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Abstract. Accurately representing permafrost in Earth System Models is a grand challenge that creates major uncertainty. A
promising path forward is to create hybrid models that synergize process-based physics with deep learning, but this is
fundamentally hindered by the non-differentiable nature of traditional land surface models (LSMs), which are incompatible
with modern AI workflows. To overcome this limitation, we present NoahPy, a differentiable LSM developed by
reconstructing the Noah LSM’s governing partial differential equations into a process-encapsulated Recurrent Neural Network
(RNN), with the heat-moisture solver forming the computational core. We first demonstrate that NoahPy very closely
replicates the numerical behaviour of the modified Noah LSM, achieving Nash-Sutcliffe Efficiency (NSE) coefficients above
0.99 for both soil temperature and liquid water. We then show that at a permafrost site, the calibrated NoahPy achieves robust
simulation performance for soil temperature (NSE > 0.9) and liquid water (NSE > 0.8). Critically, the differentiable workflow,
when combined with the Adam optimizer, is significantly faster, more stable, and yields simulations with lower uncertainty
compared to traditional Shuffled Complex Evolution (SCE-UA) calibration algorithm. NoahPy thus provides a foundational,
"glass-box" framework that closes a key technical gap, enabling the development of the next generation of hybrid Al-physics

models needed to more reliably predict the future of the cryosphere.

1 Introduction

The advent of deep learning has catalyzed a paradigm shift in Earth system science. Large-scale, data-driven models like
Google DeepMind’s GraphCast (Lam et al., 2023) and Huawei’s Pangu-Weather (Bi et al., 2023) demonstrate remarkable skill
in Earth system forecasting. However, their predictive power is often shadowed by a critical limitation: as "black-box" systems,
they offer no guarantee of physical consistency or interpretability (Nearing et al., 2021; Wi and Steinschneider, 2022). While
techniques from eXplainable Al (XAI) can provide post-hoc insights (Rudin, 2019; O'loughlin et al., 2025), they cannot
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enforce physical laws, creating the risk of learning statistically powerful but mechanistically flawed relationships. This
challenge is especially pronounced in complex, data-scare environments like the cryosphere. This "physics gap" has spurred a
movement towards hybrid modeling that synergize the predictive prowess of machine learning with the mechanistic rigor of
process-based physical models (Irrgang et al., 2021; Reichstein et al., 2019; Chen et al., 2023).

A powerful approach in this domain is the physics-informed neural network, which embeds the governing equations of a
physical system directly into the model’s architecture (Reichstein et al., 2019; Chen et al., 2023). Unlike "loosely-coupled"
hybrids that use physics as a soft penalty in the loss function (Wang et al., 2020; Xie et al., 2022) or use machine learning to
correct a physical model’s output (Bonavita and Laloyaux, 2020), this deeply-integrated approach imposes hard constraints,
rendering the model structurally incapable of violating fundamental laws. The primary obstacle to this integration for the land
surface and permafrost modeling community has been technical: most established geophysical models, including well-known
land surface models (LSMs), are implemented as non-differentiable numerical solvers, making them incompatible with the
gradient-based optimization central to deep learning (Rumelhart et al., 1986). A transformative solution is differentiable
programming, which involves rewriting a physical model’s logic using differentiable operations within a machine learning
framework like PyTorch or TensorFlow. This recasts the physical model into a "glass-box" system that is both physically
interpretable and trainable end-to-end via backpropagation (Shen et al., 2023). Recent successes in hydrology have
demonstrated the potential of this approach, yielding models with higher accuracy and improved generalization (Feng et al.,
2022; Wang et al., 2024).

This approach is particularly critical for modeling permafrost. Improving the representation of freeze-thaw processes in
Earth system models is a grand challenge (Schédel et al., 2024). Covering nearly 15% of the Northern Hemisphere's exposed
land area, permafrost is a crucial regulator of global water, energy, and carbon cycles (Obu, 2021). Despite its vast scale, state-
of-the-art LSMs), as the foundational components of climate models, have well-documented deficiencies in representing
freeze-thaw processes in these regions (Matthes et al., 2025; Abdelhamed et al., 2023). They often simplify or omit key thermo-
hydrological dynamics, such as abrupt thaw (thermokarst), the formation of excess ground ice, the insulation from thick organic
soil layers, and complex water transport at the freeze-thaw front (cryosuction). These simplifications lead to significant biases
in simulating active layer dynamics and the rate of permafrost thaw, and low confidence in the timing and magnitude of the
permafrost carbon feedback, undermining the reliability of climate projections and estimates of the remaining carbon budget.
While significant effort has gone into improving the physics of permafrost specific models (Ji et al., 2022; Wu et al., 2018;
Xiao et al., 2013; Zhao et al., 2023), these improved models remain non-differentiable, preventing their integration into model
Al-driven calibration and hybrid modeling workflows.

A differentiable LSM, by itself, does not inherently fix these physical deficiencies. Its true power is unlocked when
applied to an already improved physical core, enabling it to serve as a foundational component for more sophisticated hybrid
artificial intelligence (Al) systems. A differentiable, permafrost-focused LSM enables Al-driven parameterization, where the

differentiable LSM is coupled with a neural network that learns to predict its internal parameters (e.g., hydraulic conductivity,
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thermal properties) from external data, thus addressing the long-standing challenge of parameter uncertainty (Tsai et al., 2021;
Wang et al., 2024; Sun et al., 2024). More importantly, it can be embedded as a physics core within a larger, end-to-end
trainable Al-based Earth system model. This forces the larger model to follow the laws of land surface physics, providing
essential bounds for its predictions in data-scarce permafrost regions.

Therefore, creating a differentiable permafrost-focused LSM is not an incremental step but a necessary foundation for
the next generation of hybrid Earth system models. To address this gap, we introduce NoahPy: a differentiable LSM built upon
a version of the Noah LSM already modified and validated for simulating permafrost thermos-hydrology on the Qinghai-Tibet
Plateau (QTP). We have rewritten this permafrost-centric, Fortran-based model into a differentiable Python framework by
encapsulating its governing partial differential equations within a Recurrent Neural Network (RNN) structure. This novel
implementation preserves the complete mechanistic integrity of the physically-improved model while unlocking the full power

of gradient-based optimization.

2 Material and methods
2.1 The modified Noah LSM

The Noah LSM (v3.4.1) (Chen et al., 1997) is a widely used model that simulates one-dimensional thermo-hydrological
transport within the atmosphere-vegetation-soil continuum. It serves as the land-surface module in prominent systems like the
Weather Research and Forecasting (WRF) model (Ek et al., 2003) and the Global Land Data Assimilation System (GLDAS)
(Rodell et al., 2004). In the Noah LSM, the governing equation for soil heat transfer is the one-dimensional heat conduction

equation:

or, o ,0oI,
C,—=—| 21— |+ 1

‘ot oz ( oz j Q M
where T is the soil temperature (K), 7 is time (s), z is soil depth (m), C is the volumetric soil heat capacity (J-m3-K!), A is the
soil thermal conductivity (W-m™-K™), and Q represents the source/sink term (W-m™), such as the latent heat of fusion during

ice-water phase change. The soil heat capacity, Cs , is calculated as a weighted sum of its constituents:

C, (0, 6,

ice
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where 6 is the volumetric water content (m3-m), 8;., is the volumetric ice content (m3-m™), 6; is the saturated volumetric
water content (m*-m), and C,,, Cic,, Csoi1, and Cq;,- are the heat capacities of water, ice, soil solids, and air, respectively.

Liquid water movement in the soil is simulated by the Richards’ equation (Chen et al., 1996):

00 @ [ ae}+ oK (0) +5(0) (3)
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where D = K(6) =5

known as the soil-water diffusivity (m?-s™!), K is the hydraulic conductivity (m's™), ¥ is the soil matric

potential (m). S represents water sources and sinks (s') (e.g., infiltration and evapotranspiration). The empirical soil hydraulic

scheme proposed by Campbell (1974) is utilized to parameterize W¥—6 and K—6, relationships :

K(0)=K, (—TM (4)

Y(0)="Y, (g]b )

where Kj represent the saturated hydraulic conductivity (m-s), W, is the soil water potential at air entry (m), and b is
an empirical parameter (dimensionless) related to the pore size distribution of the soil matrix.

For this study, we used a version of the Noah LSM specifically modified for permafrost applications (Chen et al., 2015;
Wu et al., 2018), which improves upon the original model (Noah LSM v3.4.1) in several key ways. These modifications
include an improved thermodynamic roughness length parameterization for sparse vegetation (Rodell et al., 2004) to correct
the underestimation of ground heat flux, a new thermal conductivity scheme (C6té and Konrad, 2005) better suited for the
coarse-grained, high-porosity soils common on the QTP, and an impedance factor related to ground ice content, which
constrains the soil hydraulic conductivity to account for the impedance of water flow by ice (Zhang et al., 2007). The model’s
soil column was extended to a depth beyond the zero annual amplitude (~10 m for typical permafrost on the QTP (Zhao et al.,
2010) and discretized into multiple, vertically heterogeneous soil layers. This modified Noah LSM has been successfully
validated at the Tanggula (TGL) site and applied in previous studies of permafrost degradation on the QTP (Ji et al., 2022;

Zhang et al., 2022a), confirming its robust simulation capabilities in permafrost environment.

2.2 Implementation of NoahPy

The implementation of NoahPy involves recasting the numerical solution of the modified Noah LSM’s governing
equations into a differentiable computational structure. We use the following partial differential equations (PDEs) set to
describe the dynamic system of the modified Noah LSM:

2 5(t,2) = F(s(t,2), u(t, 2), f7)
y(t,2) = G(s(t,2),u(t, 2), B%)

where, s(t, z) represents the state vectors that vary in time ¢ and space z (e.g. soil temperature profile), u(t, z) is the

(6)

input vector of external forcings (e.g., meteorological data), y(t, z) is the output vector (e.g., simulated variables for
validation), and BF and B¢ are the parameters associated with the state update function F and the output function G.
In the Noah LSM, the heat conduction (Equation 1) and Richards' (Equation 3) equations are solved using a finite-

difference numerical approach. Following the spatial discretization scheme of Pan and Mahrt (1987) and the temporal scheme
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of Kalnay and Kanamitsu (1988), the PDEs are expressed in terms of explicit coefficients and implicit states. After
discretization, the PDEs can be converted into a system of algebraic equations, which is then efficiently solved using the
tridiagonal matrix algorithm. To ensure numerical stability, this calculation is applied twice for each time step when infiltration
fluxes are large (Zheng et al., 2015).

The discretized form of Richards’ equation, for example, for each soil layer £ and time step ¢ is:

pt+i_pgt gt+l_gt+ pt+i_gt+
At = L (0, ) o — (0 I kg, — K + 5] (7)
By letting A = — %, C=- Z(Zi"; ,Af, Equation 7 can be rearranged to:
A0 — 05_1) + B(6;™ — 67) + C(6;41 — Oyr) = RHS (8)
RHS = “KZ—;""‘ At + AOE — 0f_) + C(6f — 6L,1),B=1—(A+C) ©)

where Az is the thickness of the k-th soil layer; and AZy is the distance between the centers of layer &k and layer k+1. This
equation can be rearranged into a tridiagonal system of linear equations, which is solved at each time step to update the soil

moisture profile, 8t*1:

_ | optet gt ] - _
B¢ 0 0o o . o] % -4 RHS,
4 B, G o || &6 RHS,
0 4 B C 0 - 0| &"-6 RHS,
S 0 : - (10)
0 = 0 4, B, G, 0 |lgr-6,| |RHS
0 A 0 0 A](—l Bk—l Ck—] 0t+1 ali RHSk—l
1
[0 000 A B g | | RS,

To make this process differentiable, we implemented the model within a RNN framework. A standard RNN updates an

abstract hidden state, h;, using a learned function (Figure 1a):

by = (Wil +W,x, +b,) (11)

where o is the nonlinear activation function; h;_; and h; are the hidden states at the previous and current time steps,
respectively; W, and W, are the weight matrices applied to the previous hidden state and the current input vector Xx;,
respectively; and by, is the bias vector.

In NoahPy, we replace this learned function with the entire physical time-step solution described above. The state of the
system is a vector of physically meaningful variables, s; (e.g., soil temperature, moisture), which is updated according to the

model's deterministic physics (Figure 1b):
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St =FNoah LSM (St—l’ Xt» ,B) (12)

where Fyoqn Lsm Tepresents the complete numerical solution for one time step, including the differentiable solver for the

tridiagonal system derived from Equation 6; x, is the meteorological forcing, and E’) is the set of model parameters. This is
made possible by implementing every step of the numerical solution using the differentiable operations native to the PyTorch
deep learning library (Paszke et al., 2019).

It is important to note that this reformulation includes all physical parameterizations, such as those for vegetation and
snow processes shown in Figure lc. While some of these processes are mathematically not strictly differentiable, re-
implementing them within PyTorch ensures that a valid gradient can be computed for every operation via the automatic
differentiation engine. This makes the model differentiable in the context of gradient-based optimization. A specific example
of this is the handling of phase-dependent processes. The Noah LSM handles the latent heat of fusion using a source term
method, as represented by the O term in the heat conduction equation (Equation 1). This term explicitly calculates and applies
the latent heat required to be released or absorbed to keep the soil temperature at the freezing point during a phase change.
While this represents an abrupt physical transition, numerically, this is not a true discontinuity but is implemented as a
conditional logic check. In NoahPy, this entire conditional logic is re-expressed using a chain of native, computationally
differentiable PyTorch operations, primarily torch.where, torch.min, and torch.max. PyTorch's automatic differentiation
engine is designed to backpropagate through these subgradients, which is the same fundamental principle that enables the
training of neural networks with ReLU activations (Glorot et al.). This numerical implementation avoids a mathematical
discontinuity. Therefore, PyTorch's autograd engine can compute a valid gradient through this logic.

By constructing the model in this way, the entire time-stepping simulation allows the gradient of any model output with
respect to any parameter (f) to be calculated efficiently using the backpropagation through time (BPTT) (Werbos, 1990),
powered by PyTorch’s automatic differentiation engine. Furthermore, all operations in NoahPy are vectorized to maximize the

parallel computing power of modern hardware.
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Figure 1. NoahPy architecture as a physics-based Recurrent Neural Network (RNN). (a) A standard RNN recurrent cell; (b) The NoahPy

recurrent cell, which replaces the learned transformation with the physical model (Fnoah Lsm); (¢) The unfolded representation of the NoahPy
simulation, where the model state (S) is updated at each time step. X, S, and 0 represent the meteorological forcing, state, and observation

vectors, respectively, and f is the vector of model parameters.

2.3 Validations
2.3.1 Validation of numerical equivalence

The first validation step was to confirm that NoahPy, written in Python, accurately reproduces the numerical output
of the original Fortran-based modified Noah LSM. This benchmark test ensures that the model reformulation process did
not introduce numerical artifacts. The experiment was conducted at three randomly selected grid cells on the QTP: Gridl
(28.75°N, 93.85°E), Grid2 (34.75°N, 98.25°E) and Grid3 (37.55°N, 100.55°E). Both models were driven by the China
Meteorological Forcing Dataset (ITP-forcing) (He et al., 2020) for the period of 2000-2010. The year 1999 was used as a

spin-up period (repeating for 500 years) to allow the model to reach equilibrium, and the model states at the end of this period
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were used as the initial conditions for the formal simulation. For both models, soil types were defined using the MSTD
dataset (Wu and Nan, 2016), and vegetation types were based on the 1:1,000,000 China Vegetation Type Map (Zhang,
2007). Since the goal was a direct numerical comparison, model parameters were assigned using the default lookup table
values corresponding to the soil and vegetation types. The soil column was configured with 18 layers extending to a depth of
152 m.

To quantify the agreement between the two models, we used three statistical metrics: Bias, Pearson correlation coefficient

(Corr), and the Nash-Sutcliffe Efficiency coefficient (NSE):

N

Bias:%lz_ll(y,- ) (13)
S[(-5)07 )]
Corr = =l (14)

NSE=1-4-2—  — (15)

where, y; is a value from the NoahPy simulation time series, y;" is the corresponding value from the modified Noah LSM

simulation,y and y*are the mean values of their respective time series, and N is the total number of samples.

2.3.2 Validation of backpropagation capability

To validate NoahPy’s capability for backpropagation-driven parameter optimization, we conducted an experiment using
observational data from the TGL permafrost site on the QTP. The model was driven by daily meteorological observations from
the TGL station from April 1, 2007 to December 31, 2010. These data included air temperature, wind speed, relative humidity,
incoming shortwave and longwave radiation, and precipitation. In-situ observations of active layer soil temperature and liquid
water content from the site were used to constrain the model during optimization. The dataset was split into a training period
(April 1, 2007 to December 31, 2009) and a validation period (January 1, 2010 to December 31, 2010). The NoahPy soil
column was discretized into 20 layers to match the observation depths at the site. This included ten shallow, higher-resolution

layers (at 0.045, 0.091, 0.166, 0.289, 0.493, 0.829, 1.2, 1.6, 2.0, and 2.4 m) to capture rapid variations near the surface, and
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ten deeper layers (2.8, 3.8, 4.8, 5.8, 6.8, 7.8, 8.8, 10.8, 12.8, and 14.8 m) extending to 14.8 m. The lower boundary of the
simulation domain was set to a depth of 40 m, with the boundary temperature condition prescribed according to previous
studies (Chen et al., 2015).

We selected four key soil hydraulic parameters, known to be highly sensitive to liquid water content (Brandhorst and
Neuweiler, 2023; Szabo et al., 2024; Teuling et al., 2009), as the target for optimization: saturated hydraulic conductivity (Ky),
saturated water content (6), soil matric potential at air entry (), and the pore-size distribution index (b). The allowable
ranges for these parameters, drawn from previous studies (Rosero et al., 2009; Stuurop et al., 2021; Li et al., 2019; Wang et
al., 2021), are provided in Table 1. Initial values were chosen randomly within these bounds. To ensure physical realism, we
imposed a constraint that parameter values for the same soil type could not vary by more than 10% across different depths
(Zhao et al., 2023).

The observational data for this study extend to a maximum depth of 2.45 m, corresponding to the model's 10th soil layer.
Therefore, simulated liquid water content from the top ten model layers was interpolated to the measurement depths. The NSE
between the interpolated simulations and the observations was used as the loss function to be maximized. We used the widely
adopted Adam optimizer (Kingma and Ba, 2014) with a learning rate of 0.0005 and default decay rates of 0.9 and 0.999.To
improve convergence, a ReduceLROnPlateau learning rate scheduler was implemented. This scheduler monitored the NSE on
the validation set and automatically reduced the learning rate by a factor of 0.1 if no improvement was observed for ten
consecutive epochs. The training was run for a maximum of 300 epochs, with a minimum learning rate of 1 x 107 to prevent
stagnation. The agreement between the optimized model simulations and the observations was quantified using the NSE,

correlation coefficient, and Root Mean Square Error (RMSE).

Table 1. Target parameters to be optimized by backpropagation and their value ranges

Parameter Symbol (Unit) Value Range
saturated hydraulic conductivity K (m's™) 107-6x1073
saturated water content 0, (m*-m) 0.3-0.65

soil matric potential at air entry P, (m) 0.01-0.65
pore-size distribution b (Dimensionless)  2.5-12

2.3.3 Performance comparison with traditional optimization

To demonstrate the advantages of a differentiable modeling approach, we compared the performance of NoahPy against
both the original and modified Noah LSMs when calibrated with a traditional, widely used optimization algorithm. We
evaluated three distinct model-optimizer combinations: NoahPy optimized with the gradient-based Adam optimizer; the

modified Noah LSM calibrated with the Shuffled Complex Evolution (SCE-UA) algorithm (Duan et al., 1994); and the original
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Noah LSM (v3.4.1) calibrated with the SCE-UA algorithm. The SCE-UA is a widely used global optimization algorithm that
does not require gradient information. Its primary strength is its robust global search capability, which helps it avoid getting
trapped in local optima by systematically exploring the parameter space (Rahnamay Naeini et al., 2019). The model
configurations, forcing data, and target parameters for all three setups were identical to those described in Section 2.3.2. A key
difference is that the original Noah LSM does not account for vertical soil heterogeneity; therefore, its soil profile was
configured uniformly using the properties of the surface layer. For a robust comparison, each optimization algorithm was run
ten times with a maximum of 500 iterations.

In addition to the NSE, we used the Kling-Gupta Efficiency (KGE) as a more comprehensive performance metric. KGE

provides a multi-faceted assessment by decomposing performance into three distinct components:

KGE=1-|( Corr=1) +(a-1Y +(y-1) (16)

where, Corr is the Pearson correlation coefficient between simulated and observed values, « is the bias ratio (mean of
simulated values / mean of observed values), and y is the variability ratio (coefficient of variation of simulated values /
coefficient of variation of observed values). To determine if the performance differences among the three model setups were
statistically significant, we employed a two-step non-parametric testing procedure on the KGE values from all soil depths.
First, the Friedman test was used to assess whether any significant differences existed within the group of three models. If the
Friedman test returned a p-value < 0.05, we then performed the Dunn's post-hoc test for pairwise comparisons to identify
which specific model pairs differed significantly from one another. A p-value < 0.05 in the Dunn's test was considered a

statistically significant difference in performance.

3 Results
3.1 Numerical equivalence with the modified Noah LSM

The validation confirms that NoahPy successfully replicates the numerical behaviour of the Fortran-based modified Noah
LSM. As shown in the scatter plots in Figure 2, the simulated daily soil temperature and liquid water content from NoahPy
exhibit a near-perfect 1:1 relationship with the outputs from the modified LSM across all tested depths (0.1, 0.5, 0.8, 1.3, and
2.5 m) aggregated from three randomly chosen grid cells on the QTP. The performance is exceptionally strong, with NSE
coefficients greater than 0.999 and near-zero bias (<0.01) for both variables at every depth.

A minor degree of scatter is visible in the soil moisture comparisons (Figure 2b, d, f, h, j), which is not present in the soil
temperature results. These small deviations are likely attributable to minor differences in floating-point arithmetic and
numerical precision between the Python/PyTorch environment and the original Fortran compiler. Importantly, NoahPy

maintains this high accuracy in deeper soil layers, with no amplification of numerical errors with depth. This demonstrates the

10



high numerical stability of the NoahPy implementation and confirms that it serves as a faithful and reliable replacement for

the original model.
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Figure 2. Comparison of NoahPy and modified Noah LSM outputs for soil temperature and moisture. The density scatter plots compare
daily model outputs at five different soil depths (0.1, 0.5, 0.8, 1.3, and 2.5 m), aggregated from three randomly chosen grid cells (28.75°N,
93.85°E; 34.75°N, 98.25°E; 37.55°N, 100.55°E) on the Tibetan Plateau (QTP). The dashed line represents perfect agreement (y=x). Inset

265  values show the Bias, correlation (Corr), and NSE.

3.2 Performance of the calibrated NoahPy at the Tanggula site

11
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The gradient-based optimization process effectively calibrated the NoahPy model parameters. The training process
demonstrates rapid convergence, with the NSE for soil liquid water increasing from an initial value of -0.2 to an optimal value
of 0.84 (Figure 3). Correspondingly, the RMSE steadily decreases. This result successfully validates that NoahPy's
differentiable framework allows for the effective use of backpropagation to optimize model parameters against observational

data.
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Figure 3. Training convergence for the soil liquid water simulation at the Tanggula site. The plot shows the improvement in the Nash-
Sutcliffe Efficiency (NSE, blue line) and the corresponding reduction in the Root Mean Square Error (RMSE, orange line) over 500

optimization iterations. The dashed red lines mark the best performance achieved.

After calibration, NoahPy's simulations showed excellent agreement with the observed data at the TGL site during both
the calibration (2007-2009) and validation (2010) periods (Figure 4). The model accurately reproduced the seasonal cycle of
soil temperature at all depths. For most layers, the NSE values exceeded 0.9, and the RMSE decreased with depth, reflecting
the reduced temperature variability in deeper soil. However, the model exhibits a cold bias during the winter of 2008—2009,
with simulated temperatures falling below observations (Figure 4a). This period was characterized by heavy snowfall at the
site. The cold bias is confirmed to be a direct result of the relatively simplistic snow scheme in the Noah LSM. A direct
comparison with observed snow depth data from the TGL site shows the model significantly underestimates the peak snow
accumulation during this exact 2008-2009 winter and melts the snowpack too rapidly. The resulting shallower simulated
snowpack provides less insulation, allowing excessive heat loss from the soil to the cold atmosphere. Additionally, anomalous

fluctuations were observed in the measured deep soil temperatures (1.05 m and 2.45 m) during the summer of 2009 (Figure
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4d, e). Given that deep soil temperatures should respond slowly to short-term atmospheric changes, these fluctuations are likely
attributable to instrumental error.

While more complex than temperature, the dynamics of soil liquid water were also well-captured, with NSE values
exceeding 0.7 and RMSE values below 0.05 m® m for most layers. The model successfully simulated soil moisture responses
to freeze-thaw cycles and summer precipitation events, particularly in the shallow soil layers (Figure 4f, g). However, several
discrepancies were noted, particularly in deeper soil. Simulations at depths of 1.05 m and 2.45 m deviate more pronouncedly
from the measured data (Figure 4i, j). The model tended to overestimate liquid water content during the winter freezing period
at some depths (Figure 4h, i). This can be attributed to the model's hydraulic parameterization scheme, which is based on the
Campbell formulation; this approach neglects the effects of ice suction and effective porosity. Omitting these mechanisms,
which influence soil water redistribution at the freezing front, can lead to an overestimation of liquid water content during
winter (Zhao et al., 2023). Additionally, some observations appear anomalous. For example, the measured unfrozen water
content in winter drops to exactly zero at 0.4 m and 1.05 m, which is physically unlikely and suggests potential instrument
error at low moisture levels. Similarly, sharp, isolated increases in measured water content at deeper layers during the summer
of 2009 (Figure 4h, i, j) without corresponding signals in the layers above suggest these are likely not caused by surface
infiltration and may also be data artifacts.

Despite the well-diagnosed limitations of specific model parameterizations and potential artifacts in the observational
data, the results for all soil depths demonstrate that the calibrated NoahPy model reliably reproduces the key seasonal dynamics

of soil temperature and liquid water during complex freeze-thaw cycles at the TGL site.
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Figure 4. Simulated and observed daily soil temperature and liquid soil water content at various depths (daily; 0.05, 0.1, 0.4, 1.05, and
2.45m) for the Tanggula (TGL) site. The vertical black dashed line separates the calibration period (April 1, 2007-December 31, 2009) from
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3.3 Comparative performance evaluation

The primary advantage of the differentiable approach is evident in the parameter optimization process. NoahPy paired
with the Adam optimizer converges extremely rapidly, reaching a high level of accuracy within only 100 iterations (Figure 5).
This is due to the Adam optimizer's use of gradient information and an adaptive learning rate. In contrast, the traditional SCE-
UA algorithm applied to the Noah and modified Noah LSMs converges much more slowly, requiring significantly more
iterations to approach an optimal solution (Figure 5). While the SCE-UA algorithm's strength is its global search capability,
which helps it avoid getting trapped in local optima, its convergence becomes prohibitively slow in high-dimensional
parameter spaces, requiring significantly more iterations to find a solution. Furthermore, the gradient-based approach
demonstrates greater stability. The shaded 95% uncertainty band around the convergence trajectory for NoahPy is visibly
narrower than for the SCE-UA method (Figure 5), indicating that the Adam optimizer finds a robust solution more consistently
across repeated runs.
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Figure 5. Convergence of NoahPy, the modified Noah LSM, and the original Noah LSM in terms of NSE. Each line represents the mean
NSE from 10 optimization runs, with the shaded area indicating the 95% uncertainty band. NoahPy was optimized with the Adam optimizer,

while the other two models were calibrated with the SCE-UA algorithm.

When comparing the calibrated models' ability to simulate soil temperature (Figure 6), all three setups perform well in
the shallow soil layers (0.05 m and 0.4 m), with NSE values exceeding 0.9. However, a major performance gap appears in the

deep soil (2.45 m). The original Noah LSM, which neglects vertical soil heterogeneity, exhibits a pronounced cold bias, with
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an RMSE of 1.68°C (Figure 6i). NoahPy and the modified Noah LSM, which both account for varying soil layers, perform
330 significantly better, with RMSE values of 0.51°C (Figure 6¢) and 0.85°C (Figure 6f), respectively. In essence, the error is
magnified with depth because the impact of incorrect thermal properties is compounded over the longer time and distance it

takes for heat to travel to the deep soil.
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Figure 6. Comparison of calibrated model performance for daily soil temperature at the TGL site. Each panel compares in-situ observations
335 (red dashed line) against the simulations from the three calibrated models at a specific depth. The models are NoahPy (optimized with Adam;
blue line and shading), the modified Noah LSM (calibrated with SCE-UA; orange line and shading), and the original Noah LSM (calibrated
with SCE-UA; gray dashed line and shading). The shaded areas represent the 95% uncertainty band from 10 repeated optimization runs. The

vertical dashed line separates the calibration and validation periods.

The results for soil liquid water simulation show an even starker contrast (Figure 7). Both NoahPy and the modified Noah
340 LSM produce satisfactory results, with RMSE below 0.05 m® m™ across all three layers. These models accurately capture the
key seasonal dynamics, including soil moisture fluctuations driven by summer precipitation and the rapid changes associated

with freeze-thaw phase transitions, which align well with observations. The original Noah LSM, however, performs poorly. It
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fails to capture moisture fluctuations from summer rainfall and shows significant biases in winter. Its performance deteriorates
sharply with depth, with the NSE value dropping to -0.09 in the deepest layer (2.45 m) (Figure 7i). This negative NSE reflects
a substantial underestimation of the liquid water increase during the spring thaw. This finding is consistent with previous
research (Wu et al., 2018).

A Friedman test performed on the KGE values for all models (Table 2) confirmed a statistically significant difference in
their overall performance (p = 0). A subsequent Dunn's post-hoc test revealed that both NoahPy and the modified Noah LSM
performed significantly better than the original Noah LSM. Interestingly, the statistical test showed no significant difference
between NoahPy and the modified Noah LSM (p =0.1659). This is expected, as they share identical physics. However, NoahPy
consistently demonstrated practical advantages in performance. As shown in Figure 5, NoahPy converges markedly faster with
the Adam optimizer, approaching its optimal solution in roughly 100 iterations, whereas the modified Noah LSM requires
substantially more iterations to converge with the SCE-UA algorithm. Furthermore, NoahPy’s final calibrated simulations
have noticeably lower uncertainty (i.e., smaller shaded bands in Figures 6 and 7) compared to the modified Noah LSM,
particularly for winter liquid water content (Figure 7a,c vs. (Figure 7d,f). This lower uncertainty is a direct result of the more
stable and efficient optimization provided by the gradient-based Adam algorithm, highlighting a key practical advantage of
the differentiable modeling approach.

Table 2. Mean Kling-Gupta Efficiency (KGE) values for the three calibrated models. Values represent the mean KGE from 10 repeated
optimization runs for NoahPy, the modified Noah LSM, and the original Noah LSM.

Variable Depth(m) NoahPy Modified Noah LSM original Noah LSM
soil temperature 0.05 0.83 0.79 0.79
0.1 0.86 0.81 0.8
0.4 0.93 0.91 0.74
1.05 0.89 0.85 0.57
2.45 0.93 0.83 0.28
soil liquid water 0.05 0.91 0.82 0.51
content 0.1 0.95 0.88 0.69
0.4 0.64 0.51 0.23
1.05 0.64 0.52 0.31
2.45 0.8 0.56 0.27
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This study successfully demonstrated the development and application of NoahPy, a differentiable land surface model for
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Figure 7. Comparison of calibrated model performance for daily liquid soil water at the TGL site. Each panel compares in-situ observations
(red dashed line) against the simulations from the three calibrated models at a specific depth. The models are NoahPy (optimized with Adam;
blue line and shading), the modified Noah LSM (calibrated with SCE-UA; orange line and shading), and the original Noah LSM (calibrated
with SCE-UA; gray dashed line and shading). The shaded areas represent the 95% uncertainty band from 10 repeated optimization runs. The

permafrost. Our results confirm that this re-implementation not only preserves this enhanced physical integrity of the modified
Noah LSM but also unlocks a parameter optimization workflow that is significantly faster and more robust than traditional
methods. The successful calibration and diagnostic analysis in this study highlight the theoretical merits of our "glass-box"
approach. A common alternative for making a physical model compatible with machine learning workflows is to develop a

surrogate model: a neural network trained to mimic the input-output behavior of the original, non-differentiable code (Razavi
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et al., 2012). While easier to implement, this approach treats the model as a “black box” and suffers from the curse of
dimensionality (Asher et al., 2015). As the number of parameters grows, the required simulations increase exponentially,
making surrogates infeasible for complex LSMs. While such a surrogate could potentially replicate the final simulation results,
it obscures the internal model dynamics. In contrast, the full interpretability of NoahPy allowed us to diagnose specific physical
process errors, such as the cold bias from the simplified snow scheme and the overestimation of winter liquid water due to
missing cryosuction physics. This ability to directly attribute simulation errors to specific physical parameterizations is a
fundamental advantage of the differentiable physics-based approach and is essential for targeted scientific model improvement.

Gradient-based optimization is particularly advantageous when coupling NoahPy with neural networks for hybrid
modeling. It allows the simultaneous calibration of a large number of model parameters, which would be prohibitively difficult
using traditional gradient-free methods such as SCE-UA. While SCE-UA can perform a global search and avoid local minima,
its performance degrades substantially in high-dimensional parameter spaces. By contrast, optimizers like Adam exploit
precise gradients to iteratively improve parameter values, facilitating effective end-to-end training of hybrid systems. It should
be noted that we do not provide absolute comparisons of computational speed, as differences in model implementation (Fortran
vs Python) and numerical schemes limit direct benchmarking. Instead, the focus here is on the iterative optimization capability
of gradient-based methods, which underpins the scalability and feasibility of hybrid training strategies.

This study has two primary limitations. First, while successfully validated at the Tanggula site on the Qinghai-Tibet
Plateau, the performance and applicability of NoahPy in other permafrost regions with different characteristics (e.g., the ice-
rich Yedoma of Siberia or the boreal forests of North America) have yet to be confirmed. Second, NoahPy inherits the known
physical deficiencies of its parent Noah LSM, including a simplistic snow scheme and the omission of processes critical to
permafrost carbon cycling, such as the effects of soil organic matter, convective heat transfer, and abrupt thaw dynamics.

However, these limitations highlight its future potential and intended purpose. The framework presented here is not
intended as a final product, but as a flexible and extensible foundation for the community to address these very issues. This
framework holds promise for addressing challenges in permafrost domain, where parameterization for key soil properties in
permafrost environment such as Qinghai-Tibet Plateau (QTP) like thermal conductivity (Ji et al., 2024), hydraulic conductivity
(Hu et al., 2023), and matric potential (Zhao et al., 2023) may be incomplete. While NoahPy, in its current form, inherits the
physical limitations of its parent model, its true power lies in its potential as a foundational framework for a new generation of
hybrid models.The NoahPy framework allows for coupling with external machine learning models that can learn the complex
mapping between environmental covariates (e.g., topography, vegetation, soil type) and the model's physical parameters (such
as hydraulic and thermal parameters) from direct observations (e.g., soil temperature, soil moisture content). This could
dramatically improve the spatial transferability of parameters across diverse regions, reducing the reliance on costly site-
specific calibration and mitigating parameter uncertainty, a key challenge in permafrost modelling (Harp et al., 2016; Dai et
al., 2019). The hybrid, seamless physics-machine learning models coupling enabled by automatic differentiation also allows

for targeted replacement of model components. For instance, empirical parameterizations where physical knowledge is weak,
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such as the Campbell-based hydraulic scheme, can be replaced by an embedded neural network. In such a hybrid mode, the
neural network can learn more complex and accurate relationships from data, while the surrounding physical equations ensure
its predictions remain constrained by fundamental laws like the conservation of mass and energy. By recasting a permafrost-
capable LSM into the deep learning ecosystem, we have created a tool that can leverage the rapid advancements in
computational hardware (e.g., GPUs, TPUs) and software (Sevilla et al., 2022; Kochkov et al., 2024). This work helps bridge
the gap between process-based modeling and Al, establishing a path toward the next generation of hybrid Earth System Models

capable of reducing uncertainty and providing more reliable projections of the future of the cryosphere.

5 Conclusions

In this study, we developed NoahPy, a differentiable land surface model specifically improved for permafrost thermo-
hydrology. We successfully recast the widely-used, Fortran-based Noah LSM into a "glass-box" Python framework that is
both physically interpretable and implements differentiable operations for gradient-based optimization. Based on our results,
we draw the following key conclusions:

(1) NoahPy faithfully reproduces the numerical behaviour of the permafrost-specific modified Noah LSM. Validations
show a very close match, with NSE values exceeding 0.99 for both soil temperature and liquid water across all soil layers,
confirming the fidelity of the model's re-implementation.

(2) The differentiable framework enables robust, gradient-based parameter optimization. Validation at a permafrost site
on the QTP demonstrates that NoahPy can effectively use backpropagation to learn from observational data. The resulting
calibrated model shows strong performance, achieving NSE values above 0.9 for soil temperature and 0.8 for liquid water.

(3) The NoahPy-Adam workflow is superior to traditional calibration methods. The combination of the differentiable
model with a gradient-based optimizer (Adam) results in a parameter optimization that is significantly faster, more stable, and
yields final simulations with lower uncertainty compared to the traditional SCE-UA algorithm.

This work delivers a foundational tool that was previously missing for the permafrost community. It closes the technical
gap that has hindered the development of deeply-integrated hybrid models for the cryosphere. This study thus lays the
necessary groundwork for future Al-based models that aim to lower uncertainty and deliver more credible predictions of

permafrost's response to a changing climate.

Code and data availability. The NoahPy model code used in this study is available at https://github.com/nanzt/NoahPy, and the
exact version used to generate the results presented here is archived on Zenodo (Tian and Nan, 2025a,
https://doi.org/10.5281/zenodo.16530326). The original Noah LSM (v3.4.1) code used in this study is available at
https://ral.ucar.edu/model/unified-noah-Ism (last access: August 28, 2025). The modified version of Noah LSM code is
available at https://doi.org/10.17605/0sf.i0/g7jqr (Zhang et al., 2022b). The simulation data generated in this study are
available on Figshare (Tian and Nan, 2025b, https://doi.org/10.6084/m9.figshare.29988163).
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