4 Predicted map of SOC stock  301 

The predicted spatial distribution of SOC stock is presented in Fig. 3b. According to the 302 

statistical analysis of the prediction map, the mean SOC stock in the ZRW and LRW was 5.51 303 

and 6.38 kg m⁻², respectively. The first quartile, median, and third quartile were 3.85, 5.31, and 304 

6.88 kg m−2, respectively, for the ZRW and 3.80, 5.96, and 8.85 kg m−2, respectively, for the 305 

LRW. A reduction in SOC stock from forested areas to plain areas (lowlands) was found for 306 

both watersheds. In addition, high SOC stock (approximately 15 kg m−2) was discovered in 307 

southeastern areas in the ZRW and in northeastern areas in the LRW. Lower storage values of 308 

<3 kg m−2 were found in downstream areas in the LRW and near the estuary in the ZRW. The 309 

areas located along the downstream plains of ZRW exhibited low SOC stock (<2.5 kg m−2) 310 

near the river, with SOC stock higher farther from the river. 311 

 312 

3.5 Uncertainty analysis for predictive models 313 

For each sampling point in the training data set, prediction residuals were established 314 

through leave-one-out cross-validation for the regression kriging and Cubist models. The study 315 

area was then classified by landscape in accordance with the classification rules of the Cubist 316 

model (Table 2). Fig. 4 presents 90% confidence interval maps drawn using data segmentation 317 

and cross-validation techniques. These prediction limit intervals can be regarded as indicators 318 

of the model’s uncertainty. In the downstream areas of the study region, the confidence interval 319 

widths were generally below 6 kg m⁻², whereas in the mountainous regions they were 320 

substantially higher, with some areas reaching up to 40 kg m⁻². 321 

 322 

3.6 SOC stock distribution with various landscape types and land uses 323 

The SOC stock spatial distribution was categorized on the basis of topography to 324 

demonstrate the distribution of SOC stocks under various landscape types. As shown in Fig. 5, 325 

in the lowlands of the ZRW, the lowest average SOC stock was identified in dry farming areas 326 

(1.93 kg m−2), whereas the highest average SOC stock was identified in paddy fields (3.08 327 

kg m−2). In the lowlands of the LRW, the lowest average SOC stock was identified in “other” 328 

land cover types (1.89 kg m−2), whereas the highest average SOC stock was identified in 329 

forested areas (3.17 kg m−2). In the uplands of both catchments, the lowest cover was identified 330 

in paddy fields (3.01 and 2.16 kg m−2), whereas the highest cover was identified in forests (4.22 331 

and 3.6 kg m−2). In terms of landscape type, the highest SOC stock was identified in forested 332 

areas, with 6.54 kg m−2 in the ZRW and 8.02 kg m−2 in the LRW, whereas the lowest SOC stock 333 
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was identified in orchard areas, with 4.82 kg m−2 in the ZRW and 5.6 kg m−2 in the LRW. 334 

In all emission scenarios, major spatial heterogeneity and temporal increases were found 335 

in SOC stocks (Table 3, Figs. 6 and 7), particularly under high-emission conditions. These 336 

findings underscore the importance of modifying the management practices of land use in the 337 

future, especially if climate change is severe. In forested areas in both watersheds, significant 338 

SOC accumulation was predicted. Areas with an SOC accumulation value of >15 Mg C ha−1 339 

were expected to exhibit an increase in SOC accumulation from <5% (2020, baseline) to more 340 

than 25% by 2100 in scenario SSP5-8.5. By contrast, lowland agricultural zones are expected 341 

to maintain relatively low SOC stocks (<9 Mg C ha−1), with minor gains across scenarios. 342 

Scenario SSP5-8.5 was found to result in the greatest projected increase in SOC stocks as a 343 

result of elevated CO2 and potential biomass input, although spatial disparities are expected to 344 

increase, particularly in erosion-prone or intensively cultivated lands (Fig. S2). 345 

 346 

3.7 Extreme climate index parameter estimates in three emission scenarios 347 

Extreme climate indices in three SSPs were compared: SSP1-2.6 (sustainable 348 

development), SSP2-4.5 (middle of the road), and SSP5-8.5 (fossil-fuel-based development). 349 

Projections were evaluated for mid-century (2050) and end-century (2100) time points at units 350 

of sub-catchment for each watershed. These units were classified as whole area, lowlands, 351 

uplands, and forested areas, denoted W, L, U, and F, respectively, in Tables S1 and S2.  352 

The CDD, CWD, R95p/R99p, and TNx/TXx were analyzed as extreme climate indices. In 353 

all SSPs, the increases in temperature- and precipitation-related extremes in the two watersheds 354 

were significant. In scenario SSP5-8.5, the magnitude and spatial heterogeneity of these 355 

changes were predicted to intensify toward 2100 compared to the 2020 baseline (Fig. 6a). In 356 

the ZRW, scenario SSP5-8.5 was predicted to result in a prominent increase in CDD, especially 357 

by 2100, with uplands and forest areas projected to experience CDD increases of 145% and 358 

188%, respectively (Table S1). By contrast, for scenario SSP1-2.6, the CDD was predicted to 359 

decrease slightly by 26.3%, particularly in lowlands and plains. For both watersheds, CWD 360 

was predicted to increase in the emission scenarios for 2050 and 2100, but different trends were 361 

discovered for the ZRW and LRW. Regarding the ZRW, CWD was predicted to significantly 362 

increase in lowlands and decrease in forested areas. However, in the LRW, it was predicted to 363 

increase only in uplands (Fig. 6a). These results indicated the polarization of wet–dry periods, 364 

particularly under high-emission conditions. A major increase in rainfall extremes was 365 

predicted, with R95p increasing by 1558 mm in the ZRW (entire area, scenario SSP5-8.5 for 366 
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the year 2100) (Table S1; S2). For the same scenario and time frame, R99p was predicted to 367 

reach 3829 mm, with uplands and forests receiving rainfall of 2634 and 2250 mm, respectively. 368 

Temperature extremes were also predicted to increase, especially in scenario SSP5-8.5. 369 

Regarding the ZRW, TXx was predicted to increase by up to 32.5% in forested areas (scenario 370 

SSP5-8.5 for the year 2100), whereas TNx was predicted to increase by 76.6% in uplands, 371 

indicating pronounced warming. 372 

Regarding the LRW, which is characterized by a tropical monsoon climate, high warming 373 

and precipitation extremes were predicted, particularly in uplands and forested areas, indicating 374 

climate spatial heterogeneity. For scenario SSP5-8.5, an approximately 211% CDD increase 375 

for the entire watershed was predicted by 2100 (Table S2), with the largest increase predicted 376 

for forested areas (236%). In these forested areas, R95p and R99p were predicted to reach 377 

772.8 and 2442 mm, respectively. Moreover, CWD was predicted to increase in uplands by up 378 

to 85.7%, suggesting prolonged wet conditions. Notably, TXx and TNx were predicted to 379 

substantially increase in highlands and forests, reaching up to 34.7% and 83.0%, respectively, 380 

emphasizing the intensification of heat extremes. Overall, this scenario may present another 381 

type of threat: long-term droughts with torrential downpours and extreme heat. These climate 382 

conditions may overwhelm current agricultural systems and infrastructure and undermine the 383 

current ecological carrying capacity (Zhang et al., 2020). 384 

 385 

3.8 Relationships between extreme climate indices and SOC stocks 386 

Principal component analysis (PCA) was conducted to examine the relationships 387 

between extreme climate indicators and SOC stock and to determine their topographic 388 

distribution characteristics for three scenarios. Regarding scenario SSP1-2.6, SOC stock 389 

variation exhibited negative correlations with R95p and R99p, indicating that extreme 390 

precipitation may be detrimental to the maintenance of SOC stocks (Fig. 8a). Pearson’s 391 

correlation analysis revealed significant negative correlations of SOC stocks with R95p (r = 392 

−0.32, p < 0.05) and R99p (r = −0.29, p < 0.01; Fig. 8b). Regarding scenario SSP2-4.5, SOC 393 

stock variation exhibited a positive correlation with CWD (r = 0.21, p < 0.05; Fig. 8c and 8d), 394 

indicating that stable wet conditions may promote SOC accumulation under moderate emission 395 

conditions. Regarding scenario SSP5-8.5, SOC stock variation was not significantly correlated 396 

with most of the extreme climate indicators, indicating that SOC responses may be influenced 397 

by complex interactions under strong emission conditions (Fig. 8e and 8f). For all scenarios, 398 

strong positive R95p–R99p and TXx–TNx correlations were found (e.g., r = 0.87 between 399 
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R95p and R99p in scenario SSP5-8.5). Taken together, these findings suggest uniform increases 400 

in the frequencies of extreme rainfall and extreme heat events in terms of both spatial 401 

distribution and climatic mechanisms.  402 

Our results revealed clear topographic effects, with distinct spatial variations in SOC stock 403 

dynamics predicted for the different emission scenarios. For scenario SSP1-2.6, SOC stocks 404 

were projected to decrease by 3% to 21%, whereas for scenarios SSP2-4.5 and SSP5-8.5, SOC 405 

stocks were projected to increase by 7.91% to 58.3%, particularly in forested areas (because of 406 

their enhanced net primary productivity). In addition, the variance and coefficient of variation 407 

(CV) of SOC stock percentages show a significant increase in interquartile range and CV over 408 

time under moderate (SSP1-2.6, SSP2-4.5) and high (SSP5-8.5) emission scenarios relative to 409 

the 2020 baseline. For both the moderate-emission (SSP1-2.6 and SSP2-4.5) and high-emission 410 

(SSP5-8.5) scenarios, the variance and coefficient of variation of the SOC stock percentage 411 

distribution were predicted to increase (Table 3). Collectively, these results indicate that future 412 

climatic extremes are projected to significantly increase the spatial heterogeneity of the 413 

percentage distribution of SOC stocks. In the majority of scenarios, particularly in scenario 414 

SSP5-8.5, uplands and forested areas are expected to exhibit a drastic response to extreme 415 

climate indicators, including major increases in CDD, R99p, TXx, and TNx. In uplands, SOC 416 

stocks are expected to respond strongly to the extreme climate, suggesting the susceptibility of 417 

slope soils to extreme rainfall and thermal destabilization. Furthermore, more extreme values 418 

are predicted for the LRW than for the ZRW, which is likely attributable to the topographic 419 

elevation distribution and baseline tropical monsoon climate in the LRW.  420 

In our PLS-PM analysis, we discovered a goodness of fit (GOF) value ranging from 43.0 421 

to 45.7, indicating the high explanatory power of our findings (Fig. 9). The PLS-PM results 422 

also revealed distinct differences in the controls for SOC stocks between the ZRW and LRW. 423 

For the ZRW (GOF = 45.7%), topographic variables (elevation and slope gradient) were found 424 

to have the strongest positive total effect on SOC stocks (standardized total effect = 0.579), 425 

followed by consecutive dry and wet periods (CDD and CWD, total effect = 0.238). Despite 426 

these findings, extreme rainfall events and temperature did not appear to have a direct effect 427 

on SOC stocks. For the LRW (GOF = 43.0%), stronger topographic control of SOC stocks was 428 

discovered (total effect = 0.753), with the direct path being positive (0.84, p < 0.01), indicating 429 

that the SOC accumulation patterns observed predicted this watershed will be closely linked to 430 

its land type. Regarding scenarios SSP2-4.5 and SSP5-8.5, most of the predicted increases in 431 

SOC stocks are concentrated in forested areas. Despite these results, the effects of temperature 432 
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extremes on SOC stocks will presumably be weakened by topographic and hydrological 433 

stability, particularly in the LRW. For both watersheds, prolonged dry spells were predicted to 434 

indirectly increase SOC stocks, whereas rainfall extremes were predicted to reduce SOC stocks, 435 

particularly in uplands (slope lands; Sarstedt et al., 2014). Taken together, these findings 436 

underscore the importance of incorporating topographic and extreme climate variables into 437 

SOC modeling and climate-resilient soil management strategies.  438 

 439 

4. Discussion 440 

4.1 Ability of machine learning models to predict SOC stocks 441 

Lamichhane et al. (2019) argued that several predictive models can be used to predict the 442 

spatial distribution of SOC. In the present study, common machine learning models—the 443 

Cubist, RF, and regression kriging models—were used to predict SOC stock in the sampling 444 

area. Some of the collected data were randomly selected for validation (Fig. 2). The results 445 

indicated that integrating regression kriging into the Cubist model yielded the highest 446 

predictive performance (R2 = 0.48, RMSE = 0.50), which was significantly higher than that 447 

achieved by the Cubist model alone (R2 = 0.43, RMSE = 0.45). However, incorporation of 448 

regression kriging into the RF model resulted in limited improvements, consistent with the 449 

results of Vaysse and Lagacherie (2015). This limited improvement may be attributable to the 450 

inherently low residuals in the RF model, indicating that even standardizing these residuals and 451 

adding them to the model would have minimal effects on predictions. As shown in Fig. 4, SOC 452 

stocks were underestimated for several samples from mountainous regions with high organic 453 

carbon stock due to plant residues, suggesting that this type of variance was not captured by 454 

the models or residuals. Other studies have demonstrated various predictive disparities. These 455 

studies include those conducted by Lacoste et al. (2014), who applied a Cubist model to predict 456 

organic carbon stock in a France-based study (R2 = 0.12, RMSE = 12.64); Adhikari et al. (2014), 457 

who employed regression kriging in a Denmark-based study (R2 = 0.41, RMSE = 0.24); and 458 

Ma et al. (2017), who combined regression kriging with a Cubist model in a China-based study 459 

(R2 = 0.25, RMSE = 0.12). Although the models used in the present study exhibited several 460 

predictive disparities, they nonetheless exhibited high reliability in terms of their overall 461 

predictive ability. 462 

In SOC stock forecasting models, empirical estimations of uncertainty involve geographic 463 

spatial segmentation. In Cubist models, input data are divided into groups on the basis of a 464 

series of rule-based classifications. Therefore, examining the empirical distribution of the 465 
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regression kriging residuals in each category is appropriate (Malone et al., 2014). According to 466 

classification rules, if low-elevation areas such as plains, foothills, and valleys involve young, 467 

weakly developed soils or miscellaneous lands, these areas are considered to exhibit a wide 468 

distribution of residuals. By contrast, other soil order categories are considered to exhibit a 469 

more concentrated distribution of residuals. In mountainous regions, classification is based on 470 

the NDVI, where a higher NDVI indicates more vegetation, whereas a low NDVI suggests the 471 

presence of water bodies or bare soils. In this study, analysis of 90% confidence interval maps 472 

(Fig. 4) revealed that for low-altitude areas with high sampling density, abundant data were 473 

available for model construction, leading to generally low prediction residuals. Even with 474 

various landscape classifications, the prediction limit intervals were low. By contrast, in 475 

mountainous areas, the existence of few samples and substantial variability in environmental 476 

covariates increased the difficulty of prediction. Generally, when establishing empirical 477 

divisions with insufficient data, outliers can easily influence the residual distribution in a given 478 

category. Therefore, future sample planning in these areas can be guided by such map data. 479 

 480 

4.2 Effects of environmental covariates on SOC stocks 481 

In this study, SOC stocks were influenced by the following key topographical attributes: 482 

elevation, the multiresolution index of valley bottom flatness, slope, and the topographic 483 

wetness index (Fig. 3a). As reported by Mishra and Riley (2015), who conducted an Alaska-484 

based study, elevation is a crucial predictor of SOC stock, regardless of resolutions. According 485 

to Adhikari et al. (2014), the multiresolution index of valley bottom flatness (MrVBF) and the 486 

topographic wetness index (TWI) are important covariates, ranking just below precipitation. 487 

The MrVBF is used to identify flat valley bottoms and thereby indicate potential areas of 488 

erosion or deposition, whereas the TWI is used to indicate terrain’s control over soil moisture, 489 

reflecting wet or dry conditions (Lamichhane et al., 2019). Slope affects SOC stocks by 490 

influencing solar radiation and moisture retention. Regarding meteorological covariates, 491 

annual cumulative precipitation and mean annual temperature are crucial in determining SOC 492 

stock. Gray et al. (2015) identified positive correlations of the SOC content of topsoil in New 493 

South Wales, Australia, with precipitation and relative humidity. According to Lamichhane et 494 

al. (2019), high precipitation may enhance vegetation growth or create anoxic conditions that 495 

slow soil carbon oxidation. Rial et al. (2017) reported a negative correlation between 496 

temperature and SOC content in Europe, with higher altitude and latitude found to correspond 497 

to slower SOC decomposition. In the present study, the effect of elevation was attributable to 498 
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temperature, particularly because the original resolution of the temperature data was 1 km, and 499 

high-resolution elevation data were necessary to obtain a detailed spatial distribution. Of the 500 

two biotic factors used in this study, the NDVI was the primary environmental covariate. Wang 501 

et al. (2018) highlighted the role of the NDVI as an indicator of vegetation cover, which is 502 

strongly correlated with SOC. They emphasized that convincing results could be obtained if 503 

long-term remote sensing data could be obtained to calculate NDVI values for multiple time 504 

periods.  505 

 506 

4.3 Influence of land cover on the spatial distribution of SOC stocks  507 

In this study, a trend of increasing SOC stock with increasing elevation was discovered, 508 

and this effect is likely driven by elevation and temperature (Fig. 3b, Fig. S2). The SOC stock 509 

in differing land coverage types was found to exhibit variation for different terrains. For 510 

instance, for lowlands, SOC stocks are predicted to rapidly decrease as a result of intensive 511 

cultivation, leading to low SOC stocks in agricultural production lands (Fig. 3b). Regarding 512 

the LRW, which has a tropical climate, SOC stock in farmlands was considerably lower than 513 

that in forests. This finding may be attributable to the farmlands in the LRW being frequently 514 

tilled for triple cropping or the mean annual temperature in the area being higher than that on 515 

the Zhuoshui River plains. In slope lands, the rice fields in the two basins had SOC stock levels 516 

similar to those observed for plains, although an increase was discovered for orchard and 517 

forested lands. In mountainous areas, the SOC stock predictions were higher than those for 518 

plains and slope lands across all types of land cover. According to the literature, the eastern 519 

region of the LRW experiences high precipitation and low temperatures, which result in higher 520 

organic carbon storage than that observed in the ZRW, particularly in forested areas (Fig. 3b; 521 

Guo et al., 2019). In addition, in mountainous areas, forests are the main space available for 522 

SOC stock. 523 

 524 

4.4. Adaptation strategies for the management of SOC stocks in various emission scenarios 525 

In this study, future climatic variables calculated from global climate models (GCMs) were 526 

used as inputs to estimate the spatiotemporal variation in global topsoil organic carbon stocks 527 

in 2020, 2050, and 2100. All GCM were obtained from the Coupled Model Intercomparison 528 

Project. CMIP6 was specifically selected for estimating future topsoil organic carbon stocks. 529 

Tables S1 and S2 list the extreme climate indicators involved in the considered scenarios 530 

(scenarios SSP1-2.6, SSP2-4.5, and SSP5-8.5) on the basis of CMIP6 data. 531 
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Our results indicated increasingly pronounced spatial heterogeneity in SOC stocks in the 532 

scenario involving severe greenhouse gas emissions (Table 3, Fig. 6). Severe warming in the 533 

future will cause increasingly regional climate variability, resulting in greater spatial 534 

heterogeneity in SOC stocks. This phenomenon will be particularly evident in countries with 535 

complex topography, such as those located on the frontline of the Pacific Rim, which is directly 536 

exposed to the threats of rapid climate change. Generally, the combination of steep terrain and 537 

intricate terrain complicates management of the SOC distribution because spatial variability 538 

driven by extreme climatic events is difficult to predict and control.  539 

According to our results, extreme climate and land type are the most crucial determinants 540 

of SOC stocks in regions near the Pacific Rim (Dialynas et al., 2016; Wei et al., 2024; Chen et 541 

al., 2024). As shown in Figs. 6 and 7c, in scenario SSP1-2.6, SOC stocks are projected to be 542 

depleted by 2050 (−21%) and 2100 (−3.75%), with this depletion most severe in lowlands and 543 

uplands (slope lands). A significant increase in R95p, R99p, or CWD may increase soil erosion, 544 

leading to major losses in SOC stocks. Intense rainfall events may also cause topsoil erosion 545 

and the leaching of dissolved organic carbon, and episodic carbon export may exceed 546 

respiratory losses (Olaya-Abril et al., 2017; Rillig et al., 2021). In certain forested areas, 547 

localized SOC gains are predicted, even for the low emission projections, which may be related 548 

to spatially uneven warming and rainfall, leading to enhanced vegetation productivity and 549 

underground carbon input (Fig. 6; Guo et al., 2019). These findings are consistent with the 550 

region-specific SOC responses to temperature and precipitation anomalies in previous 551 

modeling studies (Wang et al., 2023). 552 

In scenario SSP2-4.5, which involves CO2 emissions that approach the current levels until 553 

the mid-century time point before declining but do not reach net zero by 2100, the SOC stocks 554 

are predicted to be controlled by R95p, R99p, and TXx (not statistically significant). For all 555 

study areas, slight warming and increased extreme rainfall events (smallest increase among all 556 

emission scenarios) will facilitate vegetation growth, which will in turn increase SOC stocks. 557 

Despite these findings, losses in SOC stocks are still predicted to occur in certain upland 558 

regions (Fig. 6) as a result of erosion events caused by increases in CWD, particularly in the 559 

LRW. Overall, these results underscore the importance of drainage devices and specific 560 

agricultural management practices in uplands (Vereecken et al., 2022; Wang et al., 2023).  561 

In contrast to previous findings, our results indicate that SOC stocks will likely increase 562 

by an average of 45.4% to 58.3% in the study area. They will even exceed 200% in certain 563 

forested areas in scenario SSP5-8.5 (Fig. 7c). Under this scenario, TNx and TXx are crucial 564 
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factors influencing SOC stocks, particularly due to increased net primary productivity driven 565 

by warming temperatures, CO₂ fertilization, and extended growing seasons that promote 566 

vegetation growth. (Elbasiouny et al., 2022). When the amount of biomass, including wood 567 

debris and roots, increases, more biomass can be transformed into stable SOC for storage. This 568 

finding is consistent with the microbial efficiency matrix stabilization framework, which treats 569 

root-derived microbial residues as the main precursors to mineral-associated organic matter, a 570 

stable SOC pool (Cotrufo et al., 2013; Sokol and Bradford, 2019). In the high-emission 571 

scenario, severe warming and prolonged droughts in forested areas may result in wildfires or 572 

drought-induced dieback, which may reverse previous carbon gains in cases of ecological 573 

equilibrium within forests. Although an increase in SOC stocks is projected for scenario SSP5-574 

8.5, some uplands will experience clear losses in SOC stocks. This effect indicates the 575 

vulnerability of uplands to erosion caused by runoff under extreme precipitation, thereby 576 

threatening long-term carbon retention. In forested areas and some uplands, significant 577 

increases in CDD are projected for scenario SSP5-8.5. However, the increases in CDD might 578 

decrease vegetation growth and soil moisture, which in turn will lead to less organic input and 579 

greater carbon losses. This condition is common in uplands, not forested areas, because the 580 

effects of temperature extremes on SOC stocks may be weakened by topography. These 581 

findings were confirmed by our PLS-PM analysis (Fig. 9). For scenario SSP5-8.5, the 582 

interaction between the Birch effect and erosion may be the reason underlying the losses 583 

predicted in SOC stocks in uplands (Birch, 1958; Schimel et al., 2007). In terms of strategies 584 

for adaptation in scenario SSP5-8.5, firebreak corridors or buffer zones in forested areas and 585 

drainage constructions in uplands should be prioritized. 586 

In addition to climatic factors, land type plays a major role in SOC stock responses. In this 587 

study, forested areas were found to have higher levels of SOC and to be more sensitive to 588 

climate change compared with other land types. The varied responses across different land 589 

types emphasize the need to include topography, climate, and land management practices in 590 

SOC stock models and the importance of developing carbon mitigation strategies (IPCC, 2019). 591 

However, several studies have highlighted that SSP5-8.5 is increasingly regarded as an 592 

implausible scenario for future climate projections and the likelihood of such a trajectory 593 

materializing could be negligible (Pielke & Ritchie, 2021; Burgess et al., 2021). Originally 594 

designed as a high-end "stress test" pathway, SSP5-8.5 assumes exceptionally high fossil-fuel 595 

use, rapid population growth, and minimal mitigation—conditions that diverge significantly 596 

from current global trends in energy transition, technology adoption, and policy 597 

https://doi.org/10.5194/egusphere-2025-4258
Preprint. Discussion started: 8 October 2025
c© Author(s) 2025. CC BY 4.0 License.



20 
 

implementation. Therefore, in this study, SSP5-8.5 is included only as a computational 598 

benchmark to illustrate the response of soil carbon dynamics under an extreme forcing scenario, 599 

rather than as a realistic projection of the future. 600 

5. Conclusions 601 

Through DSM, this study established effective models for predicting SOC stock, 602 

achieving an R2 range of 0.43–0.50. It also highlighted key environmental covariates, such as 603 

topography, climate, remote sensing parameters, and the prediction interval maps for 604 

identifying areas not covered in the sampling distribution. This study demonstrated that 605 

projected topsoil SOC stocks exhibit substantial spatio-temporal variability across emission 606 

scenarios, with clear sensitivity to landscape type and climate extremes. In the scenario of 607 

severe emissions, the sensitivity of SOC dynamics to extreme climate events was found to be 608 

high. Land type was also found to have a key influence on SOC stocks. These effects pose both 609 

location- and time-specific challenges for SOC management in studies on mid- to late-century 610 

time points. In the low-emission scenario (scenario SSP1-2.6), extreme rainfall events are 611 

predicted to induce a significant reduction in SOC stocks though erosion in upland areas. 612 

However, in the moderate- and high-emission scenarios (scenarios SSP2-4.5 and SSP5-8.5), 613 

warming (TNx and TXx) and extreme rainfall events (R95p and R99p) may simultaneously 614 

increase biomass input and increase soil erosion risks. These results indicate that SOC 615 

management strategies should be highly specific to the site and time. In both the ZRW and 616 

LRW, even though the SOC stock dynamics in forested areas are likely to be affected by 617 

extreme rainfall events, heat waves, and prolonged droughts, future mitigation strategies should 618 

focus on reducing warming and preventing wildfires. Adaptive strategies such as the planting 619 

of heat-tolerant tree species may also be necessary. 620 

In upland areas in both the ZRW and LRW, SOC stock changes are predicted to be mainly 621 

driven by R95p, R99p, and CWD. Significant SOC losses will occur in certain upland areas 622 

for all emission scenarios. Therefore, management strategies should emphasize soil and water 623 

conservation to ensure that excess rainfall can be infiltrated into the soil without triggering 624 

erosion. These strategies should include the implementation of eco-engineering techniques on 625 

slope lands, maintaining vegetation cover and soil permeability, and establishing effective 626 

drainage systems. Overall, clarifying the interactions between climatic extremes, land types, 627 

and SOC stocks to develop site-specific management practices is key to enhancing soil’s 628 

resilience and ensuring that SOC stocks continue to service ecosystems despite climate change. 629 
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 835 

Table 1. Environmental covariates. 836 

s: soil, r: relief, c: climate, t: time, o: organism, Q: quantitative, C: categorical. 837 

Type of data Environmental covariates Soil forming 

factor 

Type 

Remote sensing Normalized difference vegetation index (NDVI) o; t Q 

Digital elevation 

model 

Elevation r Q 

 Slope r Q 

 Aspect r Q 

 Terrain ruggedness index (TRI) r Q 

 Topographic wetness index (TWI) r Q 

 Terrain position index (TPI) r Q 

 Multiresolution Index of Valley Bottom Flatness 

(MrVBF) 

r Q 

 Multiresolution Ridge Top Flatness (MrRTF) r Q 

 Stream power index (SPI) r Q 

 Curvature r Q 

 Flow accumulation r Q 

 R-value  Q 

 K-value  Q 

Climate Mean annual temperature (MAT) c; t Q 

 Total annual precipitation (TAP) c; t Q 

Land cover Land cover o; t C 

Soil Soil Order s C 
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 838 

Table 2. Data partitioning rules and 5th/95th percentiles of leave-one-out validation residuals. 839 

 840 

  841 

Class Conditions Residual 

percentile 

P5 P95 

1 Soil Order in Other -1.08 0.80 

2 Topographic Position Index ≤ -10.8889 -1.99 0.95 

3 MAT > 17.09029, Topographic Position Index > -10.8889, Soil 

Order in Inceptisol, Entisol, Alfisol, Spodosol, Ultisol 
-0.85 0.70 

4 MAT ≤ 17.09029 -0.67 0.80 
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Table 3. Variance and coefficient of variance (CV) of the spatiotemporal distribution of SOC 842 

stocks for various land uses in the three emission scenarios. 843 

 844 

  2020 2050 2100 

  T P SL F T P SL F T P SL F 

 Variance 

CV(%) 

6.45 

44.3 

0.66 

32.3 

1.35 

30.7 

5.11 

32.5 

        

SSP1 

2.6 

Variance 

CV(%) 

    5.52 

50.4 

0.35 

29.8 

0.85 

33.9 

4.37 

36.0 

8.24 

51.3 

0.76 

33.5 

1.56 

39.2 

6.45 

36.4 

SSP2 

4.5 

Variance 

CV(%) 

    10.1 

48.5 

1.14 

35.0 

2.25 

37.5 

7.95 

34.9 

21.4 

59.7 

1.74 

35.2 

2.53 

40.4 

18.7 

43.7 

SSP5 

8.5 

Variance 

CV(%) 

    8.53 

47.1 

0.71 

31.8 

1.82 

33.5 

6.92 

34.7 

36.2 

65.8 

1.96 

34.1 

2.86 

40.0 

33.3 

48.5 

CV: coefficient of variance; T: total area; P: plain regions; SL: slope land regions; F: forest regions. 845 

 846 

 847 

  848 
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 849 

 850 

 851 

Fig. 1. Location of Taiwan in Pacific Ocean regions (a); location of Zhoushui River watershed 852 

(ZRW) and Laonong River watershed (LRW) in Taiwan; (c) Whittaker Biome Plot of ZRW and 853 

LRW. 854 
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Fig. 2. Scatter plots of predicted versus observed soil organic carbon (SOC) stock in the topsoil 855 

(0–30 cm) where predictions were obtained on the basis of validation data and by using the (a) 856 

Cubist, (b) regression kriging (RK) with Cubist, (c) Random forest (RF), and (d) regression 857 

kriging with RF models. The x-axis represents the observed values, and the y-axis represents 858 

the predicted values. The solid line is the fitted line.  859 

(a) (b) 

(c) (d) 
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 860 
 861 

Fig. 3. Fig. 3. (a) Variable importance of Random Forest and Cubist models for SOC stock in 862 

surface soils (0–30 cm) and (b) predictive map of SOC stock in Zhuoshui River watershed and 863 

Laonong River watershed.  864 
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 865 

Fig. 4. Topsoil (0–30 cm) soil organic carbon (SOC) stock maps of the (a) 90% lower prediction 866 

limit, (b) 90% upper prediction limit, and (c) prediction limit range derived using bootstrapping. 867 
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 869 

Fig. 5. Boxplots of topsoil (0–30 cm) soil organic carbon (SOC) stocks for various land cover: 870 

(left) plain regions (<100 m in elevation), (middle) slopeland regions (100–1000 m in 871 

elevation), and (right) forested regions (>1000 m in elevation) at Zhuoshui River watershed 872 

and Laonong River watershed. 873 
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 875 

 876 

Fig. 6. Spatiotemporal predictions of (a) SOC stocks (kg m−2) and (b) SOC sequestration rates 877 

(kg m−2 per year) relative to the 2020s under three emission scenarios. The mapping unit is sub-878 

catchments in Taiwan.  879 
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 880 

Fig. 7. Boxplots showing the temporal trends in predicted SOC stocks across three emission 881 

scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) for 2020, 2050, and 2100 in (a) Zhousui River 882 

watershed; and (b) Laonong River watershed, and (c) Increase in the ratio of SOC stocks 883 

relative to the 2020s in the ZRW and LRW for the three emission scenarios for 2050 and 2100. 884 
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 886 

Fig. 8. Principal component analysis and Pearson’s correlation coefficient of extreme climate 887 

indices and SOC stocks: (a, b) SSP1-2.6, (c, d) SSP2-4.5, and (e, f) SSP5-8.5. 888 
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 890 

 891 

Fig. 9. Partial least squares path modeling (PLS-PM) analysis of the relationships among SOC 892 

stocks, consecutive durations of extreme climatic events (CDD and CWD), extreme rainfall 893 

amounts (R95p and R99p), extreme temperatures (TNx and TXx), and topographic variables 894 

(elevation and slope gradient) (a) Zhuoshui River watershed; (b) Laonong River watershed; (c) 895 

standardized total effects. Positive and negative effects are represented by blue and red arrows, 896 

respectively. Path coefficients that do not significantly differ from zero are depicted as gray 897 

dashed lines: *p < 0.05 and **p < 0.01. The percentages in the boxes represent the explanatory 898 

power of the variables. The goodness-of-fit was used to assess the model. 899 
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