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Abstract. Long Short-Term Memory (LSTM) networks have shown strong performance in rainfall–runoff modelling, often

surpassing conventional hydrological models in benchmark studies. However, recent studies raise questions about their ability

to extrapolate, particularly under extreme conditions that exceed the range of their training data. This study examines the

performance of a stand-alone LSTM trained on 196 catchments in Switzerland when subjected to synthetic design precipitation

events of increasing intensity and varying duration. The model’s response is compared to that of a hybrid model – a model, that5

combines conceptual hydrological approaches with the LSTM – and evaluated against hydrological process understanding.

Our study reiterates that the stand-alone LSTM is not capable of predicting discharge values above a theoretical limit (which

we have calculated for this study to be 73 mm d−1), and we show that this limit is below the maximum value of 183 mm

d−1 in the training data. Furthermore, the LSTM exhibits a concave runoff response under extreme precipitation, indicating

that event runoff coefficients decrease with increasing design precipitation—a phenomenon not observed in the hybrid model10

used as a benchmark. We show that saturation of the LSTM cell states alone does not fully account for this characteristic

behavior, as the LSTM does not reach full saturation, particularly for the 1-day events. Instead, its gating structures prevent

new information about the current extreme precipitation from being incorporated into the cell states. Adjusting the LSTM

architecture, for instance, by increasing the number of hidden states, and/or using a larger, more diverse training dataset

can help mitigate the problem. However, these adjustments do not guarantee improved extrapolation performance, and the15

LSTM continues to predict values below the range of the training data or show unfeasible runoff responses during the 1-day

design experiments. Despite these shortcomings, our findings highlight the inherent potential of stand-alone LSTMs to capture

complex hydro-meteorological relationships. We argue that more robust training strategies and model configurations could

address the observed limitations, preserving the promise of stand-alone LSTMs for rainfall–runoff modelling.

1 Introduction20

Deep learning models, particularly Long Short-Term Memory (LSTM; Hochreiter and Schmidhuber, 1997) networks, have

become important tools in rainfall–runoff modelling. The current prototypical setup was introduced by Kratzert et al. (2019a),

who trained a single LSTM model for 531 basins across the United States (and achieved superior performance compared to
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several traditional process-based models). Similar results were confirmed in follow-up work, such as the study by Lees et al.

(2021) in Great Britain or Loritz et al. (2024) in Germany. However, as with any model, certain best practices for setting up25

LSTM-based models are essential to achieve good predictive performance. Among the most important, is training the LSTMs

on large, comprehensive, and diverse datasets (Kratzert et al., 2024)—such as Catchment Attributes and Meteorology for

Large-sample Studies (CAMELS-US; Addor et al., 2017; Newman et al., 2015).

A behavior that LSTMs exhibit, is that their states can saturate when they ingest new inputs. The mechanism that leads to30

this behavior is the use of hyperbolic tangent (tanh) and sigmoid activation functions inside LSTM cell. These saturate when

the output approaches their asymptotic extremes (Chen and Chang, 1996; Rakitianskaia and Engelbrecht, 2015). Kratzert et al.

(2024) identified the saturation of the tanh function in the computation of the hidden states (ht = ot⊙ tanh(ct) , where ct are

the cell states and ot is the output gate; Appendix A1) as a key factor that limits the ability of the LSTMs to predict extreme

discharge values. As ct grows tanh caps them, restricting the transmission of meaningful information, such as meteorological35

forcing signals. The severity of this saturation effect depends on the learned weights and biases, and hence on the range and

diversity of the training data. In hydrological modelling, the circumstance that model predictions are restricted to the empirical

support of the data is unsatisfactory—particularly for the prediction of extremes, which is a key modelling aspect. Considering

the rapid rise in the application of LSTMs and other deep learning models in rainfall–runoff modelling, we believe that a

deeper understanding of their current limitations is essential. This study therefore aims to examine the extrapolation behavior40

of LSTMs to extreme rainfall–runoff events that lie outside the range of the training data. Albeit the term “extrapolation” is

difficult to pinpoint technically—especially in the context of high-dimensional datasets and deep learning models (Balestriero

et al., 2021)—the events that we consider in our study are by construction either at the edge of, or outside the range of the

observed data (with regard to precipitation).

45

Previous studies (e.g., Frame et al., 2022; Acuña Espinoza et al., 2024a; Song et al., 2024) have explored the predictive

accuracy of LSTMs in extreme runoff scenarios by adopting training/test splits that deliberately exclude certain high-flow val-

ues during training. In a stress test setting, Frame et al. (2022) found that, when compared with two conceptual hydrological

models, a stand-alone LSTM outperformed one of the former for the most extreme rainfall–runoff events in the CAMELS-US,

and was only slightly worse than the second. Acuna Espinoza et al. (2024b) used the same setting to demonstrate that a hybrid50

model, combining a conceptual hydrological model with an LSTM, was slightly better than a stand-alone LSTM at predicting

the most extreme events in the CAMELS-US dataset. In the study, the stand-alone LSTM performed particularly well for the

overall evaluation, but for the most extreme events, the LSTM’s response showed major deviations from the hybrid model

and a conceptual model—exhibiting a distribution of simulated extreme values with no tail (see Fig. 5(a) in Acuna Espinoza

et al. (2024b)). On the other hand, Song et al. (2024) (in a slightly different setting) found that a hybrid model, similar to the55

one used in Acuna Espinoza et al. (2024b) outperformed the stand-alone LSTM. The stand-alone LSTM, the mass-conserving

LSTM (MC-LSTM in Frame et al., 2022), and hybrid models performed similarly when evaluated using standard metrics;

however, the studies provided notably different interpretations regarding whether, and to what extent, LSTMs can successfully
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extrapolate to extreme events.

60

Although the stress tests in Frame et al. (2022); Acuna Espinoza et al. (2024b) systematically test the model’s ability to

handle increasingly extreme events, it is not realistic from a practical perspective. In real-world applications, modellers would

not intentionally exclude known extremes from their training datasets, particularly when using data-driven models. In this

study, we propose a complementary approach for investigation: Rather than withholding extreme events during training, we

force the LSTM with design precipitation values (as commonly used in infrastructure planning and engineering; Global Wa-65

ter Partnership (GWP) and World Meteorological Organization (WMO), 2013). These precipitation values, which are derived

using statistical models, can exceed historical observations, but are considered physically plausible (World Meteorological

Organization (WMO), 1973, 2009). This allows us to probe the model’s extrapolation capabilities without imposing artificial

constraints on the training data. An intrinsic limitation of our approach is that our augmentation destroys the covariate-structure

of the inputs. Hence, in theory, we cannot directly disentangle the effect of the general LSTM out-of-distribution behavior and70

the one introduced by an actual extreme event of the same kind. This restricts us to a certain coarseness of the analytical depth

of our study. However, we argue that the pattern that emerges from our experiments is so clear that it is indicative for the

extrapolation behavior of LSTMs in hydrology. Specifically, we compare the LSTM’s output with that of a mass-conserving

hybrid model (Feng et al., 2022) and assess how both models respond under unprecedented forcing conditions to evaluate the

physical realism of the LSTM’s predictions.75

This study addresses the following research questions:

1. Can LSTMs extrapolate to discharge values beyond the training distribution when forced with statistically derived design

precipitation events?

2. Is the saturation of LSTM memory states the primary reason, which limits their ability to extrapolate to extreme and80

unprecedented hydrological conditions?

3. How do the inherent assumptions and structural characteristics (inductive biases) of LSTMs influence their ability to

simulate realistic hydrological responses under conditions that exceed observed training ranges?

The paper is structured as follows: we give a description of the datasets and the models in Section 2. This section also details

out the set-up for the design precipitation experiments and the methodology for calculating saturation in the LSTM network.85

This is followed by Section 3, where we present the overall model performance and a comparison of model simulations from

our design experiments. We discuss the findings and their implications with regard to the three research questions in Section 4

and give our conclusion in Section 5.
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2 Data and Methods

In this section, we describe the CAMELS-CH dataset (Section 2.1) and the CAMELS-US dataset (Section 2.2) used for90

model training and testing. The subsequent subsections (Section 2.3 and Section 2.4) briefly describe the LSTM networks, the

hybrid model, and their respective model configurations employed in this study. Following these, the section 2.5 details out

the selection of catchments and experimental setup for the design precipitation events. Finally, Section 2.6 explains how we

estimate network saturation in the LSTM.

2.1 The CAMELS-CH Dataset95

The CAMELS-CH dataset (Höge et al., 2023) provides daily hydro-meteorological time series data for 331 basins within

Switzerland and neighboring countries, along with static catchment attributes which include topographic, climate, hydrology,

soil, land cover, geology, glacier, hydrogeology, and human influence attributes. Due to its diverse topography and climate,

Switzerland is often referred to as the ’water tower of Europe’ (Höge et al., 2023) and despite its small size, it exhibits

significant hydrological variability across different regions. CAMELS-CH includes data for 298 river catchments and 33 lakes.100

The available data spans from 1 January 1981 to 31 December 2020. In this study, we exclude the lakes and 102 river catchments

belonging to France, Germany, Austria, and Italy and focus only on the 196 catchments in Switzerland. From this subset,

we exclude another four catchments where preliminary model simulations had negative Nash-Sutcliffe efficiency (NSE). For

the CAMELS-CH dataset, the maximum precipitation during the training period is 234 mm d−1 and was recorded for the

Krummbach stream located in southern Switzerland. The maximum observed specific discharge is 183 mm d−1 which occurred105

during a flood in the Chli Schliere stream in the Alpnach village in central Switzerland triggered by torrential rains in August

2005 (Federal Department for the Environment and DETEC, 2005).

2.2 The CAMELS-US Dataset

We use a subset of 531 catchments from the CAMELS-US dataset, which was originally identified by Newman et al. (2015).

This provides daily meteorological forcing from three data sets, Daymet, Maurer, and NLDAS, and daily stream flow measure-110

ments from the United States Geological Survey (USGS) spanning from 1980 to 2015. Catchment topographical characteristics,

climate and hydrological indices, and soil, land-cover and geological characteristics are also provided. The maximum observed

specific discharge for this training dataset is 299 mm d−1, which is recorded for the Medina river in Texas. The precipitation

observed in Krummbach stream (234 mm d−1) in Switzerland is also the maximum precipitation for this combined training

dataset.115

2.3 LSTM model

The hyperparameters of our LSTM network (see Table 1) are guided by the work of Lees et al. (2021) and Acuña Espinoza

et al. (2024a) and the model implementation is done using PyTorch (Paszke et al., 2019). We train an ensemble of 5 LSTMs,

all with a single layer of 64 nodes, to account for random initialization and stochasticity in the network optimization algorithm.
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Table 1. Hyperparameters for LSTM network and hybrid model ensemble

Hyperparameter Value

LSTM hybrid Model

Number of layers 1

Number of nodes 64

Dropout rate 0.4

Initial forget gate bias 3

Initial learning rate 0.001

Sequence length 365 730

Batch size 256

No. of epochs 20

Training period 1 October 1995 to 30 September 2005

Test period 1 October 2010 to 30 September 2015

The head-layer for our LSTMs is a fully connected linear layer with a dropout rate of 0.4. We use a batch size of 256 and120

a sequence length of 365 days for training our LSTMs for a total of 20 epochs. We use a learning rate of 1× 10−3 for the

first ten epochs, and 5× 10−3 for the remaining ten epochs. The basin averaged Nash-Sutcliffe efficiency (NSE*) proposed

by Kratzert et al. (2019a) is used as a loss function and the algorithm for optimization is ADAM (Kingma and Ba, 2017).

We refer the reader to Kratzert et al. (2019a) for a detailed description of the LSTM architecture and about specific details

as to how it is typically applied in hydrology. For easy reference, we present the equations describing the forward pass of the125

LSTM in Appendix A1. The training and testing periods, as mentioned in Table 1, span from October 1995 to September 2005

and October 2010 to September 2015 respectively. For models trained on the CAMELS-CH datatset alone, 5 dynamic forcing

variables, precipitation (mm d−1), minimum and maximum temperature (°C), relative sunshine duration (%) and snow water

equivalent (mm d−1) and 22 static catchment attributes (see Appendix A2) form the model input, and we trained the models to

target specific discharge (mm d−1). While training the LSTM ensemble on CAMELS-CH and CAMELS-US datasets together,130

we reduce the number of dynamic and static inputs for similarity within the inputs for catchments belonging to the two datasets.

For this ensemble, we use only 3 dynamic forcing variables — precipitation (mm d−1), minimum and maximum temperature

(°C) from the CAMELS-CH and from the Daymet meteorological forcing data of the CAMELS-US — and 12 static catchment

characteristics (listed in Appendix A2) from both the datasets as inputs and the daily stream flow data as the target.

2.4 The hybrid model135

We use a type of hybrid model introduced by Feng et al. (2022). The hybrid model uses a modified version of the Hydrologiska

Byråns Vattenbalansavdelning (HBV) model (Bergström, 1976, 1992; Aghakouchak and Habib, 2010; Seibert and Vis, 2012;

Beck et al., 2020) as a backbone conceptual model. Differentiable parameter learning (dPL) using a single LSTM is used

to parameterize a number of modified HBVs. The discharge signal produced by the modified HBVs is averaged and routed
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through a unit hydrograph, which produces the final simulated discharge. We implement the δn(β
t,γt) version of the hybrid140

model with a collection of 16 modified HBV models with dynamic parameterization. A detailed description of this model can

be found in Feng et al. (2022). While the stand-alone LSTM produces specific discharge as the output, in the hybrid model, the

LSTM produces as many outputs as is the number of parameters required by 16 HBVs and the unit hydrograph routing. In our

hybrid model, the LSTM estimates 210 model parameter at each time step (13 HBV parameters*16 HBV models+2 routing

parameters). The hyperparameters of the LSTM component and in the hybrid model, and the data split implemented for training145

and testing are described in Table 1. The hybrid model receives a sequence length of 730 days, the first 365 values from which

are used to initialize the internal states of the HBV models (warm-up period) and do not contribute to loss calculation. We

choose to train the two models with different sequence lengths, because we wish to implement the models consistent with

methodologies presented in studies by Kratzert et al. (2019a) and Acuna Espinoza et al. (2024b). Thus, we train the LSTM

using a seq-to-one approach with a sequence length of 365 and the hybrid model with a seq-to-seq approach and sequence150

length of 730. Please note that increasing the sequence length of the LSTM to 730 does not increase the model performance.

The static and dynamic inputs to the hybrid model are given in Appendix A2. The LSTM component, which parameterizes the

conceptual part within the hybrid model, uses the same 5 dynamic and 22 static inputs as the stand-alone LSTM. However,

an additional input, potential evapotranspiration (pet_sim (mm d−1)) is explicit to the HBV component therein. Training the

stand-alone LSTM with this additional dynamic input, for the sake of similarity in over-all inputs, is redundant, since pet_sim155

is computed using temperature and radiation data via the Penman-Monteith equation in CAMELS-CH. When we trained an

LSTM ensemble with an additional dynamic input pet_sim, it did not change our results. The daily time series for pet_sim

(mm d−1) is obtained from the simulation based hydrometeorological time series of the CAMELS-CH dataset. The optimizer

and learning rate schedule is the same for both the models.

2.5 Design Precipitation Events: Selection and Experimental Set-up160

In this study, we use design precipitation values from an extreme value analysis published by the Federal Office of Meteorol-

ogy and Climatology (MeteoSwiss; MeteoSwiss, 2022). This includes 1- to 5-day precipitation analyses with annual return

interval (ARI) from 1 to 300 years at more than 300 meteorological observation stations. Given that the design precipitation

values are only valid on the exact location of the stations (Frei and Fukutome, 2022), we identified a smaller subset of 25

CAMELS-CH catchments that have a meteorological observation station within or at a distance of 2.5 km from the catchment165

boundary. We acknowledge that, given the diversity in terrain and elevation in Switzerland, and its small-scale spatial climate

patterns, access to sophisticated tools enabling better interpolation (Bárdossy and Pegram, 2013) of the extreme values would

be ideal. However, due to the lack of such methods and the explicit admission of added uncertainty in the related documen-

tation (Frei and Fukutome, 2022), we proceed with the chosen subset of catchments. The models in our study are trained on

catchment-averaged precipitation values but tested using point-scale data, which may introduce inconsistencies and serve as a170

potential source of error. Nonetheless, given the exploratory nature of our objectives, it is less critical that the exact magnitude

of extreme precipitation is captured, as long as the values are physically plausible and reflect regionally extreme conditions.

We consider this assumption acceptable for our experimental design, which aims to explore the limitations of LSTM-based
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hydrological simulations rather than to support infrastructure planning or flood defense design.

175

To systematically analyze the simulations of our models in extreme scenarios, we force our models with precipitation events

of varying ARI during the test period. For each of the above-mentioned 25 catchments, we identified dates, where the observed

precipitation value (mm d−1) belonged to the top 99.5th percentile of the distribution of precipitation values during the test

period in the respective catchment. A total of 201 events/dates distributed among the 25 test catchments were identified and

form a part of subsequent experimental set-up. The minimum replaced precipitation is 34 mm d−1 and the maximum is 139180

mm d−1. We replaced these by the 1-, 3-, and 5-day design precipitation values with ARI of 50, 100, and 300 years. In the

case of 3- and 5-day values, the precipitation volume was distributed uniformly over three and five days, respectively, centered

around the identified dates. The LSTM and hybrid model then received this synthetic input for discharge simulations. This

approach allows us to test the impact of extreme, but physically plausible, magnitudes of precipitation input for the LSTM-

based discharge simulations, under different initial conditions. Our experimental set-up is constrained by the fact that we only185

manipulate precipitation. Given that other meteorological variables, such as temperature or radiation, are not fully indepen-

dent of precipitation, our approach does not account for the complex correlation among climate inputs. However, by replacing

precipitation values only at times when observed extremes had already occurred, we try to minimize inconsistencies in other

meteorological inputs. While this approach has its limitations, it provides a controlled setting to examine how the LSTM and

hybrid models respond to unprecedented precipitation magnitudes and reflects to a certain degree a classical hydrological use190

case, which is, the design of infrastructure.

2.6 Measuring saturation in the LSTM

Although saturation can occur at any tanh or sigmoid activation within an LSTM, we focus on the saturation that arises during

the computation of the hidden state (the second term in Eq. (A6) in Appendix A1) as discussed by Kratzert et al. (2024).

Defining a precise threshold for when tanh saturates is challenging due to its continuous nature. However, previous studies195

have noted that the useful (non-saturated) region extends until approximately 90% of the saturation level (Chen and Chang,

1996). We hence identify saturation in the said activation when the absolute of its output equals or exceeds 0.9. We define

network saturation as the total number of saturated activations (out of the 64 units in the hidden layer). In the following, we

will use the term “cell state saturation” to refer specifically to the saturation of the tanh activation function when computing

hidden states (ht = tanh(ct) · ot).200

3 Results

3.1 LSTM and hybrid model performance

Fig. 1 presents the test performance of the LSTM and hybrid model ensemble as a cumulative distribution function (CDF) of

individual catchment performance measured by the NSE (panel (a)). The models’ testing is spatially in-sample but temporally
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out-of-sample, which means that the models are tested using the same 196 catchments used during the training process, but205

in a different test period (gauged simulations). The average median NSE achieved by the LSTM ensemble is 0.84 while that

for the hybrid model ensemble is slightly lower at 0.79. Both models perform better than the PREVAH model (Viviroli et al.,

2009) (median NSE = 0.50 (see Fig. B1)), simulated discharge time series from which are provided with the CAMELS-CH

dataset. It is worth noting that the hybrid model performed similarly to the LSTM ensemble in studies by Feng et al. (2022)

and Acuna Espinoza et al. (2024b) for the CAMELS-US dataset. However, in this study, we could not replicate the same210

performance, despite using the exact same model setup and training procedure, possibly because we train and test our models

on catchments belonging to the CAMELS-CH dataset. Our investigations did not reveal a specific cause for the slightly lower

NSE of the hybrid model. Interestingly, in four specific catchments where the hybrid model exhibited a pronounced drop in

performance compared to the LSTM ensemble, the hybrid accurately predicted timing patterns (high correlation) but showed an

increasing bias over the duration of the test period. This suggests larger mass balance errors in these catchments that could not215

be corrected due to the hybrid model’s mass-conserving structure. Given that the hybrid model primarily serves as a benchmark

for the LSTM ensemble, the observed difference in the global NSE is considered negligible for the objectives of this study.

This difference in the global performance of the two models is also true for the subset of the 25 catchments (see Section 2.5)

identified for the design experiments.

A comparison of the two model ensembles based on the High Flow Bias (FHV), fraction of missed peaks and peak mean220

absolute percentage error (MAPE) is shown in panels (b), (c) and (d) of Fig. 1 respectively. The FHV represents the peak flow

bias of the flow duration curves for the observed and simulated discharge. The fraction of missed peaks represents the peaks

in the observed data that are missed in the simulation. The MAPE is the absolute percentage error for observed peaks and

their respective simulated values. All discharge values belonging to the top 2% of the observed (or simlated) distribution are

considered as peak values for the calculation of the fraction of missed peaks and MAPE (or FHV). Both model ensembles show225

similar distribution of FHV and fraction of missed peaks across all catchments. The hybrid model, however, has a higher median

MAPE and in general shows greater error associated with peaks. For the 201 events identified in Section 2.5, we calculated the

root-mean-squared error (RMSE) of the two model ensembles when they were tested for the observed test dataset (without any

synthetic precipitation input). The LSTM ensemble has an RMSE of 1.08 mm d−1 while the hybrid ensemble has a slightly

higher RMSE of 1.22 mm d−1.230

3.2 Theoretical prediction limit and maximum simulated value of the LSTM ensemble

Kratzert et al. (2024) discuss the existence of a theoretical prediction limit (TPL) for a trained LSTM network and provide

a mathematical derivation (Appendix C in Kratzert et al., 2024). This theoretical prediction limit depends on the learnable

parameters (weights and biases) of the linear head layer that maps the LSTM’s hidden states to a single output value. For our

LSTM ensemble, the mean theoretical prediction limit is 73 mm d−1. This limit means that under no circumstances can the235

stand-alone LSTM produce a simulated discharge higher than 73 mm d−1. This theoretical prediction limit is notably smaller

than the maximum specific discharge observed during the training period, about 183 mm d−1, which occurred during a flood in

the Chli Schliere stream, located in central Switzerland. In total, there are 66 days in the training period during which discharge
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Figure 1. Cumulative Density Function (CDF) showing the (a) NSE, (b) High Flow Bias (FHV), (c) fraction of missed peaks and (d) Peak

Mean Absolute Percentage Error (MAPE) of the LSTM and hybrid model ensemble tested on 196 CAMELS-CH catchments during the test

period from 01.10.2010 to 30.09.2015. The solid line represents the mean of the ensemble, and the shaded region depicts the variation within

the ensemble. The average median NSE achieved by the LSTM network ensemble is 0.84, while that for the hybrid model ensemble is 0.79.

values exceed 73 mm d−1, representing approximately 0.01% of the total training data.

240

Our design experiments revealed that the maximum simulated discharge value from the LSTM ensemble is not the theoretical

limit of 73 mm d−1, but 60 mm d−1. This maximum was reached during a 1-day design precipitation event, which had a total

precipitation volume of 304 mm, in the Magliaso-Ponte catchment located in southern Switzerland. To further investigate how

closely the stand-alone LSTM can approach its theoretical maximum, we tested scenarios with extremely high precipitation

intensities up to 1000 mm d−1 sustained over 3- and 5-day durations. Such values exceed realistic conditions by far, especially245

considering the fact that the highest total annual precipitation recorded in Switzerland is 4173 mm a−1 (MeteoSwiss, 2024).
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Even under these extreme forcing conditions, the model did not produce a discharge value beyond 60 mm d−1. We hence refer

to this simulated maximum as the “design limit” of the LSTM. The “design limit” being smaller than the theoretical prediction

limit, can be understood as a consequence of not all linear head-layer units contributing fully to the final output.

250

Training LSTMs with a higher number of hidden states and on a larger, more diverse dataset (as recommended in Kratzert

et al., 2024) can raise the theoretical limit, but does not necessarily affect the “design limit” to the same degree. For instance,

a single LSTM network with 256 hidden states, compared to one with 64 hidden states, trained on the CAMELS-CH dataset,

demonstrates a theoretical prediction limit of 120 mm d−1. The “design limit” also increased to 75 mm d−1. Similarly, a single

LSTM with 256 hidden states, trained on both the CAMELS-CH and CAMELS-US datasets together, achieves a theoretical255

prediction limit of 194 mm d−1 and a raised “design limit” of 110 mm d−1. Despite the substantial improvements in theoreti-

cal prediction limits, the “design limits” remain significantly lower than the maximum discharges encountered during training:

299 mm d−1 in CAMELS-US and 183 mm d−1 in CAMELS-CH. While the theoretical limit reflects the maximum potential

output based on model parameters, the “design limit” is constrained by the interplay of network weights and activations during

inference. Thus, increasing the theoretical maximum by expanding the number of hidden states does not necessarily translate260

to a higher “design limit”.

In contrast, the hybrid model used in our experiments does not exhibit a theoretical limit to discharge predictions. The highest

simulated value observed was 144 mm d−1, which is still lower than the maximum discharge seen during training. How-

ever, when forced with increased precipitation, the model’s outputs scale more or less linearly with the forcing, demonstrating265

greater flexibility than the standalone LSTM. Panels (a)-(c) in Fig. 2 show the evolution in the simulated specific discharge

for three catchments for a particular, catchment-specific, 1-day design precipitation event with varying ARI from 50 to 300

years. We highlight these three events, as they have the highest runoff generation among the 201 events from the 25 catchments

and most clearly exhibit the limiting behavior of the LSTM. Notably, the maximum simulated discharge by the stand-alone

LSTM ensemble increase only marginally from ARI 50-year to ARI 300-year in all three catchments. For these events the270

simulations increase on average by 6% from ARI 50 to ARI 300 years, in contrast to the precipitation, that increases by 39%.

The maximum simulated values of these three catchments, which are 48 mm d−1, 43 mm d−1, and 60 mm d−1 respectively,

are well below the theoretical limit of the LSTM ensemble, but close to the “design limit”. From a hydrological viewpoint, this

entails that, although rainfall increases significantly, the LSTM simulations have decreasing runoff coefficients. In contrast, we

typically observe an increase in runoff coefficients with increasing intensity of extreme events, as increasing area of a catch-275

ment becomes saturated (Beven et al., 2021). The hybrid model ensemble on the other hand responds considerably more to the

increasing precipitation input, and there is an increase of 51% from ARI 50 to ARI 300 years. The identified patterns in the

three events shown in Fig. 2 are also true for the events with the highest runoff generation in each of the 25 test catchments.

Such events are specifically important, because they are more likely to push the LSTM to its simulation limits and display the

saturation effect. While the precipitation increases by 43% from ARI 50 to ARI 300, the LSTM simulations show an average280

increase of 25%. Whereas, the hybrid simulations increase by 48%. For the rest of the design events, as runoff generation
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Figure 2. Evolution of LSTM and hybrid model ensemble simulation for three, catchment specific, 1-day events with increasing ARI for

gauges located at (a)Andermatt, (b)Pollegio-Campagna and (c)Magliaso-Ponte and their respective hydrographs (d)-(f). The LSTM ensemble

doesn’t simulate discharge higher than its theoretical prediction limit (panels (d)-(f)). The increase in the hybrid model simulation is more

consistent with hydrological expectation than the LSTM (panels (a)-(c)).

varies depending on the state of the catchment, saturation behavior may or may not be observed as starkly. In catchments with

particularly low rainfall-runoff generation, the LSTM ensemble often produces higher runoff estimates than the hybrid model.

In such cases, the saturation in LSTM runoff generation is not pronounced either. The closer the LSTM estimates approach the

"design limit", the greater is the difference between the hybrid model and the LSTM simulation.285

Fig. 3 shows the results of a 3-day (panels (a), (c)) and a 5-day (panels (b), (d)) event at the Magliaso-Ponte gauge, one

of the test catchments exhibiting the most pronounced runoff responses. Consistent with observations from the 1-day events,

the LSTM network simulations reveal certain characteristic limitations. Nonetheless, for both the 3-day and 5-day events, the

hybrid model’s peak discharge simulations increase with higher ARIs (see panels (a) for the 3-day event and (b) for the 5-day290

event in Fig. 3). For most of the test catchments, the stand-alone LSTM response shows similar patterns. But the discrepancy

between the hybrid and the LSTM simulations is much smaller for the 3-day events compared to the 1-day events, and even

further reduced for the 5-day events.
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Figure 3. Evolution of LSTM and hybrid model ensemble simulation for gauge located at Magliaso-Ponte for a (a)3-day event and a (b)5-day

event with their respective hydrographs (c) and (d).

Table 2. Number of nodes (out of 64) of the LSTM network such that output of the |tanh(cn)| ≥ 0.90. Ensemble maximum (ensemble

minimum) values are reported for single events in each catchment. Due to poor reliability of 5-day extreme precipitation analyses for

Andermatt (MeteoSwiss, 2022), the corresponding results are not reported here.

ID Gauge Name Event Date Number of Saturated Nodes

Design Experiment ARI

50y 100y 300y

1d 3d 5d 1d 3d 5d 1d 3d 5d

2087 Andermatt 08.08.2013 37(28) 45(42) - 35(27) 46(43) - 34(26) 45(43) -

2494 Pollegio-Campagna 22.05.2014 32(26) 51(42) 50(44) 32(26) 52(39) 50(45) 32(26) 50(40) 51(45)

2461 Magliaso-Ponte 11.10.2014 48(40) 50(41) 47(41) 48(40) 51(42) 49(42) 48(37) 51(44) 51(43)

3.3 Evolution of saturation in the LSTM ensemble

For the events identified in Section 2.5, on average, at least 19% and at most 58% network saturation is observed for precipi-295

tation input within the test dataset, meaning without the input of synthetic extreme precipitation. This shall serve as a baseline
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to observe how much the network further saturates when subject to the synthetic precipitation data during the design events.

Table 2 shows the maximum (and minimum) number of saturated LSTM cells (out of 64) for three test catchments across

various design events. Notably, in none of the cases do the LSTM’s cell states fully saturate. For the 1-day events, on average,

the maximum saturation across the ensemble ranged from about 50% to 75%, while the minimum ranged from approximately300

41% to 63%. Interestingly, this degree of saturation remained nearly unchanged even as the ARI increased, and the associated

precipitation became more intense. Even pushing the model with a very high 1-day precipitation of 1000 mm d−1 did not cause

the cell states to approach complete saturation.

A different pattern emerged, however, when we examined longer-duration events. For the 3-day events, we observed a sub-305

stantial increase in cell state saturation. This indicates that some cells require more than a single day to accumulate sufficient

input signals to reach higher saturation levels. This is thereby controlled by the input and forget gates in an LSTM (Eqs. (A1)

and (A2) in Appendix A1). The input gate controls how much new information enters the cell state, while the forget gate deter-

mines how much past information is retained or discarded. Over multiple days, the continued influx of rainfall data (regulated

by the input gate) and the retention of previously encoded information (controlled by the forget gate) allow the cell states to310

build up more gradually. With this prolonged input, more cell states move closer to saturation. For the 5-day events, satura-

tion did not increase further, which at first seems contradictory. However, the total precipitation of the 5-day events does not

greatly exceed that of the 3-day events. Since the rainfall is spread uniformly over a longer period, it results in a lower daily

precipitation intensity. Without sufficiently large daily inputs, the cell states do not accumulate to higher saturation levels, even

over multiple days. Thus, while longer durations can facilitate higher saturation when daily precipitation is intense, simply ex-315

tending the time frame without maintaining high-intensity input does not necessarily lead to further saturation. The number of

saturated cell states, hence, provides useful insights. However, the saturation of the cell states is not the only kind of saturation

that limits the LSTM.

4 Discussion

We structure our discussion around the three research questions posed at the end of our introduction.320

1. Can LSTMs extrapolate to discharge values beyond the training distribution when forced with statistically derived design

precipitation events?

Our study highlights limitations in current LSTM training strategies. While LSTMs are undeniably powerful tools for mod-

elling complex relationships in hydrological systems (Kratzert et al., 2018, 2019a; Loritz et al., 2024; Nearing et al., 2024),

their response to inputs outside the training range exposes critical challenges (Acuna Espinoza et al., 2024b; Song et al., 2024).325

In order to use ML models responsibly, users should be aware of how the training data limit the model applicability (see also:

Meyer and Pebesma, 2021).

Although we train the LSTM ensemble using state-of-the-art methods following the current benchmarks (Kratzert et al.,

2019a; Lees et al., 2021; Acuna Espinoza et al., 2024b), it still underestimates discharge values with low exceedance proba-
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bilities (high floods), even when these are present in the training data. For instance, although the model saw the largest flood330

in the training period of 183 mm d−1 and 66 other events higher than the theoretical prediction limit (73 mm d−1) 20 times

during training (once every epoch of training), the maximum value it could simulate is much lower (60 mm d−1). Extreme

hydrological events often coincide with distinct regime shifts, such as the switch to runoff generation dominated by surface

runoff, which was previously dominated by subsurface runoff. This may necessitate the model to adopt a completely dif-

ferent set of network weights and a unique mapping of inputs to outputs to accurately capture these phenomena. However,335

reallocating network capacity in this way could compromise the model’s ability to simulate more common flow conditions.

Thus, the model is potentially disincentivized from fitting to these rare but critical extremes effectively. Another contributing

factor may be the inherent bias of minimizing the mean squared error (MSE), which disproportionately penalizes rare out-

liers and can lead to systematic underestimation of their magnitude. Furthermore, both the inputs and targets are frequently

noisy, adding another layer of complexity to accurately capturing extreme events. While our experiments cannot definitively340

determine which of these factors—or their combination—is primarily responsible for the observed underestimation of extreme

floods, the inherent flexibility of LSTMs suggests that this limitation is not intrinsic to the model itself. Instead, it highlights

the need for an improved training strategy that better balances the representation of rare extremes and common flow conditions.

Scaling the LSTM by increasing the number of hidden states, and/or providing more training data from a broader range of345

hydrologic conditions, seems to be an avenue to mitigate this problem. For instance, our LSTM with 256 hidden states, trained

on a combined CAMELS-US and CAMELS-CH dataset, results in improved simulations of the extreme events in our test

catchments. This corroborates the intuition given by Kratzert et al. (2019a) and studied in Kratzert et al. (2024). However,

the theoretical limit of the ensemble, in this case, was still well below the maximum observed training data in Switzerland

and far below that of CAMELS-US. Once again, it is imprudent to state with certainty, the underlying reason or combinations350

thereof—whether it is the rarity of the extreme events or the training strategy which minimizes a squared error. Our study

provides some indications on how we can overcome these limits: For one, our results show that stronger structural priors—as

for example implemented by the hybrid-approach—can lead to behavior that is more plausible. However, we do not yet know

how strong or weak the structural choices need to be (the study by Frame et al. (2022) indicates that mass conservation alone is

not enough). Another potential avenue could come from the training itself: During the training process, there are no technical355

limits to a prediction made by the LSTM. Hence, the issue could most likely be reduced by a well-chosen training strategy.

For example, changing the loss function (for instance by weighting high flow events more; Tanrikulu et al., 2024) improves

the predictions for flood peaks, but is accompanied by a decrease in overall performance. In this study, we tried training the

LSTM with a different loss functions as well as training on more diverse datasets. Both strategies only mitigated the issue to

some extent. We believe there is indeed a need for improvement in the way we train and setup LSTMs, in order to seek better,360

if not complete, resolution of this issue. We leave the further exploration of potential solutions to future work.

2. Is the saturation of LSTM cell states the primary reason, which limits their ability to extrapolate to extreme and unprece-

dented hydrological conditions?
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Our multi-day design precipitation experiments highlight that, saturation of the cell states can be an important reason for the

threshold behavior, as increasing inputs led to large values of ct (Eq. (A5)) for certain cells—which are then asymptotically365

limited to −1,1 by the tanh function. However, the theoretical limit of the LSTM derived in Kratzert et al. (2024) can only

partly explain why the model does not respond to increasing inputs. The reason for this is that the other gating mechanisms

can in practice saturate much earlier. Hence, one has to consider the model response as a whole and empirically, the design

limit lies below the theoretical maximum from Kratzert et al. (2024). As a matter of fact, a deeper examination of the internal

mechanisms—particularly the behavior of the gating functions (see Appendix A1)—showed that, most 1-day design precipita-370

tion events never reach the cell state because the input gate (Eq. (A1)) in the LSTM filters them out, or the forget gate (Eq. (A2))

discards most of the historical information. This suggests that the LSTM’s inherent assumptions and structural characteristics

can prevent it from effectively processing extreme inputs, leading to an underestimation of extreme high-flow events, as addi-

tional mass is effectively “deleted” (in contrast, we posit that, for low-flow events this property should not be antagonistic to

the hydrological intuition, since saturation behavior naturally occurs there). In principle, an LSTM could also be built with its375

gating functions employing non-saturating activation functions, but this would typically introduce significant new challenges

(e.g., due to vanishing gradients; Hochreiter and Schmidhuber, 1997). Non-saturating functions (e.g., Rectified Linear Units)

do not naturally bound the values that flow through the network, making it harder to control the internal state dynamics. Without

the built-in constraints provided by sigmoid or tanh activations, the cell states could grow without bound, potentially leading

to exploding gradients and destabilized training. In this regard, it is of interest to compare the mechanism of the original LSTM380

with its latest iteration, the xLSTM (Beck et al., 2024) – more specifically, the sLSTM variant. It incorporates a non-saturated

exponential function for the input gate. However, it also relies on additional stabilizing mechanisms that also leads to a form

of saturation, ensuring that values remain within manageable ranges. In this way, while alternative architectures and activation

functions might circumvent certain limitations, they often introduce new challenges related to stability and training dynamics.

Ultimately, these findings again highlight that, when it comes to purely data-driven models, there is no simple, one-size-fits-all385

solution; rather, careful architectural choices, tailored activation functions, and potentially new inductive biases are needed to

effectively capture and represent extreme events within LSTM-based models.

3. How do the inherent assumptions and structural characteristics (inductive biases) of LSTMs influence their ability to

simulate realistic hydrological responses under conditions that exceed observed training ranges?

LSTMs are not just general function approximators, but are also proven to be Turing complete (Siegelmann and Sontag,390

1992; Chung and Siegelmann, 2021). However, the inherent assumptions and structural characteristics of an LSTM introduce

an inductive bias that can limit its ability to simulate hydrological responses when conditions strongly deviate from those ob-

served during training. In essence, the LSTM’s model structure acts as a form of prior knowledge that guides its predictions

toward states that reflect its training experience (Hochreiter and Schmidhuber, 1997). The LSTM design, however, does not

focus on yielding model behavior that reflects hydrological intuitions in extrapolation regimes. In case of the LSTM and the395

maximum runoff reaction, this is due to its reliance on saturating activation functions (which, for large precipitation values,

results in an input-concave behavior) and in case of the hybrid and its use of linear reservoirs, close to linear (if the parameters
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remain unchanged during the extreme event; which empirically they do, due to the saturation of the LSTM). In contrast to both

models, in hydrology, we might assume a convex model behavior with increase in precipitation (assuming no changes in the

other input features). Thus, we typically assume that runoff coefficients increase with increasing intensity of extreme events,400

as increasing area of a catchment becomes saturated (Beven et al., 2021; Kirchner, 2024). In other words, if we plotted runoff

as a function of precipitation for increasingly intense events, we might observe a curve that bends upward (convex). This shape

reflects the fact that once critical saturation thresholds are reached, each additional unit of rainfall generates disproportionately

more runoff than before.

405

In a single linear reservoir type of hydrological model, the runoff response is, inherently linear, meaning the total runoff

volume remains proportional to the total rainfall input, assuming negligible losses or constraints. The runoff coefficient in

such a system is constant irrespective of rainfall magnitude (approximately what we found for the hybrid model and also for a

single HBV model (Seibert and Vis, 2012), locally calibrated for each test catchment (see Fig. B2). Conceptual models such

as TOPMODEL (Beven et al., 2021) encode clear nonlinearities due to the exponential relationship between subsurface flow410

and water-table depth. This nonlinearity implies a substantial increase in runoff generation as saturation thresholds within the

catchment are approached, resulting in runoff coefficients that vary strongly with antecedent moisture conditions and rainfall

magnitudes. Froidevaux et al. (2015) showed in a study conducted in 100 Swiss catchments that 0 to 3 days of accumulated

precipitation is the main driver of floods, while longer-term (4 days to 1 month) antecedent precipitation and hydrological

conditions have only weak, region-specific effects and are negligible in Alpine catchments. While Staudinger et al. (2025)415

highlighted the crucial role of antecedent soil moisture and snow storage, by showing that only 18-44% of extreme annual

floods coincided with maximum precipitation. The sensitivity of flood peaks to an increase in maximum precipitation varies

significantly, however, at a fundamental level, one would generally expect runoff coefficients to increase or at least remain

the same with increasing rainfall, particularly under extreme precipitation scenarios. But interestingly, our analysis revealed

that the LSTM model exhibited an unexpected and physically counterintuitive trend: runoff coefficients start decreasing with420

increasing precipitation magnitudes, especially for extreme precipitation values. This is particularly true for catchments with

higher runoff generation. If we trust our hydrological theory, this knowledge should also be reflected in the “inductive bias” of

the model we are using. In reality, hydrology is much more complex, and we could observe concave hydrological responses to

increasing precipitation, but the a-priori assumption of a convex reaction seems reasonable.

425

The hybrid model (and the HBV model (Appendix B)) effectively avoids the unrealistic behavior observed in the stand-alone

LSTM by enforcing an almost linear behavior due to its use of linear reservoirs. Under the design precipitation events the LSTM

component within the hybrid model does saturate, showing a similar behavior as the purely data driven approach. This implies

a theoretical prediction limit to every parameter of the subsequent HBV models, which is the upper limit of its parameter

range specified during the initialization. However, similar to a stand-alone LSTM, the LSTM component of the hybrid model430

does not reach full saturation for any of the observed extreme events, and the saturated parameters of the HBV component

still remain well below their theoretical prediction limits. Crucially, the conceptual structure of the hybrid model ensures that
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predicted discharges increase consistently with increasing precipitation. This alignment with hydrological principles allows the

hybrid model to provide predictions that remain hydrologically plausible even when the model is forced with inputs outside

the observed regime. In other words, the structural choices of the hybrid-model effectively mitigate the saturation behavior ob-435

served in the stand-alone LSTM—making the hybrid approach more suitable for applications like infrastructure design where

plausible extrapolation behavior is essential. On the other hand, the hybrid model, by following the physical constraints, is also

biased towards prior knowledge and assumptions. Asserting whether the actual behavior reflects a real-world response of the

underlying basin, and whether it is actually meaningful to use these models in such a way, is beyond the scope of this study.

440

For operational flood forecasting, the situation may differ. Recent work by Nearing et al. (2024) highlights the potential ad-

vantages of LSTMs over classical hydrological models, particularly when trained on a global database. Our results support

this, showing that in catchments with low runoff generation, the LSTM behaves in a hydrologically consistent manner. Addi-

tionally, the stand-alone LSTM offers numerous advantages over classical hydrological models. For instance, its flexible use

of embedding layers enables the model to seamlessly transition between different temporal frequencies and switch between445

simulation and forecasting modes (Acuña Espinoza et al., 2024). This adaptability makes LSTMs a powerful tool in opera-

tional settings, where diverse conditions and forecasting needs must be addressed efficiently. By emphasizing on high-flow

events (Tanrikulu et al., 2024) during training or employing data augmentation techniques like weather generators combined

with classical hydrological models (Nguyen et al., 2021), the simulation of extreme events included in the training data could

probably be improved.450

5 Conclusion

This study investigates the ability of LSTMs to extrapolate under extreme rainfall–runoff conditions and compares their per-

formance with a hybrid model. Based on our findings, we conclude the following:

– Limitations of LSTMs: State-of-the-art LSTMs struggle to predict discharge values beyond a theoretical prediction limit,

and this limit is below the range of the training data.455

– Saturation of LSTM states: While saturation of LSTM cell states contributes to limiting the model’s ability to simu-

late extreme hydrological events, the gating mechanisms play a significant role in filtering or discarding information,

especially during 1-day design precipitation events.

– Inconsistent runoff responses: Increasing (extreme) intensity of design precipitation events leads to decreasing runoff

coefficients, contrary to the hydrological expectation. This highlights structural limitations in the LSTM architecture for460

hydrological extreme value simulation.

– Hybrid model benchmark: The hybrid model aligns better with hydrological principles, demonstrating consistent scaling

of discharge with increasing extreme precipitation. Its mass-conserving structure and use of conceptual hydrological

components make it more robust under extreme forcing conditions.
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– Potential for improvement: Increasing the number of LSTM hidden states and training on larger, more diverse datasets465

can raise the theoretical and design prediction limits. However, these adjustments do not fully address the observed

limitations, particularly during the 1-day events. Incorporating stronger structural priors, or adapting training strategies

which weigh extreme events more during optimization, could mitigate these issues.

Every modeling approach has inherent limitations within its scope of application. While the constraints of conceptual hy-

drological models are well understood, the same cannot be said for deep learning models, where such limitations remain less470

explored. We argue that addressing these gaps is crucial for advancing their utility in hydrological applications. The limitations

outlined above are not beyond resolution; they represent opportunities for further development. Future research should focus

on refining LSTM architectures to better align with hydrological principles, improving training strategies to give greater weight

to extreme events during optimization, and exploring innovative hybrid approaches that combine the strengths of data-driven

and process-based models. By addressing these challenges, we can move closer to unlocking the full potential of deep learning475

in hydrological modelling, particularly under extreme forcing conditions. All of the above stated limitations can potentially be

overcome, and we believe that future research should focus on refining LSTM architectures, improving training strategies, and

exploring and optimizing new hybrid approaches.

Code availability. All the codes for model training, testing, design experiments and plotting the results presented in this paper are available

at https://doi.org/10.5281/zenodo.14771377. This also contains the CAMELS-CH and the CAMELS-US dataset for the ease of reproduction480

of results.

Data availability. The CAMELS-US dataset is freely available at https://doi.org/10.5065/D6MW2F4D (Newman et al., 2015; Addor et al.,

2017). The CAMELS-CH dataset is freely available at https://doi.org/10.5281/zenodo.7784632 (Höge et al., 2023). Extreme value analyses

for Switzerland is available at https://www.meteoswiss.admin.ch/services-and-publications/applications/standard-period.html (MeteoSwiss,

2022)485
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Appendix A: Model Inputs and LSTM Equations

A1 Equations describing the LSTM

The LSTM forward pass can be mathematically represented by the following:

it = σ (Wixt +Uiht−1 + bi) (A1)

ft = σ (Wfxt +Ufht−1 + bf ) (A2)490

gt = tanh(Wgxt +Ught−1 + bg) (A3)

ot = σ (Woxt +Uoht−1 + bo) (A4)

ct = ft ⊙ ct−1 + it ⊙ gt (A5)

ht = ot ⊙ tanh(ct) (A6)

where it, ft, and ot are the input gate, forget gate, and output gate, respectively, gt is the cell input and xt is the network495

input at time step t, and ht−1 is the recurrent input, ct−1 the cell state from the previous time step. W, U, and b are learnable

parameters for each gate, where subscripts indicate which gate the particular weight matrix/vector is used for, σ is the sigmoid

function, tanh is the hyperbolic tangent function, and ⊙ is element-wise multiplication.

A2 List of the CAMELS-CH and CAMELS-US forcing variables and catchment attributes used for training

Table A1 gives the description of the static and dynamic inputs to the LSTM and hybrid models.500

Table A1: Dynamic and static inputs used to train the 1LSTM ensembles using the CAMELS-CH dataset, 2LSTM ensembles

using CAMELS-CH and CAMELS-US dataset combined and 3hybrid model ensembles 4explicit input to the HBV models in

the hybrid model

CAMELS-CH CAMELS-US Description

Dynamic Inputs

precipitation (mm d−1) prcp (mm d−1) Observed daily summed precipitation1,2,3

temperature_min (°C) tmin (°C) Observed daily minimum temperature1,2,3

temperature_max (°C) tmax (°C) Observed daily maximum temperature1,2,3

rel_sun_dur (%) Observed daily averaged relative sunshine (solar irradiance

≥ 200 W m-2) duration1,3

swe (mm) Observed daily averaged snow water equivalent1,3

pet_sim (mm d−1) Simulated daily averaged potential evapotranspira-

tion (Penman–Monteith equation without interception

correction)3,4
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CAMELS-CH CAMELS-US Description

Static Inputs

area (m2) area_gages2 (km2) catchment area

elev_mean (m a.s.l.) elev_mean (m a.s.l.) Mean elevation within catchment

slope_mean (°) slope_mean (m km−1) Catchment mean slope over all grid cells

sand_perc (%) sand_frac (%) Percentage sand

silt_perc (%) silt_frac (%) Percentage silt

clay_perc (%) clay_frac (%) Percentage clay

porosity (-) soil_porosity (-) Volumetric porosity

conductivity (cm h−1) soil_conductivity (cm h−1) Saturated hydraulic conductivity

glac_area (km2) Glacier area of Swiss glaciers per catchment

dwood_perc (%) Percentage of deciduous forest

ewood_perc (%) Percentage of coniferous forest (evergreen)

crop_perc (%) Percentage of agriculture

urban_perc (%) Percentage of urban and settlements

reservoir_cap (ML) Total storage capacity of reservoirs in megaliters

p_mean (mm d−1) p_mean (mm d−1) Mean daily precipitation

pet_mean (mm d−1) pet_mean (mm d−1) Mean daily potential evapotranspiration (PET; Pen-

man–Monteith equation without interception correction)

p_seasonality (-) p_seasonality (-) Seasonality and timing of precipitation (estimated using

sine curves to represent the annual temperature and precip-

itation cycles, positive (negative) values indicate that pre-

cipitation peaks in summer (winter), and values close to

zero indicate uniform precipitation throughout the year).

See Eq. (14) in Woods (2009))

frac_snow (-) frac_snow (-) Fraction of precipitation falling as snow, i.e., while tem-

perature is < 0 °C

high_prec_freq (d yr−1) high_prec_freq (d yr−1) Frequency of high-precipitation days (≥ 5 times mean

daily precipitation)

low_prec_freq (d yr−1) low_prec_freq (d yr−1) Frequency of dry days (< 1 mm d−1)

high_prec_dur (d) high_prec_dur (d) Average duration of high-precipitation events (number of

consecutive days ≥ 5 times mean daily precipitation)

low_prec_dur (d) low_prec_dur (d) Average duration of dry periods (number of consecutive

days < 1 mm d−1 mean daily precipitation)

20



Appendix B: LSTM, hybrid and Conceptual model simulations for design experiments in 25 catchments

Figure B1. Model performance comparison in terms of cumulative distribution function (CDF) of Nash-Sutcliffe Efficiency (NSE) for

PREVAH, conceptual model, LSTM (ensemble mean) and hybrid model (ensemble mean) for (a) 196 CAMELS-CH catchments and (b)

subset of 25 catchments identified for design experiments

B1 Conceptual Model Description and Performance

To enable model comparison across the entire range of models, in addition to the LSTM and hybrid model ensembles, we

locally trained stand-alone conceptual models for individual catchments. The conceptual model is a variant of the HBV model

(Seibert, 2005) plus a unit hydrograph (UH) routing, with a total of 14 parameters (12 HBV and 2 UH routing parameters).505

For brevity, we refer the reader to Seibert (2005) for a detailed description of the HBV model. The models are calibrated

locally for every catchment using the “differential evolution adaptive metropolis” (DREAM) (Vrugt, 2016) algorithm, which

is implemented within the SPOTPY (Statistical Parameter Optimization Tool for Python) library (Houska et al., 2015), as done

in the CAMELS-DE dataset (Loritz et al., 2024). Using the best catchment-specific calibration parameters, the models were

tested for the experimental set-up described in Section 2.5. The calibration period and evaluation periods for the conceptual510

models is the same as the training and testing periods mentioned in Table 1. Fig. B1 panel (a) presents the CDF of the NSE for

196 catchments from the CAMELS-CH identified in Section 2.1 and panel (b) shows the performance of the models for the

subset of 25 catchments identified for the design experiments. Though the HBV model (median NSE 0.64) outperforms the

PREVAH model (median NSE 0.50) for overall performance, the HBV model fails to accurately simulate runoff during winter

periods for some catchments, potentially owing to it’s rather simple temperature degree snow module.515
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Figure B2. Model simulation comparison for 25 catchment specific 1-day events with the highest runoff generation. Variation within the

LSTM and Hybid model ensembles is represented by the whiskers on their respective plots. The HBV results are from a single model. As

the LSTM prediction approaches the theoretical prediction limit, saturation behavior is most pronounced.

22



B2 Model comparison for design events simulation for 25 catchment-specific events

A comparison of the simulated discharge from the three models for 25 catchment specific 1- and 3-day events is given in,

Figs. B2 and B3 respectively. The events shown in these figures are those, for which the LSTM has the highest runoff response.

For such events, the LSTM is most likely to exhibit the saturation behavior as it nears its prediction limits. For the 1-day

events (see Fig. B2), the saturation behavior in the LSTM is more apparent for events with runoff generation closer to the520

“design limit” (see (a1), (a2), (b3), (b5), (c2), (d1), (d2), (d5), (e1), (e5) in Fig. B3). For most of the events, the response of

the conceptual model is smaller than the LSTM, but it shows greater increase with increasing intensity of precipitation. For the

3-day events, owing to less intense daily precipitation value, the saturation behavior of the LSTM is observed only for a few

events (see panels (a2), (b3), (c4), (d3) and (e2) in Fig. B3). The discrepancy between the hybrid and the LSTM simulations

is much smaller for these events as compared to the 1-day events. For most of the events, the conceptual and the hybrid model525

responses are almost comparable.

Appendix C: Effect of increased network size and larger training datasets on theoretical prediction limit and design

limits

As mentioned in Section 3.2 of this paper, increasing the number of hidden states, and/or training the LSTMs on larger datasets,

increases the theoretical prediction limit as given in Table C1. LSTMs with more hidden states and/or trained on larger dataset530

also simulate higher runoff for the design precipitation values. Nevertheless, this response, too, is concave (Fig. C1), unlike the

hybrid model response.

Table C1. Theoretical prediction limits and design limits from design experiments for different LSTM networks. max(yobs) indicates the

maximum observed target value during the training period from 01.10.1995 to 30.09.2005.

*results from this model presented in Section 3 of the main text

LSTM Network Number of

Nodes

Training Dataset max(yobs) Theoretical

Prediction

Limit

Design Limit

mm d−1 mm d−1 mm d−1

LSTM_CH* 64
229 CAMELS-CH catchments 183

73 60

LSTM_CH 256 120 76

LSTM_US_CH 64 229 CAMELS-CH

and 531 CAMELS-US catchments
299

115 84

LSTM_US_CH 256 193 110
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Figure B3. Model simulation comparison for 25 catchment specific 3-day events with the highest runoff generation. Variation within the

LSTM and Hybid model ensembles is represented by the whiskers on their respective plots. The HBV results are from a single model.
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Figure C1. Additional LSTM networks’ and hybrid model ensemble simulation for 3 catchment specific events.

Appendix D: Effect of training an LSTM with modified loss function and modified activation functions on design

limits

In order to investigate training strategies that overcome the characteristic behavior of the LSTM, we trained an LSTM with535

a modified loss function instead of the basin-averaged NSE suggested by Kratzert et al. (2019a). The modified loss function,

in this case, weighs the maximum of the squared errors between the observation and the simulation by a factor, thus forcing

the LSTM to simulate tail end values of the discharge distribution better. In other attempts, we focused on replacing the tanh

activation function in Eq. (A6) to overcome the saturation in the LSTM. Replacing it with a non-saturating softplus activation

function, made the LSTM training unstable, thwarting our efforts in this direction. We then implemented the sLSTM variant540

of the xLSTM (Beck et al., 2024), as it replaces the sigmoid activation in Eqs. (A1) and (A2) with an exponential activation

function. Such a replacement is hypothesized to enable better transmission of the extreme input signal through the input and

the forget gates of the sLSTM. In Appendix D1, we first describe the modified loss function (MSE+) and the mathematical

equations describing the forward pass of the sLSTM. We also give a brief description of the training and testing methods for

these models. In Appendix D2 we present the results from these models for the same events shown in Fig. 2.545

D1 Methods Description: LSTMMSE+ and sLSTM forward pass

An ensemble of 5 LSTM networks was trained with a modified loss function given in Eq. (D1), henceforth referred to as

the LSTMMSE+ . Another ensemble of 5 sLSTM networks was trained and the equations describing the forward pass of the

sLSTM are described in Eqs. (D2) to (D11). The hyperparameters and the training and testing data split for both the ensembles

were the same as mentioned in Table 1. Thus, the LSTMMSE+ differs from the stand-alone LSTM only in terms of the loss550

function and the sLSTM differs only in its forward pass.

MSE+ = MSE+ k ·max
(
(obs− sim)2

)
(D1)
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where MSE+ is the modified loss function, k is a factor (= 0.2 in this study), obs and sim are the observed and simulated

discharge time series respectively.

it = exp(Wixt +Uiht−1 + bi) (D2)555

ft = exp(Wfxt +Ufht−1 + bf ) (D3)

ot = σ (Woxt +Uoht−1 + bo) (D4)

zt = tanh(Wzxt +Uzht−1 + bz) (D5)

mt =max(log(ft)+mt−1, log(it)) (D6)

i′t = exp(log(it)−mt) (D7)

f ′
t = exp(log(ft)+mt−1 −mt) (D8)

ct = f ′
tct−1 + i′tzt (D9)

nt = f ′
tnt−1 + i′t (D10)

ht = ot

(
ct
nt

)
(D11)

where it, ft, and ot are the input gate, forget gate, and output gate, respectively, zt is the cell input, xt is the network input560

at time step t, ht is the recurrent input, ct the cell state, nt is the normalizer state, mt is the stabilizer state and i′t and f ′
t are

the stabilized input and forget gates respectively. W, U, and b are learnable parameters for each gate, where subscripts indicate

which gate the particular weight matrix/vector is used for, σ is the sigmoid function, tanh is the hyperbolic tangent function,

and exp is the exponential function. The sLSTM architecture replaces the sigmoid activation function in the input and the

forget gates with the exponential activation and in order to prevent overflow, a stabilizer state mt is introduced to stabilize565

these gates.

D2 Design experiments results: LSTMMSE+ and sLSTM forward pass

Table D1. Predictions for design events (and Theoretical Prediction Limits) for LSTM, LSTMMSE+ and sLSTM for three most runoff

reactive design events

Gauge ID Catchment Prediction for 1-day design experiment at ARI 300-year (mm d−1)

Original LSTM from

this study

LSTMMSE+ sLSTM

(73 mm d−1) (110 mm d−1) (66 mm d−1)

2087 Andermatt 48 53 40

2494 Pollegio-Campagna 43 44 36

2461 Magliaso-Ponte 60 63 52

Results from the two models for the same events shown in Fig. 2 are summarized in table Table D1. The LSTMMSE+ ensemble

has an improved mean theoretical prediction limit of about 101 mm d−1, but the design limits did not show a corresponding

improvement. Such an ensemble also had a lower median performance (median ensemble NSE 0.75) for overall runoff sim-570

ulation. The sLSTM ensemble on the other hand had a slightly better overall performance (media ensemble NSE 0.78) as
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compared to the LSTMMSE+ , but did not the match the performance of the LSTM. The design experiments with the sLSTM

ensemble show a decreased theoretical prediction limit of about 66 mm d−1. This is accompanied by a decrease in the design

limits as well. These results warrant efforts to further explore more such training strategies and network architectures.
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