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Abstract. Effective discharge forecasts are essential in operational hydrology. The accuracy of such forecasts, particularly in

short lead times, is generally increased through the integration of recent measured discharges using data assimilation (DA)

procedures. Recent studies have demonstrated the effectiveness of deep learning (DL) approaches for rainfall-runoff (RR)

modeling, particularly Long Short-Term Memory (LSTM) networks, outperforming traditional approaches. However, most

of these studies do not include DA procedures, which may limit their operational forecast performance. This study suggests5

and evaluates three DA strategies that incorporate discharge from either past observed discharges or forecast discharges of a

pre-trained benchmark model (BM). The proposed strategies, based on a Multilayer Perceptron (MLP) orchestrator, include:

(1) the integration of recent observed discharges, (2) the integration of both recent discharge observations and pre-trained BM

forecasts, and (3) the post-processing of BM forecast errors. Experiments are implemented using the CAMELS-US dataset

using two established benchmark models: the trained LSTM model from Kratzert et al. (2019) and the conceptual Sacramento10

Soil Moisture Accounting (SAC-SMA) model from Newman et al. (2017), covering both machine learning and conceptual RR

simulation approaches. Lead times of 1, 3, and 7 days, covering short- and mid-term horizons, are considered. The approaches

are evaluated in two forecast frameworks: (1) perfect meteorological forecasts over the forecasting lead time and (2) highly

uncertain ensemble meteorological forecasts. The two frameworks yield contrasting outcomes. When evaluated under the

perfect forecast framework, the application of DA leads to substantial improvements in forecast performance, although the15

magnitude of these gains depends on the initial performance of the benchmark (BM) models and the forecasting lead time.

Improvements are consistently significant for the SAC-SMA cases, while for the LSTM cases, gains are observed mainly for

basins where the LSTM initially underperforms. However, the ensemble forecast evaluation yields unexpected results: the

performance ranking of the tested models changes markedly compared to the perfect forecast framework. The LSTM model,

in particular, appears penalized by the unreliability - specifically, the under-dispersion - of its forecast ensembles, meaning20

that its predictions are insufficiently responsive to meteorological forcing over the forecast lead time. This finding underscores

the importance of ensuring reliable ensemble dispersion for the efficient operational deployment of AI-based hydrological

forecasts.
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1 Introduction25

Discharge forecasting models are essential in operational hydrology, whether for water resource or related-risk management.

Their importance is set to increase as climate-related threats intensify (Schiermeier, 2018; Philip et al., 2020; Rentschler et al.,

2023). However, providing accurate discharge forecasts remains challenging due to the complexity of rainfall-runoff (RR)

processes, model imperfections, and uncertainty in input data, particularly in weather forecast quality.

Over the years, significant efforts have been made to address the challenges of hydrological modeling, leading to the de-30

velopment of various models and approaches. In the era of artificial intelligence (AI), notable advances have been achieved,

with recent studies demonstrating the outstanding performance of deep learning models (DL) relative to traditional RR models

(Kratzert et al., 2019; Husic et al., 2022). Commonly used DL architectures include multilayer perceptrons (MLPs) (Jeannin

et al., 2021; Saint-Fleur et al., 2023), recurrent neural networks (RNNs) such as Long Short-Term Memory (LSTM) networks

(Kratzert et al., 2018, 2019; Fang et al., 2021; Wunsch et al., 2021; Rahbar et al., 2022), and more recently, Transformers (Pölz35

et al., 2024).

Despite these advances, most hydrological models in the literature mainly focus on discharge simulation rather than fore-

casting, which is a fundamentally different task. Discharge simulation involves replicating a hydrosystem’s behavior using

observed meteorological input, while forecasting aims to predict future discharge values at specific lead times, often relying

on inputs subject to considerable uncertainty. Although simulation models can be integrated into forecasting systems, either40

as assimilable data or as driven by forecasted forcings, their development frequently overlooks key components such as data

assimilation (DA), persistence analysis, and ensemble (probabilistic) assessment.

Persistence analysis, introduced by Kitanidis and Bras (1980), evaluates a model’s performance relative to a naive baseline,

which simply translates the current observation to the target lead time. This analysis, which serves as a relevant benchmark for

assessing the predictive ability of models, is rarely considered in most hydrological modeling studies.45

Data assimilation (DA), on the other hand, which consists of dynamically providing real-time observations to a running

forecast model, is essential in operational forecasting (Bourgin et al., 2014; Boucher et al., 2020; Piazzi et al., 2021). By en-

suring regular updates of the model states, DA allows one to reduce the impact of uncertainties associated with meteorological

forecasts and model structures, thus keeping the model aligned with evolving hydrological conditions. Several DA techniques

exist, and their efficacy often depends on the reliability of the underlying model. For direct discharge assimilation strategies,50

the importance of DA is typically more pronounced at shorter lead times. However, suboptimal models may over-rely on the

assimilated discharge data, which may shadow the contribution of the forcings, leading toward naive models (Saint Fleur et al.,

2020). Thus, DA methods can improve the operational application of RR forecasting models but are not straightforward to

calibrate and implement efficiently.

In the following, two benchmark models are considered to evaluate the added value of DA procedures: the regional LSTM55

model of Kratzert et al. (2019) and the basin-specific conceptual SAC-SMA model from Newman et al. (2017). A preliminary

analysis of the performance of both models when implemented with the CAMELS-US data set (Newman et al., 2014, 2022;

Addor et al., 2017) is presented in Fig. 1. Using a perfect weather forecast to provide a one-day-ahead discharge forecast (see
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Sect. 2.3 for implementation details), we calculate the classical Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) and

the Persistence Criterion (PERS). The results indicate that NSE ≥ 0.6 is achieved in 90 % and 40 % of the tested basins for60

the LSTM and SAC-SMA models, respectively. However, when using the PERS criterion, the proportion of basins meeting

this level drops to 60 % for LSTM and 15 % for SAC-SMA. Furthermore, a PERS ≤ 0 is observed, indicating that the mean

squared error of the model exceeds that of the naive model, occurring in 20 % of the basins for LSTM and 40 % for SAC-

SMA. These observations suggest that, at least for these basins, DA methods could improve the quality of operational forecasts

generated by either of these RR models.65

Figure 1. NSE and Persistence analysis on Benchmark models

Three different data assimilation (DA) strategies, that take into account past observed discharges to generate forecasts, will

be tested. For simpler implementation, including time and resource efficiency, a MultiLayer Perceptron (MLP) is used as the

orchestrator in these DA methods.

As assimilated discharge procedures generally lose effectiveness at extended lead times, forecasts are considered at both

short- and mid-term lead times. These lead times are defined with respect to the basin response times estimated on the basis70

of a rainfall-discharge cross-correlation analysis. To ensure operational relevance and reflect real-world forecasting practices,

two scenarios are considered with respect to weather forecasts: (1) weather forecasts will be assumed to be perfect, (2) weather

forecasts will be assumed to be highly uncertain, and ensemble forecasts will be considered. Forecast performance is evaluated

using both deterministic and probabilistic criteria.

This paper is structured as follows : Section 2 introduces the data and the benchmark models. Section 2.2 presents the75

data set, the proposed data assimilation methods, the experimental forecasting setup, and the evaluation metrics. The results
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for the deterministic and ensemble forecasts are successively presented and discussed in Sect. 3. Section 4 presents the main

conclusions.

2 Materials and Methods

2.1 Dataset80

The CAMELS-US dataset (Newman et al., 2014, 2022; Addor et al., 2017) consists of basin-averaged hydrometeorological

time series, catchment attributes, and daily streamflow observations from the United States Geological Survey (USGS) for 671

catchments across the Contiguous United States (CONUS). The meteorological forcings are available from either Daymet,

NLDAS and Maurer sources. As this study stands on the benchmark work of Kratzert et al. (2019) and Newman et al. (2017)

- hereafter tracked as LSTM and SAC-SMA - it is limited to the same subset of 531 basins, the Maurer forcings, and the85

1989-2008 period used in these previous works. The experiments developed hereafter use the 1989-2006 period as the training

subset, and the remaining 2006-2008 as the test subset. Using pre-trained benchmark models (SAC-SMA from Newman et al.

(2017) and the LSTM from Kratzert et al. (2019)), two distinct time series of discharge have been re-simulated on the whole

1989-2008 period and used to complement the dataset, see Table 1.

Table 1. Available time series for the 531 basins over the period 1989-2008

Type Variables Description Unit Source

Forcings PET Potential Evapotranspiration mm/day Maurer

PRCP Rainfall mm/day "

SRAD Incident Solar radiation W/m2 ”

Tmax Daily maximum temperature °C ”

Tmin Daily minimum temperature °C ”

Vp Vapor Pressure Pa ”

Target variable Q.OBS Observed discharge mm/day USGS

Model outputs Q.SAC SAC-SMA simulated discharge mm/day Newman et al. (2017)

Q.LSTM LSTM simulated discharge mm/day Kratzert et al. (2019)

The added value of the proposed data assimilation strategies will be evaluated for two types of RR models: (a) the LSTM90

proposed in Kratzert et al. (2019), which was trained regionally and incorporates static basin-specific inputs, and (b) the concep-

tual global model SAC-SMA from Newman et al. (2017). As in Kratzert et al. (2019), the SAC-SMA model has been chosen

as a reference to illustrate the performance of conceptual RR models, which remain widely used for operational discharge

forecasting.
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2.2 Data assimilation procedures95

To take away any confusion, the term "data assimilation" used in this study is based solely on the integration of the recent

discharge data. Therefore, it could also be termed "discharge assimilation". In that sense, three data assimilation procedures are

tested, integrating either recent discharge measures or simulations from the two RR models. Multilayer perceptron (MLP)

networks (Rosenblatt, 1958) are used as orchestrators in these three strategies; this choice is primarily motivated by computa-

tional efficiency. MLPs have become largely adopted over recent decades (Werbos, 1988a, b, 1974), and several studies have100

shown their effectiveness in RR modeling (Atmaja and Akagi, 2020; Oliveira et al., 2021; Jeannin et al., 2021; Saint-Fleur

et al., 2023). Although recent studies have demonstrated the superior performance of models such as LSTM (Kratzert et al.,

2018) networks or transformers (Li et al., 2024), MLPs have been used in this study not only as a forecast orchestrator, but also

as a RR modeling alternative due to the relative simplicity of their implementation.

The three data assimilation procedures are summarized in Fig.2 and are described straight after:

Figure 2. Data assimilation set-up: DA1, MLP Alone; DA2,MLP fed with RR model forecasts (MLP+LSTM or MLP+SAC-SMA); DA3,

Post-treatment of RR forecasting errors noted as LSTM_eCorr and SAC-SMA_eCorr.
105

1. DA-1: Direct forecast of discharges Q̂t+hp over the forecast horizon hp with an MLP, fed with the past observed dis-

charges Qo, observed meteorological variables Xo, as well as meteorological forecasts X̂ (see Eq.1).

Q̂t+hp = f(Qo
t−p:t, X̂t−n:t+hp,X

o
t−n:t) (1)

2. DA-2: The same approach as in DA-1 but with the forecasts of the RR model Qs (either SAC-SMA or LSTM) as

additional input variables (see Eq.2).110

Q̂t+hp = f(Qs
t−p:t+hp,Q

o
t−p:t, X̂t−n:t+hp,X

o
t:t−n) (2)

3. DA-3: Post-processing of the prediction errors of the RR model εt (again SAC-SMA or LSTM). In this strategy, the

orchestrator is used to forecast the errors (ε̂t+hp) of the RR model over the horizon hp and the prediction errors are then
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added to the forecasts of the RR model. The assimilation procedure then proceeds in three steps (see Eq.3, Eq.4, and

Eq.5).115

εt = Qo
t −Qs

t (3)

ε̂t+hp = f(εt−p:t,Q
o
t−p:t, X̂t−n:t+hp,X

o
t−n:t) (4)

Q̂t+hp = Qs
t+hp + ε̂t+hp (5)120

In the previous equations, n and p are the sequence lengths for the forcing and the assimilated discharge. These values

will be fixed based on the mean response time of the basins using a RR cross-correlation analysis, see Fig.5. As suggested in

Saint Fleur et al. (2020), to prevent the models from relying disproportionately on assimilated discharge rather than forcing,

we imposed n≥ p.

In summary, seven (7) different model configurations are compared: the five (5) data assimilation procedures (unfolded125

from DA1, DA2, DA3) presented in this section, plus the two (2) direct forecasts from both pre-trained models, SAC-SMA and

LSTM, which serve as benchmarks to evaluate the efficiency of the tested data assimilation strategies. The direct forecasts from

the benchmark models were assumed to be unchanged for the tested lead time; therefore, no further running was necessary.

In both forecasting approaches and for each basin, the MLPs were trained (i.e., calibrated) 60 times with a random selection

of their initial parameter values (seeds), leading to 60 different possible trained models. Likewise, 8 seeds have been considered130

for the LSTM and 10 for the SAC-SMA model. This aims to account for the uncertainties and variability induced by model

initialization during training. The assimilation strategies are trained on the basis of the series of median simulated values of

both models (SAC-SMA and LSTM). The predictions thus consist of an ensemble of 60 runs for the assimilation strategies

and, respectively, 8 and 10 runs for the LSTM and SAC-SMA benchmark forecasts without assimilation. The performances of

the ensemble simulations (dispersed by random initialization) are analyzed, based on their median values, in the first part of135

this paper (Sect. 3.1) and in figure 1. In the case of the climatological ensembles, all members of the ensembles are considered

and analyzed in the rest of the paper.

2.3 Forecasting setup

As illustrated by the equations Eq.1 to Eq.5, the choice of the input features for a forecasting model that includes data assimi-

lation may be affected by the forecasting lead time hp. Hence, a specific model should be calibrated for each considered lead140

time. The alternative, consisting of iteratively calibrating the one-step-ahead model toward larger lead times, is inefficient as it

drastically increases the forecast uncertainty (Chevillon, 2007; Teräsvirta et al., 2010; Liu and Wang, 2024). This finding has

been confirmed during the present work (results not presented herein).
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Three lead times are explored: 1, 3 and 7 days. In the absence of operational weather forecast archives for the evaluation

period and the considered basins, two forecasting strategies are tested, as illustrated in Fig. 3. First, forecasted weather variables145

are considered equal to the actual (upcoming) observed ones at the lead date of the current year. This configuration is hereafter

referred to as the perfect (i.e. ideal) weather forecast. Second, ensembles of weather forecasts are resampled from historical

weather records. Various sampling strategies could be considered for this approach, for example, based on similarities between

current and historical hydrological states, regardless of date or season (Hidalgo and Jougla, 2018). But in this study, a simple

strategy has been adopted as forecast members are selected on a date-to-date basis: from a given date (t0) in the evaluation150

period (2006-2008), spanned to the lead time (t0 + hp), a sequence (t0 : t0 + hp) is established; the same sequence index (day

and month) is picked at every year in the training/calibration period (1989-2006), then becomes a member of the ensemble

weather forecast (totalized to 18 members). This approach is termed herein as climatological ensembles, and will be used for

probabilistic analysis of the ensemble forecasts.

Figure 3. Forecasting assumptions setup

All the proposed data assimilation strategies were trained based on the perfect weather forecast configuration, and subse-155

quently evaluated under both the perfect and the climatological ensembles configurations.
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The implementation in the DA-1 and DA-2 procedures is relatively straightforward in both forecast strategies (perfect or

ensemble). For DA-3 under the climatological ensemble scenario, the past error vector εt−p:t (in Eq.4) used to adjust a model

is that of the perfect scenario.

2.4 Evaluation metrics160

Numerous metrics are proposed in the literature to evaluate the skills of hydrometeorological forecasting models (Murphy,

1993; Seillier-Moiseiwitsch and Dawid, 1993; Bradley and Schwartz, 2011; Lai et al., 2011; Harold et al., 2015; Petropou-

los et al., 2022): evaluating the efficiency for deterministic and ensemble predictions, but also reliability and resolution for

ensemble predictions (Bradley and Schwartz, 2011; Slater et al., 2019). The selected evaluation metrics are presented below.

2.4.1 Forecasting efficiency165

The efficiency is a measure of the proximity between the observed values Qt and the predicted values Q̂t. The commonly used

metrics for deterministic forecasts, are based on the sum of square errors: Nash-Sutcliffe Efficiency (NSE), Eq.6 (Nash and

Sutcliffe, 1970), the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) and the Persistency Criterion (PERS), Eq.7 (Kitanidis

and Bras, 1980; Corradini et al., 1986; Anctil et al., 2004).

NSE = 1−
∑T

t=1 (Qt− Q̂t)
2

∑T
t=1 (Qt−Q)2

(6)170

PERS = 1−
∑T

t=hp (Qt− Q̂t)
2

∑T
t=hp (Qt−Qt−hp)2

(7)

NSE and PERS are scores that measure the proportion of the sum of square errors of an unskilled model explained by the

calibrated (or trained) forecasting model. The unskilled benchmark model for NSE is the trivial mean model (Q̂t+hp = Q), and

for PERS the persistent model (Q̂t+hp = Qt). Both criteria range from 1 (perfect model) to −∞. A negative value indicates175

that the model produces higher errors and, consequently, worse than the unskilled benchmark models. It should be noted that

it is more difficult to achieve a positive PERS than a positive NSE, particularly at short lead times.

For ensemble forecasts, the Continuous Ranked Probability Score (CRPS), Eq.8 (Hersbach, 2000; Matheson and Winkler,

1976; Brown, 1974), is commonly used.

CRPS =
1
T

T∑

t=1

CRPSt with CRPSt =

∞∫

−∞

[
Ft(y)−1{y≥Qt}

]2
dy (8)180

Where, for time step t, Ft is the cumulative distribution of the ensemble forecasts, Qt the observed value, Q̂t the predicted

value, Q is the time average of the observed values and 1{y≥Qt} the Heaviside-step function for binary 0|1 outcome. The
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CRPS ranges from 0 (perfect models) to ∞ (low-quality models). Note that the CRPS is the mean absolute error of the model

in the case of a deterministic forecast (i.e. ensemble composed of a unique member).

2.4.2 Forecasting reliability185

An ensemble forecast is considered reliable if the ensemble spread reflects the range of prediction errors. If so, the position of

the observed value in the ensemble (i.e. its rank throughout the members in a sorted disposition) will be uniformly distributed.

The resulting distribution of the ranks of a sufficient number of observations, as proposed in (Hamill, 2001; Talagrand et al.,

1997), provides a visual verification of the reliability of the ensemble forecasts. The lack of reliability may take different forms:

(i) a tendency to overestimate (resp. underestimate) leading to an over-representation of the lower (resp. higher) ranks in the190

rank diagram; (ii) under- or over-dispersions of the ensembles, resulting in a U-shape or Dome-shape of the rank diagrams.

Figure 4 shows the rank diagrams of the evaluation period (2006-2008) throughout the remaining period (1989-2006), for the

daily rainfall and PET data.

Figure 4. Rank diagrams for the daily precipitation and PET climatological ensembles drawn from the period 1989-2005 and evaluated for

the test period 2006-2008. The error-bars represent the inter-basin variability, the dashed line shows the theoretical uniform distribution

The rank diagram of the climatological ensembles does not reveal any major deviation from the uniform reference model

(Fig. 4) and hence no obvious biases of the considered ensemble. However, as mentioned by Hamill (2001), global rank195

diagrams may mask some defaults of the ensembles; therefore, it will be complemented by spread/skill scores.

The spread-skill ratio is a widely used metric to evaluate the reliability of ensemble forecasts. It compares the ensemble

spread (the forecast uncertainty), with the actual forecast error (skill) of the ensemble mean. As formalized by Whitaker and

Loughe (1998), it is typically calculated as the ratio of the root of the mean of the ensemble variance (spread) to the root mean

squared error (RMSE) of the ensemble mean. Values close to one indicate a well-calibrated ensemble, while values below200

(above) one reveal under- (over-) dispersion.
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2.4.3 Forecasting resolution

In ensemble forecast verification, resolution refers to the ability of a model to discriminate events and non-events: i.e. the

exceedance or non-exceedance of a given threshold discharge for hydrological predictions. Commonly used metrics for such

evaluation include the Brier score (Brier, 1950) and the AUC score (Area Under the Curve) estimated based on a ROC (Receiver205

Operating Characteristic) curve.

– Brier score (BS)

BS =
1
N

N∑

i=1

(fi− oi)2 (9)

N is the number of time steps, fi is the forecast probability of the event according to the ensemble, and oi the observed boolean

outcome (1 if the event occurs and 0 otherwise).210

The Brier score values range from 0 (perfect) to 1, and is equal to 0.25 for a random detection model (i.e. the no-skill model).

– ROC curves and AUC

To elaborate a ROC curve, given a selected target discharge threshold, each rank of the ensemble is selected in turn as the

forecast value for the event detection. The True positive rate (TPR: proportion of observed events predicted as events) and

the False positive rate (FPR: proportion of non-events predicted as events) are computed for each ensemble rank, over the215

evaluation period. The ROC curve relates TPR and FPR. The AUC is the estimated area under the ROC curve. It takes its value

between 1 (perfect model, TPR=1 and FPR=0 for all ranks) and 0. The ROC curve of a random detection model corresponds

to the diagonal (i.e. TPR=FPR=proportion of predicted events). The AUC value of this random detection model is equal to 0.5.

The resolution measure depends on the chosen discharge threshold. To evaluate the prediction models, several threshold

values will be tested, corresponding to discharge quantiles of the observed series with non-exceedance probabilities P of 0.01,220

0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, and 0.99. For thresholds below the median (P ≤ 0.5) values, an observed discharge is

considered as event, representing low-flow conditions. For higher thresholds (P > 0.5), an event is defined as any discharge

values exceeding the threshold, corresponding to flood conditions.

2.5 Experimental settings

2.5.1 Input sequence size and lead time selection strategy225

The sizes of the input sequences of the MLPs have been set based on cross-correlation diagrams as suggested by Saint Fleur

et al. (2020): see Fig. 5. The median cross-correlation coefficients were considered in the 531 basins. Following Mangin (1984),

a limit value has been chosen for the autocorrelation coefficient for discharges of 0.2 to fix the length p of the input sequence

of past observed discharges. Concerning the sequence on the forcing, a size n of 30 past days has been selected as an arbitrary

value. along the flatten ending part of the RR cross-correlogram.230
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Figure 5. Rainfall - Discharge cross-correlation. The chosen sizes (n and p) of the input sequences are marked with the dashed-dotted lines.

The correlation coefficients between observed discharges and daily rainfall amounts are the highest for lag times between 1

and 3 days, suggesting that the basins of the CAMELS-US sample have on average short response times, typically less than

3 days. This led us to select three forecast lead times: 1, 3, and 7 days. According to the response times of the basins, it is

foreseen that short-term predictions 1 day ahead will be partly controlled by past observed rainfalls, whereas mid-term 3 to

7-day forecasts will be mostly determined by predicted rainfalls.235

2.5.2 Basin sub-sampling for the climatological ensemble runs

Implementation of climatological ensemble predictions is numerically demanding: 3 lead times, 5 assimilation configurations,

60 seeds, 18 members, and numerous trials for model hyperparameter searching and training. To keep reasonable computation

times, the climatological ensemble runs were conducted on a subset of 56 basins of the initial set of 531 basins. This subset of

basins was selected uniformly, according to their NSE rank from Kratzert et al. (2019) covering the same range of basins as240

the initial sample of 531 basins: see Fig. 6.

2.5.3 Softwares and hyperparameter settings

For the orchestrator (MLP) configurations, the hyperparameters listed in Table2 were optimized by exhaustive grid search and

cross-validation. The hyperparameter subset was derived from a larger space using 20 randomly selected basins, retaining the

most frequent configuration. The hidden sizes ranged from a single layer of 30 neurons to four layers with multiples of 30245

neurons. Five levels of learning rates (10−1 to 10−5) were tested primarily, and two have been maintained according to their

occurrences as best values.
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Figure 6. Distribution of NSE scores for trained LSTM models for the data sample used by Kratzert et al. (2019) and the selected subset of

56 basins

Table 2. Model hyper-parameter setup

Parameters Parameter space

Hidden layers [size,] [120, 90] [120, 90, 60]

Activation [relu, tanh]

Learning rate [0.01, 0.001]

Solver ADAM

Early-stopping True

No_iter_no_change 15

Validation_fraction [0.2]

Random seed 60

Sequence depth 30 on forcings, 10 on assimilated data

The experiments developed in this study are essentially based on open-source software and on the Python 3.9 programming

language (van Rossum, 1995). Our modeling framework is based on the Scikit-Learn library (Pedregosa et al., 2012). Data

analysis, processing, and visualization are performed mainly using Pandas (McKinney, 2010) Numpy (Walt et al., 2011),250

seaborn (Michael L., 2021), matplotlib (Hunter, 2007) and xskillscore (Bell et al., 2021). The model development was carried

out using Jupyter Notebook (Kluyver et al., 2016), Anaconda (Anon, 2020), and PyCharm (JetBrains, 2024).
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3 Results

The performance of the 3 DA approaches is compared with those of the benchmark models across the two forecast scenarios

tested. This choice emphasizes the contrast in model performance between an idealized context (perfect forecast scenario)255

and a highly uncertain one (climatology-based forecast). Empirical Cumulative Distribution (ECDF), boxplots, and error bars

are used to show the variability of the scores across the basins. Different colors and line styles are used to distinguish the

model types and the approaches. The simple MLP appears in black; the benchmark SAC-SMA and LSTM are represented,

respectively, by blue and red dotted lines; color variations (blue to violet and red to orange) are used for the forecasting models

based on the benchmarks SAC-SMA and LSTM and including data assimilation. All presented results concern the test set.260

3.1 Performances of the DA approaches based on perfect meteorological forecasts

3.1.1 Efficiency

Figure 7 shows the ECDF distribution of the persistency scores (PERS) for all approaches and lead times (hp) tested in the 531

basins.

Figure 7. ECDF of the persistence scores. Rows are related to the benchmark cases (SACSMA and LSTM); columns are related to lead times

(1-,3-, 7-days). The baseline (MLP simple) is replicated in the rows. In the legend: Initial Model stands for the benchmarks, MLP Informed

means informed by the benchmarks, Error Postprocessing concerns the errors of the benchmarks models. Rightward-shifted curves indicate

better performances.
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Without surprise, the PERS scores are lower in the short lead times. This is a usual result in persistence analysis since models265

generally struggle to beat the persistent model at very short lead times: the smaller the discharge variation, the harder it is to

predict. Secondly, in line with previous studies, the LSTM model outperforms SACSMA. This remains valid even when the

models are combined with data assimilation procedures.

The simple MLP-based data assimilation method appears more efficient than the benchmark SACSMA in all tested lead

times; it only outperforms the benchmark LSTM model in the lead time of 1-day, especially when the LSTM leads to negative270

PERS, which is observed for 20% of the basins for the LSTM model and less than 5% of the basins for the simple MLP. If we

recall that, unlike the tested MLP, the LSTM model does not account for the past observed discharge, this first result highlights,

as in numerous previous publications, the outstanding performance of the LSTM models in RR simulation.

The two proposed data assimilation procedures, based on the benchmark models (i.e., MLP-informed and error postpro-

cessing), prove to be effective, as they consistently improve the performance of the forecasting models they build upon. The275

MLP-informed model outperforms the simple MLP, while the error postprocessing approach generally enhances the persis-

tence of the benchmark model, or at the very least, maintains its performance when it is already high. Figure 8 showing the

gain in PERS of the various data assimilation procedures tested, compared to the benchmark models, confirms this analysis.

The changes observed in the distributions in figure 7, correspond to systematic improvements in basins where the benchmark

model initially had lower scores. The error post-processing approach leads to positive gains or average null gains in cases280

where the benchmark model had initially high scores.

Figure 8. Gain on Persistence. Where, Gain= DA - Benchmark. For lighter nomenclature, the following names have been respectively used:

MLP simple (MLP), MLP Informed by BM (i-SAC or i-LSTM), benchmarks error post-processed (ϵSAC or ϵLSTM)
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Finally, the global ranking of all the tested approaches depends on the initial skills of the benchmark and simple MLP models.

When the benchmark model is SAC-SMA, it is outperformed by both the simple MLP and the MLP-informed approach, but

the latter appears to be the most efficient. However, the error post-processing method, based on the LSTM forecasts, is the

most efficient of the approaches.285

These first results demonstrate the effectiveness of the proposed DA strategies in improving the efficiency of the forecast in

the perfect meteorological forecast scenario. Gains are particularly significant for the 1-day lead times. The added value of the

proposed data assimilation methods drops rapidly with increasing lead times. This is to be related to the overall short response

times of the basins included in the CAMELS-US data set, typically 1 to a few days according to the cross-correlation analysis.

Let us examine now whether these conclusions remain valid when considering uncertainties in meteorological forecasting.290

3.2 Performances of the DA approaches under the climatology-based forecast scenario

As a reminder, in the climatology-based scenario, historical weather records of the past years are used as surrogate forecasts

(i.e. highly uncertain forecasts). According to the sampling method used, every meteorological sequence, starting on the same

date, recorded during the past 18 years of the training set, becomes one of the members of the N = 18 meteorological forecast

ensemble for the 2-year test set. Combined with the M random seeds of the trained model (8 for the LSTM benchmark, 10295

for the SAC-SMA, and 60 for the other approaches), the ensemble forecasts count N ∗M members. Three properties of these

ensemble forecasts will be evaluated: (1) the efficiency based on the CRPS score, (2) their reliability based on rank diagrams

complemented with spread/skill ratios, and (3) their resolution using Brier and AUC scores.

3.2.1 Forecast efficiency

Figure 9 shows the CRPS for the climatology-based scenario for all the approaches and lead times tested. The mean absolute300

error of the persistence model is included in this figure to maintain consistency with the reference method used in the previous

section to evaluate the efficiency of the forecasting approaches tested.

Firstly, and encouragingly, most of the tested models remain more effective than the baseline persistence model, even when

accounting for uncertainties in meteorological forecasts. Moreover, the performance gap between these models and the simple

no-forecast persistence model widens as the forecast lead time increases. In other words, uncertainty does not negate the added305

value or efficiency of the forecasts.

Secondly, some trends are consistent with the results obtained with the PERS criterion and the "perfect" meteorological

forecasts (Fig. 7). The proposed data assimilation approaches remain effective, as they improve the efficiency of the forecasting

models they build upon, or at least do not significantly reduce it: the ECDF of the simple and informed MLPs are almost

superimposed. Moreover, the benefits of data assimilation approaches are more significant in the shorter lead times and for310

the SAC-SMA benchmark model. However, the overall rankings of the forecasting methods tested have been completely

overturned. The simple MLP model now appears to be the most efficient forecasting model in this ensemble forecasting

exercise. Note that it is well-known that ensemble scores may be affected by the number of members of the evaluated ensembles

(Leutbecher, 2019). Since the numbers of members for the benchmark models and the DA approaches differ, it has been verified
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Figure 9. Empirical cumulative distribution functions (ECDF) of CRPS scores for the 56 test basins. Recall that CRPS=0 is the perfect

model. Benchmark-related cases (SAC-SMA, LSTM) are presented in rows, lead times 1-, 3-, 7-days) in columns. Both the baseline (MLP

simple) and the persistent model are replicated in the rows, the former is represented with bold dark line, and the later with a tiny gray curve.

In the legend: Benchmark stands for the SAC-SMA or LSTM, MLP Informed means informed by the benchmarks, Error Postprocessing

concerns the errors of the benchmarks models. Up- and Leftward-shifted curves indicate better performances.

that the computed CRPS values were not too much affected by this difference (see Appendix A). By reducing the size of the315

ensemble initialization to 8 seeds for the DA approaches in Figure 9, the distribution remains almost unchanged. This outcome

ranking of the forecast models is robust, although it may seem surprising at first sight. The detailed analysis of the other

properties of the forecast ensembles provides some explanation.

3.2.2 Forecast reliability

Figure 10 shows the rank diagrams for the climatology-based scenario: The ensemble members have been grouped into 10320

classes for all models to facilitate comparison. The charts are organized vertically, and results for the two benchmark models

are shown first, followed by the five DA approaches tested.
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Figure 10. Rank diagrams for the benchmark models and the DA strategies. X-axis (10 rank classes), Y-axis (proportion of observed values

in each class), median ratio and error-bars indicating the maximum and minimum ratios for the 56 test basins. Colors indicate the lead times.
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Reliable forecasts are expected to produce flat, uniform rank diagrams, indicating that observations are evenly distributed

across the range covered by forecast ensemble members. The most striking deviation from this ideal is observed in the U-

shaped rank diagram of the LSTM model. When driven by meteorological ensembles, the LSTM simulations significantly325

underestimate forecast uncertainty, resulting in under-dispersed ensemble outputs. A disproportionately large number of ob-

served values hence fall outside the ensemble range (ranks 1 and 10), indicating poor reliability. Figure 11, confirms that the

underdispersion of LSTM ensemble forecasts is systematic. The overall spread of the LSTM ensembles is notably low com-

pared to the root mean square error (RMSE) calculated from the ensemble mean. This discrepancy is particularly pronounced

at the 1-day lead time.330

This result suggests that the LSTM model is insufficiently responsive to recent meteorological inputs (i.e. corresponding

to the meteorological ensembles) and is overly influenced by longer-term historical data. Although this characteristic likely

contributes to its strong performance in deterministic RR simulations, it becomes a limitation in the context of ensemble

forecasting. The error post-processing approach corrects this behavior, but only partly, for this dispersion bias of the LSTM

ensemble forecast.335

The SAC-SMA model does not exhibit the same limitations as the LSTM model, but a clear tendency to overestimate the

discharges, and this tendency concerns all the 56 basins as revealed by the error bars. This bias is eliminated by the error

post-processing approach.

Figure 11. Boxplots of the spread-skill ratios on the climatology-based scenario for the 56 test-basins

To be efficient, an ensemble forecast should be reliable; and to be reliable, the observations should be well calibrated by

the ensemble forecast. The LSTM forecasts seem to be hampered by the lack of reliability of the LSTM ensembles, and340

this explains the overturn of results between the deterministic and ensemble forecast scenarios. The MLP and MLP informed

models exhibit a slight over-dispersion that appears to be less impactful to the model’s efficiency. Does the efficiency reflect the
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event detection capacity of the tested models ? Discharge forecasting models are often implemented operationally to predict

that a discharge or water level thresholds will be exceeded. To evaluate this capability, we will analyze the forecast resolution

of the proposed approaches in the next and last section.345

3.2.3 Forecast resolution

The Brier score (Fig. 12) as well as the AUC (Fig. 13) confirm the classification of the forecasting models provided by the

CRPS. The LSTM performs globally much better than the SAC-SMA model. This is particularly clear in figure 12. DA methods

improve the resolution of the predictions compared to the initial benchmark models, while the simple MLP model provides

the highest skill. The proposed DA assimilation methods appear effective in the sense that they improve the skills (benchmark350

versus error post-processing) or at least do not degrade too much the performance of the model they are based upon (MLP

simple versus MLP informed). It is important to recall that the optimal value is 0 for the Brier score and 1 for the AUC. The

classification of the models remains valid for the entire range of discharge threshold values and all test basins, as indicated by

the error bars in both figures. Both figures also indicate that all tested models have better resolution skills than the reference

random detection model, which theoretical value is equal to 0.25 and 0.5 for the Brier score and AUC respectively, and is355

indicated by a red dotted line in the two figures.

Figure 12. Brier Score for event detection thresholds based on discharge quantiles with non-exceedance probability [0.01, 0.05, 0.25, 0.5,

0.75, 0.9, 0.95, 0.99]. Median scores and error bars indicating the maximum and minimum scores across the subset of 56 test basins.
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Although being globally consistent, both scores considered provide different insights into the relative resolution skills of the

models tested, especially depending on the threshold level.

The Brier score evaluates how reliable the probability of threshold exceedance computed by the ensemble forecasting model

is. Since discharge values are varying seasonally and are highly auto-correlated, the probability of exceedance is high if the360

threshold value is already exceeded for high or low thresholds: i.e. the probability that the discharge will remain low (resp. high)

is high during the low (resp. high) flow period. Therefore, the Brier scores have a tendency to converge towards 0 when the

threshold values considered correspond to high or low quantiles of the considered series for all models. The Brier score is not

a very discriminating criterion for such high or low thresholds. It appears to be better suited for threshold values corresponding

to the median range of observed values (Fig. 12).365

Figure 13 shows the area under the ROC curves (AUC) for event detection, based on various discharge thresholds covering

both, flood and drought forecasting. An example of the corresponding ROC curve, for the threshold probability of q > Q.95,

is reported in Appendix B1. Low and high discharge detection performances are displayed, respectively, on the left and right

sides of each subplot, and marked, respectively, with ≤ and >. The benchmark cases are organized in rows, and the lead times

in columns. Colors and markers are used to differentiate the 5 DA approaches. The median AUC values are shown as well as370

the spread of values over the 56 basins.

Figure 13. AUC values for events based on flow quantile [0.1, 0.25, 0.5, 0.75, 0.9], with drought/flood detection shifting at quantile 0.5.

These are the median AUC values across 56 basins. Colors highlight benchmarks (SACSMA: blue to violet, LSTM: red to orange), with the

baseline MLP-Simple replicated in black.
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The AUC, calculated based on ROC curves (see Fig. B1 in the appendix), measures how accurate the balance between

the probability of detections (POD) and false alarm ratios (FAR) is for ensemble forecasts. It offers a clearer contrast of the

models’ resolution skills over the whole range of discharge thresholds (Fig. 13). The differences between models are larger

for low thresholds (i.e. low flows). It is necessary to recall the impact of the mean squared error (mse)-based loss functions on375

model adjustment, as they fundamentally favor the high values in the target variables. This may explain why the AUC values are

significantly low in the lower flow ranges for the benchmark models. However, this limitation looks improved by DA procedure,

as these scores are increased on these low discharge thresholds. The AUC has a tendency to decrease with increasing discharge

thresholds for longer forecasting lead times (3 and 7 days). Likewise, the added value of the DA methods compared to the

LSTM benchmark for these higher thresholds and longer lead times aligns with the results of the deterministic forecasts: the380

added value of the DA strategies is limited. For lower discharge thresholds, the improvements from DA procedures remain

substantial, even at extended lead times. Two factors likely explain this result. Firstly, the benchmark models have less skill

in predicting low flows, which were not the primary focus during training, leaving more room for improvement. Secondly,

low flows tend to exhibit a much longer autocorrelation range than short-lived flood events associated with high flows, which

explains the relevance of DA methods for longer lead times for this range of discharges.385

4 Conclusions

This work aimed to evaluate the added value of data assimilation procedures to rainfall-runoff forecasts, especially in the

context of AI-based LSTM forecasts. The two proposed evaluation frameworks yield contrasted results. Figure 14 shows the

results of some of the forecast methods evaluated, for one flood event, in a test basin, and the two forecast configurations. It is

provided here for illustrative purposes, providing additional insights into the results beyond the global evaluation criteria. Of390

course, general conclusions should not be drawn from this isolated example.
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Figure 14. Illustration of various forecasts of the same event: perfect meteorological forecast (left) and climatological ensemble forecasts

(right). the orange dots are the observed discharges. The halos represent the confidence intervals (CI: 100%, 99%, 95%, 90%, 80 %) of the

ensemble forecast.

The main conclusions of this study are the following. The various data assimilation procedures tested appear effective,

as they generally improve - or at least do not significantly degrade - the forecasting performance of the models on which

they are based. Under the hypothesis of perfect meteorological forecasts, the DA approaches consistently improve the SAC-

SMA forecast, while the gains are observed mainly for short lead times and basins where the benchmark LSTM model initially395
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underperformed. These limited improvements confirm the strong performance of the LSTM model in rainfall-runoff simulation

and forecasting, as already demonstrated by numerous publications.

However, this conclusion is entirely overturned in the context of the climatological ensemble evaluation framework. The sim-

ple MLP model, which incorporates past observed discharges, outperforms the LSTM model even when the latter is coupled

with DA assimilation procedures, at least for short lead times. In this setting, the LSTM model is penalized by the unreliability,400

specifically the under-dispersion, of its forecast ensembles. Its predictions appear insufficiently responsive to meteorological

forcing over the forecast horizon. Of course, while climatological ensembles are likely more spread than the actual meteoro-

logical ensemble that may be available in practice, the proposed ensemble evaluation framework proposed herein may appear

conservative. However, this finding highlights the need to ensure the reliability of LSTM ensemble forecasts for their effective

operational deployment.405

For high discharge forecasts, the added value of data assimilation (DA) procedures appears to be limited to lead times on the

order of the basin’s time of concentration. In the case of low-flow forecasting, Figure 13 suggests that: (1) DA could remain

beneficial over longer lead times, and (2) forecasting performance could be significantly enhanced by using models specifically

trained for this discharge range. The use of mean square error as the default training criterion in most AI packages tends to

prioritize accurate fitting in the higher range of discharge values, often at the expense of low-flow performance.410

Finally, the DA methods tested here were implemented with relatively simple MLP models. Although this choice aligns

with the goal of developing frugal AI solutions, there is undoubtedly scope for improvement by exploring more advanced AI

techniques in future works. Further research may also explore alternative ensemble forecasting strategies, such as the use of

forecast archives or more sophisticated ensemble selection methods.

Code and data availability. TEXT415

All data used in this study are sampled from the CAMELS-US dataset, available at https://gdex.ucar.edu/dataset/camels.html.

The processed version of these data, prepared for this study, is archived at https://doi.org/10.5281/zenodo.16944643 , with

detailed instructions provided both in their roots and in the model repository MLP_REPO. This repository typically contains

the codes for the orchestrator presented above. The adapted benchmark models are available at LSTM and SACSMA. The

original benchmark models are described in their respective publications and should be consulted prior to using these adapted420

versions. The post-processing code may be made available upon justified demand.
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Appendix A: Appendix

A1 Impact of the number of members of the ensembles

Figures A1, A2, and A3 show that the influence of the number of members considered in the forecasts of the DA ensemble

is very limited. Figure A1 shows in particular that the relative increase or decrease in the CRPS value is negligible when the425

number of members of the ensemble is reduced.

Figure A1. relative increase or decrease in CRPS scores (CRPS1080−CRPS144)/CRPS1080 when considering N members =144 (8x18)

rather than N members =1080 (60x18) in the DA ensemble forecasts.

Figure A2. Same as figure 9: CRPS with 8 seeds (N members =144) rather than 60 seeds (N members =1080) for the DA ensemble forecasts.
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Figure A3. Comparison of the rank diagrams obtained with various ensemble members: N=1080 (left) and N=144 (right).

B1 Illustration of ROC curves

Figure B1 provides an illustration of the ROC curves based on which the AUC values have been calculated, as well as the

variability of the ROC curve shapes across the 56 test basins. One ROC curve and one AUC value are computed for each basin

and each forecasting method tested.430
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Figure B1. ROC curve for flood detection (q ≥Q.95) for 1-, 3- and 7-days lead times. Results are style-coded: MLP Simple (dark solid,

DA-1), MLP informed by benchmark (dashed, DA-2), Benchmark ePP (dot-dashed, DA-3), initial Benchmark (dotted). Benchmark

cases are color-coded: SACSMA (blue to pink, first row) , LSTM (red to orange, second row). Halos show the variability across the 56

basins around the median values.
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