
Response to Review Comment #2

Tian et al. present NoahPy, a differentiable reformulation of the Noah land

surface model (LSM) aimed at improving the representation of permafrost

thermo-hydrology. The authors rewrite the traditional Fortran-based Noah

LSM into a PyTorch-based, partially differentiable framework and demonstrate

that it reproduces the original model’s numerical behavior while enabling

gradient-based parameter optimization through backpropagation.

Strengths

1. The paper provides a clear and rigorous implementation of a

differentiable land surface model using PyTorch.

2. The model reproduces the original Fortran Noah LSM with high fidelity

(NSE > 0.99), indicating numerical equivalence.

3. The differentiable structure allows efficient gradient-based calibration

(using Adam), showing faster and more stable convergence than

traditional SCE-UA optimization.

4. The manuscript is well organized, the methodology transparent, and

the validation experiments are convincing for the scope of the technical

contribution.

Response：We sincerely appreciate the reviewer’s positive and encouraging

comments.

Major comments

1. Scope of differentiability vs. the claim of “fully differentiable LSM”.

Although the abstract and conclusions describe NoahPy as a fully

differentiable LSM, the actual implementation appears to make only the heat

and moisture transport equations (the PDE solver) differentiable. Other key

land-surface processes (e.g., those in Figure 1c) remain treated in their

original, non-differentiable, piecewise form. As a result, the framework

achieves gradient continuity for a subset of processes, but not necessarily full

differentiability of the entire LSM.

The authors should clarify this scope explicitly in both the abstract and

methods. Phrasing such as “a partially differentiable framework focusing on

the heat–moisture solver” or “a differentiable core of Noah LSM” would be

more accurate and prevent reader misinterpretation.

Response:

After careful consideration on the reviewer’s concern, we respectfully maintain

that the term "fully differentiable LSM" is appropriate in the context of modern

automatic differentiation frameworks like PyTorch, upon which NoahPy is built.

The reviewer correctly notes that many physical parameterizations in LSMs

(e.g., for snow, vegetation, or surface roughness) are described by

mathematically piecewise functions. In a strict sense, these are not

continuously differentiable. However, our contribution is the re-implementation

of the entire time-step solution of the modified Noah LSM—including its

governing equations (as given in the process shown in Figure 1c) and all of its

deterministic physical parameterizations—using native PyTorch operations.

In the context of deep learning frameworks, "differentiable" means that the aut

omatic differentiation engine can compute a gradient for every operation in the

 computational graph. This is the same principle that allows for the training of

deep neural networks using non-smooth activation functions like ReLU (Glorot

 et al, 2011). In Pytorch, non-differentiable points are handled using subgradie

nt methods (https://docs.pytorch.ac.cn/docs/stable/notes/autograd.html), ensu

ring stable gradient propagation.

To make this important distinction clearer for all readers, we have added a

clarifying statement to the Methods in Section 2.2. The new text reads:

“This is made possible by implementing every step of the numerical solution

using the differentiable operations native to the PyTorch deep learning library

(Paszke et al., 2019). It is important to note that this includes all physical

parameterizations, such as those for vegetation and snow processes shown

in Figure 1c. While some of these processes are mathematically not

differentiable, re-implementing them within PyTorch ensures that a valid

gradient can be computed for every operation via the automatic differentiation

engine. This makes the entire model fully differentiable in the context of

gradient-based optimization.”

References:

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,

T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.,

DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,

Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance

Deep Learning Library, in: Proceedings of the 33rd International

Conference on Neural Information Processing Systems, Curran Associates

Inc., Red Hook, NY, USA, 2019.

Xavier, G., Antoine, B., and Yoshua, B.: Deep Sparse Rectifier Neural

Networks, In Proceedings of the fourteenth international conference on

artificial intelligence and statistics, 315-323, 2011.

2. Gradient continuity within phase-dependent processes

The thermal conductivity λ, volumetric heat capacity Cₛ, and latent heat term

Q exhibit abrupt transitions near the freezing point due to phase change.

These discontinuities can interrupt or distort the backpropagated gradients,

even if the overall framework is formally differentiable. The authors are

encouraged to clarify how such non-smooth terms are handled in the current

implementation.

Response:

We thank the reviewer for this insightful question. The reviewer is correct that

the idealized physics of phase change involves sharp discontinuities. Our

implementation handles these non-smooth terms in a way that allows for

continuous gradient propagation. To ensure this is clear to all readers, we

have added a new paragraph to Section 2.2 (Implementation of NoahPy) that

explicitly details how these phase-dependent processes are handled

differentiably:

“A specific example of this is the handling of phase-dependent processes. The

Noah LSM handles the latent heat of fusion using a source term method, as

represented by the Q term in the heat conduction equation (Equation 1). This

term explicitly calculates and applies the latent heat required to be released or

absorbed to keep the soil temperature at the freezing point during a phase

change. While this represents an abrupt physical transition, numerically, this

is not a true discontinuity but is implemented as a conditional logic check. In

NoahPy, this entire conditional logic is re-implemented using a chain of native,

computationally differentiable PyTorch operations, primarily torch. where,

torch.min, and torch.max. PyTorch's automatic differentiation engine is

designed to backpropagate through these subgradients, which is the same

fundamental principle that enables the training of neural networks with ReLU

activations. This numerical implementation avoids a mathematical

discontinuity. Therefore, PyTorch's autograd engine can compute a valid

gradient through this logic.”

