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Abstract.  Accurately representing permafrost in Earth System Models is a grand challenge that creates major uncertainty.  

A promising path forward is to create hybrid models that synergize process-based physics with deep learning, but this is 

fundamentally hindered by the non-differentiable nature of traditional land surface models (LSMs), which are incompatible 15 

with modern AI workflows. To overcome this limitation, we present NoahPy, a fully differentiable LSM developed by 

reconstructing the Noah LSM’s governing partial differential equations into a process-encapsulated Recurrent Neural 

Network (RNN). We first demonstrate that NoahPy perfectly replicates the numerical behaviour of the modified Noah LSM, 

achieving Nash-Sutcliffe Efficiency (NSE) coefficients above 0.99 for both soil temperature and liquid water. We then show 

that at a permafrost site, the calibrated NoahPy achieves robust simulation performance for  for soil temperature (NSE > 0.9) 20 

and liquid water (NSE > 0.8). Critically, the differentiable workflow, when combined with the Adam optimizer, is 

significantly faster, more stable, and yields simulations with lower uncertainty compared to traditional SCE-UA calibration 

algorithm.  NoahPy thus provides a foundational, "glass-box" framework that closes a key technical gap, enabling the 

development of the next generation of hybrid AI-physics models needed to more reliably predict the future of the cryosphere. 

1 Introduction 25 

The advent of deep learning has catalyzed a paradigm shift in Earth system science. Large-scale, data-driven models 

like Google DeepMind’s GraphCast (Lam et al., 2023) and Huawei’s Pangu-Weather (Bi et al., 2023) demonstrate 

remarkable skill in Earth system forecasting. However, their predictive power is often shadowed by a critical limitation: as 

"black-box" systems, they offer no guarantee of physical consistency or interpretability (Nearing et al., 2021; Wi and 

Steinschneider, 2022). While techniques from eXplainable AI (XAI) can provide post-hoc insights (Rudin, 2019; O'loughlin 30 

et al., 2025), they cannot enforce physical laws, creating the risk of learning statistically powerful but mechanistically flawed 
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relationships. This "physics gap" has spurred a movement towards hybrid modeling that synergize the predictive prowess of 

machine learning with the mechanistic rigor of process-based physical models (Irrgang et al., 2021; Reichstein et al., 2019; 

Chen et al., 2023). 

A powerful approach in this domain is the physics-informed neural network, which embeds the governing equations of 35 

a physical system directly into the model’s architecture  (Reichstein et al., 2019; Chen et al., 2023). Unlike "loosely-coupled" 

hybrids that use physics as a soft penalty in the loss function (Wang et al., 2020; Xie et al., 2022) or use machine learning to 

correct a physical model’s output (Bonavita and Laloyaux, 2020), this deeply-integrated approach imposes hard constraints, 

rendering the model structurally incapable of violating fundamental laws. The primary obstacle to this integration has been 

technical: most established geophysical models are implemented as non-differentiable numerical solvers, making them 40 

incompatible with the gradient-based optimization central to deep learning (Rumelhart et al., 1986). A transformative 

solution is differentiable programming, which involves rewriting a physical model’s logic using differentiable operations 

within a machine learning framework like PyTorch or TensorFlow. This recasts the physical model into a "glass-box" system 

that is both physically interpretable and trainable end-to-end via backpropagation (Shen et al., 2023). Recent successes in 

hydrology have demonstrated the potential of this approach, yielding models with higher accuracy and improved 45 

generalization (Feng et al., 2022; Wang et al., 2024). 

This approach is particularly critical for modeling permafrost. Improving the representation of these processes in Earth 

system models is a grand challenge (Schädel et al., 2024). Covering nearly 15% of the Northern Hemisphere's exposed land 

area, permafrost is a crucial regulator of global water, energy, and carbon cycles (Obu, 2021). Despite its vast scale, state-of-

the-art land surface models (LSMs), as the foundational components of climate models, have well-documented deficiencies 50 

in representing freeze-thaw processes in these regions (Matthes et al., 2025; Abdelhamed et al., 2023). They often simplify 

or omit key thermo-hydrological dynamics, such as abrupt thaw (thermokarst), the formation of excess ground ice, the 

insulation from thick organic soil layers, and complex water transport at the freeze-thaw front (cryosuction). These 

simplifications lead to significant biases in simulating active layer dynamics and the rate of permafrost thaw, and low 

confidence in the timing and magnitude of the permafrost carbon feedback, undermining the reliability of climate projections 55 

and estimates of the remaining carbon budget.  

A differentiable LSM, by itself, does not inherently fix these physical deficiencies. Its true power is unlocked when 

applied to an already improved physical core, enabling it to serve as a foundational component for more sophisticated hybrid 

artificial intelligence (AI) systems. A differentiable, permafrost-focused LSM enables AI-driven parameterization, where the 

differentiable LSM is coupled with a neural network that learns to predict its internal parameters (e.g., hydraulic conductivity, 60 

thermal properties) from external data, thus addressing the long-standing challenge of parameter uncertainty (Tsai et al., 

2021; Wang et al., 2024; Sun et al., 2024). More importantly, it can be embedded as a physics core within a larger, end-to-

end trainable AI-based Earth system model. This forces the larger model to follow the laws of land surface physics, 

providing essential bounds for its predictions in data-scarce permafrost regions. 
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Therefore, creating a differentiable permafrost-focused LSM is not an incremental step but a necessary foundation for 65 

the next generation of hybrid Earth system models. To address this gap, we introduce NoahPy: a fully differentiable land 

surface model specifically improved for simulating permafrost thermo-hydrology. We have rewritten the widely-used, 

Fortran-based Noah LSM into a differentiable Python framework by encapsulating its governing partial differential 

equations within a Recurrent Neural Network (RNN) structure. This novel implementation preserves the complete 

mechanistic integrity of the original model while unlocking the full power of gradient-based optimization.  70 

2 Material and methods 

2.1 The modified Noah LSM 

The Noah LSM (v3.4.1) (Chen et al., 1997) is a widely used model that simulates one-dimensional thermo-

hydrological transport within the atmosphere-vegetation-soil continuum. It serves as the land-surface module in prominent 

systems like the Weather Research and Forecasting (WRF) model (Ek et al., 2003) and the Global Land Data Assimilation 75 

System (GLDAS) (Rodell et al., 2004). In the Noah LSM, the governing equation for soil heat transfer is the one-

dimensional heat conduction equation:  

 s s
s

T TC Q
t z z

λ
∂ ∂∂  = + ∂ ∂ ∂ 

 (1) 

where 𝑇𝑇𝑠𝑠 is the soil temperature (K), t is time (s), z is soil depth (m), 𝐶𝐶𝑠𝑠 is the volumetric soil heat capacity (J·m-3·K-1), 𝜆𝜆 is 

the soil thermal conductivity (W·m⁻¹·K⁻¹), and 𝑄𝑄 represents the source/sink term (W·m⁻³), such as the latent heat of fusion 80 

during ice-water phase change. The soil heat capacity, 𝐶𝐶𝑠𝑠 , is calculated as a weighted sum of its constituents: 

 ( ) ( )1s w s soil s airC C C Cθ θ θ θ= + − + −  (2) 

where 𝜃𝜃 is the volumetric liquid water content (m3·m-3), 𝜃𝜃𝑠𝑠 is the saturated volumetric water content (m3·m-3), and 𝐶𝐶𝑤𝑤, 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 

and 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎  are the heat capacities of water, soil solids, and air, respectively.  

Liquid water movement in the soil is simulated by the Richards’ equation (Chen et al., 1996): 85 

 
( ) ( )  ( )

K
D S

t z z z
θθ θθ θ

∂∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ 
 (3) 

where 𝐷𝐷 = 𝐾𝐾(𝜃𝜃) 𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

  , known as the soil-water diffusivity (m2·s-1), K is the hydraulic conductivity (m·s-1), Ψ is the soil 

matric potential (m). S represents water sources and sinks (s-1) (e.g., infiltration and evapotranspiration). The empirical soil 

hydraulic scheme proposed by Campbell (1974) is utilized to parameterize Ψ–𝜃𝜃 and K–𝜃𝜃, relationships : 

 ( )
2 3b

s
s

K K θθ
θ

+
 

=  
 

 (4) 90 
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b

s
s

θθ
θ

−
 

Ψ = Ψ  
 

 (5) 

where K𝑠𝑠 represent the saturated hydraulic conductivity (m·s-1), Ψ𝑠𝑠 is the soil water potential at air entry (m), and b is 

an empirical parameter (dimensionless) related to the pore size distribution of the soil matrix. 

For this study, we used a version of the Noah LSM specifically modified for permafrost applications (Chen et al., 2015; 

Wu et al., 2018), which improves upon the original model (Noah LSM v3.4.1) in several key ways. These modifications 95 

include an improved thermodynamic roughness length parameterization for sparse vegetation (Rodell et al., 2004) to correct 

the underestimation of ground heat flux, a new thermal conductivity scheme (Côté and Konrad, 2005) better suited for the 

coarse-grained, high-porosity soils common on the QTP, and an impedance factor related to ground ice content, which 

constrains the soil hydraulic conductivity to account for the impedance of water flow by ice (Zhang et al., 2007). The 

model’s soil column was extended to a depth beyond the zero annual amplitude (~10 m for typical permafrost on the QTP 100 

(Zhao et al., 2010)) and discretized into multiple, vertically heterogeneous soil layers. This modified Noah LSM has been 

successfully validated at the Tanggula (TGL) site and applied in previous studies of permafrost degradation on the QTP (Ji et 

al., 2022; Zhang et al., 2022a), confirming its robust simulation capabilities in permafrost environment.  

2.2 Implementation of NoahPy 

The implementation of NoahPy involves recasting the numerical solution of the modified Noah LSM’s governing 105 

equations into a fully differentiable structure. We use the following partial differential equations (PDEs) set to describe 

the dynamic system of the modified Noah LSM: 

 �
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑠𝑠(𝑡𝑡, 𝑧𝑧) = 𝐹𝐹(𝑠𝑠(𝑡𝑡, 𝑧𝑧),𝑢𝑢(𝑡𝑡, 𝑧𝑧),𝛽𝛽𝐹𝐹)
𝑦𝑦(𝑡𝑡, 𝑧𝑧) = 𝐺𝐺(𝑠𝑠(𝑡𝑡, 𝑧𝑧),𝑢𝑢(𝑡𝑡, 𝑧𝑧),𝛽𝛽𝐺𝐺)

 (6) 

where, 𝑠𝑠(𝑡𝑡, 𝑧𝑧) represents the state vectors that vary in time t and space z (e.g. soil temperature profile), 𝑢𝑢(𝑡𝑡, 𝑧𝑧) is the 

input vector of external forcings (e.g., meteorological data), 𝑦𝑦(𝑡𝑡, 𝑧𝑧) is the output vector (e.g., simulated variables for 110 

validation). 

In the Noah LSM, the heat conduction (Equation 1) and Richards' (Equation 3) equations are solved using a finite-

difference numerical approach. Following the spatial discretization scheme of Pan and Mahrt (1987) and the temporal 

scheme of Kalnay and Kanamitsu (1988), the PDEs are expressed in terms of explicit coefficients and implicit states. After 

discretization, the PDEs can be converted into a system of algebraic equations, which is then efficiently solved using the 115 

tridiagonal matrix algorithm. To ensure numerical stability, this calculation is applied twice for each time step when 

infiltration fluxes are large (Zheng et al., 2015). 

The discretized form of Richards’ equation, for example, for each soil layer k and time step t is: 
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
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

1 1 1 1 1
1 1

1 1
1
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k k k k
k k

t

k
D D K K S

t z z z
θ θ θ θ θ θ

θ θ
+ + + + +

− +
− −

−

 − − −
= − + − + 

∆ ∆ ∆ ∆  
 (7)  

By letting 𝐴𝐴 = −𝐷𝐷(θ𝑘𝑘−1)𝛥𝛥𝛥𝛥
Δ𝑧𝑧𝑘𝑘Δ𝑧𝑧𝑘𝑘−1�

,𝐶𝐶 = −𝐷𝐷(θ𝑘𝑘)𝛥𝛥𝛥𝛥
Δ𝑧𝑧𝑘𝑘Δ𝑧𝑧𝑘𝑘�

, Equation 7 can be rearranged to: 120 

 𝐴𝐴(𝜃𝜃𝑘𝑘−1𝑡𝑡+1 − 𝜃𝜃𝑘𝑘−1𝑡𝑡 ) + 𝐵𝐵(𝜃𝜃𝑘𝑘𝑡𝑡+1 − 𝜃𝜃𝑘𝑘𝑡𝑡) + 𝐶𝐶(𝜃𝜃𝑘𝑘+1𝑡𝑡+1 − 𝜃𝜃𝑘𝑘+1𝑡𝑡 ) = 𝑅𝑅𝑅𝑅𝑅𝑅 (8) 

 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑆𝑆+𝐾𝐾𝑘𝑘−1−𝐾𝐾𝑘𝑘
𝛥𝛥𝑧𝑧𝑘𝑘

⋅ 𝛥𝛥𝛥𝛥 + 𝐴𝐴(𝜃𝜃𝑘𝑘𝑡𝑡 − 𝜃𝜃𝑘𝑘−1𝑡𝑡 ) + 𝐶𝐶(𝜃𝜃𝑘𝑘𝑡𝑡 − 𝜃𝜃𝑘𝑘+1𝑡𝑡 ),𝐵𝐵 = 1 − (𝐴𝐴 + 𝐶𝐶) (9) 

where Δ𝑧𝑧k is the thickness of the k-th soil layer; and Δ𝑧𝑧k�  is the distance between the centers of layer k and layer k+1. This 

equation can be rearranged into a tridiagonal system of linear equations, which is solved at each time step to update the soil 

moisture profile, 𝜃𝜃t+1: 125 
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  (10) 

To make this process differentiable, we implemented the model within a RNN framework. A standard RNN updates an 

abstract hidden state, ℎ𝑡𝑡, using a learned function (Figure 1a): 

 ( )( )1t h x t hth W h W x bσ −= + +  (11)  

where 𝜎𝜎  is the nonlinear activation function; ℎ𝑡𝑡−1  and ℎ𝑡𝑡  are the hidden states at the previous and current time steps, 130 

respectively; 𝑊𝑊ℎ and 𝑊𝑊𝑥𝑥  are the weight matrices applied to the previous hidden state and the current input vector 𝑥𝑥𝑡𝑡 , 

respectively; and 𝑏𝑏ℎ is the bias vector.  

In NoahPy, we replace this learned function with the entire physical time-step solution described above. The state of the 

system is a vector of physically meaningful variables, st (e.g., soil temperature, moisture), which is updated according to the 

model's deterministic physics (Figure 1b): 135 

 ( )1, ,t Noah LSM t ts F s x β−=


 (12)  

where 𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁ℎ 𝐿𝐿𝐿𝐿𝐿𝐿 represents the complete numerical solution for one time step, including the differentiable solver for the 

tridiagonal system derived from Equation 6; 𝑥𝑥𝑡𝑡 is the meteorological forcing, and 𝛽𝛽���⃗  is the set of model parameters. This is 

made possible by implementing every step of the numerical solution using the differentiable operations native to the 

PyTorch deep learning library (Paszke et al., 2019).  140 
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By constructing the model in this way, the entire time-stepping simulation allows the gradient of any model output with 

respect to any parameter (β) to be calculated efficiently using the backpropagation through time (BPTT) (Werbos, 1990), 

powered by PyTorch’s automatic differentiation engine. Furthermore, all operations in NoahPy are vectorized to maximize 

the parallel computing power of modern hardware.  

 145 

Figure 1. NoahPy architecture as a physics-based Recurrent Neural Network (RNN). (a) A standard RNN recurrent cell; (b) The NoahPy 

recurrent cell, which replaces the learned transformation with the physical model (FNoah LSM); (c) The unfolded representation of the 

NoahPy simulation, where the model state (S) is updated at each time step. 𝑿𝑿��⃗ , 𝑺𝑺��⃗ , and 𝑶𝑶��⃗  represent the meteorological forcing, state, and 

observation vectors, respectively, and 𝜷𝜷��⃗  is the vector of model parameters. 

2.3 Validations 150 

2.3.1 Validation of numerical equivalence  

The first validation step was to confirm that NoahPy, written in Python, accurately reproduces the numerical 

output of the original Fortran-based modified Noah LSM. This benchmark test ensures that the model rewriting 
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process did not introduce numerical artifacts. The experiment was conducted at three randomly selected grid cells on the 

QTP: Grid1 (28.75°N, 93.85°E), Grid2 (34.75°N, 98.25°E) and Grid3 (37.55°N, 100.55°E). Both models were driven by 155 

the China Meteorological Forcing Dataset (ITP-forcing) (He et al., 2020) for the period of 2000-2010. The year 1999 

was used as a spin-up period (repeating for 500 years) to allow the model to reach equilibrium, and the model states at the 

end of this period were used as the initial conditions for the formal simulation. For both models, soil types were defined 

using the MSTD dataset (Wu and Nan, 2016), and vegetation types were based on the 1:1,000,000 China Vegetation 

Type Map (Zhang, 2007). Since the goal was a direct numerical comparison, model parameters were assigned using the 160 

default lookup table values corresponding to the soil and vegetation types. The soil column was configured with 18 layers 

extending to a depth of 15.2 m.  

To quantify the agreement between the two models, we used three statistical metrics: Bias, Pearson correlation 

coefficient (R), and the Nash-Sutcliffe Efficiency coefficient (NSE): 

 ( )
1

1Bias
N

i i
i

y y
N

∗
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= −∑  (13)  165 
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 (15)  

where, 𝑦𝑦𝑖𝑖 is a value from the NoahPy simulation time series, 𝑦𝑦𝑖𝑖∗ is the corresponding value from the modified Noah 

LSM simulation, 𝑦𝑦� and 𝑦𝑦∗��� are the mean values of their respective time series, and N is the total number of samples. 

2.3.2 Validation of backpropagation capability 170 

To validate NoahPy’s capability for backpropagation-driven parameter optimization, we conducted an experiment using 

observational data from the TGL permafrost site on the QTP. The model was driven by daily meteorological observations 

from the TGL station from April 1, 2007 to December 31, 2010. These data included air temperature, wind speed, relative 

humidity, incoming shortwave and longwave radiation, and precipitation. In-situ observations of active layer soil 

temperature and liquid water content from the site were used to constrain the model during optimization. The dataset was 175 

split into a training period (April 1, 2007 to December 31, 2009) and a validation period (January 1, 2010 to December 31, 

2010). The NoahPy soil column was discretized into 20 layers to match the observation depths at the site. This included ten 
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shallow, higher-resolution layers (at 0.045, 0.091, 0.166, 0.289, 0.493, 0.829, 1.2, 1.6, 2.0, and 2.4 m) to capture rapid 

variations near the surface, and ten deeper layers (2.8, 3.8, 4.8, 5.8, 6.8, 7.8, 8.8, 10.8, 12.8, and 14.8 m) extending to 14.8 m. 

The lower boundary of the simulation domain was set to a depth of 40 m, with the boundary temperature condition 180 

prescribed according to previous studies (Chen et al., 2015). 

We selected four key soil hydraulic parameters, known to be highly sensitive to liquid water content (Brandhorst and 

Neuweiler, 2023; Szabó et al., 2024; Teuling et al., 2009), as the target for optimization: saturated hydraulic conductivity 

(𝐾𝐾𝑠𝑠), saturated water content (𝜃𝜃𝑠𝑠), soil matric potential at air entry (𝜓𝜓𝑠𝑠), and the pore-size distribution index (𝑏𝑏). The 

allowable ranges for these parameters, drawn from previous studies (Rosero et al., 2009; Stuurop et al., 2021; Li et al., 2019; 185 

Wang et al., 2021), are provided in Table 1. Initial values were chosen randomly within these bounds. To ensure physical 

realism, we imposed a constraint that parameter values for the same soil type could not vary by more than 10% across 

different depths (Zhao et al., 2023). 

The observational data for this study extend to a maximum depth of 2.45 m, corresponding to the model's 10th soil layer. 

Therefore, simulated liquid water content from the top ten model layers was interpolated to the measurement depths. The 190 

NSE between the interpolated simulations and the observations was used as the loss function to be maximized. We used the 

widely adopted Adam optimizer (Kingma and Ba, 2014) with a learning rate of 0.0005 and default decay rates of 0.9 and 

0.999.To improve convergence, a ReduceLROnPlateau learning rate scheduler was implemented. This scheduler monitored 

the NSE on the validation set and automatically reduced the learning rate by a factor of 0.1 if no improvement was observed 

for ten consecutive epochs. The training was run for a maximum of 300 epochs, with a minimum learning rate of 1 × 10⁻⁶ to 195 

prevent stagnation. The agreement between the optimized model simulations and the observations was quantified using the 

NSE, correlation coefficient, and Root Mean Square Error (RMSE). 

Table 1. Target parameters to be optimized by backpropagation and their value ranges 

Parameter Symbol (Unit) Value Range 

Saturated hydraulic conductivity 𝐾𝐾𝑠𝑠 (m·s−1) 10-7-6×10-3 

Saturated water content 𝜃𝜃𝑠𝑠 (m3·m-3) 0.3-0.65 

Soil matric potential at air entry 𝜓𝜓𝑠𝑠 (m) 0.01-0.65 

Pore-size distribution 𝑏𝑏 (Dimensionless) 2.5-12 

2.3.3 Performance comparison with traditional optimization 

To demonstrate the advantages of a differentiable modeling approach, we compared the performance of NoahPy against 200 

both the original and modified Noah LSMs when calibrated with a traditional, widely used optimization algorithm. We 

evaluated three distinct model-optimizer combinations: NoahPy optimized with the gradient-based Adam optimizer; the 
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modified Noah LSM calibrated with the Shuffled Complex Evolution (SCE-UA) algorithm (Duan et al., 1994) ; and the 

original Noah LSM (v3.4.1) calibrated with the SCE-UA algorithm. The model configurations, forcing data, and target 

parameters for all three setups were identical to those described in Section 2.3.2. A key difference is that the original Noah 205 

LSM does not account for vertical soil heterogeneity; therefore, its soil profile was configured uniformly using the properties 

of the surface layer. For a robust comparison, each optimization algorithm was run ten times with a maximum of 500 

iterations.  

In addition to the NSE, we used the Kling-Gupta Efficiency (KGE) as a more comprehensive performance metric. KGE 

provides a multi-faceted assessment by decomposing performance into three distinct components:  210 

 ( ) ( ) ( )2 2 21 1 1 1KGE Corr α γ= − − + − + −  (16)  

where, Corr is the Pearson correlation coefficient between simulated and observed values, α is the bias ratio (mean of 

simulated values / mean of observed values), and γ is the variability ratio (coefficient of variation of simulated values / 

coefficient of variation of observed values). To determine if the performance differences among the three model setups were 

statistically significant, we employed a two-step non-parametric testing procedure on the KGE values from all soil depths. 215 

First, the Friedman test was used to assess whether any significant differences existed within the group of three models. If 

the Friedman test returned a p-value < 0.05, we then performed the Dunn's post-hoc test for pairwise comparisons to identify 

which specific model pairs differed significantly from one another. A p-value < 0.05 in the Dunn's test was considered a 

statistically significant difference in performance.  

3 Results 220 

3.1 Numerical equivalence with the modified Noah LSM 

The validation confirms that NoahPy successfully replicates the numerical behaviour of the Fortran-based modified 

Noah LSM. As shown in the scatter plots in Figure 2, the simulated daily soil temperature and liquid water content from 

NoahPy exhibit a near-perfect 1:1 relationship with the outputs from the modified LSM across all tested depths (0.1, 0.5, 0.8, 

1.3, and 2.5 m) aggregated from three randomly chosen grid cells on the QTP. The performance is exceptionally strong, with 225 

NSE coefficients greater than 0.999 and near-zero bias (<0.01) for both variables at every depth.  

A minor degree of scatter is visible in the soil moisture comparisons (Figure 2b, d, f, h, j), which is not present in the 

soil temperature results. These small deviations are likely attributable to minor differences in floating-point arithmetic and 

numerical precision between the Python/PyTorch environment and the original Fortran compiler. Importantly, NoahPy 

maintains this high accuracy in deeper soil layers, with no amplification of numerical errors with depth. This demonstrates 230 

the high numerical stability of the NoahPy implementation and confirms that it serves as a faithful and reliable replacement 

for the original model. 
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Figure 2. Comparison of NoahPy and modified Noah LSM outputs for soil temperature and moisture. The density scatter plots compare 235 
daily model outputs at five different soil depths (0.1, 0.5, 0.8, 1.3, and 2.5 m), aggregated from three randomly chosen grid cells (28.75°N, 

93.85°E; 34.75°N, 98.25°E; 37.55°N, 100.55°E) on the Tibetan Plateau (QTP). The dashed line represents perfect agreement (y=x). Inset 

values show the Bias, correlation (Corr), and NSE. 

3.2 Performance of the calibrated NoahPy at the Tanggula site 

The gradient-based optimization process effectively calibrated the NoahPy model parameters. The training process 240 

demonstrates rapid convergence, with the NSE for soil liquid water increasing from an initial value of -0.2 to an optimal 

value of 0.84 (Figure 3). Correspondingly, the RMSE steadily decreases. This result successfully validates that NoahPy's 
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differentiable framework allows for the effective use of backpropagation to optimize model parameters against observational 

data.  

 245 

 

Figure 3. Training convergence for the soil liquid water simulation at the Tanggula site. The plot shows the improvement in the Nash-

Sutcliffe Efficiency (NSE, blue line) and the corresponding reduction in the Root Mean Square Error (RMSE, orange line) over 500 

optimization iterations. The dashed red lines mark the best performance achieved.  

After calibration, NoahPy's simulations showed excellent agreement with the observed data at the TGL site during both 250 

the calibration (2007-2009) and validation (2010) periods (Figure 4). The model accurately reproduced the seasonal cycle of 

soil temperature at all depths. For most layers, the NSE values exceeded 0.9, and the RMSE decreased with depth, reflecting 

the reduced temperature variability in deeper soil. However, the model exhibits a cold bias during the winter of 2008–2009, 

with simulated temperatures falling below observations (Figure 4a). This period was characterized by heavy snowfall at the 

site. The cold bias is likely due to the relatively simplistic snow scheme in the Noah LSM, which can underestimate snow 255 

depth. A shallower simulated snowpack provides less insulation, allowing excessive heat loss from the soil to the cold 

atmosphere. Additionally, anomalous fluctuations were observed in the measured deep soil temperatures (1.05 m and 2.45 m) 

during the summer of 2009 (Figure 4d, e). Given that deep soil temperatures should respond slowly to short-term 

atmospheric changes, these fluctuations are likely attributable to instrumental error. 

While more complex than temperature, the dynamics of soil liquid water were also well-captured, with NSE values 260 

exceeding 0.7 and RMSE values below 0.05 m³ m⁻³ for most layers. The model successfully simulated soil moisture 

responses to freeze-thaw cycles and summer precipitation events, particularly in the shallow soil layers (Figure 4f, g). 

However, several discrepancies were noted, particularly in deeper soil. Simulations at depths of 1.05 m and 2.45 m deviate 
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more pronouncedly from the measured data (Figure 4i, j). The model tended to overestimate liquid water content during the 

winter freezing period at some depths (Figure 4h, i). This can be attributed to the model's hydraulic parameterization scheme, 265 

which is based on the Campbell formulation; this approach neglects the effects of ice suction and effective porosity. 

Omitting these mechanisms, which influence soil water redistribution at the freezing front, can lead to an overestimation of 

liquid water content during winter (Zhao et al., 2023). Additionally, some observations appear anomalous. For example, the 

measured unfrozen water content in winter drops to exactly zero at 0.4 m and 1.05 m, which is physically unlikely and 

suggests potential instrument error at low moisture levels. Similarly, sharp, isolated increases in measured water content at 270 

deeper layers during the summer of 2009 (Figure 4h, i, j) without corresponding signals in the layers above suggest these are 

likely not caused by surface infiltration and may also be data artifacts. 

Despite the well-diagnosed limitations of specific model parameterizations and potential artifacts in the observational 

data, the results for all soil depths demonstrate that the calibrated NoahPy model reliably reproduces the key seasonal 

dynamics of soil temperature and liquid water during complex freeze-thaw cycles at the TGL site.  275 
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Figure 4. Simulated and observed daily soil temperature and liquid soil water content at various depths (daily; 0.05, 0.1, 0.4, 1.05, and 

2.45m) for the Tanggula (TGL) site. The vertical black dashed line separates the calibration period (April 1, 2007–December 31, 2009) 

from the validation period (January 1, 2010–December 31, 2010). Inset text in each panel provides the NSE, RMSE, and correlation 

coefficient (Corr) for both periods.  280 
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3.3 Comparative performance evaluation  

The primary advantage of the differentiable approach is evident in the parameter optimization process. NoahPy paired 

with the Adam optimizer converges extremely rapidly, reaching a high level of accuracy within only 100 iterations (Figure 

5). This is due to the Adam optimizer's use of gradient information and an adaptive learning rate. In contrast, the traditional 

SCE-UA algorithm applied to the Noah and modified Noah LSMs converges much more slowly, requiring significantly 285 

more iterations to approach an optimal solution (Figure 5). While the SCE-UA algorithm's strength is its global search 

capability, which helps it avoid getting trapped in local optima, its convergence becomes prohibitively slow in high-

dimensional parameter spaces, requiring significantly more iterations to find a solution. Furthermore, the gradient-based 

approach demonstrates greater stability. The shaded 95% uncertainty band around the convergence trajectory for NoahPy is 

visibly narrower than for the SCE-UA method ((Figure 5), indicating that the Adam optimizer finds a robust solution more 290 

consistently across repeated runs. 

 
Figure 5. Convergence of NoahPy, the modified Noah LSM, and the original Noah LSM in terms of NSE. Each line represents the mean 

NSE from 10 optimization runs, with the shaded area indicating the 95% uncertainty band. NoahPy was optimized with the Adam 

optimizer, while the other two models were calibrated with the SCE-UA algorithm. 295 

When comparing the calibrated models' ability to simulate soil temperature ((Figure 6), all three setups perform well in 

the shallow soil layers (0.05 m and 0.4 m), with NSE values exceeding 0.9. However, a major performance gap appears in 

the deep soil (2.45 m). The original Noah LSM, which neglects vertical soil heterogeneity, exhibits a pronounced cold bias, 

with an RMSE of 1.68°C (Figure 6i). NoahPy and the modified Noah LSM, which both account for varying soil layers, 

perform significantly better, with RMSE values of 0.51°C (Figure 6c) and 0.85°C (Figure 6f), respectively. In essence, the 300 
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error is magnified with depth because the impact of incorrect thermal properties is compounded over the longer time and 

distance it takes for heat to travel to the deep soil.  

 

Figure 6. Comparison of calibrated model performance for daily soil temperature at the TGL site. Each panel compares in-situ 

observations (red dashed line) against the simulations from the three calibrated models at a specific depth. The models are NoahPy 305 
(optimized with Adam; blue line and shading), the modified Noah LSM (calibrated with SCE-UA; green line and shading), and the 

original Noah LSM (calibrated with SCE-UA; gray dashed line and shading). The shaded areas represent the 95% uncertainty band from 

10 repeated optimization runs. The vertical dashed line separates the calibration and validation periods. 

The results for soil liquid water simulation show an even starker contrast (Figure 7). Both NoahPy and the modified 

Noah LSM produce satisfactory results, with RMSE below 0.05 m³ m⁻³ across all three layers. These models accurately 310 

capture the key seasonal dynamics, including soil moisture fluctuations driven by summer precipitation and the rapid 

changes associated with freeze-thaw phase transitions, which align well with observations. The original Noah LSM, however, 

performs poorly. It fails to capture moisture fluctuations from summer rainfall and shows significant biases in winter. Its 

performance deteriorates sharply with depth, with the NSE value dropping to -0.09 in the deepest layer (2.45 m) (Figure 7i). 

This negative NSE reflects a substantial underestimation of the liquid water increase during the spring thaw. This finding is 315 

consistent with previous research (Wu et al., 2018). 
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A Friedman test performed on the KGE values for all models (Table 2) confirmed a statistically significant difference in 

their overall performance (p ≈ 0). A subsequent Dunn's post-hoc test revealed that both NoahPy and the modified Noah 

LSM performed significantly better than the original Noah LSM. Interestingly, the statistical test showed no significant 

difference between NoahPy and the modified Noah LSM (p = 0.1659). This is expected, as they share identical physics. 320 

However, NoahPy consistently demonstrated practical advantages in performance. As shown in Figure 5, NoahPy converges 

markedly faster with the Adam optimizer, approaching its optimal solution in roughly 100 iterations, whereas the modified 

Noah LSM requires substantially more iterations to converge with the SCE-UA algorithm. Furthermore, NoahPy’s final 

calibrated simulations have noticeably lower uncertainty (i.e., smaller shaded bands in Figures 6 and 7) compared to the 

modified Noah LSM, particularly for winter liquid water content (Figure 7a,c vs. (Figure 7d,f). This lower uncertainty is a 325 

direct result of the more stable and efficient optimization provided by the gradient-based Adam algorithm, highlighting a key 

practical advantage of the differentiable modeling approach.  

Table 2. Mean Kling-Gupta Efficiency (KGE) values for the three calibrated models. Values represent the mean KGE from 10 repeated 

optimization runs for NoahPy, the modified Noah LSM, and the original Noah LSM.  

Variable Depth（m） NoahPy Modified Noah LSM original Noah LSM 

Soil temperature 0.05 0.83 0.79 0.79 

0.1 0.86 0.81 0.8 

0.4 0.93 0.91 0.74 

1.05 0.89 0.85 0.57 

2.45 0.93 0.83 0.28 

Soil liquid water  

content 

0.05 0.91 0.82 0.51 

0.1 0.95 0.88 0.69 

0.4 0.64 0.51 0.23 

1.05 0.64 0.52 0.31 

2.45 0.8 0.56 0.27 
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 330 

Figure 7. Comparison of calibrated model performance for daily liquid soil water at the TGL site. Each panel compares in-situ 

observations (red dashed line) against the simulations from the three calibrated models at a specific depth. The models are NoahPy 

(optimized with Adam; blue line and shading), the modified Noah LSM (calibrated with SCE-UA; green line and shading), and the 

original Noah LSM (calibrated with SCE-UA; gray dashed line and shading). The shaded areas represent the 95% uncertainty band from 

10 repeated optimization runs. The vertical dashed line separates the calibration and validation periods. 335 

4 Discussion 

This study successfully demonstrated the development and application of NoahPy, a fully differentiable land surface 

model for permafrost. Our results confirm that this re-implementation not only preserves the physical integrity of the 

modified Noah LSM but also unlocks a parameter optimization workflow that is significantly faster and more robust than 

traditional methods. The successful calibration and diagnostic analysis in this study highlight the theoretical merits of our 340 

"glass-box" approach. A common alternative for making a physical model compatible with machine learning workflows is to 

develop a surrogate model: a neural network trained to mimic the input-output behavior of the original, non-differentiable 

code (Razavi et al., 2012). While easier to implement, this approach treats the model as a “black box” and suffers from the 
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curse of dimensionality (Asher et al., 2015). As the number of parameters grows, the required simulations increase 

exponentially, making surrogates infeasible for complex LSMs. While such a surrogate could potentially replicate the final 345 

simulation results, it obscures the internal model dynamics. In contrast, the full interpretability of NoahPy allowed us to 

diagnose specific physical process errors, such as the cold bias from the simplified snow scheme and the overestimation of 

winter liquid water due to missing cryosuction physics. This ability to directly attribute simulation errors to specific physical 

parameterizations is a fundamental advantage of the differentiable physics-based approach and is essential for targeted 

scientific model improvement.  350 

Gradient-based optimization is particularly advantageous when coupling NoahPy with neural networks for hybrid 

modeling. It allows the simultaneous calibration of a large number of model parameters, which would be prohibitively 

difficult using traditional gradient-free methods such as SCE-UA. While SCE-UA can perform a global search and avoid 

local minima, its performance degrades substantially in high-dimensional parameter spaces. By contrast, optimizers like 

Adam exploit precise gradients to iteratively improve parameter values, facilitating effective end-to-end training of hybrid 355 

systems. It should be noted that we do not provide absolute comparisons of computational speed, as differences in model 

implementation (Fortran vs Python) and numerical schemes limit direct benchmarking. Instead, the focus here is on the 

iterative optimization capability of gradient-based methods, which underpins the scalability and feasibility of hybrid training 

strategies. 

This framework holds promise for addressing challenges in permafrost domain, where parameterization for key soil 360 

properties in permafrost environment such as Qinghai-Tibet Plateau (QTP) like thermal conductivity (Ji et al., 2024), 

hydraulic conductivity (Hu et al., 2023), and matric potential (Zhao et al., 2023) may be incomplete. While NoahPy, in its 

current form, inherits the physical limitations of its parent model, its true power lies in its potential as a foundational 

framework for a new generation of hybrid models.The NoahPy framework allows for coupling with external machine 

learning models that can learn the complex mapping between environmental covariates (e.g., topography, vegetation, soil 365 

type) and the model's physical parameters (such as hydraulic and thermal parameters) from direct observations (e.g., soil 

temperature, soil moisture content). This could dramatically improve the spatial transferability of parameters across diverse 

regions, reducing the reliance on costly site-specific calibration and mitigating parameter uncertainty, a key challenge in 

permafrost modelling (Harp et al., 2016; Dai et al., 2019). The hybrid, seamless physics-machine learning models coupling 

enabled by automatic differentiation also allows for targeted replacement of model components. For instance, empirical 370 

parameterizations where physical knowledge is weak, such as the Campbell-based hydraulic scheme, can be replaced by an 

embedded neural network. In such a hybrid mode, the neural network can learn more complex and accurate relationships 

from data, while the surrounding physical equations ensure its predictions remain constrained by fundamental laws like the 

conservation of mass and energy.  

This study has two primary limitations. First, while successfully validated at the Tanggula site on the Qinghai-Tibet 375 

Plateau, the performance and applicability of NoahPy in other permafrost regions with different characteristics (e.g., the ice-
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rich Yedoma of Siberia or the boreal forests of North America) have yet to be confirmed. Second, NoahPy inherits the 

known physical deficiencies of the Noah LSM, including a simplistic snow scheme and the omission of processes critical to 

permafrost carbon cycling, such as the effects of soil organic matter, convective heat transfer, and abrupt thaw dynamics. 

The framework presented here is not intended as a final product, but as a flexible and extensible foundation for the 380 

community. By recasting a widely-used LSM into the deep learning ecosystem, we have created a tool that can leverage the 

rapid advancements in computational hardware (e.g., GPUs, TPUs) and software (Sevilla et al., 2022; Kochkov et al., 2024). 

This work helps bridge the gap between process-based modeling and AI, establishing a path toward the next generation of 

hybrid Earth System Models capable of reducing uncertainty and providing more reliable projections of the future of the 

cryosphere. 385 

5 Conclusions 

In this study, we developed NoahPy, a fully differentiable land surface model specifically improved for permafrost 

thermo-hydrology. We successfully recast the widely-used, Fortran-based Noah LSM into a "glass-box" Python framework 

that is both physically interpretable and fully compatible with gradient-based optimization. Based on our results, we draw the 

following key conclusions: 390 

(1) NoahPy perfectly reproduces the numerical behaviour of the modified Noah LSM. Validations show a near-perfect 

match, with NSE values exceeding 0.99 for both soil temperature and liquid water across all soil layers, confirming the 

fidelity of the model's re-implementation. 

(2) The differentiable framework enables robust, gradient-based parameter optimization. Validation at a permafrost site 

on the QTP demonstrates that NoahPy can effectively use backpropagation to learn from observational data. The resulting 395 

calibrated model shows strong performance, achieving NSE values above 0.9 for soil temperature and 0.8 for liquid water.  

(3) The NoahPy-Adam workflow is superior to traditional calibration methods. The combination of the differentiable 

model with a gradient-based optimizer (Adam) results in a parameter optimization that is significantly faster, more stable, 

and yields final simulations with lower uncertainty compared to the traditional SCE-UA algorithm.  

This work delivers a foundational tool that was previously missing for the permafrost community. It closes the technical 400 

gap that has hindered the development of deeply-integrated hybrid models for the cryosphere. This study thus lays the 

necessary groundwork for future AI-based models that aim to lower uncertainty and deliver more credible predictions of 

permafrost's response to a changing climate. 

Code and data availability. The NoahPy model code used in this study is available at https://github.com/nanzt/NoahPy, and the 

exact version used to generate the results presented here is archived on Zenodo (Tian and Nan, 2025b, 405 

https://doi.org/10.5281/zenodo.16530326). The original Noah LSM (v3.4.1) code used in this study is available at 

https://ral.ucar.edu/model/unified-noah-lsm (last access: August 28, 2025). The modified version of Noah LSM code is 
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available at https://doi.org/10.17605/osf.io/g7jqr (Zhang et al., 2022b). The simulation data generated in this study are 

available on Figshare (Tian and Nan, 2025a, https://doi.org/10.6084/m9.figshare.29988163).  

Author contributions. Wenbiao Tian: Formal analysis, Investigation, Methodology, Software, Validation, Writing – original draft, 410 
Writing – review & editing. Hu Yu: Formal analysis, Validation. Shuping Zhao: Funding acquisition, Supervision, Writing – original 

draft, Writing – review & editing. Yuhe Cao: Formal analysis. Wenjun Yi: Investigation, Writing – original draft, Writing – review & 

editing. Jiwei Xu: Writing – original draft, Writing – review & editing. Zhuotong Nan: Conceptualization, Funding acquisition, 

Methodology, Resources, Writing – original draft, Writing – review & editing.  

Competing interests. The contact author has declared that none of the authors has any competing interests. 415 

Acknowledgements: This work is supported by the National Key Research and Development Program of China (No. 2022YFF0711703) 

and National Natural Science Foundation of China (No. 42171125, 42571149).  

References 

Asher, M. J., Croke, B. F. W., Jakeman, A. J., and Peeters, L. J. M.: A review of surrogate models and their application to 

groundwater modeling, Water Resources Research, 51, 5957-5973, https://doi.org/10.1002/2015WR016967, 2015. 420 

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D 

neural networks, Nature, 619, 533-538, https://doi.org/10.1038/s41586-023-06185-3, 2023. 

Bonavita, M. and Laloyaux, P.: Machine Learning for Model Error Inference and Correction, Journal of Advances in 

Modeling Earth Systems, 12, e2020MS002232, https://doi.org/10.1029/2020MS002232, 2020. 

Brandhorst, N. and Neuweiler, I.: Impact of parameter updates on soil moisture assimilation in a 3D heterogeneous hillslope 425 

model, Hydrology and Earth System Sciences, 27, 1301-1323, https://doi.org/10.5194/hess-27-1301-2023, 2023. 

Campbell, G. S.: A simple method for determining unsaturated conductivity from moisture retention data, Soil Science, 117, 

https://doi.org/10.1097/00010694-197406000-00001, 1974. 

Chen, F., Janjić, Z., and Mitchell, K.: Impact of Atmospheric Surface-layer Parameterizations in the new Land-surface 

Scheme of the NCEP Mesoscale Eta Model, Boundary-Layer Meteorology, 85, 391-421, 430 

https://doi.org/10.1023/A:1000531001463, 1997. 

Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.-L., Koren, V., Duan, Q. Y., Ek, M., and Betts, A.: Modeling of land 

surface evaporation by four schemes and comparison with FIFE observations, Journal of Geophysical Research: 

Atmospheres, 101, 7251-7268, https://doi.org/10.1029/95JD02165, 1996. 

https://doi.org/10.5194/egusphere-2025-4253
Preprint. Discussion started: 2 September 2025
c© Author(s) 2025. CC BY 4.0 License.



   

 

21 
 

Chen, H., Nan, Z., Zhao, L., Ding, Y., Chen, J., and Pang, Q.: Noah Modelling of the Permafrost Distribution and 435 

Characteristics in the West Kunlun Area, Qinghai-Tibet Plateau, China, Permafrost and Periglacial Processes, 26, 160-174, 

https://doi.org/10.1002/ppp.1841, 2015. 

Chen, M., Qian, Z., Boers, N., Jakeman, A. J., Kettner, A. J., Brandt, M., Kwan, M.-P., Batty, M., Li, W., Zhu, R., Luo, W., 

Ames, D. P., Barton, C. M., Cuddy, S. M., Koirala, S., Zhang, F., Ratti, C., Liu, J., Zhong, T., Liu, J., Wen, Y., Yue, S., 

Zhu, Z., Zhang, Z., Sun, Z., Lin, J., Ma, Z., He, Y., Xu, K., Zhang, C., Lin, H., and Lü, G.: Iterative integration of deep 440 

learning in hybrid Earth surface system modelling, Nature Reviews Earth & Environment, 4, 568-581, 

https://doi.org/10.1038/s43017-023-00452-7, 2023. 

Côté, J. and Konrad, J.-M.: A generalized thermal conductivity model for soils and construction materials, Canadian 

Geotechnical Journal, 42, 443-458, https://doi.org/10.1139/t04-106, 2005. 

Dai, Y., Xin, Q., Wei, N., Zhang, Y., Shangguan, W., Yuan, H., Zhang, S., Liu, S., and Lu, X.: A Global High-Resolution 445 

Data Set of Soil Hydraulic and Thermal Properties for Land Surface Modeling, Journal of Advances in Modeling Earth 

Systems, 11, 2996-3023, https://doi.org/10.1029/2019MS001784, 2019. 

Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA global optimization method for calibrating 

watershed models, Journal of Hydrology, 158, 265-284, https://doi.org/10.1016/0022-1694(94)90057-4, 1994. 

Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, J. D.: Implementation of 450 

Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, 

Journal of Geophysical Research: Atmospheres, 108, https://doi.org/10.1029/2002JD003296, 2003. 

Feng, D., Liu, J., Lawson, K., and Shen, C.: Differentiable, Learnable, Regionalized Process-Based Models With 

Multiphysical Outputs can Approach State-Of-The-Art Hydrologic Prediction Accuracy, Water Resources Research, 58, 

e2022WR032404, https://doi.org/10.1029/2022WR032404, 2022. 455 

Harp, D. R., Atchley, A. L., Painter, S. L., Coon, E. T., Wilson, C. J., Romanovsky, V. E., and Rowland, J. C.: Effect of soil 

property uncertainties on permafrost thaw projections: a calibration-constrained analysis, The Cryosphere, 10, 341-358, 

https://doi.org/10.5194/tc-10-341-2016, 2016. 

He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.: The first high-resolution meteorological forcing dataset for 

land process studies over China, Scientific Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y, 2020. 460 

Hu, G., Zhao, L., Li, R., Park, H., Wu, X., Su, Y., Guggenberger, G., Wu, T., Zou, D., Zhu, X., Zhang, W., Wu, Y., and Hao, 

J.: Water and heat coupling processes and its simulation in frozen soils: Current status and future research directions, 

Catena, 222, https://doi.org/10.1016/j.catena.2022.106844, 2023. 

Irrgang, C., Boers, N., Sonnewald, M., Barnes, E. A., Kadow, C., Staneva, J., and Saynisch-Wagner, J.: Towards neural 

Earth system modelling by integrating artificial intelligence in Earth system science, Nature Machine Intelligence, 3, 667-465 

674, https://doi.org/10.1038/s42256-021-00374-3, 2021. 

https://doi.org/10.5194/egusphere-2025-4253
Preprint. Discussion started: 2 September 2025
c© Author(s) 2025. CC BY 4.0 License.



   

 

22 
 

Ji, H., Fu, X., Nan, Z., and Zhao, S.: An effective medium theory-based unified model for estimating thermal conductivity of 

unfrozen and frozen soils, CATENA, 239, 107942, https://doi.org/10.1016/j.catena.2024.107942, 2024. 

Ji, H., Nan, Z., Hu, J., Zhao, Y., and Zhang, Y.: On the Spin-Up Strategy for Spatial Modeling of Permafrost Dynamics: A 

Case Study on the Qinghai-Tibet Plateau, Journal of Advances in Modeling Earth Systems, 14, e2021MS002750, 470 

https://doi.org/10.1029/2021MS002750, 2022. 

Kalnay, E. and Kanamitsu, M.: Time Schemes for Strongly Nonlinear Damping Equations, Monthly Weather Review, 116, 

1945-1958, https://doi.org/10.1175/1520-0493(1988)116<1945:TSFSND>2.0.CO;2, 1988. 

Kingma, D. and Ba, J.: Adam: A Method for Stochastic Optimization, Computer Science, 

https://doi.org/10.48550/arXiv.1412.6980, 2014. 475 

Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith, J., Mooers, G., Klöwer, M., Lottes, J., Rasp, S., Düben, P., 

Hatfield, S., Battaglia, P., Sanchez-Gonzalez, A., Willson, M., Brenner, M. P., and Hoyer, S.: Neural general circulation 

models for weather and climate, Nature, 632, 1060-1066, https://doi.org/10.1038/s41586-024-07744-y, 2024. 

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, 

Z., Hu, W., Merose, A., Hoyer, S., Holland, G., Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., and Battaglia, P.: Learning 480 

skillful medium-range global weather forecasting, Science, 382, 1416-1421, https://doi.org/10.1126/science.adi2336, 2023. 

Li, P., Wang, D., Ding, C., and Reng, Y.: Distribution characteristics of soil saturated hydraulic conductivity and soil bulk 

density in a small watershed in the alpine zone of the Loess Plateau, Science of Soil and Water Conservation, 17, 9-17, 

https://doi.org/10.16843/j.sswc.2019.04.002, 2019. 

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.: What 485 

Role Does Hydrological Science Play in the Age of Machine Learning?, Water Resources Research, 57, e2020WR028091, 

https://doi.org/10.1029/2020WR028091, 2021. 

O'Loughlin, R. J., Li, D., Neale, R., and O'Brien, T. A.: Moving beyond post hoc explainable artificial intelligence: a 

perspective paper on lessons learned from dynamical climate modeling, Geoscientific Model Development, 18, 787-802, 

https://doi.org/10.5194/gmd-18-787-2025, 2025. 490 

Obu, J.: How Much of the Earth's Surface is Underlain by Permafrost?, Journal of Geophysical Research: Earth Surface, 126, 

e2021JF006123, https://doi.org/10.1029/2021JF006123, 2021. 

Pan, H. L. and Mahrt, L.: Interaction between soil hydrology and boundary-layer development, Boundary-Layer 

Meteorology, 38, 185-202, https://doi.org/10.1007/BF00121563, 1987. 

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., 495 

Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and 

https://doi.org/10.5194/egusphere-2025-4253
Preprint. Discussion started: 2 September 2025
c© Author(s) 2025. CC BY 4.0 License.



   

 

23 
 

Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library, in: Proceedings of the 33rd 

International Conference on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY, USA, 2019. 

Razavi, S., Tolson, B. A., and Burn, D. H.: Review of surrogate modeling in water resources, Water Resources Research, 48, 

https://doi.org/10.1029/2011WR011527, 2012. 500 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process 

understanding for data-driven Earth system science, Nature, 566, 195-204, https://doi.org/10.1038/s41586-019-0912-1, 

2019. 

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., 

Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, 505 

Bulletin of the American Meteorological Society, 85, 381-394, https://doi.org/10.1175/BAMS-85-3-381, 2004. 

Rosero, E., Yang, Z.-L., Gulden, L. E., Niu, G.-Y., and Gochis, D. J.: Evaluating Enhanced Hydrological Representations in 

Noah LSM over Transition Zones: Implications for Model Development, Journal of Hydrometeorology, 10, 600-622, 

https://doi.org/10.1175/2009JHM1029.1, 2009. 

Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, 510 

Nature Machine Intelligence, 1, 206-215, https://doi.org/10.1038/s42256-019-0048-x10.1038/s42256-019-0048-x, 2019. 

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning representations by back-propagating errors, Nature, 323, 533-

536, https://doi.org/10.1038/323533a0, 1986. 

Schädel, C., Rogers, B. M., Lawrence, D. M., Koven, C. D., Brovkin, V., Burke, E. J., Genet, H., Huntzinger, D. N., Jafarov, 

E., McGuire, A. D., Riley, W. J., and Natali, S. M.: Earth system models must include permafrost carbon processes, 515 

Nature Climate Change, 14, 114-116, https://doi.org/10.1038/s41558-023-01909-9, 2024. 

Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobbhahn, M., and Villalobos, P.: Compute Trends Across Three Eras of 

Machine Learning, 2022 International Joint Conference on Neural Networks (IJCNN), 18-23 July 2022, 1-8,  

https://doi.org/10.1109/IJCNN55064.2022.9891914,  

Shen, C., Appling, A. P., Gentine, P., Bandai, T., Gupta, H., Tartakovsky, A., Baity-Jesi, M., Fenicia, F., Kifer, D., Li, L., 520 

Liu, X., Ren, W., Zheng, Y., Harman, C. J., Clark, M., Farthing, M., Feng, D., Kumar, P., Aboelyazeed, D., Rahmani, F., 

Song, Y., Beck, H. E., Bindas, T., Dwivedi, D., Fang, K., Höge, M., Rackauckas, C., Mohanty, B., Roy, T., Xu, C., and 

Lawson, K.: Differentiable modelling to unify machine learning and physical models for geosciences, Nature Reviews 

Earth & Environment, 4, 552-567, https://doi.org/10.1038/s43017-023-00450-9, 2023. 

Stuurop, J. C., van der Zee, S. E. A. T. M., Voss, C. I., and French, H. K.: Simulating water and heat transport with freezing 525 

and cryosuction in unsaturated soil: Comparing an empirical, semi-empirical and physically-based approach, Advances in 

Water Resources, 149, 103846, https://doi.org/10.1016/j.advwatres.2021.103846, 2021. 

https://doi.org/10.5194/egusphere-2025-4253
Preprint. Discussion started: 2 September 2025
c© Author(s) 2025. CC BY 4.0 License.



   

 

24 
 

Sun, R., Pan, B., and Duan, Q.: Learning Distributed Parameters of Land Surface Hydrologic Models Using a Generative 

Adversarial Network, Water Resources Research, 60, e2024WR037380, https://doi.org/10.1029/2024WR037380, 2024. 

Szabó, B., Kassai, P., Plunge, S., Nemes, A., Braun, P., Strauch, M., Witing, F., Mészáros, J., and Čerkasova, N.: Addressing 530 

soil data needs and data gaps in catchment-scale environmental modelling: the European perspective, Soil, 10, 587-617, 

https://doi.org/10.5194/soil-10-587-2024, 2024. 

Teuling, A. J., Uijlenhoet, R., van den Hurk, B., and Seneviratne, S. I.: Parameter Sensitivity in LSMs: An Analysis Using 

Stochastic Soil Moisture Models and ELDAS Soil Parameters, Journal of Hydrometeorology, 10, 751-765, 

https://doi.org/10.1175/2008JHM1033.1, 2009. 535 

Tian, W. and Nan, Z.: Data associated with the paper "NoahPy: A differentiable Noah land surface model for simulating 

permafrost thermo-hydrology". figshare [dataset], https://doi.org/10.6084/m9.figshare.29988163, 2025a. 

Tian, W. and Nan, Z.: wbtian/NoahPy: NoahPy (v1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.16530326, 2025b. 

Tsai, W.-P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., Liu, J., and Shen, C.: From calibration to parameter learning: 

Harnessing the scaling effects of big data in geoscientific modeling, Nature Communications, 12, 5988, 540 

https://doi.org/10.1038/s41467-021-26107-z, 2021. 

Wang, C., Jiang, S., Zheng, Y., Han, F., Kumar, R., Rakovec, O., and Li, S.: Distributed Hydrological Modeling With 

Physics-Encoded Deep Learning: A General Framework and Its Application in the Amazon, Water Resources Research, 

60, e2023WR036170, https://doi.org/10.1029/2023WR036170, 2024. 

Wang, N., Zhang, D., Chang, H., and Li, H.: Deep learning of subsurface flow via theory-guided neural network, Journal of 545 

Hydrology, 584, 124700, https://doi.org/10.1016/j.jhydrol.2020.124700, 2020. 

Wang, Z., Shao, M., Huang, L., Pei, Y., and Li, R.: Distribution and Influencing Factors of Soil Saturated Hydraulic 

Conductivity Under Different Land Use Patterns in Eastern Qinghai Province, Journal of Soil and Water Conservation, 35, 

150-155, https://doi.org/10.13870/j.cnki.stbcxb.2021.03.021, 2021. 

Werbos, P. J.: Backpropagation through time: what it does and how to do it, Proceedings of the IEEE, 78, 1550-1560, 550 

https://doi.org/10.1109/5.58337, 1990. 

Wi, S. and Steinschneider, S.: Assessing the Physical Realism of Deep Learning Hydrologic Model Projections Under 

Climate Change, Water Resources Research, 58, e2022WR032123, https://doi.org/10.1029/2022WR032123, 2022. 

Wu, X. and Nan, Z.: A multilayer soil texture dataset for permafrost modeling over Qinghai-Tibetan Plateau, 2016 IEEE 

International Geoscience and Remote Sensing Symposium (IGARSS), 10-15 July 2016, 4917-4920,  555 

https://doi.org/10.1109/IGARSS.2016.7730283,  

Wu, X., Nan, Z., Zhao, S., Zhao, L., and Cheng, G.: Spatial modeling of permafrost distribution and properties on the 

Qinghai-Tibet Plateau, Permafrost and Periglacial Processes, 29, 86-99, https://doi.org/10.1002/ppp.1971, 2018. 

https://doi.org/10.5194/egusphere-2025-4253
Preprint. Discussion started: 2 September 2025
c© Author(s) 2025. CC BY 4.0 License.



   

 

25 
 

Xie, W., Kimura, M., Takaki, K., Asada, Y., Iida, T., and Jia, X.: Interpretable Framework of Physics-Guided Neural 

Network With Attention Mechanism: Simulating Paddy Field Water Temperature Variations, Water Resources Research, 560 

58, e2021WR030493, https://doi.org/10.1029/2021WR030493, 2022. 

Zhang, G., Nan, Z., Hu, N., Yin, Z., Zhao, L., Cheng, G., and Mu, C.: Qinghai-Tibet Plateau Permafrost at Risk in the Late 

21st Century, Earth's Future, 10, e2022EF002652, https://doi.org/10.1029/2022EF002652, 2022a. 

Zhang, G., Nan, Z., Hu, N., Yin, Z., Zhao, L., Cheng, G., and Mu, C.: Qinghai-Tibet Plateau permafrost at risk in the late 

21st century, OSF [code], https://doi.org/10.17605/osf.io/g7jqr, 2022b. 565 

Zhang, X.: Vegetation map of the People's Republic of China (1:1 000 000), Geology Press, 2007. 

Zhang, X., Sun, S. F., and Xue, Y.: Development and Testing of a Frozen Soil Parameterization for Cold Region Studies, 

Journal of Hydrometeorology, 8, 690-701, https://doi.org/10.1175/JHM605.1, 2007. 

Zhao, L., Wu, Q., Marchenko, S. S., and Sharkhuu, N.: Thermal state of permafrost and active layer in Central Asia during 

the international polar year, Permafrost and Periglacial Processes, 21, 198-207, https://doi.org/10.1002/ppp.688, 2010. 570 

Zhao, Y., Nan, Z., Cao, Z., Ji, H., and Hu, J.: Evaluation of Parameterization Schemes for Matric Potential in Frozen Soil in 

Land Surface Models: A Modeling Perspective, Water Resources Research, 59, e2023WR034644, 

https://doi.org/10.1029/2023WR034644, 2023. 

Zheng, D., van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M. J., Hoekstra, A. Y., and Chen, Y.: Augmentations to the 

Noah Model Physics for Application to the Yellow River Source Area. Part I: Soil Water Flow, Journal of 575 

Hydrometeorology, 16, 2659-2676, https://doi.org/10.1175/JHM-D-14-0198.1, 2015. 

 

https://doi.org/10.5194/egusphere-2025-4253
Preprint. Discussion started: 2 September 2025
c© Author(s) 2025. CC BY 4.0 License.


