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Abstract. The vertical distribution of PM2.5 chemical components is crucial for identifying the causes of atmospheric 

pollution and its impact on climate change and extreme weather. By integrating long-term lidar measurements, deep-learning 10 

algorithms and a physics-constrained optimization method, this paper presents a novel lidar-based retrieval framework to 

obtain vertical mass concentration profiles of PM2.5 chemical components for the first time. Identifiable components include 

sulfate (SO4
2-), nitrate (NO3

-), ammonium (NH4
+), organic matter (OM) and black carbon (BC), which extend beyond the 

component types that traditional remote-sensing retrievals can identify. A 1-year retrieved surface mass concentrations of 

these components closely aligned with the observations, with Pearson correlation coefficient values ranging from 0.91 to 15 

0.98. The retrieval framework applied in varying non-training spatiotemporal scenarios also showed robust generalization 

capabilities. Tower and aircraft-based field campaigns indicate that the retrieved and observed vertical profiles of these 

components exhibited consistent patterns in mass concentrations and proportions. Subsequently, an explainable method was 

incorporated into the retrieval framework to quantify the multivariate driving effects on vertical profile retrieval. Results 

showed that the extinction coefficient and representative indicators within physiochemical processes contributed 20 

significantly to mass concentrations of these components. Finally, a dataset of vertical mass concentration profiles of these 

components over six years in a Chinese megacity was generated by the retrieval framework, revealing the dominant roles of 

OM and NO3
- in PM2.5 throughout the entire boundary layer across all seasons. Through implementing clean air policies, the 

reduction rates of these components in the megacity exhibited the highest reduction rate of 0.17-0.82 µg m-3 a-1 occurring at 

an altitude of ~300 m. Our retrieval framework offers a novel approach for acquiring vertical profiles of PM2.5 chemical 25 

components, thereby providing a new perspective on elucidating the vertical evolution of atmospheric pollutants. 

1 Introduction 

PM2.5 is a complex mixture composed of varying chemical components (Tao et al., 2017), mainly including sulfate (SO4
2-), 

nitrate (NO3
-), ammonium (NH4

+), organic matter (OM) and black carbon (BC). The diverse physiochemical properties 
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arising from various chemical components yield distinct effects on the environment (Tan et al., 2018), climate change 30 

(Menon et al., 2002; Zhu et al., 2024) and human health (Kim et al., 2022). Vertical detection technologies have revealed 

that chemical components are primarily distributed at varying heights within the atmospheric boundary layer and contribute 

to environmental pollution through internal physiochemical processes (Morgan et al., 2009; Yang et al., 2024; Sun et al., 

2015). Additionally, the proportion and vertical distribution of chemical components can regulate radiation flux at both the 

top of the atmosphere and at the surface by directly affecting light absorption and scattering, as well as the microphysical 35 

properties of clouds, thereby influencing climate change and extreme weather (Zhao et al., 2024). Consequently, 

characterizing the vertical structures of chemical components is essential for identifying the causes of PM2.5 pollution and the 

response mechanisms related to climate change and extreme weather. 

 

Field campaigns are widely conducted to obtain vertical profiles of PM2.5 chemical components by mounting observation 40 

instruments on meteorological towers (Lei et al., 2021), aircraft (Liu et al., 2019), tethered balloons (Babu et al., 2011) and 

unmanned aerial vehicles (Jiang et al., 2022). However, these platforms are constrained by sparse detection sites and heights, 

limited flight schedules, and high observation costs (Dubey et al., 2022), hindering the time-continuous acquisition of 

vertical profiles of PM2.5 chemical components within the whole boundary layer over a long-term period. Continuous 

remote-sensing lidar detection technologies with high temporal and vertical resolution serve as robust pathways for the 45 

constant identification of PM2.5 components across all altitudes (Wang et al., 2022). Additionally, both satellite-based lidar 

and ground-based lidar networks, such as China Lidar Joint Observation Network (LiDARNET, https://lidar.pku.edu.cn/, last 

access: 25 July 2025), Asian Dust Network (AD-NET) (Sugimoto et al., 2005), Micro Pulse Lidar Network (MPLNET) 

(Welton et al., 2001), and European Aerosol Research Lidar Network (EARLINET) (Ansmann et al., 2003), provide remote 

sensing capabilities with extensive spatial coverage. 50 

 

Retrieval algorithms for the lidar have been progressively developed over the past 20 years. Earlier studies utilized lidar 

depolarization ratios to identify dust and non-dust aerosols (Sugimoto et al., 2003; Tesche et al., 2009). Subsequently, 

additional lidar parameter constraints, such as multi-wavelength backscatter coefficient and lidar ratio, were incorporated to 

identify dust aerosol, water-soluble aerosols, black carbon, and sea salt based on the assumption of external mixing 55 

(Nishizawa et al., 2011; Nishizawa et al., 2017). Hara et al. (2018) considered the hygroscopic growth of water-soluble 

aerosols and their internal mixing with BC to mitigate the overestimation of BC retrieval (Hara et al., 2018). By integrating 

the ground-based lidar and sun-photometer, Wang et al. (2022) significantly increased the identifiable aerosol component 

types, including ammonium nitrate-like, water-insoluble organic matter, water-soluble organic matter, black carbon and fine-

mode aerosol water content (Wang et al., 2022). However, the aerosol component type retrieved from existing lidar retrieval 60 

algorithms that utilize aerosol optical properties is not equivalent to the conventional chemical component type. Due to 

similar optical properties exhibited by PM2.5 chemical components, the identification of chemical component types seems to 
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be beyond the scope of remote-sensing retrieval (Wang et al., 2022). Moreover, the multiple parameterization assumptions 

introduced by existing lidar retrieval algorithms increase the uncertainties in component retrieval. 

 65 

Data-driven machine learning can interpret the nonlinear relationships between PM2.5 chemical components and various 

driving factors without the constraints imposed by the inherent properties of these components (Li et al., 2025a). Meng et al. 

(2018) utilized a random forest algorithm to predict national mass concentrations of SO4
2-, NO3

-, organic carbon (OC) and 

elemental carbon (EC), achieving R2 values ranging from 0.71 to 0.86 on a daily scale (Meng et al., 2018). Based on this 

algorithm, Lv et al. (2021) further achieved the hourly predictions of the aforementioned chemical components and NH4
+ 70 

with R values of 0.71-0.81 (Lv et al., 2021). Subsequently, deep learning algorithms are employed to accurately characterize 

complex nonlinear relationships and effectively extract data features, thereby enhancing the predictive ability of hourly mass 

concentrations of PM2.5 chemical components (Lee et al., 2023; Liu et al., 2023; Li et al., 2025a). However, current studies 

primarily focus on predicting the ground-level mass concentrations of PM2.5 chemical components but cannot interpret the 

vertical distribution of these components. Furthermore, existing prediction models are susceptible to the quantity and quality 75 

of available training data due to the absence of physical constraints, limiting their spatiotemporal generalization capabilities. 

 

In this study, we proposed a novel physics-constrained deep-learning framework that utilized lidar data to retrieve vertical 

profiles of five PM2.5 chemical components (SO4
2-, NO3

-, NH4
+, OM and BC) for the first time. Our retrieval framework 

effectively mitigates the limitations of remote-sensing retrieval algorithms in identifying chemical components, as well as 80 

the deficiencies and limited generalization capabilities of purely data-driven machine learning techniques in characterizing 

vertical profiles of these components. Detailed descriptions of the retrieval framework and the data utilized are provided in 

Sect. 2., while Sect. 3 discusses the validation of the retrieval framework, the assessment of feature importance, and 

applications of this framework. Section 4 presents the conclusion. 

2 Methodology and data 85 

2.1 Methodology 

2.1.1 Retrieval framework 

This paper proposed a novel retrieval framework for retrieving vertical distribution of five PM2.5 chemical components 

(NH4
+, SO4

2-, NO3
-, OM and BC) by integrating long-term lidar measurements, deep learning algorithms, hyperparameter 

tuning, and physics-constrained optimization for the first time (Fig. 1). The aerosol extinction coefficient at 532 nm (𝜎𝑏𝑠𝑐,532) 90 

and multiple meteorological parameters (u-component wind, v-component wind, temperature, relative humidity, specific 

humidity, vertical velocity and geopotential) serve as input features. The deep learning module (Fig. 1, red part), mainly 

consisting of Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (BiLSTM), attention 
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mechanism and Bayesian hyperparameter optimization, is utilized to establish the nonlinear relationship between input 

features and five PM2.5 chemical components. Notably, the input and output data are normalized by Z-score normalization to 95 

stabilize the training process, speed up training convergence, and enhance model robustness (Al-Faiz et al., 2018; Cabello-

Solorzano et al., 2023). Therefore, the vertical profiles of five PM2.5 chemical components retrieved by the deep learning 

module are denormalized by available aircraft-based vertical observations (Fig. 1, yellow part). A physics-constrained 

optimization module in this framework is designed to reduce spatiotemporal representativeness errors in limited aircraft-

based vertical observations during the denormalized process. The physics-constrained optimization module incorporates a 100 

multi-object loss function based on the Interagency Monitoring of Projected Visual Environment (IMPROVE) Equation with 

Non-dominated Sorting Genetic Algorithm II (NSGA-II). The detailed description of deep learning algorithms, 

hyperparameter tuning, and physics-constrained optimization will be presented below. 

 

 105 

Figure 1: Remote-sensing retrieval framework for vertical distribution of five PM2.5 chemical components (NH4
+, SO4

2-, NO3
-, OM 

and BC). 
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2.1.2 Deep learning and hyperparameter tuning 

The deep learning module is the core of the retrieval framework that generates the normalized vertical profiles of five PM2.5 

chemical components by feeding the lidar-based aerosol extinction coefficient at 532 nm ( 𝜎𝑒𝑥𝑡,532 ) and multiple 110 

meteorological parameters. The deep learning module is designed by numerous neural network layers (Fig. 1, red part), 

including the CNN layer, Average Pooling layer, Rectified Linear Unit (ReLU) layer, Fully Connected (FC) layer, Attention 

Mechanism layer, Sigmoid layer, Flatten layer, BiLSTM layer, Dropout layer and Regression Output layer. The CNN, 

Attention Mechanism and BiLSTM layers are the key layers to capture the multivariate and temporal characteristics, 

contributing to the nonlinear relationship between the input and output features. Other layers are responsible for data input, 115 

structural transformation, normalization, nonlinear process, pooling process, neuron removal and data output, enhancing the 

training performance and preventing overfitting. Here, we review the description of three key layers, and the description of 

other layers can be found in our previous work (Li et al., 2025a). 

 

CNN is a variant of the multilayer perceptron that efficiently identifies the relevant features through local perception, sparse 120 

connections and sharing of weight and bias (Alzubaidi et al., 2021). The convolutional layer in CNN performs convolutional 

computation on input across spatial dimensionality using learnable kernels to extract local features and enhance training 

efficiency (O'shea and Nash, 2015). Then the convolutional output is typically enhanced nonlinearly by the ReLU layer (Eq. 

(1)) or down-sampled nonlinearly by the pooling layer in a CNN architecture. 

𝑦𝑡 = 𝑚𝑎𝑥(0, 𝑓(𝐰 × 𝑥𝑡 + 𝑏𝑡)),          (1) 125 

Where 𝑦𝑡  is the nonlinearly enhanced convolutional output at timestep 𝑡, 𝑓(𝑤 × 𝑥𝑡 + 𝑏𝑡) is the original convolutional output 

at timestep 𝑡, 𝑥𝑡 is the input data at timestep 𝑡, 𝑤 is the weight matrix and 𝑏𝑡 is the bias term. 

 

The attention mechanism layer is incorporated with CNN to amplify the weight of key information and mitigate the 

interference of redundant information, leading to an enhancement in the quality of the CNN output (Wang and Zhang, 2025). 130 

The attention mechanism is inspired by the ability of human vision to selectively focus on key information (Guo et al., 2022). 

Our retrieval framework integrates this layer by dynamic weight allocation to enhance the importance of key features and 

reduce the interference of irrelevant features. The weight is generated by the FC layer (Eq. (2)) and performs Schur product 

operation with CNN multivariate output (Eq. (3)). 

𝐖 = sigmoid (FC (Pooling(y1,𝑖))),         (2) 135 

y2,𝑖 = 𝐖 ∙ y1,𝑖,            (3) 
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Where y1,𝑖 is the CNN multivariate output. Pooling and FC layers are responsible for down-sampling and feature learning, 

respectively, thus predicting the importance of 𝑖 th feature. The sigmoid activation function is utilized to calculate the 

attention weight (𝐖). y2,𝑖 is the reweighted multivariate output. 

 140 

BiLSTM is a variant of Recurrent Neural Networks (RNNs) that learns long-timestep information bidirectionally and avoids 

the gradient vanishing or explosion of traditional RNNs (Kavianpour et al., 2023). Previous studies have indicated that 

BiLSTM outperforms LSTM in regression tasks due to the insufficient utilization of future information in LSTM (Siami-

Namini et al., 2019; Yang and Wang, 2022). Therefore, the BiLSTM layer is integrated into the deep-learning module to 

fully capture the temporal characteristics of the CNN attention-weighted multivariate output. The BiLSTM layer is realized 145 

by the forward LSTM and backward LSTM (Eq. (4)). Both the forward and backward LSTM consist of cell states, forget 

gates, input gates, output gates, and activation functions, which are responsible for transmission, screening and processing of 

temporal information. The final LSTM output is obtained by output gates and cell states (Eq. (5)). A detailed description of 

BiLSTM components can be found in our previous work (Li et al., 2025a). 

𝐻𝑡 = [ℎ⃗ 𝑡; ℎ⃖⃗𝑒𝑛𝑑−𝑡+1],           (4) 150 

ℎ𝑡 = 𝑜𝑡 × tanh⁡(𝐶𝑡),           (5) 

Where 𝐻𝑡  is the final output of BiLSTM at timestep 𝑡 , which is obtained by concatenating the forward output ℎ⃗ 𝑡  and 

backward output value ℎ⃖⃗𝑒𝑛𝑑−𝑡+1. ℎ𝑡 is the final output of LSTM at timestep 𝑡, 𝑜𝑡 is the output of output gate at timestep 𝑡, 

tanh is an activation function that regulates the values transmitted in neural networks by compressing the values to a range 

of from -1 to 1. 𝐶𝑡 is the output of the cell state at timestep 𝑡. 155 

 

Hyperparameter tuning is crucial for improving the performance of deep neural networks. Bayesian optimization can 

determine global optima with higher efficiency (Shahriari et al., 2016) and has been widely employed in hyperparameter 

optimization of varying machine learning models (Wu et al., 2019a). The primary process of Bayesian optimization involves 

establishing search spaces for hyperparameters and the corresponding objective function, followed by the determination of 160 

the optimal solution by minimizing the objective function (Eq. (6)). Bayesian optimization utilizes a probabilistic surrogate 

model to iteratively estimate the complex unknown objective function based on the current query point and then identifies 

the next most promising query point by an acquisition function (Shahriari et al., 2016). The probabilistic surrogate model 

and the acquisition function in this study are the Gaussian process regression model (Rasmussen, 2004) and the Expected-

Improvement-Per-Second-Plus function (Gelbart et al., 2014), respectively. 165 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛⁡𝑓(𝑥), 𝑥 ∈ 𝑋 ⊆ 𝑅d,          (6) 

Where 𝑥∗  is the optimal scheme of multiple hyperparameters, 𝑥  is the decision vector composed of d -dimensional 

hyperparameters, 𝑋 is the search space that consists of all possible decision vectors, 𝑓(𝑥) is the unknown objective function. 
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2.1.3 Physics-constrained optimization scheme 

The normalized vertical profiles of PM2.5 chemical components generated by the deep learning module are denormalized by 170 

the statistical characteristics of winter aircraft measurements with an altitude ranging from 100 m to 2900 m in Beijing (Liu 

et al., 2020). To reduce the spatiotemporal representativeness error induced by the statistical results of aircraft measurements, 

we initially scaled the aircraft-based observations of PM2.5 chemical components based on the ratio of in-situ PM2.5 

observations at the specified location and period to aircraft-based PM2.5 observations. Subsequently, a physics-constrained 

optimization scheme is incorporated into the retrieval framework based on a revised Interagency Monitoring of Projected 175 

Visual Environment (IMPROVE) Equation (Pitchford et al., 2007) and Non-dominated Sorting Genetic Algorithm II 

(NSGA-II) (Verma et al., 2021). 

 

The revised IMPROVE Equation interprets the particle extinction coefficient (𝜎) through the concentrations and the optical 

and microphysical characteristics of PM2.5 chemical components (Eq. (7)). 180 

𝜎 = 𝜃𝑠
𝑆𝑁𝐴𝑓(𝑅𝐻)[𝑆𝑂4

2− + 𝑁𝑂3
− + 𝑁𝐻4

+] + 𝜃𝑠
𝑂𝐶[𝑂𝐶] + 𝜃𝑠

𝐹𝑆[𝐹𝑖𝑛𝑒⁡𝑆𝑜𝑖𝑙] + 𝜃𝑠
𝐶𝑀[𝐶𝑜𝑎𝑟𝑠𝑒⁡𝑀𝑎𝑠𝑠] +

𝜃𝑠
𝐹𝑆𝑆𝑓𝐹𝑆𝑆(𝑅𝐻)[𝐹𝑖𝑛𝑒⁡𝑆𝑒𝑎⁡𝑆𝑎𝑙𝑡] + 𝜃𝑎

𝐵𝐶[𝐵𝐶] + 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ⁡𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔,      (7) 

Where 𝜎  is the estimated particle extinction coefficient (km-1), 𝜃𝑠  is the scattering efficiency (m2 mg-1), 𝜃𝑎  is the mass 

absorption efficiency (m2 mg-1), respectively. 𝑓(𝑅𝐻) and 𝑓𝐹𝑆𝑆(𝑅𝐻) account for the increase in light scattering induced by 

hygroscopic growth of sulfate, nitrate and ammonium (SNA), as well as fine sea salt (FSS). 𝜃𝑠
𝐹𝑆, 𝜃𝑠

𝐶𝑀, 𝜃𝑠
𝐹𝑆𝑆𝑓𝐹𝑆𝑆 and 𝜃𝑎

𝐵𝐶  are 185 

set to 0.001 m2 mg-1, 0.0006 m2 mg-1, 0.0017 m2 mg-1 and 0.01 m2 mg-1, respectively. 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ⁡𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 is set to 0.01 

km-1. 𝜃𝑠
𝑆𝑁𝐴 and 𝜃𝑠

𝑂𝐶  are determined by Eq. (8)-(9). 

𝜃𝑠
𝑆𝑁𝐴 = 0.003 × (0.7 + 0.002 × [𝑆𝑂4

2− + 𝑁𝑂3
− + 𝑁𝐻4

+ + 𝑂𝐶]),      (8) 

𝜃𝑠
𝑂𝐶 = 0.00363 × (0.7 + 0.002 × [𝑆𝑂4

2− + 𝑁𝑂3
− + 𝑁𝐻4

+ + 𝑂𝐶]),      (9) 

 190 

Then we employ the Pearson correlation coefficient (CORR) and root mean square error (RMSE) between estimated and 

observed extinction coefficients to establish a multi-objective function that regulates the denormalized vertical profiles of 

PM2.5 chemical components by a scale factor (Eq. (10)). The NSGA-II algorithm is utilized to determine the optimal scale 

factor by solving a multi-objective function that simultaneously enhances the correlation and reduces the discrepancy 

between the estimated and observed extinction coefficients (Eq. (11)). 195 

𝑀𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑
𝑖,ℎ = 𝛾𝑖,ℎ × 𝑀𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑖,ℎ , i = 𝑆𝑂4
2−, 𝑁𝑂3

−, 𝑁𝐻4
+, 𝑂𝑀, 𝑎𝑛𝑑⁡𝐵𝐶,      (10) 

𝛾𝑖,ℎ = min(𝑓𝑅𝑀𝑆𝐸(𝛾), 𝑓𝐶𝑂𝑅𝑅(𝛾)),          (11) 

Where 𝑀𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑
𝑖,ℎ

 (μg m-3) is the regulated mass concentration of the ith chemical component at an altitude of ℎ (m), 𝛾𝑖,ℎ is 

the scale factor for the i th chemical component at an altitude of ℎ  (m), and 𝑀𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝑖,ℎ

 (μg m-3) is the original mass 

concentration of the ith chemical component at an altitude of ℎ (m). 200 
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NSGA is capable of simultaneously optimizing the multi-objective function by generating a Pareto front that consists of an 

ensemble of non-dominated solutions (Srinivas and Deb, 1994). The non-dominated solutions in a Pareto front meet the 

criterion that one objective cannot be further improved without compromising other objectives. However, the initial version 

of NSGA has several limitations. First, NSGA has a high computational complexity of 𝑂(𝑀𝑁3), where M is the number of 205 

objective functions, and N is the size of the population. Second, NSGA utilizes a sharing parameter to preserve the diversity 

of the population that dominates the choice of Pareto non-dominated solutions, resulting in the introduction of parameter 

uncertainty into the algorithm. Third, NSGA lacks an elitism mechanism, leading to the incorrect removal of advantageous 

solutions. NSGA-II is an improved NSGA with a lower computational complexity of 𝑂(𝑀𝑁2) and an elitism mechanism 

that retains the dominant members of the parent and offspring generations during iterative evolution (Deb et al., 2002). 210 

Moreover, NSGA-II replaces the sharing parameters in NSGA with the crowding distance operator, mitigating the 

uncertainty of sharing parameters and the high computational complexity of sharing functions. 

 

NSGA-II implements multi-objective optimization by two primary procedures, namely non-dominated sorting and crowding 

distance calculation. The non-dominated sorting progressively identifies the Pareto front at each rank from a population of 215 

size N. The Pareto front at the second rank is derived from a population that excludes the Pareto front at the first rank. The 

crowding distance is utilized to quantify the priority of all optimal solutions within a Pareto front, defined as the normalized 

distance of two nearest optimal solutions on either side (Eq. (12)). 

𝑑𝑖 = ∑
𝑓𝑚

𝑖+1−𝑓𝑚
𝑖−1

𝑓𝑚
𝑚𝑎𝑥−𝑓𝑚

𝑚𝑖𝑛
𝐾
𝑖=1 ,           (12) 

Where 𝑑𝑖  is the crowding distance of the 𝑖 th intermediate Pareto optimal solution, 𝐾  is the number of Pareto optimal 220 

solutions in a Pareto front, 𝑓𝑚
𝑖+1 is the 𝑚th objective value induced by the (𝑖 + 1)th Pareto optimal solution, 𝑓𝑚

𝑖−1 is the 𝑚th 

objective value induced by the ( 𝑖 − 1)th Pareto optimal solution, 𝑓𝑚
𝑚𝑎𝑥  and 𝑓𝑚

𝑚𝑖𝑛  are the 𝑚 th maximum and minimum 

objective values, respectively. 

 

The workflow of NSGA-II is summarized as follows (Fig. 2). 225 

a) Randomly generating an initial population (𝐴1) of size N. Performing selection, crossover and mutation operations on 𝐴1 

to generate an offspring population (𝐵1 ) of size N. The parent population (𝐴1 ) and the offspring population (𝐵1 ) are 

combined to form a new population (𝐶1) of size 2N. 

b) Performing a rapid non-dominated sorting on 𝐶1 to generate the Pareto fronts (𝑃𝑖 , 𝑖 = 1, 2, … , n) at different ranks. 

c) Filling the next population (𝐴2) of size N with 𝑃𝑖  based on the rank order. 230 

d) When 𝐴2 is filled to the point of insufficient capacity to contain the entire 𝑃𝑖 , the optimal solutions in 𝑃𝑖  are inserted into 

𝐴2 in a priority order identified by the non-dominated sorting and crowding distance until the size of 𝐴2 reaches N. 
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e) Performing selection, crossover and mutation operations on 𝐴2 to generate an offspring population (𝐵2) of size N. The 

parent population (𝐴2) and offspring population (𝐵2) combine to form a new population (𝐶2) of size 2N. 

f) Iterating steps (b) to (e) until the convergence criteria are satisfied. 235 

 

 

Figure 2: Brief workflow of NSGA-II. 

2.1.4 Framework training and evaluation 

A long-term (2021-2022) hourly multivariate dataset that contains 𝜎𝑏𝑠𝑐,532 , u-component wind, v-component wind, 240 

temperature, relative humidity, specific humidity, vertical velocity, geopotential, NH4
+, SO4

2-, NO3
-, OM and BC, was 

employed to train the deep learning module, with 80% of the dataset randomly allocated for training and 20% reserved for 

testing. The iteration number of Bayesian optimization is set to 20. 

 

To fully evaluate the performance of the retrieval framework in predicting vertical profiles of NH4
+, SO4

2-, NO3
-, OM and 245 

BC, we conduct three retrieval experiments: (1) We compare the retrieved mass concentrations with the observed values at 

the surface level during a training year (2021) and three non-training years (2017, 2018 and 2024). (2) We assess the spatial 

generalization ability by applying the retrieval framework to 39 non-training lidar sites in the Beijing-Tianjin-Hebei (BTH) 

region on February 8-15th, 2021 and comparing the retrieved mass concentrations with observations at the surface level. (3) 

We validate the retrieved vertical profiles by aircraft-based and tower-based vertical observations during several non-training 250 

episodes. Subsequently, SHapley Additive exPlanations (SHAP), a local explainable technology (Lundberg et al., 2020), has 
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been widely employed in prediction interpretation for varying machine learning models (Li et al., 2025b; Hou et al., 2022), is 

integrated into the deep learning module to quantify the impact of multivariate input features on the retrieval of PM2.5 

chemical components. Finally, we applied this retrieval framework to generate a long-term vertical profile dataset for five 

PM2.5 chemical components in a megacity over six years of 2017-2018 and 2021-2024. 255 

2.2 Data 

2.2.1 Lidar measurement 

The 𝜎𝑏𝑠𝑐,532 data for deep learning module training and PM2.5 chemical component retrieving is obtained from a ground-

based dual-wavelength polarization Mie lidar at the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences 

(CAS), Beijing (39.98°N,116.38°E). This Mie lidar has consistently detected optical signals since 2017, offering a temporal 260 

resolution of 15 minutes and a vertical resolution of 6 m. The 𝜎𝑏𝑠𝑐,532 data on February 8-15th, 2021 at 39 BTH lidar sites for 

spatial generalization ability assessment are provided by the China National Environmental Monitoring Center (CNEMC). 

The multi-site data offers a temporal resolution of 5-20 minutes and a vertical resolution of 7.5 m. These minute-level 

resolution data are averaged to achieve an hourly resolution. 

2.2.2 Auxiliary data for Retrieval 265 

The data of multiple meteorological parameters for deep learning module training and PM2.5 chemical component retrieving 

can be obtained from the 5th Generation European Centre for Medium-Range Weather Forecasts (ECMWF) ReAnalysis 

(ERA5, https://cds.climate.copernicus.eu/datasets, last access: 25 July 2025), which provides the hourly data on pressure 

levels (1000-1 hPa) from 1940 to present with a spatial resolution of 0.25° × 0.25°. The data of fine soil, coarse mass and 

fine sea salt for physics-constrained optimization can be obtained from 4th Generation ECMWF Atmospheric Composition 270 

Reanalysis (EAC4, https://ads.atmosphere.copernicus.eu/datasets, last access: 25 July 2025), which provides the 3-hourly 

data on pressure levels (1000-1 hPa) from 2003 to 2024 with a spatial resolution of 0.75° × 0.75°. The mass concentration 

(μg m-3) of fine soil is approximately estimated by the mixing ratio (kg kg-1) of dust aerosol with a diameter of 0.03-0.9 μm. 

The mass concentration (μg m-3) of coarse mass is approximately estimated by the mixing ratio (kg kg-1) of dust aerosol with 

a diameter of 0.9-20 μm. The mass concentration (μg m-3) of fine sea salt is approximately estimated by the mixing ratio (kg 275 

kg-1) of sea salt aerosol with a diameter of 0.03-5 μm. The pressure levels (hPa) of ERA5 and EAC4 are converted to 

geometric heights (m), and the 3-hour EAC4 data is converted to hourly data through a linear interpolation method. The grid 

cells of EAC4 and ERA5 that contain the lidar sites were extracted using the k-nearest neighbor search method based on 

longitude and latitude data (Friedman et al., 1977). 
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2.2.3 Surface observations 280 

Ground-level mass concentrations of NH4
+, SO4

2-, NO3
-, OM and BC at the Beijing lidar site (39.98°N,116.38°E) were 

collected for training the deep learning module and validating retrievals by a high-resolution time-of-flight aerosol mass 

spectrometer, with a temporal resolution of 1 hour, covering the periods from January 1, 2021, to March 31, 2022, and June 

1 to August 31, 2022. Ground-level mass concentrations of the five PM2.5 chemical components at 39 non-training BTH sites 

were provided by CNEMC. Besides, ground-level PM2.5 mass concentrations, approximately equal to the sum of the mass 285 

concentrations of the five chemical components, are available on CNEMC data release website (https://www.cnemc.cn/, last 

access: 25 July 2025). 

2.2.4 Aircraft-based and tower-based measurements 

The aircraft-based vertical profiles of PM2.5 chemical components in 2016 winter for denormalizing the normalized vertical 

profiles generated by the deep learning module are provided by Liu et al. (2020)’s study (Liu et al., 2020). The aircraft-based 290 

vertical profiles for retrieval independent verification were sampled in a flight experiment at an airport site in Shijiazhuang 

(37.54°N, 114.35°E). The flight time schedules (LT, local time) are detailed in Table 1. The tower-based vertical profiles at 

altitudes of 16 m, 102 m and 280 m were sampled at a 325-m meteorological tower located at the IAP, CAS in Beijing 

(39.98°N,116.38°E) during 10 days (27 and 30 December 2023; 2, 5, 9, 12, 15, 18, 24, and 27 January 2024). A flow 

sampler with a flow rate of 42.8 L min-1 and the 47-mm quartz filter membranes were utilized to collect PM2.5 chemical 295 

component samples in the aircraft-based and tower-based sampling experiments. Furthermore, the 325 m tower-based 

vertical profiles on December 31 2018 were also collected from Lei et al. (2021)’s study (Lei et al., 2021). 

 

Table 1: Flight time schedules (LT, local time), corresponding surface temperature and relative humidity. 

Date Flight time Sampling height (m) Surface temperature (°C) Surface relative humidity (%) 

September 26 2024 19:10-21:10 2100 19.2-22.9 87.5-95 

October 10 2024 19:40-21:40 600 18.8-19.2 29-30 

December 11 2024 15:00-16:00 1200 4.3-4.9 31-34 

December 11 2024 16:00-17:00 1500 3.3-4.3 34-38 

3 Results and discussion 300 

3.1 Validation 

3.1.1 Evaluation of the training and testing phase 

The performance of the deep learning module within the retrieval framework, which was trained using a randomly 

partitioned multivariate dataset, is evaluated based on the discrepancies between simulations and observations for NH4
+, 
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SO4
2-, NO3

-, OM and BC. Overall, the scatter distribution and fitted regression line closely align with the 1:1 line in both the 305 

training (Fig. 3a1-a5) and testing phases (Fig. 3b1-b5). The error distributions are concentrated around 0, with mean biases 

between 0.02 ± 0.64 µg m-3 and 0.25 ± 4.05 µg m-3 during the training phase (Fig. 3c1-c5) and between 0.03 ± 0.81 µg m-3 and 

0.20 ± 5.82 µg m-3 during the testing phase (Fig. 3d1-d5), demonstrating strong consistency between observations and 

simulations. Specifically for the training process (Fig. 3a1-a5), the values of CORR and R2 for the five PM2.5 chemical 

components range from 0.90 to 0.96 and from 0.78 to 0.93, respectively, indicating that the deep learning module accurately 310 

interprets the relationship between multivariate input features and the five PM2.5 chemical components. The values of RMSE 

and MAE range from 0.64 to 4.08 µg m-3 and from 0.46 to 2.76 µg m-3, indicating a low discrepancy between simulations 

and observations. Compared to the training process, the values of CORR and R2 during the testing process decrease to 0.84-

0.91 and 0.64-0.82, respectively, and the values of RMSE and MAE increase to 0.81-5.82 µg m-3 and 0.56-3.47 µg m-3, 

showing a slight underestimation for the five PM2.5 chemical components (Fig. 3b1-b5). It is expected that the statistical 315 

results of the testing phase will be less robust than those of the training phase, as the deep learning module has not been 

trained on the data from the testing phase. Nevertheless, our statistical results from the testing phase exhibit similarities or 

even improvements compared to those reported in other studies that predicting PM2.5 chemical component concentrations 

based on machine learning models (Lv et al., 2021; Lin et al., 2022; Araki et al., 2022; Liu et al., 2023), indicating that the 

deep learning module demonstrates strong prediction capabilities. 320 
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Figure 3: Scatterplots of the simulations (µg m-3) versus the observations (µg m-3) with probability density (%) for NH4
+, SO4

2-, 

NO3
-, OM and BC during the training process (a1-a5) and testing process (b1-b5). The dotted grey lines represent the 2:1, 1:1, and 

1:2 lines, and the solid red line represents the fitted regression line. CORR represents the correlation coefficient, RMSE represents 325 
root mean square error, MAE represents mean absolute error, and R2 represents determination coefficient. Probability 

distributions of bias (observations minus simulations, µg m-3) for NH4
+, SO4

2-, NO3
-, OM and BC during the training process (c1-c5) 

and testing process (d1-d5). 

3.1.2 Comparison with ground-level observations 

The retrieval framework was applied to retrieve the vertical profiles of NH4
+, SO4

2-, NO3
-, OM and BC in a Beijing lidar site 330 

(39.98°N,116.38°E) over a training year (2021) and three non-training years (2017, 2018 and 2024). As illustrated in Fig. 

4a1-a5, the weekly-smoothed variations in the retrieved surface concentrations of the five PM2.5 chemical components 

demonstrate strong consistency with the observed surface concentrations for the training year, indicating that the retrieval 

framework adequately captures the temporal characteristics of these chemical components. The CORR values between the 

retrieved and observed concentrations range from 0.91 to 0.98, surpassing those of the deep learning module (Fig. 4a1-a5 335 
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and Fig. 3b1-b5), suggesting that the physics-constrained optimization effectively enhances the retrieval accuracy of 

chemical component concentrations. The RMSE values for NH4
+ SO4

2- and NO3
- are marginally higher than those of the 

deep learning module (Fig. 4a1-a3 and Fig. 3b1-b3). Conversely, OM and BC exhibit a slight overestimation (Fig. 4a4, a5), 

which is attributed to inaccuracies in the upper boundaries of the scale factor during the physics-constrained optimization 

process. 340 

 

For the non-training years, the retrieved surface concentrations of a sum of five PM2.5 chemical components are compared to 

the observed surface PM2.5 concentrations, owing to the absence of long-term observations for individual chemical 

components. As shown in Fig. 4b-d, the weekly-smoothed variations in the retrieved surface PM2.5 concentrations closely 

align with the observed values in 2017, 2018 and 2024. The high values of surface PM2.5 concentration observed in March-345 

April and November of 2018 and 2024 are effectively captured by the retrieval framework. These results indicate that the 

retrieval framework exhibits robust temporal generalization capabilities, accurately interpreting the changes in 

concentrations of various chemical components across different periods. However, the retrieved concentrations show a slight 

overestimation relative to the observed values, potentially associated with the overestimation of carbonaceous aerosols as 

reported in the training-year results. Future efforts should enhance retrieval accuracy by regulating the parameters involved 350 

in the physics-constrained optimization process. 
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Figure 4: Weekly-smoothed variations in the retrieved and observed concentrations (µg m-3) of NH4
+ (a1), NO3

- (a2), SO4
2- (a3), 

OM (a4) and BC (a5) in 2021. (b) same as (a1-a5) but for PM2.5 in 2017. (c) same as (a1-a5) but for PM2.5 in 2018. (d) same as (a1-355 
a5) but for PM2.5 in 2024. 

 

The retrieval framework was also applied to retrieve the vertical profiles of the five PM2.5 chemical components at 39 non-

training BTH lidar sites over a short-term period of February 8-15th, 2021, aiming to validate its spatial generalization 

capabilities. As shown in Fig. 5a, the retrieved and observed surface concentrations at 39 non-training sites exhibit 360 

comparable scatter distributions and closely aligned averages, indicating that the retrieval framework possesses reasonable 

spatial extensibilities, albeit with some overestimations in OM and BC. From a spatial perspective (Fig. 5b1-b5), non-
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training BTH sites located closer to the Beijing lidar site exhibit higher CORR values, with the highest reaching 0.71 (NH4
+), 

0.56 (NO3
-), 0.81 (SO4

2-), 0.48 (OM) and 0.41 (BC). Conversely, the RMSE values are not affected by the distance from the 

Beijing lidar site (Fig. 5c1-c5), with the lowest reaching 2.40 µg m-3 (NH4
+), 4.65 µg m-3 (NO3

-), 3.06 µg m-3 (SO4
2-), 6.70 365 

µg m-3 (OM) and 0.79 µg m-3 (BC). These findings suggest that the retrieval framework effectively retrieves PM2.5 chemical 

component concentrations at spatially varying lidar sites with minimal retrieval errors. However, it has limitations in 

accurately describing short-term changes in carbonaceous aerosols at non-training sites. 

 

 370 

Figure 5: Scatter distribution of retrieved and observed surface mass concentration (µg m-3) of NH4
+, NO3

-, SO4
2-, OM and BC at 

39 non-training BTH lidar sites over a period of February 8-15th, 2021 (a). Spatial distribution of Pearson correlation coefficient 

(CORR) between retrieved and observed surface mass concentration of NH4
+ (b1), NO3

- (b2), SO4
2- (b3), OM (b4) and BC (b5). 

(c1-c5) Same as (b1-b5) but for root mean square error (RMSE, µg m-3). 

3.1.3 Verification of retrieved vertical profiles 375 

In addition to the spatiotemporal verification of surface-level mass concentrations, we conducted tower-based and aircraft-

based observational experiments to validate the retrieved vertical profiles of five PM2.5 chemical components during the non-
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training periods. From the surface level to ~200 m altitude, the retrieved and observed vertical profiles exhibit consistent 

vertical patterns with higher concentrations occurring at an altitude of ~120 m for NH4
+, NO3

-, SO4
2-, OM and BC (Fig. 6a1, 

a2). Especially, the retrieved and observed mass concentrations of OM are comparable at ~120 m, with reported averages of 380 

22.21 µg m-3 and 24.82 µg m-3, respectively. Additionally, the retrieved and observed proportions of NH4
+, NO3

-, SO4
2-, OM 

and BC demonstrate significant consistency (Fig. 6b1, b2). Among these chemical components, NO3
- and OM represent the 

highest proportions, followed by NH4
+ and SO4

2-, while BC accounts for the lowest proportion. This proportional 

characteristic is evident in the retrieved and observed proportions at altitudes of 600 m and 1200 m (Fig. 6c1, c2). Due to the 

lack of NH4
+ measurements at 1500 m and the absence of both NH4

+ and SO4
2- measurements at 2100 m, the proportions at 385 

these altitudes are statistically obtained from other chemical components. The results indicate that the retrieved and observed 

proportions at altitudes of 1500 m and 2100m are consistent, although the proportion of NO3
- is somewhat overestimated. 

Overall, the tower-based and aircraft-based verifications indicate that the retrieval framework achieves high accuracy in 

retrieving the vertical profiles of the five PM2.5 chemical components during the non-training period, demonstrating its robust 

generalization capabilities in generating high-precision vertical profiles from non-training datasets. 390 
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Figure 6: Vertical profiles (µg m-3) of NH4
+, NO3

-, SO4
2-, and OM from retrieval (a1) and tower-based observation (a2) for 

December 31, 2018. The line represents the daily average of the hourly vertical profiles, and the shaded area represents the 

standard deviation. Averaged proportions of NH4
+, NO3

-, SO4
2-, OM, and BC from retrieval (b1) and tower-based observation (b2) 395 

during 10 days (December 27 and 30, 2023; January 2, 5, 9, 12, 15, 18, 24, and 27, 2024). (c1 and c2) Same as (b1 and b2) but for 

aircraft-based verification during 3 days (September 26, October 10, December 11, 2024). 
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3.2 Assessment of feature importance 

The predictive performance of the deep learning module is intricately connected to the input features (Blum and Langley, 

1997). Although the module incorporates the CNN and attention mechanism layer to mitigate issues related to feature 400 

dimension, the impact of input features on the module predictions remains ambiguous, which impedes module 

interpretability and restricts the capacity to enhance the module performance through effective feature selection. The SHAP 

method is employed to quantify the relative contributions of 8 input features to the predictions of the five PM2.5 chemical 

components at various heights and to identify the impact of the input features on the decision-making processes of the deep 

learning module. The coexistence of a high feature value with a positive SHAP value in a specific feature implies an 405 

amplification of concentration prediction at elevated levels. 

 

Figure 7a1-a5 depicts that the aerosol extinction coefficient at 532 nm (EXT), relative humidity (RH) and v-component wind 

(VW) are the dominant input features for predicting the five PM2.5 chemical components with an averaged relative 

contribution of 14.43 %, 15.84 % and 16.77 %. These features determine the vertical structure, chemical and physical 410 

processes, respectively. Specifically, EXT characterizes the vertical distribution of a total of the five PM2.5 chemical 

components and plays a crucial indicative role in vertical profile predictions (Tao et al., 2016). RH is a key driving factor in 

aerosol hygroscopic growth, aqueous-phase chemical reactions, and heterogeneous reactions, significantly contributing to 

the mass concentrations of varying chemical components as reported in numerous studies (Fang et al., 2019; Wang et al., 

2020; Gao et al., 2020; Liang et al., 2019). VW primarily affects latitudinal transboundary transport, which is a dynamic 415 

forcing in the southwest-northeast transport channel of the BTH region (Yang et al., 2024). Notably, the relative contribution 

of EXT decreases with height from the surface (50 m) to the free atmosphere (1900 m), while the relative contribution of 

VW exhibits an opposite trend. The aerosol content in the upper atmosphere is relatively low, and the weakened lidar aerosol 

signal is susceptible to interference from noise signals, restricting the indicative effect of EXT on chemical component 

concentrations. Conversely, pollution transport in the upper atmosphere is less affected by interference from complex 420 

underlying surfaces than near-surface transport (Wu et al., 2019b), amplifying the driving effect of high-altitude VW on 

chemical component concentrations. 
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Figure 7: Relative contribution of 8 input features on predictive NH4
+ (a1), NO3

- (a2), SO4
2- (a3), OM (a4) and BC (a5) at altitudes 425 

of 50 m, 766 m and 1900 m. SHAP values with feature values of 8 input features for predictive NH4
+ (b1), NO3

- (b2), SO4
2- (b3), OM 

(b4) and BC (b5) at an altitude of 50 m. (c1-c5) Same as (b1-b5) but for an altitude of 766 m. (d1-d5) Same as (b1-b5) but for an 

altitude of 1900 m. F1: extinction coefficient at 532 nm, EXT; F2: Geopotential, GEOP; F3: Relative humidity, RH; F4: Specific 

humidity, SH; F5: Temperature, TEMP; F6: U-component wind, UW; F7: V-component wind; F8: Vertical velocity, VV. 

 430 

Figure 7b1-d5 further determines the impact of the input features on the decision-making processes of the deep learning 

module. From Fig. 7b1-b5, the elevated levels of EXT, GEOP, and VW significantly enhance the concentration predictions 

of the five PM2.5 chemical components in the near-surface layer (50 m), while high-level RH exert either positive or negative 

effects on predictions. High RH not only facilitates aqueous-phase and heterogeneous chemical reactions, positively 

contributing to predictions, but also promotes aerosol coalescence, leading to dry and wet deposition that negatively 435 
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contributes to predictions (Chen et al., 2020). The results in the middle of the boundary layer (766 m) are consistent with 

those observed in the near-surface layer (Fig. 7c1-c5). Particularly, the positive driving effect of lower VV values on 

predictions is more significant, with downward wind contributing positively to predictions, which is attributed to the fact that 

sinking airflows inhibit the dispersion of chemical components, thereby exacerbating aggregation and increasing 

concentration (Yang et al., 2022). The results in the free atmosphere (1900 m) align with those in the middle of the boundary 440 

layer (Fig. 7d1-d5). Notably, the influence of UW on predictions is more apparent, as the westerly wind positively 

contributes to the predictions, which is primarily due to the elevated emission sources located in the southwestern BTH 

region (Yang et al., 2024). Strong prevailing southwesterly winds at high altitudes enhance the regional transport of 

atmospheric pollutants, leading to an increase in concentration. 

3.3 Application of the retrieval framework 445 

The retrieval framework was applied to generate a long-term dataset of vertical profiles for NH4
+, NO3

-, SO4
2-, OM and BC 

over six years (2017-2018, 2021-2024) at a Beijing lidar site. Figure 8 shows the averaged vertical profiles for the five PM2.5 

chemical components in spring (MAM) (Fig. 8a1), summer (JJA) (Fig. 8a2), autumn (SON) (Fig. 8a3) and winter (DJF) (Fig. 

8a4) during the six years. OM mass concentrations are consistently the highest across all four seasons, followed by NO3
-, 

while the mass concentrations of NH4
+, SO4

2- and BC remain relatively low. The high proportions of OM and NO3
- in 450 

Chinese PM2.5 pollution were frequently reported in recent studies (Zhang et al., 2024; Liu et al., 2022). Since the 

implementation of the Air Pollution Prevention and Control Action Plan during 2013-2017 and the Three-year Action Plan 

to Win the Blue-Sky Defense War during 2018-2020 in China, effective reductions in sulfur dioxide (SO2) have gradually 

shifted the dominated chemical component of PM2.5 pollution from SO4
2- to OM and NO3

- (Niu et al., 2022). Furthermore, 

the decreased SO4
2- mass concentrations have amplified the competitive effect of NO3

- on capturing NH3 and NH4
+ in the 455 

thermodynamic equilibrium process, increasing NO3
- mass concentrations (Geng et al., 2024). Notably, NO3

- mass 

concentration peaks at an altitude of ~310 m across all four seasons due to an enhanced formation potential resulting from 

gas-particle partitioning and heterogeneous reactions at elevated altitudes (Zhou et al., 2018). In comparison to the mass 

concentrations of the five PM2.5 chemical components in MAM, SON and DJF, summertime mass concentrations are notably 

lower, which are attributed to reduced heating activities and enhanced wet deposition during summer periods (Liu et al., 460 

2015; Ji et al., 2019). Moreover, the summertime vertical distributions of the five chemical components are relatively 

uniform, which may be attributed to the enhanced atmospheric vertical mixing effects induced by the unstable boundary 

layer (Roostaei et al., 2024). 
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 465 

Figure 8: Vertical distribution of mass concentrations (µg m-3) for NH4
+, NO3

-, SO4
2-, OM and BC in spring (MAM, a1), summer 

(JJA, a2), autumn (SON, a3) and winter (DJF, a4) over six years (2017-2018, 2021-2024). Averaged vertical profiles of mass 

concentrations (µg m-3) for NH4
+, NO3

-, SO4
2-, OM and BC from 2017 to 2018 (b1), from 2021 to 2022 (b2), and from 2023 to 2024 

(b3). Annual change rates (µg m-3 a-1) of mass concentrations for NH4
+, NO3

-, SO4
2-, OM and BC at various altitudes from 2021 to 

2024 (c). 470 

 

Figure 8 also shows the averaged vertical profiles during 2017-2018 (Fig. 8b1), 2021-2022 (Fig. 8b2) and 2023-2024 (Fig. 

8b3) and the annual change rate during 2021-2024 (Fig. 8c). The implementation of clean air policies during 2017-2018 

resulted in mass concentrations of NH4
+, SO4

2- and BC remaining below 11 µg m-3 (Fig. 8b1). However, the mass 

concentrations of NO3
- exceeded 17 µg m-3 at altitudes of below 100 m and ~310 m, and the mass concentrations of OM 475 

exceeded 36 µg m-3 at altitudes of below 200 m due to the nonlinear response to emission reduction (Li et al., 2021). 

Compared to 2017-2018, the mass concentrations of NH4
+, NO3

-, SO4
2-, OM and BC decreased significantly during 2021-

2022 with average reductions of 28.29 %, 22.70 %, 29.55 %, 56.78 % and 57.43 % from 50 m to 3000 m, respectively (Fig. 

https://doi.org/10.5194/egusphere-2025-4237
Preprint. Discussion started: 15 September 2025
c© Author(s) 2025. CC BY 4.0 License.



23 

 

8b2), which is induced by the continued implementation of clean air policies and reduced emissions associated with the 

COVID-19 pandemic control in China (Kang et al., 2020). During 2023-2024, the mass concentrations of NH4
+, NO3

-, SO4
2-, 480 

OM and BC exhibited slight reductions compared to the 2021-2022 levels, with average decreases of 6.57 %, 7.71 %, 

14.22 %, 0.12 % and 5.58 % from 50 m to 3000 m, respectively (Fig. 8b3), which is related to the offsetting effect of 

enhanced human activities following the relaxation of the COVID-19 pandemic lockdowns on the implementation of clean 

air policies (Song et al., 2025). From 2021 to 2024, except for an altitude of ~200 m, the reduction rates of the five chemical 

components are largely consistent across varying altitudes within the boundary layer (below ~1900 m), with the highest 485 

reduction rate of 0.17-0.82 µg m-3 a-1 occurring at an altitude of ~300 m (Fig. 8c). However, OM exhibited a significant 

increase rate of 1.84 µg m-3 a-1 at an altitude of ~200 m, which may be related to the low sensitivity of high-altitude organic 

aerosols to emission controls (Zhao et al., 2017). Future clean air policies should prioritize strengthening control measures 

for OM and NO3
- within the lower and middle parts of the atmospheric boundary layer. 

4 Conclusions 490 

This study proposes a novel lidar-based retrieval framework for obtaining the vertical profiles of five PM2.5 chemical 

components (NH4
+, SO4

2-, NO3
-, OM and BC) for the first time. A long-term multivariate dataset was utilized to train a 

complex deep-learning module in the retrieval framework, thus interpreting the nonlinear relationship among lidar 

parameters, meteorological parameters and PM2.5 chemical components. A physics-constrained optimization module was 

integrated into the retrieval framework, enhancing the generalization capabilities of predicting vertical profiles across diverse 495 

spatiotemporal scenarios. 

 

In situ surface observations of hourly mass concentrations of PM2.5 and its five chemical components over a training year 

and three non-training years were used to validate the accuracy of the retrieval framework in interpreting temporal variations. 

The results showed that the Pearson correlation coefficient values between the retrieved and observed concentrations ranged 500 

from 0.91 to 0.98 during the training year, and the variations in the retrieved surface PM2.5 mass concentrations closely 

aligned with the observations during the non-training year, indicating the robust capabilities of temporal prediction and 

generalization in the retrieval framework. Then the retrieval framework was applied to obtain mass concentrations of five 

PM2.5 chemical components at 39 non-training sites, which exhibited patterns consistent with the corresponding observations 

for NH4
+, SO4

2- and NO3
-. However, limitations remained in accurately capturing short-term temporal variations in OM and 505 

BC. Tower-based and aircraft-based field campaigns at altitudes ranging from surface to 2100 m were conducted to validate 

the accuracy of the retrieved vertical profiles of NH4
+, SO4

2-, NO3
-, OM and BC. The tower-based and aircraft-based 

verifications indicate that the retrieved and observed vertical profiles of these components exhibited consistent patterns in 

mass concentrations and proportions, demonstrating the robust capabilities of the retrieval framework in obtaining high-

precision vertical profiles from non-training datasets. 510 
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Subsequently, SHapley Additive exPlanations (SHAP), an explainable technology, is integrated into the deep learning 

module to quantify the impact of multivariate input features on the retrieval of PM2.5 chemical components. The results 

showed that the aerosol extinction coefficient at 532 nm, relative humidity and v-component wind are the dominant input 

features for predicting the five PM2.5 chemical components with an averaged relative contribution of 14.43 %, 15.84 % and 515 

16.77 %. The driving effect of the input features on the decision-making processes of the deep learning module was also 

determined by SHAP values. 

 

Finally, we applied this framework to generate a long-term dataset of vertical profiles for NH4
+, SO4

2-, NO3
-, OM and BC 

over six years (2017-2018, 2021-2024). From this dataset, we found that OM mass concentrations are consistently the 520 

highest across all four seasons, followed by NO3
-, while the mass concentrations of NH4

+, SO4
2- and BC remain relatively 

low. From 2021 to 2024, except for an altitude of ~200 m, the reduction rates of the five chemical components are largely 

consistent across varying altitudes within the boundary layer (below ~1900 m), with the highest reduction rate of 0.17-0.82 

µg m-3 a-1 occurring at an altitude of ~300 m. However, OM exhibited a significant increase rate of 1.84 µg m-3 a-1 at an 

altitude of ~200 m. Future clean air policies should prioritize strengthening control measures for OM and NO3
- within the 525 

lower and middle parts of the atmospheric boundary layer. Our new retrieval framework offers a novel approach to acquiring 

vertical profiles of PM2.5 chemical components. Future efforts should aim to mitigate the overestimation of carbonaceous 

aerosols by regulating the parameters involved in the physics-constrained optimization process. 
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