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Tian et al. present NoahPy, a differentiable reformulation of the Noah land 

surface model (LSM) aimed at improving the representation of permafrost 

thermo-hydrology. The authors rewrite the traditional Fortran-based Noah 

LSM into a PyTorch-based, partially differentiable framework and demonstrate 

that it reproduces the original model’s numerical behavior while enabling 

gradient-based parameter optimization through backpropagation. 

Strengths 

1. The paper provides a clear and rigorous implementation of a 

differentiable land surface model using PyTorch. 

2. The model reproduces the original Fortran Noah LSM with high fidelity 

(NSE > 0.99), indicating numerical equivalence. 

3. The differentiable structure allows efficient gradient-based calibration 

(using Adam), showing faster and more stable convergence than 

traditional SCE-UA optimization. 

4. The manuscript is well organized, the methodology transparent, and 

the validation experiments are convincing for the scope of the technical 

contribution. 

Response：We sincerely appreciate the reviewer’s positive and encouraging 

comments.  

 

Major comments 

1. Scope of differentiability vs. the claim of “fully differentiable LSM”. 

Although the abstract and conclusions describe NoahPy as a fully 

differentiable LSM, the actual implementation appears to make only the heat 

and moisture transport equations (the PDE solver) differentiable. Other key 

land-surface processes (e.g., those in Figure 1c) remain treated in their 

original, non-differentiable, piecewise form. As a result, the framework 

achieves gradient continuity for a subset of processes, but not necessarily full 

differentiability of the entire LSM. 

The authors should clarify this scope explicitly in both the abstract and 

methods. Phrasing such as “a partially differentiable framework focusing on 



the heat–moisture solver” or “a differentiable core of Noah LSM” would be 

more accurate and prevent reader misinterpretation. 

Response:  

After careful consideration on the reviewer’s concern, we respectfully maintain 

that the term "fully differentiable LSM" is appropriate in the context of modern 

automatic differentiation frameworks like PyTorch, upon which NoahPy is built. 

The reviewer correctly notes that many physical parameterizations in LSMs 

(e.g., for snow, vegetation, or surface roughness) are described by 

mathematically piecewise functions. In a strict sense, these are not 

continuously differentiable. However, our contribution is the re-implementation 

of the entire time-step solution of the modified Noah LSM—including its 

governing equations (as given in the process shown in Figure 1c) and all of its 

deterministic physical parameterizations—using native PyTorch operations. 

In the context of deep learning frameworks, "differentiable" means that the aut

omatic differentiation engine can compute a gradient for every operation in the

 computational graph. This is the same principle that allows for the training of 

deep neural networks using non-smooth activation functions like ReLU (Glorot

 et al, 2011). In Pytorch, non-differentiable points are handled using subgradie

nt methods (https://docs.pytorch.ac.cn/docs/stable/notes/autograd.html), ensu

ring stable gradient propagation. 

To make this important distinction clearer for all readers, we have added a 

clarifying statement to the Methods in Section 2.2. The new text reads: 

“This is made possible by implementing every step of the numerical solution 

using the differentiable operations native to the PyTorch deep learning library 

(Paszke et al., 2019). It is important to note that this includes all physical 

parameterizations, such as those for vegetation and snow processes shown 

in Figure 1c. While some of these processes are mathematically not 

differentiable, re-implementing them within PyTorch ensures that a valid 

gradient can be computed for every operation via the automatic differentiation 

engine. This makes the entire model fully differentiable in the context of 

gradient-based optimization.” 
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2. Gradient continuity within phase-dependent processes 

The thermal conductivity λ, volumetric heat capacity Cₛ, and latent heat term 

Q exhibit abrupt transitions near the freezing point due to phase change. 

These discontinuities can interrupt or distort the backpropagated gradients, 

even if the overall framework is formally differentiable. The authors are 

encouraged to clarify how such non-smooth terms are handled in the current 

implementation. 

Response: 

We thank the reviewer for this insightful question. The reviewer is correct that 

the idealized physics of phase change involves sharp discontinuities. Our 

implementation handles these non-smooth terms in a way that allows for 

continuous gradient propagation. To ensure this is clear to all readers, we 

have added a new paragraph to Section 2.2 (Implementation of NoahPy) that 

explicitly details how these phase-dependent processes are handled 

differentiably: 

“A specific example of this is the handling of phase-dependent processes. The 

Noah LSM handles the latent heat of fusion using a source term method, as 

represented by the Q term in the heat conduction equation (Equation 1). This 

term explicitly calculates and applies the latent heat required to be released or 

absorbed to keep the soil temperature at the freezing point during a phase 

change. While this represents an abrupt physical transition, numerically, this 



is not a true discontinuity but is implemented as a conditional logic check. In 

NoahPy, this entire conditional logic is re-implemented using a chain of native, 

computationally differentiable PyTorch operations, primarily torch. where, 

torch.min, and torch.max. PyTorch's automatic differentiation engine is 

designed to backpropagate through these subgradients, which is the same 

fundamental principle that enables the training of neural networks with ReLU 

activations. This numerical implementation avoids a mathematical 

discontinuity. Therefore, PyTorch's autograd engine can compute a valid 

gradient through this logic.” 

 

 


