Dear Editor and Reviewers,

Thanks for the constructive feedback to improve the manuscript entitled “Changes in
1958-2019 Greenland Surface Mass Balance are Attributable to both Greenhouse
Gases and Anthropogenic Aerosols” for the revision. Please find a point-by-point reply
below, with the comments in black and our answers in blue.

Sincerely,
Yan-Ning Kuo, on behalf of the coauthors

Reviewer #1
General comments

The manuscript presents a rigorous detection and attribution analysis on historical
Greenland Ice Sheet (GrlS) surface mass balance (SMB) changes, using a Bayesian
total least square (TLS) regression framework that explicitly accounts for multiple
sources of uncertainty. Using CESM2 large ensemble and single forcing large
ensemble, with regional climate model RACMO outputs as a reference, the authors
show that historical GrIS SMB changes can be attributed not only to greenhouse gases
(GHG) but also to anthropogenic aerosols (AAER) through their forced changes on
runoff. The study finds that GHG primarily drive the long-term trend, whereas AAER
contribute through decadal atmospheric circulation variability, particularly a Greenland
blocking pattern. The authors further explain the lower signal-to-noise ratio associated
with AAER attribution and address the temperature state dependence of such
attribution, highlighting the need for future methodological improvements.

Overall, the manuscript is very well written, clearly structured, and the results are well
presented with helpful supportive information. The Bayesian TLS regression approach
provides a robust quantification of regression uncertainties, addressing a key challenge
in detection and attribution studies of ice sheet changes given the limited data. The
work also demonstrates that parts of the historical GrlS SMB change are attributable to
AAER for the first time. | find the work novel and inspirational, and | expect the results
will be of broad interest to the community. One thing related to the key conclusion needs
to be justified further is whether GHG forcing also contributes to the decadal variability
of GrIS SMB and runoff changes. Additional comments can be found below to improve
clarity and strengthen the discussion. Once these issues are addressed, | would be very
happy to support prompt publication of this paper in The Cryosphere.

We thank the reviewer for a supportive review with constructive comments to improve
the manuscript.



Specific comments
Line 30-31: in addition to calving, ice discharge can also come from oceanic melting

The reviewer is right that both calving and oceanic melting are contributing to the ice
discharge. We will revise Line 30-31 by mentioning the oceanic melting (BOLD):

“...(2) changes in ice discharge related to glacial dynamics, manifested in calving and
oceanic melting trends.”

Line 36: “surface melting” would be more accurate than “ice melting”

Thanks for the reviewer's comment. We will revise L36 from ice melting to surface
melting.

Line 103: Can add a citation for the statement “as GHG and AAER are two dominant
anthropogenic forcings for historical climate change.”

There are a few studies in the literature to support this argument: such as Deser et al.
(2020) and the reference therein. We will add citations for these papers in the revised
manuscript.

Deser, C., Phillips, A. S., Simpson, |. R., Rosenbloom, N., Coleman, D., Lehner, F,, ... &
Stevenson, S. (2020). Isolating the evolving contributions of anthropogenic aerosols and
greenhouse gases: A new CESM1 large ensemble community resource. Journal of
climate, 33(18), 7835-7858.

Line 182: It seems that the Frederikse et al. (2020) reconstruction does include RACMO
SMB data in its input-output estimate (Mouginot et al., 2019). Therefore, it will be more
accurate to just say something like “by the fact that the reconstructed GrIS mass loss
includes RACMO-simulated SMB.”

Thanks for the comment. We will revise L182 as suggested by the reviewer.

Figure 2, 3: Maybe it can add more clarity to restate the y (RACMO-ERA) and x
(ensemble mean of CESM2) for regression in the captions.

Thanks for the comment. We will add the information in the figure captions as one
additional sentence:

“Here, scaling factor (B) is derived by the Bayesian Total Least Square regression with y
from RACMO-ERA and x from ensemble mean of CESM2-LE.”



Figure S4: It seems that xXAAER has larger increase in runoff or decrease in SMB than
GHG. What do you think could be the possible reason, e.g., related to the temperature
state dependence?

Yes. We would speculate the xAAER has stronger runoff increase due to its warmer
mean-state temperature.

Line 225: Maybe add something like “usually” to the statement “BAAER > 1 and also >
BGHG”

Thanks, we will revise L225 as: “usually Baaer > 1 and also > Bgue”

Section 3.3 and Figure 4: The same Bayesian TLS regression is applied to estimate the
temperature sensitivity of SMB and R to TAS. Although it is pointed to Table S1 in
Section 2.2.1, it will add more clarity by stating what the y and x are for the regression,
either in the figure caption or in the text. Does each regression use the annual SMB and
TAS from the corresponding simulation? Does the sensitivity (Gt per year per 1K
warming) equal to the scaling factor?

Thanks for the comment. We will add the clarifying descriptions on the regression in
figure caption, as the other above-mentioned comment. For the temperature sensitivity,
we would not call it “scaling factor”, which is a term defined in the detection and
attribution method for a case to quantify how well the simulated forced response
matches the observed forced response. In this case, both x and y are the same variable
with the same unit. This is why it is defined as a detectable and attributable signal when
the scaling factor is around 1 and significantly greater than O (i.e., the modeled forced
response matches the observed forced response perfectly).

Figure S6: in panel (a), is the GBI time series in black calculated from RACMO output or
directly from ERAS5?

The GBI time series is taken directly from ERAS5 to be comparable to the large-scale
circulation map taken from ERAS5. We will add clarification in the revised manuscript.

Section 3.4 and Figure 5: It is well illustrated that there is an AAER-forced change in the
variability of circulation, imprinted onto a pattern that reinforces Greenland blocking, by
comparing the correlation patterns in AAER and ERAS5 (Fig.5f,e). However, another
question remains that if GHG also contribute to circulation variability in addition to the
long-term linear trend. Thus, | am curious what the correlation map for GHG would look
like (e.g., whether it will have a similar pattern as panel (e) and (f)).

We thank the reviewer for this comment. Indeed, the GHG-induced runoff increase
plateaued after 2000, hinting at GHG-forced decadal variability. The correlation between



R and Z500 in GHG has an emerging Greenland blocking-like pattern (Figure R1 left
panel), distinct from the GHG-induced trend pattern (Figure 5c). The Greenland
blocking pattern is still significant in the correlation map when the linear trends in the
ensemble means in GHG are removed (Figure R1 right panel). This supports the
reviewer’s viewpoint that GHG contributes to both the long-term uniform linear trend and
the decadal variability.

We speculate that the plateaued GHG-induced GrlIS runoff increase after 2000 may
come from feedback due to the cold blob in the North Atlantic subpolar gyre, which is
linked to a more positive North Atlantic Oscillation (Fan et al., 2023). Idealized
experiments are necessary to isolate GHG-induced circulation change from direct GHG
radiative forced response versus GHG-induced SST (i.e., the cold blob), though such
experiments are beyond the scope of this project. We will revise Section 3.4 to discuss
these results (new text highlighted in BOLD):

“What are the mechanisms by which GHG and AAER forcing drive long-term trends and
decadal variability in GrlS SMB through runoff changes? Here, we focus on the summer
(JJA) temperature and circulation patterns to explain the GrIS runoff changes, which are
linked to the melting-induced runoff changes (Sherman et al., 2020; Hanna et al., 2014;
Tedesco and Fettweis 2020). The trend map for 1958-2019 from ERAS5 shows overall
JJA polar warming and increasing Z500 over Greenland (Figure 5a), consistent with the
Greenland Block Index (GBI) time series (Figure S6a). The correlation between
annual GriIS runoff and JJA near-surface temperature and JJA Z500 from ERA5S
shows positive correlations between GrlIS runoff and near-surface temperature
and Z500, i.e., a Greenland blocking pattern (Figure 5e). Greenland blocking
provides more cloudless days and subsidence-induced warming (Sherman et al.,
2020), as well as warm air advection towards Western Greenland (Hanna et al.,
2014; Tedesco and Fettweis 2020) due to the anti-cyclone over Greenland. The
correlation pattern in ERAS5 remains consistent even after detrending and
temporal smoothing (Figure S8). Thus, the long-term linear trend has little impact
on the correlation pattern seen in ERA5.

JJA near-surface warming and Z500 increasing trends over the North Atlantic sector
are visible in both ALL (Figure 5b) and GHG (Figure 5c). Though the ALL-forced 2500
is weaker than the observed Z500 trend (consistent with GBI in Figure S6 and
Delhasse et al. (2020)), the observed trend is within the range of possible trends
from the 50-member ALL ensemble. The forced temperature and Z500 trends from
ALL and GHG are overall alike, confirming that GHG contributes to the long-term
linear trend seen in these atmospheric variables related to GrIS runoff changes.
However, in GHG, the Atlantic Meridional Overturning Circulation (AMOC) declines
more rapidly than in ALL, as it lacks the offsetting North Atlantic cooling from AAER



(Figure 9 in Simpson et al., 2023), leading to cooling in the Subpolar Gyre. Additionally,
ALL-forced JJA Z500 increases with a blocking-like structure over Greenland, while
GHG-forced JJA Z500 increases more uniformly (Figure 5b vs Figure 5c contours). A
cooling of the Subpolar Gyre in GHG simulation and a stronger subsidence trend in ALL
together lead to \textit{less} warming in GHG than in ALL (Figure 5b vs 5c).

In addition, the Subpolar Gyre cooling correlates with a more positive NAO (Fan
et al., 2023). This implies a less negative NAO/reduced Greenland blocking as a
result of this air-sea coupled feedback over the Subpolar Gyre, which may explain
why GHG-forced runoff (Figure 3e) and GBI (Figure S6b) plateaus after 2000 when
the Subpolar Gyre cooling intensifies. This is also supported by the significant
correlations of an emerging Greenland blocking pattern in GHG that differs from
its uniform warming and Z500 trends (Figure 5c), regardless of whether linear
trends in GHG are removed or not (Figure S9). Beyond the scope of this study,
idealized experiments to distinguish the circulation changes originating from
direct GHG radiative forcing versus from GHG-induced Subpolar Gyre SSTs
would help advance understanding of Greenland circulation and GrlS mass loss.

AAER, on the other hand, contributes almost nothing to this long-term trend pattern
(Figure 5a vs 5d). These trend maps imply that the detected signal from AAER during
1958-2019 (Figure 3b, 3f) does not arise through the long-term linear trend but through
forced decadal variability undergoing phase changes during this time period. We
compare maps of the correlation from ERA5 (Figure 5e) and from the ensemble mean
of AAER during 1958-2019 (Figure 5f). The AAER-based correlation map shows a
pattern that is distinct from its long-term trend (Figure 5f vs Figure 5d); instead, the
correlation map shows a pattern more similar to the ERAS-based correlation map
(Figure 5e vs 5f). Both ERA5 and AAER have positive correlations between GrIS runoff
and near-surface temperature and Z500. Figure 5f confirms a similar correlation pattern
due to AAER, supporting an AAER-forced change in the variability of circulation,
imprinted onto a pattern that reinforces Greenland blocking.”
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Figure R1 (the new Figure S9). Correlation map of GrIS R with Z500 (contours) and
TAS (shading) during 1958-2019 in 15-member mean GHG (left panel) and the linearly
detrended 15-member mean GHG (right panel). Insignificant TAS correlations are
masked out and significant Z500 correlations are hatched (95% confidence). Contours
start from 0.1 with contour spacings 0.1. The significance level of the correlation
coefficients is based on a t-test with the degrees of freedom corresponding to the length
of data (1958-2019, 62 years).

Discussion: it can benefit from adding more discussion about the structural model
uncertainty (of using one climate model CESM2 and one regional climate model
RACMO).

Thanks for the comment. Indeed, we also noticed the potential impacts from model
uncertainty after conversations with colleagues post-submission of this manuscript. We
acknowledge model structural uncertainty can be a key uncertainty and will introduce an
additional paragraph in the discussion to cover this:

“CESM2 and RACMO have shown reasonable simulated SMB and their water budgets
(Noél et al., 2018; an Kampenhout et al., 2020); however, both are subject to model
structural uncertainty. The model structural uncertainty accounts for most of the
uncertainty in SMB future projections (Holube et al., 2022). The high model structural
uncertainty in SMB does not come from the snow parameterization uncertainty (Holube
et al., 2022). Instead, it comes from the model structural uncertainties in the
atmospheric variables, as GrlS precipitation, temperature, and Z500 all show high
model structural uncertainties in their future projections (Zhang et al., 2024). One
motivation to conduct D&A with Bayesian regression, instead of a deterministic
regression, is to account for the uncertainty in estimates of forced responses (from
CESM2) and of observations (from RACMO). We acknowledge the caveat that this
study does not fully sample the model structural uncertainty. Future work to extend the
presented D&A with more climate models could enhance the robustness of the results
presented here. Such efforts could also support the development of observational
constraints on SMB projections, for example, based on the temperature sensitivity
presented here.”

Holube, K. M., Zolles, T., & Born, A. (2022). Sources of uncertainty in Greenland surface
mass balance in the 21st century. The Cryosphere, 16(1), 315-331.

Zhang, Q., Huai, B., Ding, M., Sun, W., Liu, W., Yan, J., ... & Kang, L. (2024).
Projections of Greenland climate change from CMIP5 and CMIP6. Global and Planetary
Change, 232, 104340.

Technical corrections



Line 84: “ran” to “run”
Line 181: “by the GrlIS”

Figure 1: 2nd line in caption: maybe rephrase as “The anomalous (long-term mean
subtracted) annual GrIS mass loss from the Frederikse et al., (2020) reconstruction”

Figure 4: 3rd line in caption: the annotation “(ALL, GHG, AAER; purple, red, blue, light
blue respectively)’ needs to be completed or can be removed since it is already stated
for panel (a)

Line 243: reverse the order of “AAER and GHG”

Line 252: This sentence “to explain the GrlIS runoff changes, which are linked to the
melting-induced runoff changes” seems repetitive.

Figure 5: Maybe remove “GrIS” in the titles of panel (a)-(d)
Line 262: Consider adding “trend” after “All-forced Z500”
Line 304: “than” to “that”

Supplementary Information:

S1: first line: add space to “implement a Markov Chain...”
S1: 13th line: “(green line in Figure S1a)"?

We thank the reviewer for catching these typos and sentences that require corrections.
We will revise them accordingly in the revised manuscript.



Reviewer #2
General comments

This study investigates the trend and variability of surface mass balance (SMB) and
surface run-off over the Greenland icesheet (GrlS) and how these detectable signals
can be attributed to anthropogenic aerosols (AAER) and Greenhouse Gases (GHG).
Using a large ensemble of climate simulations from CESM2 with different sets of
external forcings, combining with a Bayesian regression of fingerprints, the authors
show that AAER contributes to the decadal variability of GrlS surface run-off and SMB
through feedback to large-scale circulation pattern, i.e., strengthening Greenland
blocking pattern, meanwhile GHG has an impact on long-term increase in surface air
temperature. The study also addresses the issue of low signal-to-noise in attributing the
impact of AAER due to the dependence on mean state temperature. This emphasises
the need for improvement of method used in detection and attribution of climate change.

This study fits well to the scope of The Cryosphere, and to the best of my knowledge, is
a missing piece in the literature. The manuscript is well-written with reasonable research
questions and providing sufficient evidence to support the main findings. One major
concern that should be addressed is to discuss further how AAER and GHG might have
an impact on the NAO, the dominant of climate variability over the north Atlantic given
that the authors refer to the NAO in the 3rd and 4th paragraph in the introduction and
hypothesise that AAER contributes to GrlS SMB changes by modifying the circulation
pattern projected into NAO. Although the manuscript discusses Greenland blocking, its
relationship with the negative NAO in the summer, when SMB decrease happens, is
less strong than in the winter. In addition, the positive NAO might contribute (equally to
the AMOC) to the cold blob over the sub-polar gyre (Fan et al., 2023). Could this
suggest a decrease in negative NAO (and hence Greenland blocking) in the GHG
simulations? When this issue is addressed, | would be happy to accept this manuscript
to be published in The Cryosphere.

We thank the reviewer for the overview comment. The reviewer is right that the sea
level pressure used to define NAO index may be mixed with the signal driven by the
sub-polar dyre cold blob, which would lead to a less strong GBI and NAO relationship.
We will revise the wording of “projecting onto NAO” to “projecting onto Greenland
blocking pattern” to be more concise with the Z500 results used to support our results.

The GHG-forced GrIS runoff increase plateaued after 2000, which we haven’t discussed
this result prior to the submission. The reviewer’s suggested literature is helpful, and we
speculate the cold blob over the Subpolar Gyre may decrease the Greenland
blocking/negative NAO (Fan et al., 2023). Idealized experiments are necessary to



isolate the impacts of the GHG-forced sea surface temperature on circulation, while it is
beyond the scope of this study. Together with the comment from Reviewer #1 on
GHG-induced variability, we will revise Section 3.4 to discuss these results (new text
highlighted in BOLD):

“What are the mechanisms by which GHG and AAER forcing drive long-term trends and
decadal variability in GrlS SMB through runoff changes? Here, we focus on the summer
(JJA) temperature and circulation patterns to explain the GrIS runoff changes, which are
linked to the melting-induced runoff changes (Sherman et al., 2020; Hanna et al., 2014;
Tedesco and Fettweis 2020). The trend map for 1958-2019 from ERA5 shows overall
JJA polar warming and increasing Z500 over Greenland (Figure 5a), consistent with the
Greenland Block Index (GBI) time series (Figure S6a). The correlation between
annual GrIS runoff and JJA near-surface temperature and JJA Z500 from ERA5
shows positive correlations between GrlIS runoff and near-surface temperature
and 2500, i.e., a Greenland blocking pattern (Figure 5e). Greenland blocking
provides more cloudless days and subsidence-induced warming (Sherman et al.,
2020), as well as warm air advection towards Western Greenland (Hanna et al.,
2014; Tedesco and Fettweis 2020) due to the anti-cyclone over Greenland. The
correlation pattern in ERA5 remains consistent even after detrending and
temporal smoothing (Figure S8). Thus, the long-term linear trend has little impact
on the correlation pattern seen in ERA5.

JJA near-surface warming and Z500 increasing trends over the North Atlantic sector
are visible in both ALL (Figure 5b) and GHG (Figure 5c). Though the ALL-forced 2500
is weaker than the observed Z500 trend (consistent with GBI in Figure S6 and
Delhasse et al. (2020)), the observed trend is within the range of possible trends
from the 50-member ALL ensemble. The forced temperature and Z500 trends from
ALL and GHG are overall alike, confirming that GHG contributes to the long-term
linear trend seen in these atmospheric variables related to GrIS runoff changes.
However, in GHG, the Atlantic Meridional Overturning Circulation (AMOC) declines
more rapidly than in ALL, as it lacks the offsetting North Atlantic cooling from AAER
(Figure 9 in Simpson et al., 2023), leading to cooling in the Subpolar Gyre. Additionally,
ALL-forced JJA Z500 increases with a blocking-like structure over Greenland, while
GHG-forced JJA Z500 increases more uniformly (Figure 5b vs Figure 5c contours). A
cooling of the Subpolar Gyre in GHG simulation and a stronger subsidence trend in ALL
together lead to \textit{less} warming in GHG than in ALL (Figure 5b vs 5c).

In addition, the Subpolar Gyre cooling correlates with a more positive NAO (Fan
et al., 2023). This implies a less negative NAO/reduced Greenland blocking as a
result of this air-sea coupled feedback over the Subpolar Gyre, which may explain
why GHG-forced runoff (Figure 3e) and GBI (Figure S6b) plateaus after 2000 when



the Subpolar Gyre cooling intensifies. This is also supported by the significant
correlations of an emerging Greenland blocking pattern in GHG that differs from
its uniform warming and Z500 trends (Figure 5c), regardless of whether linear
trends in GHG are removed or not (Figure S9). Beyond the scope of this study,
idealized experiments to distinguish the circulation changes originating from
direct GHG radiative forcing versus from GHG-induced Subpolar Gyre SSTs
would help advance understanding of Greenland circulation and GrIS mass loss.

AAER, on the other hand, contributes almost nothing to this long-term trend pattern
(Figure 5a vs 5d). These trend maps imply that the detected signal from AAER during
1958-2019 (Figure 3b, 3f) does not arise through the long-term linear trend but through
forced decadal variability undergoing phase changes during this time period. We
compare maps of the correlation from ERA5 (Figure 5e) and from the ensemble mean
of AAER during 1958-2019 (Figure 5f). The AAER-based correlation map shows a
pattern that is distinct from its long-term trend (Figure 5f vs Figure 5d); instead, the
correlation map shows a pattern more similar to the ERAS-based correlation map
(Figure 5e vs 5f). Both ERA5 and AAER have positive correlations between GrlS runoff
and near-surface temperature and Z500. Figure 5f confirms a similar correlation pattern
due to AAER, supporting an AAER-forced change in the variability of circulation,
imprinted onto a pattern that reinforces Greenland blocking.”

Specific comments

Section 2.2.1: Did the author normalise both observed variable and fingerprints by
internal variability (e.g., estimated from control runs) beforehand? Should this help with
maximising signal-to-noise ratio?

In the Bayesian regression, we do not normalize the internal variability. The goal of
developing this Bayesian total least square regression here is not to maximize
signal-to-noise ratio. Instead, we developed the method to address concerns in
detection and attribution about (1) the upward bias in regression coefficient in
deterministic total least square regression and (2) the potential climate model bias in
estimating internal variability (L136-143).

L238: If | understand correctly, XAAER is equivalent to GHG forcing plus natural
variability, and ALL-minus-xAAER is equivalent to AAER forcing plus nonlinear
response, right?

Yes, we treated xXAAER as equivalent to GHG and ALL-minus-xAAER as AAER. Indeed
xAAER simulations include all radiative forcings other than AAER, which is dominated
by GHG. The reviewer is correct that ALL-minus-xAAER includes AAER plus nonlinear
response by the interactions of these radiative forcings. The original L238 intended to
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say the mean temperature over GrlS has a weaker forced response in AAER than in
GHG and this statement also holds in the paired experiment of ALL-minus-xAAER and
XxAAER. We will revise L238 to make this clearer.

Original L238: In addition, the mean temperature over GrIS has a weaker forced
response in AAER (ALL-minus-xAAER) than in GHG (xAAER) (Figure S5).

Revised L238: In addition, the mean temperature over GrlS has a weaker forced
response in AAER than in GHG (Figure S5; also true using ALL-minus-xAAER and
XAAER).

Figure 4: The SMB sensitivity to TAS from AAER is close to zero, while it is significantly
positive in ALL-minus-xAAER simulation (opposite to RACMO-ERA). However, the
sensitivity of run-off to TAS in this ALL-minus-xAAER is close to RACMO-ERA, while the
sensitivity in AAER is much lower than RACMO-ERA. Could another unknown factor
play a role here?

We thank the reviewer for the comment. Precipitation usually increases under warming
(e.g., Held and Soden 2006), so we also assessed its influence when preparing the
manuscript. All the simulations show positive precipitation (P) sensitivity to warming,
although these CESM2 simulations tend to have a higher P sensitivity than
RACMO-ERA (Figure R2, new Figure S7). P sensitivity is much higher in the
ALL-minus-xAAER simulation, so we think that it contributes to the more positive SMB
sensitivity to warming, as SMB can be approximated as precipitation minus runoff (P-R).
We did not include this result when we submitted the manuscript because Figure 2-3
showed there is no detectable forced change in P and the manuscript after Figure 3
focuses on R.

We will include this additional figure on precipitation sensitivity to warming in the
supplementary and some descriptions of this new figure to explain the SMB sensitivity
in ALL-minus_xAAER in the resubmitted manuscript:

“P sensitivity to warming is generally positive, as precipitation usually increases under
warming (Held and Soden, 2006). Note that P sensitivity is much higher in the
ALL-minus-xAAER simulation (Figure S7) than in the AAER simulations, explaining the
slightly positive SMB sensitivity in ALL-minus-xAAER (Figure 4a).”
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P sensitivity to TAS
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Figure R2 (new Figure S7). The observed (RACMO-ERA,; black) and forced (ALL, GHG,
xAAER, AAER, ALL-minus-xAAER; purple, red, orange, blue, light blue respectively)
GrlS P sensitivity to near-surface temperature during 1958-2019 sorted by the
climatological mean near-surface temperature.

Held, I. M., & Soden, B. J. (2006). Robust responses of the hydrological cycle to global
warming. Journal of climate, 19(21), 5686-5699.

L242-243: swapping order of AAER and GHG.
Thanks for catching this. We will swap the order in the revised manuscript.

L255: GBI is mentioned for the first time, so it should be defined here. Besides, the time
series of Greenland blocking indices were analysed in recent studies (e.g., Maddison et
al., 2024; Luu et al., 2024) which suggested a sharp increase and well above zero since
2000 in observations. This seems different in Figure S6a which shows negative GBI
values in a couple of years after 2000. Did the authors compute GBI from ERA5 or from
RACMO-ERA?

Thanks for the comment and the reference literature. First, we calculated GBI from
ERA5. Maddison et al (2024) and Luu et al. (2024) showed their GBI with 20-year and
10-year running mean, respectively, while we showed annual values. When GBI is
smoothed with 10-year or 20-year running mean, our GBI also stays positive after 2000
(Figure R3).
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Greenland Blocking Index (GBI; 1958-2019)
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Figure R3. Time series of Greenland Blocking Index (GBI) since 1958 from
RACMO-ERA (black), 10-year running mean (light gray dash-dot), and 20-year running
mean (dark gray dashed).

L277-279: Perhaps it's worth to compare with findings from Maddison et al. (2024)
which also suggested AAER simulations (larger set of CMIP6) show some predictable
signals of observed GBI variability, but the signals of the response to AAER is too weak
in those simulations.

We thank the reviewer for the reference. We will reference Maddison et al. (2024) in the
revised L277-279 and in the conclusion and discussion section.

Revised: Figure 5f confirms a similar correlation pattern due to AAER, supporting an
AAER-forced change in the variability of circulation, imprinted onto a pattern that
reinforces Greenland blocking consistent with (Maddison et al., 2024).

Section 4: | suggest adding a few sentences discussing the caveat of using only one
GCM (CESM2) and the uncertainty of RACMO-ERA, although there are no other
choices for observations of SMB.

Thanks for the comment. We will incorporate this comment with the comment from
Reviewer #1 that suggested discussions on model uncertainty for an additional
paragraph in discussion:

“‘CESM2 and RACMO have shown reasonable simulated SMB and their water budgets
(Noél et al., 2018; an Kampenhout et al., 2020); however, both are subject to model
structural uncertainty. The model structural uncertainty accounts for most of the
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uncertainty in SMB future projections (Holube et al., 2022). The high model structural
uncertainty in SMB does not come from the snow parameterization uncertainty (Holube
et al., 2022). Instead, it comes from the model structural uncertainties in the
atmospheric variables, as GrlS precipitation, temperature, and Z500 all show high
model structural uncertainties in their future projections (Zhang et al., 2024). One
motivation to conduct D&A with Bayesian regression, instead of a deterministic
regression, is to account for the uncertainty in estimates of forced responses (from
CESM2) and of observations (from RACMO). We acknowledge the caveat that this
study does not fully sample the model structural uncertainty. Future work to extend the
presented D&A with more climate models could enhance the robustness of the results
presented here. Such efforts could also support the development of observational
constraints on SMB projections, for example, based on the temperature sensitivity
presented here.”

Fan, Y, Liu, W., Zhang, P., Chen, R., and Li, L.: North Atlantic Oscillation contributes to
the subpolar North Atlantic cooling in the past century, Climate Dynamics, 61,
5199-5215, 10.1007/s00382-023-06847-y, 2023.

Luu, L. N., Hanna, E., de Alwis Pitts, D., Maddison, J., Screen, J. A., Catto, J. L., and
Fettweis, X.: Greenland summer blocking characteristics: an evaluation of a
high-resolution multi-model ensemble, Climate Dynamics,
10.1007/s00382-024-07453-2, 2024.

Maddison, J. W., Catto, J. L., Hanna, E., Luu, L. N., and Screen, J. A.: Missing decadal
variability of summer Greenland blocking in climate models, Submitted to Geophysical
Research Letters, 2024.

We thank the reviewer for the list of literature.
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