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Anonymous Referee #2 

1 General comments: 

This manuscript presents a novel lidar-based retrieval framework that integrates deep 

learning with physics-constrained optimization to estimate vertical mass concentration 

profiles of five PM2.5 chemical components (SO4
2-, NO3

-, NH4
+, OM, BC). The topic is 

scientifically important: retrieving aerosol composition profiles from lidar would 

significantly advance air quality monitoring, chemical transport modeling, and source 

apportionment. The combination of physics constraints and deep learning is innovative 

and promising. 

However, while the conceptual idea is strong, the manuscript lacks clarity in describing 

the model framework and provides insufficient evidence that the approach accurately 

captures the physics of vertical aerosol composition or generalizes across seasons, sites, 

and aerosol regimes. Significant issues in methodology, validation, and presentation 

hinder the scientific interpretation of the results. I therefore recommend major revision. 

Authors’ response: 

We extend our sincere gratitude to the reviewer for the insightful and constructive 

evaluation of our manuscript, which has been instrumental in improving our work. We 

are particularly encouraged by the reviewer’s recognition of the scientific importance 

of our topic and the innovation. We fully agree with the reviewer’s assessment that, 
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while the conceptual idea is strong, the manuscript in its current form requires major 

revisions to achieve the necessary clarity and evidentiary rigor. We have implemented 

a point-by-point revision of the manuscript in direct response to the reviewer's concerns 

and comments.  

 

2 Major Comments: 

1) Overall framing, workflow clarity, and Figure 1 

Q1: Figure 1 is difficult to interpret: inputs/outputs are not clearly labeled, colored 

boxes lack explanation, and several acronyms are undefined. The figure should be 

redesigned as a clear block-flow diagram that lists:  

a) all inputs (with units, vertical resolution, and dimensionality),  

b) each module’s output,  

c) loss functions used,  

d) data flow direction and optimization loops. 

Q2: Reorder sections so the Data section precedes the Model description. Readers must 

understand what data the model consumes before interpreting architectural choices. 

Authors’ response: 

A1: We thank the reviewer for this critical suggestion. In response, Figure 1 has 

been completely redesigned to enhance its interpretability. The revised Fig. 1 contains 

all inputs with specific information, two modules’ output, loss functions used, as well 

as data flow direction and optimization loops. The abbreviations used in Fig.1 have 

been defined in the figure caption. Notably, since the intermediate output of the deep 

learning module serves as the input data for the optimization module, the color of deep 

learning output is same as that of input data. 
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Figure 1: Remote-sensing retrieval framework for vertical distribution of five PM2.5 

chemical components (NH4
+, SO4

2-, NO3
-, OM and BC). (U: U-component wind; V: V-

component wind; T: Temperature; RH: Relative Humidity; q: Specific Humidity; w: 

Vertical Velocity; Z: Geopotential; 𝝈𝒃𝒔𝒄,𝟓𝟑𝟐: Aerosol Extinction Coefficient at 532 nm; 

CNN: Convolutional Neural Network; ReLU: Rectified Linear Unit; FC: Fully 

Connected; BiLSTM: Bidirectional Long Short-Term Memory; IMPROVE: Interagency 

Monitoring of Projected Visual Environment; NSGA-II: Non-dominated Sorting 

Genetic Algorithm II). 

 

A2: Following the reviewer’s suggestions, we have reordered the “Section 2 Data 

and methodology”. In the revised manuscript, Section 2.1 details the data information 

and Section 2.2 details the methodologies used in this work. 
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2) Ambiguity in algorithm description 

Q1: Section 2.1.1 is confusing and lacks foundational background, making the 

workflow difficult to follow without jumping back and forth. 

Q2: It is unclear what the deep-learning model predicts per vertical level. Please 

explicitly specify:  

a) whether the model outputs component concentrations, component fractions, 

categorical flags, or something else,  

b) the exact dimensionality (e.g., levels × 5 components). 

Q3: Clearly define the target variables and how they are constructed. 

Q4: Provide detailed descriptions of the multi-objective optimization, including:  

a) inputs and outputs,  

b) spatial/temporal/vertical resolution,  

c) how physics constraints are incorporated mathematically. 

Q5: The purpose of using mentioned components/models. 

Q6: The rationale for using a two-step prediction process (component “flags” followed 

by concentrations) rather than a single multi-output network is not explained. The 

manuscript would benefit from an experimental justification or comparison. 

Authors’ response: 

We thank the reviewer for highlighting the lack of clarity in Section 2.1.1. We have 

completely revised “Section 2.2.1 Retrieval Framework” in response to the reviewer’s 

concerns regarding above six aspects. Notably, the original Section 2.1.1 has been 

moved to Section 2.2.1 in response to Major Comments #1. 

A1: We have thoroughly revised the description of Section 2.2.1 and added the 

description of foundational backgrounds. The revised Section 2.2.1 is presented below. 

Section 2.2.1: “This paper proposed a novel retrieval framework for retrieving the 

vertical concentration profiles of five PM2.5 chemical components (NH4
+, SO4

2-, NO3
-, 

OM and BC) from the lidar aerosol extinction coefficient at 532 nm (𝜎𝑏𝑠𝑐,532). As shown 

in Fig. 1, the retrieval framework mainly consists of a deep learning module and a 

physics-constrained optimization module. The input datasets of the deep learning 
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module include the surface observation data, meteorological data and ground-based 

lidar data (Fig. 1a). Specifically, the aerosol extinction coefficient at 532 nm (𝜎𝑏𝑠𝑐,532) 

and multiple meteorological parameters (u-component wind, v-component wind, 

temperature, relative humidity, specific humidity, vertical velocity and geopotential) 

serve as input features, while the concentrations of the five PM2.5 chemical components 

(NH4
+, SO4

2-, NO3
-, OM and BC) serve as target features. The deep learning module 

(Fig. 1b), mainly consisting of the Convolutional Neural Network (CNN), Bidirectional 

Long Short-Term Memory (BiLSTM), attention mechanism and Bayesian optimization, 

is utilized to establish the nonlinear relationship between input and target features. The 

input datasets of the physics-constrained optimization module include the ground-

based lidar data, aerosol auxiliary data and deep learning intermediate output (Fig. 

1a, c), which provide fundamental input for establishing a multi-object function based 

on the Interagency Monitoring of Projected Visual Environment (IMPROVE) equation. 

The physics-constrained optimization module incorporates the multi-object loss 

function with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to implement 

external physical constraints (Fig. 1c), thus enhancing the extrapolation capability of 

the deep learning module and generating high-quality vertical concentration profiles 

of the five PM2.5 chemical components. Detailed descriptions of the deep learning 

algorithms, hyperparameter tuning, and physics-constrained optimization used in this 

work will be presented in subsequent sections. The brief workflow of the retrieval 

framework is summarized as follows. 

 

Step 1. The multi-source input datasets undergo matching across spatiotemporal and 

vertical dimensions. All input and output data are uniformly time-resolved to hourly 

intervals, while vertical data are uniformly vertically resolved into 10 layers ranging 

from 50 m to 3 km. 

Step 2. The input data of the deep learning module are normalized by Z-score 

normalization to stabilize the training process, accelerate training convergence, and 

enhance model robustness (Al-Faiz et al., 2018; Cabello-Solorzano et al., 2023).  
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Step 3. Training deep learning module by using the normalized surface-level input data. 

Step 4. Generating the normalized concentrations of the five PM2.5 chemical 

components at each vertical layer by feeding the normalized height-level input data 

into the deep learning module. 

Step 5. Denormalizing the deep-learning output by using the inverse Z-score 

transformation, with the mean and standard deviation statistics derived from the 

original training set, thereby recovering the physical mass concentration unit (µg m-3). 

Step 6. Optimizing the denormalized deep learning output through implementing an 

external physics constraint to obtain the high-quality vertical concentration profiles of 

the five PM2.5 chemical components. Repeat steps 4-6 until the retrieval task is 

complete.” 

 

A2: In response to the reviewer’s suggestion, we have specified the final output 

(the vertical concentration profiles of the five PM2.5 chemical components) and its exact 

dimensionality ([Height, Timestep, Variable, Site]) in the revised Fig. 1 and Section 

2.2.1, which were presented in the replies of Major Comments #1 and Major 

Comments #2 A1, respectively. 

 

A3: In response to the reviewer’s suggestion, we have clearly defined the target 

variables and how they are constructed in the revised Fig. 1 and Section 2.2.1, which 

were presented in the replies of Major Comments #1 and Major Comments #2 A1, 

respectively. 

 

A4: In response to the reviewer’s suggestion, we have added detailed descriptions 

of the input and output of the multi-objective optimization module with their temporal 

and vertical resolutions in the revised Fig. 1 and Section 2.2.1, which were presented 

in the replies of Major Comments #1 and Major Comments #2 A1, respectively. 

Detailed descriptions of how physics constraints are incorporated mathematically have 

been added in the revised Section 2.2.3. The revised Section 2.2.3 is presented below. 
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Section 2.2.3, Line 244-281: “The normalized vertical profiles of PM2.5 chemical 

components generated by the deep learning module are denormalized by the statistical 

characteristics of the initial input data of the surface-level observations. To reduce the 

retrieval error induced by the inherent extrapolation limitations of deep learning 

modules, a physics-constrained optimization scheme is incorporated into the retrieval 

framework based on a revised Interagency Monitoring of Projected Visual Environment 

(IMPROVE) Equation (Pitchford et al., 2007) and Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) (Verma et al., 2021). 

 

The revised IMPROVE Equation interprets the particle extinction coefficient ( 𝜎 ) 

through the concentrations (𝑀) and the optical and microphysical characteristics of 

PM2.5 chemical components (Eq. (7)). 

𝜎(𝑀) = 𝜃𝑠
𝑆𝑁𝐴𝑓(𝑅𝐻)(𝑀(𝑆𝑂4

2−) + 𝑀(𝑁𝑂3
−) + 𝑀(𝑁𝐻4

+)) + 𝜃𝑠
𝑂𝐶𝑀(𝑂𝐶) +

𝜃𝑠
𝐹𝑆𝑀(𝐹𝑖𝑛𝑒 𝑆𝑜𝑖𝑙) + 𝜃𝑠

𝐶𝑀𝑀(𝐶𝑜𝑎𝑟𝑠𝑒 𝑀𝑎𝑠𝑠) + 𝜃𝑠
𝐹𝑆𝑆𝑓𝐹𝑆𝑆(𝑅𝐻)𝑀(𝐹𝑖𝑛𝑒 𝑆𝑒𝑎 𝑆𝑎𝑙𝑡) +

𝜃𝑎
𝐵𝐶𝑀(𝐵𝐶) + 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔,     (7) 

Where 𝜎(𝑀)  is the estimated particle extinction coefficient (km-1), 𝜃𝑠  is the 

scattering efficiency (m2 mg-1), 𝜃𝑎  is the mass absorption efficiency (m2 mg-1), 

respectively. 𝑓(𝑅𝐻)  and 𝑓𝐹𝑆𝑆(𝑅𝐻)  account for the increase in light scattering 

induced by hygroscopic growth of sulfate, nitrate and ammonium (SNA), as well as fine 

sea salt (FSS). 𝜃𝑠
𝐹𝑆, 𝜃𝑠

𝐶𝑀, 𝜃𝑠
𝐹𝑆𝑆𝑓𝐹𝑆𝑆 and 𝜃𝑎

𝐵𝐶 are set to 0.001 m2 mg-1, 0.0006 m2 mg-

1, 0.0017 m2 mg-1 and 0.01 m2 mg-1, respectively. 𝑀 are the mass concentrations (μg 

m-3) of the PM2.5 chemical components. 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔  is set to 0.01 km-1. 

𝜃𝑠
𝑆𝑁𝐴 and 𝜃𝑠

𝑂𝐶 are determined by Eq. (8)-(9). 

𝜃𝑠
𝑆𝑁𝐴 = 0.003 × (0.7 + 0.002 × (𝑀(𝑆𝑂4

2−) + 𝑀(𝑁𝑂3
−) + 𝑀(𝑁𝐻4

+) + 𝑀(𝑂𝐶)])),

   (8) 

𝜃𝑠
𝑂𝐶 = 0.00363 × (0.7 + 0.002 × (𝑀(𝑆𝑂4

2−) + 𝑀(𝑁𝑂3
−) + 𝑀(𝑁𝐻4

+) + 𝑀(𝑂𝐶))) ,

    (9) 

 

To implement the physics-constrained optimization, we first introduce a scale factor 
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(𝛾𝑖,ℎ) for each chemical component at each vertical layer, which is used to correct the 

initial mass concentrations (Eq. (10)). Then we determine the optimal scale factors 

through minimizing a multi-objective function (Eq. (11)). The Pearson correlation 

coefficient (CORR) and root mean square error (RMSE) quantified by the lidar-

observed and the IMPROVE-simulated extinction coefficient serve as two objective 

values in the multi-objective function. The NSGA-II algorithm is utilized to determine 

the optimal scale factors by solving the multi-objective function that simultaneously 

enhances the correlation and reduces the discrepancy between the IMPROVE-

estimated and lidar-observed extinction coefficients. 

𝑀𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑
𝑖,ℎ = 𝛾𝑖,ℎ × 𝑀𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑖,ℎ , 𝑖 = 𝑆𝑂4
2−, 𝑁𝑂3

−, 𝑁𝐻4
+, 𝑂𝑀, 𝑎𝑛𝑑 𝐵𝐶,    

  (10) 

𝛾𝑖,ℎ = 𝑚𝑖𝑛(𝑓𝑅𝑀𝑆𝐸(𝛾), 𝑓𝐶𝑂𝑅𝑅(𝛾)),          (11) 

Where 𝑀𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑
𝑖,ℎ

  (μg m-3) is the regulated mass concentration of the 𝑖 th chemical 

component at an altitude of ℎ  (m), 𝛾𝑖,ℎ  is the scale factor for the 𝑖 th chemical 

component at an altitude of ℎ  (m), and 𝑀𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝑖,ℎ

  (μg m-3) is the original mass 

concentration of the 𝑖th chemical component at an altitude of ℎ (m). 𝑓𝑅𝑀𝑆𝐸(𝛾) is the 

RMSE-based objective function (Eq. (12)) and 𝑓𝐶𝑂𝑅𝑅(𝛾) is the CORR-based objective 

function (Eq. (13)). 

𝑓𝑅𝑀𝑆𝐸(𝛾) = √∑ (𝜎𝑘
𝑜𝑏𝑠−𝜎𝑘(𝛾×𝑀))

2𝐾
𝑘=1

𝐾
,          (12) 

𝑓𝐶𝑂𝑅𝑅(𝛾) = −
∑ (

𝜎𝑘(𝛾×𝑀)−𝜎(𝛾×𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑠𝑡𝑑(𝜎(𝛾×𝑀)
)𝐾

𝑘=1 (
𝜎𝑘

𝑜𝑏𝑠−𝜎𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅

𝑠𝑡𝑑(𝜎𝑜𝑏𝑠)
)

𝐾−1
,         (13) 

Where 𝐾  is the total number of samples, 𝜎𝑘
𝑜𝑏𝑠  is the 𝑘 th observed extinction 

coefficient, 𝜎𝑘(𝛾 × 𝑀)  is the 𝑘 th simulated extinction coefficient, 𝜎(𝛾 × 𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   is the 

average of simulated extinction coefficient, 𝜎𝑜𝑏𝑠̅̅ ̅̅ ̅̅  is the average of observed extinction 

coefficient, 𝑠𝑡𝑑(𝜎(𝛾 × 𝑀) is the standard deviation of simulated extinction coefficient, 

and 𝑠𝑡𝑑(𝜎𝑜𝑏𝑠) is the standard deviation of observed extinction coefficient.” 

 

A5: In response to the reviewer’s suggestion, we have clarified the purpose of the 
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deep learning module and the physics-constrained optimization module in the revised 

Section 2.2.1, which were presented in the replies of Major Comments #2 A1. 

 

A6: Performing a two-step prediction process (normalization → model inference 

→ denormalization) is a standard and necessary practice in our deep learning module. 

Disparities in the scales and units of different features would cause those with larger 

numerical ranges to dominate gradient updates, hindering the learning of complex 

interactions. Data normalization can stabilize the training process, accelerate training 

convergence, and enhance model robustness (Al-Faiz et al., 2018; Cabello-Solorzano 

et al., 2023). Accordingly, the data of input and target features used for the deep learning 

module are normalized in this study. As a result, the deep learning module initially 

outputs normalized concentrations (like “flags”), which are subsequently denormalized 

and optimized to yield high-accuracy mass concentrations. 

In response to the reviewer’s suggestions, we have emphasized the role of data 

normalization in the revised Section 2.2.1, which were presented in the replies of Major 

Comments #2 A1. 

Reference 

Al-Faiz, M. Z., Ibrahim, A. A., and Hadi, S. M.: The effect of Z-Score standardization 

(normalization) on binary input due the speed of learning in back-propagation neural network, Iraqi j. 

inf. commun. technol., 1, 42-48, https://doi.org/10.31987/ijict.1.3.41, 2018. 

Cabello-Solorzano, K., Ortigosa de Araujo, I., Peña, M., Correia, L., and J. Tallón-Ballesteros, A.: 

The Impact of Data Normalization on the Accuracy of Machine Learning Algorithms: A Comparative 

Analysis, 18th International Conference on Soft Computing Models in Industrial and Environmental 

Applications (SOCO 2023), Cham, 344-353, https://doi.org/10.1007/978-3-031-42536-3_33, 2023. 

 

3) Temporal and spatial data splits 

Q1: The current random 80/20 split is not appropriate for meteorological/aerosol time 

series due to temporal autocorrelation, which risks information leakage. 

Q2: Consider implementing:  

a) temporal holdouts (e.g., full seasons),  

b) spatially independent test sites,  

c) blocked k-fold cross-validation preserving temporal/spatial independence. 

https://doi.org/10.31987/ijict.1.3.41
https://doi.org/10.1007/978-3-031-42536-3_33
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Q3: The manuscript evaluates an independent dataset only in the Results section, but 

this dataset should be partially used for the validation/testing framework. 

Q4: The reported error statistics for the independent dataset are not clearly presented 

and differ considerably from training results. For a well-generalized model, validation 

and independent-test errors should be similar; their discrepancies raise concerns about 

generalization and physical consistency. 

Q5: Surface-only scatterplots from the training year are insufficient to establish model 

validity, especially given that the model’s primary output is a vertical distribution. 

Authors’ response: 

We sincerely thank the reviewer for these critical and constructive comments on 

the data split strategy.  

A1: We fully agree that the random split is not appropriate for the time-series 

training data, especially for meteorological and aerosol data, since future information 

leakage could lead to artificially optimistic testing results. Following the reviewer’s 

suggestions, we have repartitioned the dataset into training (& validation) and 

independent testing sets. Detailed description of data repartition can be found in the 

replies of Major Comments #3 A2. 

 

A2: In response to the reviewer’s suggestions, the repartitioned testing set contains 

an independent 6-month (Jan 1-Mar 31 and Jun 1 to Aug 31, 2022) time-series dataset 

obtained from a Beijing site for ensuring data temporal independence. The repartitioned 

training (& validation) set contains an independent 1-year (2021) time series dataset 

obtained from a Beijing site.  

A spatially independent 8-day (Feb 8-15, 2021) time-series dataset obtained from 

23 sites in the North China Plain (NCP) is utilized to evaluate the spatial extrapolation 

capability of our retrieval framework. The spatial distribution of training (& validation) 

sites, temporally independent testing sites, and spatially independent testing sites is 

presented in Fig. S1 of the supplement. 
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Figure S1: Spatial distribution of Beijing and spatially independent testing sites. 

Beijing site provides 18-month datasets for the training, validation and temporally 

independent testing of the deep-learning module. Other 23 sites in North China Plain 

(NCP) provide 8-day datasets for the spatially independent testing of the final retrieval. 

The geographic basemap is hosted by Esri (https://www.esri.com/en-us/home). 

A blocked k-fold cross-validation may leak future information into the training set 

while allocating historical information to the validation set in practice. In response to 

the reviewer’s suggestions, we replaced the original random split scheme with a 

time-series cross‑validation scheme to preserve temporal order and prevent future 

information leakage. As presented in Fig. S2 of the supplement, we repeatedly utilize 

a forward sliding window to create K (set to 10) validation folds. The training set starts 

with a subset of the first 80% of the chronological data and is incrementally expanded 

at each subsequent fold by incorporating an additional block with a length of the 

forward sliding window, ultimately encompassing the full 80% in the final fold. The 

validation set immediately follows the training set, comprising 20% of the 

https://www.esri.com/en-us/home
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chronological data. 

The length of the forward sliding window is equal to the length of the training set 

at first fold in practice (Eq. (R1)). 

l =
𝑟 × N

K
, (R1) 

where l is the length of the forward sliding window, r is the proportion of data 

used for training, N is the total sample size for model construction, and K is the total 

number of cross-validation folds. 

 

Figure S2: Diagram of the time-series data partitioning for 10-fold cross-validation. 

 

A3: In response to the reviewer’s suggestions, we have used the temporally 

independent data for the validation and testing phases. The detailed description can be 

found in the replies of Major Comments #3 A2. The revised version is as follows. 

Section 2.2.4, Line 345-354: “An hourly multivariate dataset with extensive temporal 

coverage was employed to train and evaluate the deep learning module. To maintain 

temporal independence, the training (and validation) set was constructed from a 1-year 
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(2021) time-series dataset obtained from a Beijing site (Fig. S1), while the testing set 

contains an independent 6-month (Jan 1-Mar 31 and Jun 1 to Aug 31, 2022) time-series 

dataset obtained from the same site. A 10-fold time-series cross‑validation (CV) scheme 

was designed for the training (and validation) set to preserve its temporal order and 

prevent future information leakage, which is detailed in Text S3 and Fig. S2 of the 

supplement. The iteration number of Bayesian optimization is set to 20.” 

 

A4: We thank the reviewer for the reminder regarding the clarification in 

comparison between validation and independent-test error statistics. The revised data 

repartition scheme is detailed in the replies of Major Comments #3 A2. Following the 

reviewer’s suggestion, we have verified our deep learning model using the new data 

repartition scheme. Finally, we have revised Section 3.1.1, updated Fig. 3, and added 

Fig. S3 to comprehensively present and discuss the error statistics in the 10-fold cross-

validation phase and temporally independent testing phase. 

The results show that the error distributions are concentrated around 0, with mean 

errors between -1.78 ± 8.15 µg m-3 and -0.13 ± 0.94 µg m-3 during the 10-fold CV phase 

(Fig. S3a1-a5) and between -1.36 ± 7.40 µg m-3 and -0.07 ± 1.00 µg m-3 during the 

temporally independent testing phase (Fig. S3b1-b5), demonstrating strong consistency 

between observations and simulations. Notably, the error distributions for the 

validation and independent testing sets are closely aligned, indicating that the deep 

learning module is robust and generalizes well to unseen data. 

Section 3.1.1, Line 345-363: “The 10-fold CV sets and a testing set with temporal 

independence are utilized to evaluate the predictive performance of the deep learning 

module, which is quantified by the discrepancies between simulations and observations 

at ground level for NH4
+, SO4

2-, NO3
-, OM and BC. Overall, the scatter distribution and 

fitted regression line closely align with the 1:1 line in both the 10-fold CV (Fig. 3a1-a5) 

and temporally independent testing phases (Fig. 3b1-b5). The error distributions are 

concentrated around 0, with mean errors between -1.78 ± 8.15 µg m-3 and -

0.13 ± 0.94 µg m-3 during the 10-fold CV phase (Fig. S3a1-a5) and between -
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1.36 ± 7.40 µg m-3 and -0.07 ± 1.00 µg m-3 during the temporally independent testing 

phase (Fig. S3b1-b5), demonstrating strong consistency between observations and 

simulations. Notably, the error distributions for the validation and independent testing 

sets are closely aligned, indicating that the deep learning module is robust and 

generalizes well to unseen data. Specifically for the 10-fold CV process (Fig. 3a1-a5), 

the CORR values for the five PM2.5 chemical components range from 0.76 to 0.86, 

indicating that the deep learning module accurately interprets the relationship between 

multivariate input features and the five PM2.5 chemical components. The RMSE values 

range from 0.95 to 8.35 µg m-3, indicating a low discrepancy between simulations and 

observations. Compared to the 10-fold CV process, the temporally independent testing 

yields slightly lower CORR values (0.69-0.79) and higher RMSE values (1.00-8.87 µg 

m-3), showing a slight underestimation for the five PM2.5 chemical components (Fig. 

3b1-b5). It is expected that the statistical results from the temporally independent 

testing are less robust than those from the 10-fold CV, since the temporally independent 

testing set aggregates a broader spectrum of temporal patterns compared to the 

validation set at each fold. Our statistical results from the 10-fold CV exhibit 

similarities or even improvements compared to those reported in other studies that 

predicting PM2.5 chemical component concentrations based on machine learning 

models (Lv et al., 2021; Lin et al., 2022; Araki et al., 2022; Liu et al., 2023), indicating 

that the deep learning module demonstrates strong prediction capabilities.” 

 

Figure 3: Scatterplots of the simulations (µg m-3) versus the observations (µg m-3) with 

probability density (%) for NH4
+, NO3

-, SO4
2-, OM and BC during the 10-fold cross-
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validation process (a1-a5) and temporally independent testing process (b1-b5). The 

dotted grey lines represent the 2:1, 1:1, and 1:2 lines, and the solid red line represents 

the fitted regression line. CORR represents the correlation coefficient, and RMSE 

represents root mean square error. 

 

Figure S3: Probability distributions of error (observations minus simulations, µg m-3) 

for NH4
+, NO3

-, SO4
2-, OM and BC during the 10-fold cross-validation phase (a1-a5) 

and during the temporally independent testing phase (b1-b5). ME: Mean Error; SD: 

Standard Deviation. 

 

A5: We fully agree that including scatter plots at multiple vertical levels would 

provide a more comprehensive validation of the model’s vertical retrieval capability. 

However, conducting long-term vertical measurements (especially covering altitudes 

of 0-3 km) of PM2.5 chemical compositions is exceptionally challenging. Vertical 

measurements typically rely on costly airborne measurements (e.g., aircraft or balloon-

borne instruments), which are neither continuous at a fixed location nor provide broad 

spatial coverage over extended periods. Given the scarcity of vertical samples, we 

instead obtained a long-term and spatially extensive dataset of ground-level PM2.5 

chemical observations. The sufficient ground-level dataset was used to train the deep 

neural network in establishing the nonlinear mapping between lidar extinction 

coefficients and chemical component concentrations. Consequently, the scatter-plot 

validation focuses primarily on the ground level. We have added a dedicated Section 

3.4 Limitations and uncertainties in the revised manuscript to discuss the current 
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limitations regarding vertical measurement validation. The content of Section 3.4 

Limitations and uncertainties is presented in the replies of Major Comments #6. 

 

4) Weak vertical-profile validation 

The manuscript focuses on retrieving vertical composition profiles but presents minimal 

validation of these profiles. I strongly recommend including:  

Q1: Direct comparisons with aircraft or in situ vertical measurements, using metrics 

such as bias, RMSE, MAE, percent error, and correlation at each altitude bin. 

Q2: Case studies across representative aerosol regimes (smoke, dust, pollution, 

background). 

Q3: Aggregated statistics by:  

a) altitude,  

b) site,  

c) aerosol type,  

d) season. 

If vertical observational data are limited, the manuscript should explicitly quantify 

these limitations while still presenting as much vertical validation as possible. 

Authors’ response: 

We fully acknowledge the reviewer’s point that robust validation of the retrieved 

vertical profiles is essential, and we agree that expanding the vertical validation with 

detailed metrics, case studies, and aggregated statistics would be ideal. However, as the 

reviewer anticipated, providing extensive vertical validation is inherently constrained 

by vertical data availability. 

A1: In response to the reviewer’s suggestion, we have added Table S3 to present 

statistical metrics quantified by vertical retrievals and tower-based observations during 

a period from December 30, 2018 to January 2, 2019. Besides, we have updated Fig. 6 

and revised Section 3.1.3 using the revised retrieval framework. 

Section 3.1.3: “In addition to the spatiotemporal verification of surface-level mass 

concentrations, tower-based and aircraft-based observational experiments were 

conducted to validate the retrieved vertical profiles of five PM2.5 chemical components 

during non-training periods. From the surface to ~200 m altitude, the retrieved and 
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observed vertical profiles exhibit similar vertical patterns during a period from 

December 30, 2018 to January 2, 2019 in Beijing, with higher concentrations occurring 

at altitudes of 50-80 m for NH4
+, NO3

-, SO4
2- and OM (Fig. 6a1, a2). Specifically, as 

presented in Table S3, the CORR values are no less than 0.66 for all four PM2.5 chemical 

components. However, the RMSE value for OM (23.04 µg m-3) is notably higher than 

that for the other components (4.08-10.48 µg m-3), indicating limitations in the retrieval 

framework when representing the vertical profile of OM during winter pollution 

episodes. This discrepancy may be associated with retrieval uncertainties arising from 

input data quality and imposed physical constraints. Additionally, the retrieved and 

observed proportions of NH4
+, NO3

-, SO4
2-, OM and BC demonstrate significant 

consistency (Fig. 6b1, b2). Among these chemical components, NO3
- and OM contribute 

the largest proportions, followed by NH4
+ and SO4

2-, while BC contributes the smallest 

fraction. This proportional characteristic is evident in both the retrieved and observed 

proportions at altitudes of 600 m and 1200 m (Fig. 6c1, c2). Due to the lack of NH4
+ 

measurements at 1500 m and the absence of both NH4
+ and SO4

2- measurements at 

2100 m, the proportions at these altitudes are statistically inferred from the remaining 

chemical components. The results indicate overall consistency between retrieved and 

observed proportions at altitudes of 1500 m and 2100 m, although the proportion of 

NO3
- is slightly overestimated at 2100 m and underestimated at 1500 m. Overall, the 

tower-based and aircraft-based verifications indicate that the retrieval framework 

achieves high accuracy in retrieving the vertical profiles of the five PM2.5 chemical 

components during non-training period, demonstrating its robust generalization 

capability and reliability when applied to independent datasets.” 
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Figure 6: Vertical profiles (µg m-3) of NH4
+, NO3

-, SO4
2-, and OM from retrieval (a1) 

and tower-based observation (a2) during a period from December 30, 2018 to January 

2, 2019 in Beijing. The line represents the daily average of the hourly vertical profiles, 

and the shaded area represents the standard deviation. Averaged proportions of NH4
+, 

NO3
-, SO4

2-, OM, and BC from retrieval (b1) and tower-based observation (b2) for 10 

days (December 27 and 30, 2023; January 2, 5, 9, 12, 15, 18, 24, and 27, 2024). (c1 

and c2) Same as (b1 and b2) but for aircraft-based verification for 3 days (September 

26, October 10, December 11, 2024). 

Table S3. Statistical metrics quantified by the vertical retrievals and the tower-based 

observations during a period from December 30, 2018 to January 2, 2019 for NH4
+, 

NO3
-, SO4

2-, and OM. RMSE: Root Mean Square Error; MAE: Mean Absolute Error; 

CORR: Pearson correlation coefficient. 

 RMSE (µg m-3) MAE (µg m-3) CORR 
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NH4
+ 4.81 3.14 0.67 

NO3
- 1048 6.19 0.67 

SO4
2- 4.08 2.59 0.66 

OM 23.04 15.37 0.67 

 

A2 & A3: The available vertical observational dataset was limited to a 3-day 

aircraft campaign at a site near Beijing and a 10-day tower measurement at a site in 

Beijing, both conducted primarily during winter. The scarcity of vertical observational 

data precludes a comprehensive statistical evaluation of the vertical retrievals with 

respect to varying sites, aerosol types, and seasons. In response to the reviewer’s 

suggestion, we have added the limitations into Section 3.4 Limitations and 

uncertainties of the revised manuscript. The content of Section 3.4 Limitations and 

uncertainties is presented in the replies of Major Comments #6. 

 

5) Heterogeneous site performance 

Q1: Figure 5b shows substantial site-to-site variability: some sites have nearly zero 

correlation, while the best site reaches ~0.6. 

Q2: Please investigate and report potential causes, such as:  

a) aerosol-type mismatch,  

b) representativeness of training data,  

c) site-specific meteorology or emissions,  

d) instrument characteristics. 

Q3: Consider:  

a) a map showing training vs. test sites,  

b) per-site metrics (MAE, RMSE, bias, percent error, N),  

c) problematic site scatterplots or boxplots to illustrate error spread. 

Authors’ response: 

We thank the reviewer for the constructive suggestions. 

A1 & A2: The observed variability in retrieval performance across different sites, 

with correlation coefficients ranging from near zero to ~0.6, is primarily attributed to 

the spatial representativeness of training data. The deep-learning module was trained 

exclusively on a long-term dataset from a single site in Beijing. A single-site dataset is 
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insufficient to interpret the varying emission intensity, local meteorological and 

geographical conditions across the broader Northern China Plain, which limits the 

spatial extrapolation capability of the deep-learning module. We have explicitly 

discussed this remaining limitation in Section 3.1.2 and Section 3.4. The content of 

Section 3.4 Limitations and uncertainties is presented in the replies of Major 

Comments #6.  

Section 3.1.2, Line 399-414: “The retrieval framework was also applied to retrieve the 

vertical profiles of the five PM2.5 chemical components at 23 non-training NCP lidar 

sites over a short-term period of February 8-15th, 2021, aiming to validate its spatial 

generalization capabilities. Compared with the observed surface concentrations at 23 

non-training sites, the retrieved surface concentrations exhibit a more clustered data 

distribution and exhibit a tendency toward underestimation across all components (Fig. 

5a). The site-averaged CORR values for the five chemical components range from 0.21 

to 0.46, with RMSE values spanning 2.7 µg m-3 to 20.37 µg m-3 (Fig. S4). From a spatial 

perspective (Fig. 5b1-b5), non-training NCP sites located closer to the Beijing lidar 

site exhibit higher CORR values, with the highest reaching 0.71 (NH4
+), 0.56 (NO3

-), 

0.81 (SO4
2-), 0.48 (OM) and 0.41 (BC). Conversely, the RMSE values are not affected 

by the distance from the Beijing lidar site (Fig. 5c1-c5), with the lowest reaching 2.91 

µg m-3 (NH4
+), 6.15 µg m-3 (NO3

-), 3.05 µg m-3 (SO4
2-), 6.59 µg m-3 (OM) and 0.78 µg 

m-3 (BC). However, several sites exhibit poor retrieval performance, with CORR values 

ranging from ~0.20 to ~0.30 (Fig. S5), which is primarily attributed to limitations in 

the spatial representativeness of the training data. The deep-learning module was 

trained exclusively on a long-term dataset from a single site in Beijing, which is 

insufficient to capture the spatial variability in emission intensity, as well as local 

meteorological and geographical conditions across the broader NCP. As a result, the 

spatial extrapolation capability of the deep-learning module is constrained. Although 

the retrieval framework can retrieve PM2.5 chemical component concentrations at 

spatially distributed lidar sites, future work should incorporate long-term datasets from 

varying locations to enhance spatial generalization and extrapolation performance.” 

 

A3: In response to the reviewer’s suggestions, we have added a map to show the 

training and independent test sites (Fig. S1). Notably, 39 independent testing sites with 

obvious outliers and missing values in the original manuscript were removed in the 
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revised manuscript (the number of remaining sites is 23). And we have added Fig. S4 

and Fig. S5 to present statistical metrics by scatterplots and error distribution 

histograms across all sites and problematic sites (CORR <0.5). 

 

Figure S1: Spatial distribution of Beijing and spatially independent testing sites. 

Beijing site provides 18-month datasets for the training, validation and temporally 

independent testing of the deep-learning module. Other 23 sites in North China Plain 

(NCP) provide 8-day datasets for the spatially independent testing of the final retrieval. 

The geographic basemap is hosted by Esri (https://www.esri.com/en-us/home). 

 

https://www.esri.com/en-us/home
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Figure S4: Scatterplots of the retrievals (µg m-3) versus the observations (µg m-3) with 

probability density (%) for NH4
+, NO3

-, SO4
2-, OM and BC across 23 spatially 

independent testing sites (a1-a5). The dotted grey lines represent the 2:1, 1:1, and 1:2 

lines, and the solid red line represents the fitted regression line. CORR represents the 

correlation coefficient, and RMSE represents root mean square error. Probability 

distributions of error (observations minus retrievals, µg m-3) for NH4
+, NO3

-, SO4
2-, OM 

and BC across 23 spatially independent testing sites (b1-b5). ME: Mean Error; SD: 

Standard Deviation. 

 

Figure S5: Scatterplots of the retrievals (µg m-3) versus the observations (µg m-3) with 

probability density (%) for NH4
+, NO3

-, SO4
2-, OM and BC across problematic (CORR 

<0.5) spatially independent testing sites (a1-a5). The dotted grey lines represent the 

2:1, 1:1, and 1:2 lines, and the solid red line represents the fitted regression line. CORR 

represents the correlation coefficient, and RMSE represents root mean square error. 

Probability distributions of error (observations minus retrievals, µg m-3) for NH4
+, NO3

-, 

SO4
2-, OM and BC across 23 spatially independent testing sites (b1-b5). ME: Mean 
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Error; SD: Standard Deviation. 

 

6) Lack of uncertainty quantification 

Given the physics-constrained framing, the model should also provide uncertainty 

estimates, or at minimum a discussion of uncertainty propagation. Possible approaches 

include: Ensemble modeling, Monte Carlo dropout, error propagation from lidar 

extinction + physics constraints. Uncertainty bounds would greatly strengthen 

confidence in profile retrievals. 

Authors’ response: 

We thank the reviewer for this crucial suggestion, and we agree that providing 

uncertainty assessment is essential for a robust and trustworthy retrieval framework. In 

response to the reviewer’s suggestion, we have added a dedicated section to discuss the 

uncertainties. The uncertainty sources primarily include the hyperparameters of the 

deep learning module, the input data, and the physical constraints. 

a. Uncertainty induced by the hyperparameters 

Hyperparameters largely determine the deep neural network architecture, training 

performance, training efficiency, and generalization capability, critically shaping the 

accuracy of the mapping between aerosol extinction coefficients and PM2.5 chemical 

composition concentrations. To mitigate the hyperparameter-induced uncertainty, we 

employed the Bayesian optimization to identify the optimal set of hyperparameters that 

minimized the average 10-fold CV mean absolute error (MAE). Consequently, the 

hyperparameter-induced uncertainty will not be discussed further. 

b. Uncertainty induced by the input data 

The data of auxiliary features (e.g. meteorological parameters and aerosols) used 

for deep learning and physics-constrained optimization, are obtained from the global 

reanalysis products (e.g. ERA5 and CAMS). These grid data with relatively coarse 

spatial resolutions would yield errors when interpreting the local features at a specific 

observational site. Therefore, acquiring the vertical observational data of these auxiliary 

features for retrieval input can effectively mitigate the uncertainty induced by the input 

data. 

c. Uncertainty induced by the physical constraints 

The physical constraint function currently adopted is derived from the revised 
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IMPROVE equation (Pitchford et al., 2007). When compared with light scattering 

coefficients (Bsp) measured by nephelometers at seven IMPROVE sites between 2003 

and 2012, this equation tends to overestimate Bsp in the lower quintile and 

underestimate them in the upper quintile (Lowenthal and Kumar, 2016). Although the 

IMPROVE equation can estimate aerosol extinction coefficients using chemical 

composition concentrations, mass scattering efficiencies, and hygroscopic properties, 

its inherent estimation biases introduce additional uncertainty when it is applied as a 

physical constraint. 

In summary, the uncertainty related to hyperparameters has been mitigated through 

Bayesian optimization, thus Section 3.4 focuses on uncertainties arising from input data 

and physical constraints. 

Section 3.4, Limitations and uncertainties: “The deep learning module in our retrieval 

framework can establish a powerful mapping between optical and meteorological 

features and PM2.5 chemical species, and physics-based explicit constraints can 

enhance the reliability and expandability of the mapping relationships. However, 

several limitations and sources of uncertainty remain and should be acknowledged 

when interpreting the results and extending the framework to broader applications.  

 

First, the spatial scope of the training data is predominantly restricted to the NCP 

region. Expanding the retrieval framework with data from more diverse geographical 

locations is necessary to improve its global transferability. Second, the current retrieval 

framework primarily relies on extinction coefficients at a wavelength of 532 nm, 

exhibiting dependence on specific lidar instruments. Future retrieval framework should 

focus on integrating diverse optical features from additional wavelengths to enhancing 

adaptability and transferability. Third, the auxiliary input data used in both the deep 

learning module and the physics-constrained optimization are obtained from global 

reanalysis products, which may not fully capture local atmospheric conditions at 

specific observational sites, thereby introducing representativeness errors into the 

retrievals. Acquiring the vertical observational data for these auxiliary features can 

effectively mitigate the uncertainty induced by the input data. Fourth, the IMPROVE 

equation applied as an external physical constraint may introduce additional 
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uncertainty into the retrievals due to its systematic estimation biases (Lowenthal and 

Kumar, 2016). Moreover, since the IMPROVE equation was applied as an external 

physical constraint to optimize the retrievals of PM2.5 chemical components, the 

machine learning model itself was not intrinsically constrained by physical principles 

during its training. Future work could incorporate an internal physical constraint into 

the machine learning model to improve its physical interpretability by formulating a 

hybrid loss function for training that combines the traditional data-fitting term with a 

physical term. Finally, long-term acquisition of independent vertical profiling data from 

both tower-based and aircraft-based campaigns is essential for a comprehensive 

assessment of the robustness of the vertical retrievals with respect to varying sites, 

aerosol types, and seasons.” 

 

Reference 

Lowenthal, D. H. and Kumar, N.: Evaluation of the IMPROVE Equation for estimating aerosol light 

extinction. J. Air Waste Manage., 66, 726-737. https://doi.org/10.1080/10962247.2016.1178187, 2016. 

Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D., and Hand, J.: Revised Algorithm 

for Estimating Light Extinction from IMPROVE Particle Speciation Data, J. Air Waste Manage., 57, 

1326-1336, https://doi.org/10.3155/1047-3289.57.11.1326, 2007. 

 

3 Minor Comments and Suggestions: 

1) If possible, include an ablation study comparing architectures (CNN, BiLSTM, 

CNN+BiLSTM, transformer) to justify the chosen hybrid design. 

Authors’ response: 

We thank the reviewer for the valuable suggestion. We fully agree that a systematic 

ablation study is essential to justify our chosen hybrid architecture. Our decision to 

employ the CNN-BiLSTM-Attention framework is informed by established findings in 

related fields. For instance, our previous work demonstrated the superiority of a hybrid 

CNN-BiLSTM over a standalone LSTM for interpreting PM2.5 chemical components 

(Li et al., 2025). This conclusion is further supported by comparative studies in other 

domains, such as geoscience and finance, where the hybrid CNN-BiLSTM-Attention 

architecture was shown to outperform alternatives like CNN, LSTM, BiLSTM and 

https://doi.org/10.1080/10962247.2016.1178187
https://doi.org/10.3155/1047-3289.57.11.1326
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BiLSTM-Attention (Kavianpour et al., 2023; Ma et al., 2022; Shan et al., 2021; Zhang 

et al., 2023). 

The primary goal of this study is to establish a novel framework that maps lidar 

vertical extinction coefficients to PM2.5 chemical component concentrations using deep 

learning with an external physical constraint. In response to the reviewer’s suggestion, 

the rationale behind the selection of our hybrid architecture has been further elaborated 

in the Introduction of the revised manuscript. 

Section 2.2.2, Line 182-186: “…The CNN and BiLSTM layers, coupled with the 

Attention Mechanism (AM), are designed to effectively capture the multivariate and 

temporal characteristics in the training data, thereby establishing a robust nonlinear 

mapping between the input and output features. The hybrid CNN-BiLSTM-AM 

architecture consistently outperforms single-architecture models in predictive tasks, as 

evidenced by numerous studies. (Kavianpour et al., 2023; Ma et al., 2022; Shan et al., 

2021; Zhang et al., 2023)…” 

 

Reference 

Kavianpour, P., Kavianpour, M., Jahani, E., and Ramezani, A.: A CNN-BiLSTM model with 

attention mechanism for earthquake prediction, J. Supercomput., 79, 19194-19226, 

https://doi.org/10.1007/s11227-023-05369-y, 2023. 

Li, H., Yang, T., Du, Y., Tan, Y., Wang, Z.: Interpreting hourly mass concentrations of PM2.5 

chemical components with an optimal deep-learning model, J. Environ. Sci., 151, 125-139, 

https://doi.org/10.1016/j.jes.2024.03.037, 2025. 

Ma, T., Xiang, G., Shi, Y., Liu, Y.: Horizontal in situ stresses prediction using a CNN-BiLSTM-

attention hybrid neural network, Geomech. Geophys. Geo-energ. Geo-resour. 8, 152, 

https://doi.org/10.1007/s40948-022-00467-2, 2022. 

Shan, L., Liu, Y., Tang, M., Yang, M., Bai, X.: CNN-BiLSTM hybrid neural networks with attention 

mechanism for well log prediction, J. Petrol. Sci. Eng., 205, 108838, 

https://doi.org/10.1016/j.petrol.2021.108838, 2021. 

Zhang, J., Ye, L., Lai, Y.: Stock price prediction using CNN-BiLSTM-Attention model, 

Mathematics, 11, 1985, https://doi.org/10.3390/math11091985, 2023. 

 

2) Clarify the meaning of “estimated and observed extinction coefficients” (line 192). 

Does “estimated” refer to IMPROVE-derived extinction? 

Authors’ response: 

We thank the reviewer for pointing out this lack of clarity. In response to the 

https://doi.org/10.1007/s11227-023-05369-y
https://doi.org/10.1016/j.jes.2024.03.037
https://doi.org/10.1007/s40948-022-00467-2
https://doi.org/10.1016/j.petrol.2021.108838
https://doi.org/10.3390/math11091985
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reviewer’s suggestion, we have clarified the meaning of “estimated and observed 

extinction coefficients” in the revised manuscript. 

Section 2.2.3, Line 267-269: “…The NSGA-II algorithm is utilized to determine the 

optimal scale factors by solving the multi-objective function that simultaneously 

enhances the correlation and reduces the discrepancy between the IMPROVE- 

estimated and lidar-observed extinction coefficients.” 

 

3) Define all acronyms at first use; ensure figure captions are self-contained. 

Authors’ response: 

We thank the reviewer for highlighting these important editorial points, which are 

essential for manuscript clarity and accessibility. Following the reviewer’s suggestions, 

we have addressed both points in the revised manuscript. 

Figure 1: “Figure 1: Remote-sensing retrieval framework for vertical distribution of 

five PM2.5 chemical components (NH4
+, SO4

2-, NO3
-, OM and BC). (U: U-component 

wind; V: V-component wind; T: Temperature; RH: Relative Humidity; q: Specific 

Humidity; w: Vertical Velocity; Z: Geopotential; 𝝈𝒆𝒙𝒕,𝟓𝟑𝟐 : Aerosol Extinction 

Coefficient at 532 nm; CNN: Convolutional Neural Network; ReLU: Rectified Linear 

Unit; FC: Fully Connected; BiLSTM: Bidirectional Long Short-Term Memory; 

IMPROVE: Interagency Monitoring of Projected Visual Environment; NSGA-II: Non-

dominated Sorting Genetic Algorithm II).” 

Figure 2: “Figure 2: Brief workflow of NSGA-II (A: the parent population; B: the 

offspring population; C: the new population; P: the Pareto front).” 

Figure 3: “Figure 3: Scatterplots of the simulations (µg m-3) versus the observations 

(µg m-3) with probability density (%) for NH4
+, NO3

-, SO4
2-, OM and BC during the 10-

fold cross-validation process (a1-a5) and temporally independent testing process (b1-

b5). The dotted grey lines represent the 2:1, 1:1, and 1:2 lines, and the solid red line 

represents the fitted regression line. CORR represents the correlation coefficient, and 

RMSE represents root mean square error.” 

Figure 4: “Figure 4: Weekly-smoothed variations in the retrieved and observed 

concentrations (µg m-3) of NH4
+ (a1), NO3

- (a2), SO4
2- (a3), OM (a4) and BC (a5) in 
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2021. (b) same as (a1-a5) but for PM2.5 in 2017. (c) same as (a1-a5) but for PM2.5 in 

2018. (d) same as (a1-a5) but for PM2.5 in 2024. CORR represents the correlation 

coefficient, RMSE represents root mean square error.” 

Figure S3: “Figure S3: Probability distributions of error (observations minus 

simulations, µg m-3) for NH4
+, NO3

-, SO4
2-, OM and BC during the 10-fold cross-

validation phase (a1-a5) and during the temporally independent testing phase (b1-b5). 

ME: Mean Error; SD: Standard Deviation.” 

Figure S4: “Figure S4: Scatterplots of the retrievals (µg m-3) versus the observations 

(µg m-3) with probability density (%) for NH4
+, NO3

-, SO4
2-, OM and BC across 23 

spatially independent testing sites (a1-a5). The dotted grey lines represent the 2:1, 1:1, 

and 1:2 lines, and the solid red line represents the fitted regression line. CORR 

represents the correlation coefficient, and RMSE represents root mean square error. 

Probability distributions of error (observations minus retrievals, µg m-3) for NH4
+, NO3

-, 

SO4
2-, OM and BC across 23 spatially independent testing sites (b1-b5). ME: Mean 

Error; SD: Standard Deviation.” 

Figure S5: “Figure S5: Scatterplots of the retrievals (µg m-3) versus the observations 

(µg m-3) with probability density (%) for NH4
+, NO3

-, SO4
2-, OM and BC across 

problematic (CORR <0.5) spatially independent testing sites (a1-a5). The dotted grey 

lines represent the 2:1, 1:1, and 1:2 lines, and the solid red line represents the fitted 

regression line. CORR represents the correlation coefficient, and RMSE represents root 

mean square error. Probability distributions of error (observations minus retrievals, µg 

m-3) for NH4
+, NO3

-, SO4
2-, OM and BC across 23 spatially independent testing sites 

(b1-b5). ME: Mean Error; SD: Standard Deviation.” 

 

4) The manuscript describes z-score normalization but not how denormalization is 

performed. Why use aircraft-based measurements for denormalization instead of lidar-

derived extinction? Explain and quantify the sensitivity. 

Authors’ response: 

We sincerely thank the reviewer for this critical question, which has allowed us to 

correct a significant point of confusion in our original description and to clarify our 
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methodology. We wish to clarify that aircraft-based measurements should not be used 

for the denormalization step. This was a serious misstatement in our original manuscript, 

for which we apologize. The mean and standard deviation statistics used for inverse Z-

score transformation must be derived from the original training set. In response to the 

reviewer’s suggestion, we have revised the entire manuscript by using the correct 

denormalization parameters and added revised description of denormalization in the 

revised manuscript.  

Section 2.2.1, Line 157-169: “ 

Step 1. The multi-source input datasets undergo matching across spatiotemporal and 

vertical dimensions. All input and output data are uniformly time-resolved to hourly 

intervals, while vertical data are uniformly vertically resolved into 10 layers ranging 

from 50 m to 3 km. 

Step 2. The input data of the deep learning module are normalized by Z-score 

normalization to stabilize the training process, accelerate training convergence, and 

enhance model robustness (Al-Faiz et al., 2018; Cabello-Solorzano et al., 2023).  

Step 3. Training deep learning module by using the normalized surface-level input data. 

Step 4. Generating the normalized concentrations of the five PM2.5 chemical 

components at each vertical layer by feeding the normalized height-level input data 

into the deep learning module. 

Step 5. Denormalizing the deep-learning output by using the inverse Z-score 

transformation, with the mean and standard deviation statistics derived from the 

original training set, thereby recovering the physical mass concentration unit (µg m-3). 

Step 6. Optimizing the denormalized deep learning output through implementing an 

external physics constraint to obtain the high-quality vertical concentration profiles of 

the five PM2.5 chemical components. Repeat steps 4-6 until the retrieval task is 

complete.” 

Section 2.2.3, Line 244-245: “The normalized vertical profiles of PM2.5 chemical 

components generated by the deep learning module are denormalized by the statistical 

characteristics of the initial input data of the surface-level observations…” 
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5) The scaling procedure using the ratio of in situ to aircraft PM2.5 (“initially scaled…”) 

is ambiguous. Provide a clear mathematical expression and discuss whether this 

introduces bias. 

Authors’ response: 

We thank the reviewer for this important request for clarification. As presented in 

the replies of Minor Comments #4, aircraft-based measurements should not be used 

for the denormalization step. We have corrected the corresponding contents in the 

revised manuscript, including the figures and results. The revised version can be found 

in the uploaded file manuscript_with track changes.docx/pdf. 

Section 2.2.3, Line 244-249: “The normalized vertical profiles of PM2.5 chemical 

components generated by the deep learning module are denormalized by the statistical 

characteristics of the initial input data of the surface-level observations. To reduce the 

retrieval error induced by the inherent extrapolation limitations of deep learning 

modules, a physics-constrained optimization scheme is incorporated into the retrieval 

framework based on a revised Interagency Monitoring of Projected Visual Environment 

(IMPROVE) Equation (Pitchford et al., 2007) and Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) (Verma et al., 2021).” 

 

6) The description of the attention layer lacks physical interpretation. Is attention 

purely data-driven, or does physics guide attention weights? If physics influences 

attention, show how. 

Authors’ response: 

We thank the reviewer for prompting us to provide a clearer interpretation of the 

attention mechanism within our retrieval framework.  

In our framework, we employ a purely data-driven Channel Attention Mechanism 

positioned between the CNN and BiLSTM layers. First, the multivariate features 

learned by the convolutional layers are compressed through global average pooling. 

Second, the compressed features are transmitted into fully connected layers with a 

sigmoid activation function to generate a set of channel attention weights. Third, the 

learned weights are utilized to re-scale the original feature channels from the 

convolutional layers through element-wise multiplication.  
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In response to the reviewer’s suggestion, we revised the methodology description 

to clearly state the data-driven nature of the attention layer and its position within the 

broader physics-constrained framework. 

Section 2.2.2, Line 200-207: “The attention mechanism layer is incorporated with CNN 

to amplify the weight of key information and mitigate the interference of redundant 

information, leading to an enhancement in the quality of the CNN output (Wang and 

Zhang, 2025). The attention mechanism is inspired by the ability of human vision to 

selectively focus on key information (Guo et al., 2022). Our retrieval framework 

integrates a data-driven channel attention mechanism, which rescales the original 

feature channels from the convolutional layers through element-wise multiplication 

using learned attention weights, thereby enhancing the importance of key features and 

reduce the interference of irrelevant features. The attention weights are generated by 

the FC layers with a sigmoid activation function (Eq. (2)) and then performs Schur 

product operation with CNN multivariate output (Eq. (3)).” 

 

7) Figure 1 needs explicit legends for color boxes/arrows and clear annotation of all 

inputs and outputs. 

Authors’ response: 

In response to the reviewer’s suggestions, we have revised Fig .1 as follows. 
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Figure 1: Remote-sensing retrieval framework for vertical distribution of five PM2.5 

chemical components (NH4
+, SO4

2-, NO3
-, OM and BC). (U: U-component wind; V: V-

component wind; T: Temperature; RH: Relative Humidity; q: Specific Humidity; w: 

Vertical Velocity; Z: Geopotential; 𝝈𝒆𝒙𝒕,𝟓𝟑𝟐: Aerosol Extinction Coefficient at 532 nm; 

CNN: Convolutional Neural Network; ReLU: Rectified Linear Unit; FC: Fully 

Connected; BiLSTM: Bidirectional Long Short-Term Memory; IMPROVE: Interagency 

Monitoring of Projected Visual Environment; NSGA-II: Non-dominated Sorting 

Genetic Algorithm II). 

 

8) Figure 5a does not effectively show differences between datasets. Consider: a) 

scatterplots colored by site with standard deviations, b) an additional plot showing 

error distribution histograms for each of the five components. 

Authors’ response: 

We thank the reviewer for the suggestions, and we have added Fig. S4 and Fig. 
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S5 to provide supplementary information for Fig. 5a by using scatterplots and error 

distribution histograms. Fig. S4 and Fig. S5 are presented in the replies of Major 

Comments #5 A3. 

 

9) Include full training hyperparameters: batch size, learning rate, optimizer, epochs, 

early stopping criteria, normalization statistics. 

Authors’ response: 

In response to the reviewer’s suggestions, we have added a Table S2 into the 

supplement to present full training hyperparameters. 

Table S2. Optimal hyperparameters of the deep learning module. 

Hyperparameter Decision space Optimal values 

Initial learning rate [10-5 10-3] 4.71 × 10-4 

Factor for L2 regularization [10-10 10-2] 1.54 × 10-4 

Decay rate of gradient moving average [0.8 0.98] 0.80 

Decay rate of squared gradient moving 

average 
[0.8 0.99] 0.81 

Number of filters 
1 [8 64] 44 

2 [8 64] 34 

Size of filters 
1 [3 16] 6 

2 [3 16] 10 

Number of layers [1 4] 2 

Number of hidden units [60 200] 61 

Maximum of Epochs \ 100 

Size of mini-batch \ 64 

Dropout value \ 0.25 

Solver \ adam 

Num of cross-validation folds \ 10 

Section 2.2.2, Line 238-239: “…The number of optimization iteration is set to 30 and 

the final optimal settings of model hyperparameters are presented in Table S2 of the 

supplement.” 

  


