Response to the editor

Dear Dr. Ebel,

Thank you for your notification and helpful suggestions.

We have carefully addressed both points as follows:

1. In the Author Contribution section, full author names have been replaced by
their initials as requested.

2. We have carefully checked Figures 5, 6, and 7 using the Coblis — Color
Blindness Simulator. The results indicate that the different models can still be
easily distinguished under various types of colour vision deficiencies.
Therefore, no further changes to the colour schemes were made, as the
figures already ensure sufficient visual distinction through both colour and line

style differences.

The revised manuscript has been uploaded accordingly.

Response to Review Comment #1

Note: The line numbers mentioned in the reply refer to the line numbers in the

change track document.

The state-of-the-art land surface models (LSMs) have been reported to
perform poorly in representing permafrost processes. To address this gap, the
authors present NoahPy—a fully differentiable LSM developed by
reconstructing the Noah LSM’s governing partial differential equations into a
process-encapsulated recurrent neural network. NoahPy was compared with
both the original and an improved version of the Noah LSM, and evaluated at
a permafrost site. | find the model to be skillful and the results reasonable.



Response: We sincerely thank the reviewer for the constructive and
thoughtful comments, which helped us improve the quality and clarity of the

manuscript. We have prepared revisions to address all of these comments.

1. Introduction: It would be beneficial to restructure the introduction to better
highlight the significance of permafrost, particularly as the authors aim to
introduce the model to the permafrost research community. The section could
begin by underscoring the importance of permafrost, followed by a critical
review of how current LSMs represent permafrost processes, clearly outlining
existing limitations. Addressing this gap, the authors should then introduce
deep learning methods and explain how such approaches can provide an

effective solution to improve permafrost modeling.

Response: Thank you.

The reviewer suggested a restructuring for the Introduction section and

introducing deep learning as a solution to improve permafrost modeling. While
we agree on the importance of these topics, our paper's central contribution is
slightly different. Our primary goal is not to introduce new physics to solve the
well-documented LSM deficiencies, but rather to solve a critical technical gap:

the non-differentiable nature of existing permafrost-capable LSMs.

This technical gap is what currently prevents the permafrost community from
leveraging the power of hybrid Al modeling, Al-driven calibration, and end-to-
end differentiable workflows. Therefore, our introduction is structured to first
establish the promise of hybrid Al, then identify the differentiable gap, and
then frame our work as the solution to this specific technical gap for the

permafrost community.

In this revision, to better address the reviewer’s points, we enhanced our
permafrost-centric focus in the introduction section as well as other sections.

For example, in the Introduction section:

“This challenge is especially pronounced in complex, data-scare
environments like the cryosphere.” (lines 32-33)



“The primary obstacle to this integration for the land surface and permafrost
modeling community has been technical: most established geophysical
models, including well-known land surface models (LSMs), are implemented
as non-differentiable numerical solvers, making them incompatible with the
gradient-based optimization central to deep learning (Rumelhart et al., 1986).”
(lines 40-43)

“While significant effort has gone into improving the physics of permafrost
specific models (Ji et al., 2022; Wu et al., 2018; Xiao et al., 2013; Zhao et al.,
2023), these improved models remain non-differentiable, preventing their
integration into model Al-driven calibration and hybrid modeling workflows.”
(lines 58-60)

“To address this gap, we introduce NoahPy: a fully differentiable land surface
model specifically improved LSM built upon a version of the Noah LSM
already modified and validated for simulating permafrost thermos-hydrology
on the Qinghai-Tibet Plateau (QTP). We have rewritten the widely-used this
permafrost centric, Fortran-based Noah LSM model into a differentiable
Python framework by encapsulating its governing partial differential equations
within a Recurrent Neural Network (RNN) structure.” (lines 70-74)

In Conclusions section:

“NoahPy faithfully reproduces the numerical behaviour of the permafrost-
specific modified Noah LSM. Validations show a very close match, with NSE
values exceeding 0.99 for both soil temperature and liquid water across all
soil layers, confirming the fidelity of the model's re-implementation.” (lines
429-430)

Please refer to the revised manuscript for all the changes we have made.

2. Discussion: The advantages and limitations are currently intermingled in
this section. Please consider: (a) adding a brief outlook on future model
development; and (b) using subsections to enhance the readability of the

manuscript.

Response:



We thank the reviewer for the careful reading and constructive comments on
the “Discussion” section of our manuscript. We fully understand the two key
issues raised: (a) the mixing of model strengths and limitations within the
section, and (b) the lack of outlook on future model development. In response,
while retaining the “Discussion” as a single cohesive section, we have

reorganized its structure and logic as follows:

1) Structural adjustments:

Within the “Discussion” section, we have reordered the paragraphs to improve
clarity and logical flow. We first highlight the main advantages of NoahPy,
including the significant improvements brought by its differentiable framework
in model transparency, parameter optimization efficiency, and error
diagnostics, as well as its higher stability and scalability compared with
traditional optimization algorithms such as SCE-UA.

Then, we discuss the current limitations of the model, such as inheriting
known physical deficiencies from the Noah LSM and its validation being
primarily limited to the TGL sites on the Tibetan Plateau.

Finally, we have added a paragraph outlining future model development. We
emphasize that NoahPy is not a finished product but an open and extensible
framework intended to provide the permafrost modeling community with a
platform for continuous improvement. This framework supports deep coupling
with external machine learning models and can learn complex mappings
between environmental covariates (e.g., topography, vegetation, soil type)
and physical parameters (e.g., hydraulic conductivity, thermal conductivity),
thereby enhancing regional transferability of model parameters and reducing
reliance on expensive pointwise calibration, effectively mitigating parameter
uncertainty in permafrost simulations. Leveraging automatic differentiation,
NoahPy also enables “modular” updates of specific physical processes, for
example, embedding neural networks to replace empirical hydraulic
parameterizations, while preserving energy and mass conservation
constraints and learning more accurate physical relationships. This work helps
bridge the gap between process-based modeling and Al, establishing a path
toward the next generation of hybrid Earth System Models capable of



reducing uncertainty and providing more reliable projections for the future of
the cryosphere.

2) On sectioning:

We carefully considered the suggestion to add subsection headings. However,
given the relatively concise length of the “Discussion,” splitting it into multiple
subsections would result in overly short segments, potentially disrupting
overall coherence and reading flow. Therefore, we opted to maintain a single-
section structure, using natural transitions and logical connections to

differentiate between model strengths, limitations, and future perspectives.

We believe that these revisions significantly improve the logical flow and
readability of the discussion while fully addressing the reviewer's comments
regarding structural clarity and outlook on future model developments.

Please refer to the revised Discussion section for all the changes we have

made.

3. The language should be improved throughout for clarity and academic tone.

Response: Thanks, we have improved the language thoroughly in this

revision.

4. L18: Avoid using the word “perfectly,” as no model can be considered
perfect. Please revise this throughout the manuscript (e.g., L224 and others).
As noted on the GMD homepage:“Essentially, all models are wrong, but some
are useful.” (George E. P. Box, 1979)

Response: We thank the reviewer for this valuable suggestion. We agree

that the word “perfectly” may imply unrealistic precision and have revised it

throughout the manuscript. All “perfect” and similar words are revised.

Specifically:

e Line 18 in the Abstract: we replaced "perfectly replicates" with "very
closely replicates."

e Line 429 in the Conclusions: we replaced "perfectly reproduces” with
"faithfully reproduces."



e Line 430 in the Conclusions: we changed "near-perfect match" to "very
close match."

All similar expressions have been revised accordingly to avoid overstatement.

5. L22: “SCE-UA” is not defined.

Response: We thank the reviewer for the careful reading and valuable
suggestion. We agree with this comment. The full name “Shuffled Complex

Evolution” has been provided when it appears in the abstract (line 23).

6. L105: Eq.6: Clarify what “BF” and “B€” refer to.

Response: BF and BC represent parameter sets involved in the control

equations and output equations, respectively. We explain them in line 117.

7. L204: While a reference is provided, please explain the principle of the
Shuffled Complex Evolution (SCE-UA) algorithm. For example, what does the
strength of the SCE-UA algorithm stem from?

Response: We thank the reviewer for this constructive comment. In the
revised manuscript, we have added a brief explanation of the underlying
principle and strengths of the Shuffled Complex Evolution (SCE-UA) algorithm
in Section 2.3.3 (lines 229-237) :

“The SCE-UA algorithm (Duan et al., 1994) is a widely used global
optimization method that combines probabilistic sampling with competitive
evolution. It starts by generating multiple complexes, each representing a
subgroup of candidate parameter sets. Within each complex, solutions evolve
independently through processes analogous to selection, crossover, and
mutation to produce new trial members. Periodic shuffling of complexes
allows information exchange among subpopulations, helping the search
escape local minima and preserve population diversity (Rahnamay Naeini et
al., 2019) ; This shuffled and competitive framework enables SCE-UA to
efficiently balance global exploration and local exploitation, offering strong
robustness and reliability for calibrating complex, nonlinear hydrological and
land surface models.” (lines 229-237)



References:

Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA
global optimization method for calibrating watershed models, Journal of
Hydrology, 158, 265-284, https://doi.org/10.1016/0022-1694(94)90057-4,
1994.

Rahnamay Naeini, M., Analui, B., Gupta, H. V., Duan, Q., and Sorooshian, S.:
Three decades of the Shuffled Complex Evolution (SCE-UA) optimization
algorithm: Review and applications, Scientia Iranica, 26, 2015-2031,
https://doi.org/10.24200/sci.2019.21500, 2019.

8. L255: This could be easily verified by additionally evaluating snow water
equivalent or snow depth against observations. | assume snow depth data are
available at the TGL site (e.g., Xiao et al., 2013).

Response:

As suggested, we obtained the daily snow depth observations from the TGL
site (with gratitude to the Cryosphere Research Station on the Qinghai—Tibet
Plateau, CAS) and compared them with our NoahPy simulations.

This comparison (Figure S1) provides definitive proof of our statement. Our
model significantly underestimates the peak snow depth during the 2008-2009
winter. This is precisely the period where our soil temperature simulation
exhibited its most pronounced cold bias (as seen in our Figure 4a). The
model’s simulated snowpack is far too shallow and melts too quickly, which
confirms that the lack of insulation from this underestimated snowpack is the

potential cause of the simulated soil temperature bias.

We have revised the manuscript in Section 3.2 to reflect this new, stronger

evidence.

“‘However, the model exhibits a cold bias during the winter of 2008—2009, with
simulated temperatures falling below observations (Figure 4a). This period

was characterized by heavy snowfall at the site. The cold bias is confirmed to
be a direct result of the relatively simplistic snow scheme in the Noah LSM. A

direct comparison with observed snow depth data from the TGL site shows



the model significantly underestimates the peak snow accumulation during
this exact 2008-2009 winter and melts the snowpack too rapidly. The resulting
shallower simulated snowpack provides less insulation, allowing excessive

heat loss from the soil to the cold atmosphere.” (lines 286-291)

We are not adding this new figure to the main manuscript, as we wish to keep
the paper's focus squarely on the soil thermo-hydrology and the novel
differentiable workflow. However, we are very grateful for this suggestion
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Figure S1 Comparison of Simulated(NoahPy) and Observed Snow Depth

9. L296: There are two opening parentheses here. Similar typos occur
elsewhere in the manuscript; please revise carefully.
Response: The typos have been corrected in the revised manuscript.

10. L407: What does the underline signify here?
Response: The underline has been removed in the revised manuscript.

Response to Review Comment #2

Note: The line numbers mentioned in the reply refer to the line numbers in the
change track document.

Tian et al. present NoahPy, a differentiable reformulation of the Noah land
surface model (LSM) aimed at improving the representation of permafrost



thermo-hydrology. The authors rewrite the traditional Fortran-based Noah
LSM into a PyTorch-based, partially differentiable framework and demonstrate
that it reproduces the original model’s numerical behavior while enabling
gradient-based parameter optimization through backpropagation.

Strengths

1. The paper provides a clear and rigorous implementation of a
differentiable land surface model using PyTorch.

2. The model reproduces the original Fortran Noah LSM with high fidelity
(NSE > 0.99), indicating numerical equivalence.

3. The differentiable structure allows efficient gradient-based calibration
(using Adam), showing faster and more stable convergence than
traditional SCE-UA optimization.

4. The manuscript is well organized, the methodology transparent, and
the validation experiments are convincing for the scope of the technical

contribution.

Response: We sincerely appreciate the reviewer’s positive and encouraging

comments.

Major comments

1. Scope of differentiability vs. the claim of “fully differentiable LSM”.
Although the abstract and conclusions describe NoahPy as a fully
differentiable LSM, the actual implementation appears to make only the heat
and moisture transport equations (the PDE solver) differentiable. Other key
land-surface processes (e.g., those in Figure 1c) remain treated in their
original, non-differentiable, piecewise form. As a result, the framework
achieves gradient continuity for a subset of processes, but not necessarily full
differentiability of the entire LSM.

The authors should clarify this scope explicitly in both the abstract and
methods. Phrasing such as “a partially differentiable framework focusing on
the heat—moisture solver” or “a differentiable core of Noah LSM” would be

more accurate and prevent reader misinterpretation.

Response:



After careful consideration on the reviewer’s concern, we respectfully maintain
that the term "fully differentiable LSM" is appropriate in the context of modern
automatic differentiation frameworks like PyTorch, upon which NoahPy is built.
The reviewer correctly notes that many physical parameterizations in LSMs
(e.g., for snow, vegetation, or surface roughness) are described by
mathematically piecewise functions. In a strict sense, these are not
continuously differentiable. However, our contribution is the re-implementation
of the entire time-step solution of the modified Noah LSM—including its
governing equations (as given in the process shown in Figure 1c) and all of its

deterministic physical parameterizations—using native PyTorch operations.

In the context of deep learning frameworks, "differentiable” means that the aut
omatic differentiation engine can compute a gradient for every operation in the
computational graph. This is the same principle that allows for the training of

deep neural networks using non-smooth activation functions like ReLU (Glorot
et al, 2011). In Pytorch, non-differentiable points are handled using subgradie
nt methods (https://docs.pytorch.ac.cn/docs/stable/notes/autograd.html), ensu

ring stable gradient propagation.

To make this important distinction clearer for all readers, we have added a
clarifying statement to the Methods in Section 2.2. The new text reads:

“It is important to note that this includes all physical parameterizations, such
as those for vegetation and snow processes shown in Figure 1c. While some
of these processes are mathematically not differentiable, re-implementing
them within PyTorch ensures that a valid gradient can be computed for every
operation via the automatic differentiation engine. This makes the entire
model fully differentiable in the context of gradient-based optimization.” (lines
150-153)

References:

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance
Deep Learning Library, in: Proceedings of the 33rd International



Conference on Neural Information Processing Systems, Curran Associates
Inc., Red Hook, NY, USA, 2019.

Glorot, X., Bordes, A., and Bengio, Y.: Deep Sparse Rectifier Neural Networks,
In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, 315-323, 2011.

2. Gradient continuity within phase-dependent processes

The thermal conductivity A, volumetric heat capacity Cg, and latent heat term
Q exhibit abrupt transitions near the freezing point due to phase change.
These discontinuities can interrupt or distort the backpropagated gradients,
even if the overall framework is formally differentiable. The authors are
encouraged to clarify how such non-smooth terms are handled in the current

implementation.

Response:

We thank the reviewer for this insightful question. The reviewer is correct that
the physics of phase change involves sharp discontinuities. Our
implementation handles these non-smooth terms in a way that allows for
continuous gradient propagation. To ensure this is clear to all readers, we
have added a new paragraph to Section 2.2 (Implementation of NoahPy) that
explicitly details how these phase-dependent processes are handled
differentiably in our implementation:

“A specific example of this is the handling of phase-dependent processes.
The Noah LSM handles the latent heat of fusion using a source term method,
as represented by the Q term in the heat conduction equation (Equation 1).
This term explicitly calculates and applies the latent heat required to be
released or absorbed to keep the soil temperature at the freezing point during
a phase change. While this represents an abrupt physical transition,
numerically, this is not a true discontinuity but is implemented as a conditional
logic check. In NoahPy, this entire conditional logic is re-implemented using a
chain of native, computationally differentiable PyTorch operations, primarily
torch. where, torch.min, and torch.max. PyTorch's automatic differentiation
engine is designed to backpropagate through these subgradients, which is the
same fundamental principle that enables the training of neural networks with



ReLU activations (Glorot et al.). This numerical implementation avoids a
mathematical discontinuity. Therefore, PyTorch's autograd engine can

compute a valid gradient through this logic.” (lines 153-162)

Reference:

Glorot, X., Bordes, A., and Bengio, Y.: Deep Sparse Rectifier Neural Networks,
In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, 315-323, 2011.



