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1 General comments:

This manuscript presents a novel lidar-based retrieval framework that integrates deep
learning with physics-constrained optimization to estimate vertical mass concentration
profiles of five PM>.s chemical components (SO, NOs, NHy*, OM, BC). The topic is
scientifically important: retrieving aerosol composition profiles from lidar would
significantly advance air quality monitoring, chemical transport modeling, and source
apportionment. The combination of physics constraints and deep learning is innovative
and promising.

However, while the conceptual idea is strong, the manuscript lacks clarity in describing
the model framework and provides insufficient evidence that the approach accurately
captures the physics of vertical aerosol composition or generalizes across seasons, sites,
and aerosol regimes. Significant issues in methodology, validation, and presentation

hinder the scientific interpretation of the results. I therefore recommend major revision.

Authors’ response:

We extend our sincere gratitude to the reviewer for the insightful and constructive
evaluation of our manuscript, which has been instrumental in improving our work. We
are particularly encouraged by the reviewer’s recognition of the scientific importance

of our topic and the innovation. We fully agree with the reviewer’s assessment that,
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while the conceptual idea is strong, the manuscript in its current form requires major
revisions to achieve the necessary clarity and evidentiary rigor. We have implemented
a point-by-point revision of the manuscript in direct response to the reviewer's concerns

and comments.

2 Major Comments:

1) Overall framing, workflow clarity, and Figure 1

Q1: Figure 1 is difficult to interpret: inputs/outputs are not clearly labeled, colored
boxes lack explanation, and several acronyms are undefined. The figure should be
redesigned as a clear block-flow diagram that lists:

a) all inputs (with units, vertical resolution, and dimensionality),

b) each module’s output,

¢) loss functions used,

d) data flow direction and optimization loops.

Q2: Reorder sections so the Data section precedes the Model description. Readers must

understand what data the model consumes before interpreting architectural choices.

Authors’ response:

A1l: We thank the reviewer for this critical suggestion. In response, Figure 1 has
been completely redesigned to enhance its interpretability. The revised Fig. 1 contains
all inputs with specific information, two modules’ output, loss functions used, as well
as data flow direction and optimization loops. The abbreviations used in Fig.1 have
been defined in the figure caption. Notably, since the intermediate output of the deep
learning module serves as the input data for the optimization module, the color of deep

learning output is same as that of input data.
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Figure 1: Remote-sensing retrieval framework for vertical distribution of five PM;s
chemical components (NH", SO/, NOs, OM and BC). (U: U-component wind; V: V-
component wind, T: Temperature; RH: Relative Humidity, q: Specific Humidity, w
Vertical Velocity; Z: Geopotential; Opgc 532 Aerosol Extinction Coefficient at 532 nm;,
CNN: Convolutional Neural Network, ReLU: Rectified Linear Unit; FC: Fully
Connected; BiLSTM: Bidirectional Long Short-Term Memory,; IMPROVE: Interagency
Monitoring of Projected Visual Environment; NSGA-II: Non-dominated Sorting
Genetic Algorithm I).

A2: Following the reviewer’s suggestions, we have reordered the “Section 2 Data
and methodology”. In the revised manuscript, Section 2.1 details the data information

and Section 2.2 details the methodologies used in this work.



2) Ambiguity in algorithm description

Q1: Section 2.1.1 is confusing and lacks foundational background, making the
workflow difficult to follow without jumping back and forth.

Q2: It is unclear what the deep-learning model predicts per vertical level. Please
explicitly specify:

a) whether the model outputs component concentrations, component fractions,
categorical flags, or something else,

b) the exact dimensionality (e.g., levels X 5 components).

03: Clearly define the target variables and how they are constructed.

Q4: Provide detailed descriptions of the multi-objective optimization, including:

a) inputs and outputs,

b) spatial/temporal/vertical resolution,

¢) how physics constraints are incorporated mathematically.

05: The purpose of using mentioned components/models.

06: The rationale for using a two-step prediction process (component ‘‘flags” followed
by concentrations) rather than a single multi-output network is not explained. The

manuscript would benefit from an experimental justification or comparison.

Authors’ response:

We thank the reviewer for highlighting the lack of clarity in Section 2.1.1. We have
completely revised “Section 2.2.1 Retrieval Framework” in response to the reviewer’s
concerns regarding above six aspects. Notably, the original Section 2.1.1 has been
moved to Section 2.2.1 in response to Major Comments #1.

Al: We have thoroughly revised the description of Section 2.2.1 and added the
description of foundational backgrounds. The revised Section 2.2.1 is presented below.
Section 2.2.1: “This paper proposed a novel retrieval framework for retrieving the
vertical concentration profiles of five PM> s chemical components (NH;*, SO+, NO3,
OM and BC) from the lidar aerosol extinction coefficient at 532 nm (Oysc 532). AS shown
in Fig. 1, the retrieval framework mainly consists of a deep learning module and a
physics-constrained optimization module. The input datasets of the deep learning
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module include the surface observation data, meteorological data and ground-based
lidar data (Fig. 1a). Specifically, the aerosol extinction coefficient at 532 nm (0pg¢ 532)
and multiple meteorological parameters (u-component wind, v-component wind,
temperature, relative humidity, specific humidity, vertical velocity and geopotential)
serve as input features, while the concentrations of the five PM> s chemical components
(NH;*, SO+, NO5, OM and BC) serve as target features. The deep learning module
(Fig. 1b), mainly consisting of the Convolutional Neural Network (CNN), Bidirectional
Long Short-Term Memory (BiLSTM), attention mechanism and Bayesian optimization,
is utilized to establish the nonlinear relationship between input and target features. The
input datasets of the physics-constrained optimization module include the ground-
based lidar data, aerosol auxiliary data and deep learning intermediate output (Fig.
la, c), which provide fundamental input for establishing a multi-object function based
on the Interagency Monitoring of Projected Visual Environment (IMPROVE) equation.
The physics-constrained optimization module incorporates the multi-object loss
Sfunction with the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to implement
external physical constraints (Fig. Ic), thus enhancing the extrapolation capability of
the deep learning module and generating high-quality vertical concentration profiles
of the five PM>s chemical components. Detailed descriptions of the deep learning
algorithms, hyperparameter tuning, and physics-constrained optimization used in this
work will be presented in subsequent sections. The brief workflow of the retrieval

framework is summarized as follows.

Step 1. The multi-source input datasets undergo matching across spatiotemporal and
vertical dimensions. All input and output data are uniformly time-resolved to hourly
intervals, while vertical data are uniformly vertically resolved into 10 layers ranging
from 50 m to 3 km.

Step 2. The input data of the deep learning module are normalized by Z-score
normalization to stabilize the training process, accelerate training convergence, and

enhance model robustness (Al-Faiz et al., 2018, Cabello-Solorzano et al., 2023).



Step 3. Training deep learning module by using the normalized surface-level input data.
Step 4. Generating the normalized concentrations of the five PM>s5 chemical
components at each vertical layer by feeding the normalized height-level input data
into the deep learning module.

Step 5. Denormalizing the deep-learning output by using the inverse Z-score
transformation, with the mean and standard deviation statistics derived from the
original training set, thereby recovering the physical mass concentration unit (ug m>).
Step 6. Optimizing the denormalized deep learning output through implementing an
external physics constraint to obtain the high-quality vertical concentration profiles of
the five PM>s chemical components. Repeat steps 4-6 until the retrieval task is

complete.”

A2: In response to the reviewer’s suggestion, we have specified the final output
(the vertical concentration profiles of the five PM» s chemical components) and its exact
dimensionality ([Height, Timestep, Variable, Site]) in the revised Fig. I and Section
2.2.1, which were presented in the replies of Major Comments #1 and Major

Comments #2 A1, respectively.

A3: In response to the reviewer’s suggestion, we have clearly defined the target
variables and how they are constructed in the revised Fig. 1 and Section 2.2.1, which
were presented in the replies of Major Comments #1 and Major Comments #2 Al,

respectively.

A4: In response to the reviewer’s suggestion, we have added detailed descriptions
of the input and output of the multi-objective optimization module with their temporal
and vertical resolutions in the revised Fig. I and Section 2.2.1, which were presented
in the replies of Major Comments #1 and Major Comments #2 Al, respectively.
Detailed descriptions of how physics constraints are incorporated mathematically have

been added in the revised Section 2.2.3. The revised Section 2.2.3 is presented below.



Section 2.2.3, Line 244-281: “The normalized vertical profiles of PM>s chemical
components generated by the deep learning module are denormalized by the statistical
characteristics of the initial input data of the surface-level observations. To reduce the
retrieval error induced by the inherent extrapolation limitations of deep learning
modules, a physics-constrained optimization scheme is incorporated into the retrieval
framework based on a revised Interagency Monitoring of Projected Visual Environment
(IMPROVE) Equation (Pitchford et al., 2007) and Non-dominated Sorting Genetic
Algorithm I (NSGA-II) (Verma et al., 2021).

The revised IMPROVE Equation interprets the particle extinction coefficient (o)
through the concentrations (M) and the optical and microphysical characteristics of
PM:> 5 chemical components (Eq. (7)).
o(M) = 63N F(RH)(M(S027) + M(NO3) + M(NH)) + 69¢M(0C) +
OFSM(Fine Soil) + MM (Coarse Mass) + 0555 f.sg(RH)M (Fine Sea Salt) +
05M(BC) + Rayleigh Scattering, (7)
Where o(M) is the estimated particle extinction coefficient (km™), 0 is the
scattering efficiency (m’> mg'), 8, is the mass absorption efficiency (m’ mg?),
respectively. f(RH) and frss(RH) account for the increase in light scattering
induced by hygroscopic growth of sulfate, nitrate and ammonium (SNA), as well as fine
sea salt (FSS). 0F5, M QFSS fres and 08¢ aresetto 0.001 m* mg™, 0.0006 m* mg
10.0017 m? mg! and 0.01 m* mg!, respectively. M are the mass concentrations (ug
m?) of the PM> s chemical components. Rayleigh Scattering is set to 0.01 km™.
OSNA and 09€ are determined by Eq. (8)-(9).
65N4 = 0.003 x (0.7 + 0.002 X (M(S0Z™) + M(NO3) + M(NH;}) + M(0C)))),

(8)
69¢ = 0.00363 x (0.7 + 0.002 X (M(S02™) + M(NO3) + M(NH}) + M(0C)))

)

To implement the physics-constrained optimization, we first introduce a scale factor



(Yin) for each chemical component at each vertical layer, which is used to correct the
initial mass concentrations (Eq. (10)). Then we determine the optimal scale factors
through minimizing a multi-objective function (Eq. (11)). The Pearson correlation
coefficient (CORR) and root mean square error (RMSE) quantified by the lidar-
observed and the IMPROVE-simulated extinction coefficient serve as two objective
values in the multi-objective function. The NSGA-II algorithm is utilized to determine
the optimal scale factors by solving the multi-objective function that simultaneously
enhances the correlation and reduces the discrepancy between the IMPROVE-
estimated and lidar-observed extinction coefficients.

MEn =y X MS i =S80} ,NO3,NH},OM,and BC,

regulated original’
(10)
Yin = min(fruse V), feorr(¥)), (11)

Where M;"ehgulated (ug m3) is the regulated mass concentration of the i chemical

component at an altitude of h (m), y;p is the scale factor for the i™ chemical

i,h
origina

component at an altitude of h (m), and M | (ug m?) is the original mass

concentration of the i™ chemical component at an altitude of h (m). fause(v) is the

RMSE-based objective function (Eq. (12)) and frorr(v) is the CORR-based objective

function (Eq. (13)).

K obs_ 2
fruse(¥) = JZk:l(ak Kok(yXM)) ) (12)

K (ak(yxM)—a(yxM) a%bs—a"bs)
k=1V"std(a(yxM) std(a0bs)

K-1

feorr(¥) = — ) (13)

Where K is the total number of samples, o is the k™ observed extinction

coefficient, o, (y X M) is the k™ simulated extinction coefficient, o(y X M) is the
average of simulated extinction coefficient, a°PS is the average of observed extinction

coefficient, std(o(y X M) is the standard deviation of simulated extinction coefficient,

and std(o°PS) is the standard deviation of observed extinction coefficient.”

AS: In response to the reviewer’s suggestion, we have clarified the purpose of the
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deep learning module and the physics-constrained optimization module in the revised

Section 2.2.1, which were presented in the replies of Major Comments #2 Al.

A6: Performing a two-step prediction process (normalization — model inference
— denormalization) is a standard and necessary practice in our deep learning module.
Disparities in the scales and units of different features would cause those with larger
numerical ranges to dominate gradient updates, hindering the learning of complex
interactions. Data normalization can stabilize the training process, accelerate training
convergence, and enhance model robustness (Al-Faiz et al., 2018; Cabello-Solorzano
etal., 2023). Accordingly, the data of input and target features used for the deep learning
module are normalized in this study. As a result, the deep learning module initially
outputs normalized concentrations (like “flags™), which are subsequently denormalized
and optimized to yield high-accuracy mass concentrations.

In response to the reviewer’s suggestions, we have emphasized the role of data
normalization in the revised Section 2.2.1, which were presented in the replies of Major
Comments #2 Al.

Reference

Al-Faiz, M. Z., Ibrahim, A. A., and Hadi, S. M.: The effect of Z-Score standardization
(normalization) on binary input due the speed of learning in back-propagation neural network, Iraqi j.
inf. commun. technol., 1, 42-48, https://doi.org/10.31987/ijict.1.3.41, 2018.

Cabello-Solorzano, K., Ortigosa de Araujo, 1., Pena, M., Correia, L., and J. Tall6n-Ballesteros, A.:

The Impact of Data Normalization on the Accuracy of Machine Learning Algorithms: A Comparative
Analysis, 18th International Conference on Soft Computing Models in Industrial and Environmental
Applications (SOCO 2023), Cham, 344-353, https://doi.org/10.1007/978-3-031-42536-3 33, 2023.

3) Temporal and spatial data splits

Q1: The current random 80/20 split is not appropriate for meteorological/aerosol time
series due to temporal autocorrelation, which risks information leakage.

Q2: Consider implementing:

a) temporal holdouts (e.g., full seasons),

b) spatially independent test sites,

¢) blocked k-fold cross-validation preserving temporal/spatial independence.


https://doi.org/10.31987/ijict.1.3.41
https://doi.org/10.1007/978-3-031-42536-3_33

03: The manuscript evaluates an independent dataset only in the Results section, but
this dataset should be partially used for the validation/testing framework.

Q4: The reported error statistics for the independent dataset are not clearly presented
and differ considerably from training results. For a well-generalized model, validation
and independent-test errors should be similar; their discrepancies raise concerns about
generalization and physical consistency.

05: Surface-only scatterplots from the training year are insufficient to establish model

validity, especially given that the model’s primary output is a vertical distribution.

Authors’ response:

We sincerely thank the reviewer for these critical and constructive comments on
the data split strategy.

Al: We fully agree that the random split is not appropriate for the time-series
training data, especially for meteorological and aerosol data, since future information
leakage could lead to artificially optimistic testing results. Following the reviewer’s
suggestions, we have repartitioned the dataset into training (& validation) and
independent testing sets. Detailed description of data repartition can be found in the

replies of Major Comments #3 A2.

A2: In response to the reviewer’s suggestions, the repartitioned testing set contains
an independent 6-month (Jan 1-Mar 31 and Jun 1 to Aug 31, 2022) time-series dataset
obtained from a Beijing site for ensuring data temporal independence. The repartitioned
training (& validation) set contains an independent 1-year (2021) time series dataset
obtained from a Beijing site.

A spatially independent 8-day (Feb 8-15, 2021) time-series dataset obtained from
23 sites in the North China Plain (NCP) is utilized to evaluate the spatial extrapolation
capability of our retrieval framework. The spatial distribution of training (& validation)
sites, temporally independent testing sites, and spatially independent testing sites is

presented in Fig. S1 of the supplement.
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Figure S1: Spatial distribution of Beijing and spatially independent testing sites.
Beijing site provides 18-month datasets for the training, validation and temporally
independent testing of the deep-learning module. Other 23 sites in North China Plain

(NCP) provide 8-day datasets for the spatially independent testing of the final retrieval.

The geographic basemap is hosted by Esri (https://www.esri.com/en-us/home).

A blocked k-fold cross-validation may leak future information into the training set
while allocating historical information to the validation set in practice. In response to
the reviewer’s suggestions, we replaced the original random split scheme with a
time-series cross-validation scheme to preserve temporal order and prevent future
information leakage. As presented in Fig. §2 of the supplement, we repeatedly utilize
a forward sliding window to create K (set to 10) validation folds. The training set starts
with a subset of the first 80% of the chronological data and is incrementally expanded
at each subsequent fold by incorporating an additional block with a length of the
forward sliding window, ultimately encompassing the full 80% in the final fold. The

validation set immediately follows the training set, comprising 20% of the
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chronological data.
The length of the forward sliding window is equal to the length of the training set

at first fold in practice (Eq. (R1)).
| = r XN
=

where 1 is the length of the forward sliding window, r is the proportion of data

(R1)

used for training, N is the total sample size for model construction, and K is the total

number of cross-validation folds.
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Figure S2: Diagram of the time-series data partitioning for 10-fold cross-validation.

A3: In response to the reviewer’s suggestions, we have used the temporally
independent data for the validation and testing phases. The detailed description can be
found in the replies of Major Comments #3 A2. The revised version is as follows.
Section 2.2.4, Line 345-354: “An hourly multivariate dataset with extensive temporal
coverage was employed to train and evaluate the deep learning module. To maintain

temporal independence, the training (and validation) set was constructed from a I-year
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(2021) time-series dataset obtained from a Beijing site (Fig. S1), while the testing set
contains an independent 6-month (Jan 1-Mar 31 and Jun 1 to Aug 31, 2022) time-series
dataset obtained from the same site. A 10-fold time-series cross-validation (CV) scheme
was designed for the training (and validation) set to preserve its temporal order and
prevent future information leakage, which is detailed in Text S3 and Fig. S2 of the

supplement. The iteration number of Bayesian optimization is set to 20.”

A4: We thank the reviewer for the reminder regarding the clarification in
comparison between validation and independent-test error statistics. The revised data
repartition scheme is detailed in the replies of Major Comments #3 A2. Following the
reviewer’s suggestion, we have verified our deep learning model using the new data
repartition scheme. Finally, we have revised Section 3.1.1, updated Fig. 3, and added
Fig. §$3 to comprehensively present and discuss the error statistics in the 10-fold cross-
validation phase and temporally independent testing phase.

The results show that the error distributions are concentrated around 0, with mean
errors between -1.78 £ 8.15 ng m=and -0.13 £ 0.94 ug m during the 10-fold CV phase
(Fig. S3al-a5) and between -1.36+7.40 ungm™ and -0.07+1.00 pgm™ during the
temporally independent testing phase (Fig. S3b1-b5), demonstrating strong consistency
between observations and simulations. Notably, the error distributions for the
validation and independent testing sets are closely aligned, indicating that the deep
learning module is robust and generalizes well to unseen data.

Section 3.1.1, Line 345-363: “The 10-fold CV sets and a testing set with temporal
independence are utilized to evaluate the predictive performance of the deep learning
module, which is quantified by the discrepancies between simulations and observations
at ground level for NHy*, SO+, NO3, OM and BC. Overall, the scatter distribution and
fitted regression line closely align with the 1:1 line in both the 10-fold CV (Fig. 3al-a5)
and temporally independent testing phases (Fig. 3b1-b5). The error distributions are
concentrated around 0, with mean errors between -1.78+8.15 ugm™ and -

0.13+0.94 ugm™ during the 10-fold CV phase (Fig. S3al-a5) and between -

13



1.36£7.40 ugm> and -0.07 +1.00 ug m> during the temporally independent testing
phase (Fig. S3b1-b5), demonstrating strong consistency between observations and
simulations. Notably, the error distributions for the validation and independent testing
sets are closely aligned, indicating that the deep learning module is robust and
generalizes well to unseen data. Specifically for the 10-fold CV process (Fig. 3al-a5),
the CORR values for the five PM>s chemical components range from 0.76 to (.86,
indicating that the deep learning module accurately interprets the relationship between
multivariate input features and the five PM> s chemical components. The RMSE values
range from 0.95 to 8.35 ug m>, indicating a low discrepancy between simulations and
observations. Compared to the 10-fold CV process, the temporally independent testing
yields slightly lower CORR values (0.69-0.79) and higher RMSE values (1.00-8.87 ug
m>), showing a slight underestimation for the five PM>s chemical components (Fig.
3b1-b5). It is expected that the statistical results from the temporally independent
testing are less robust than those from the 10-fold CV, since the temporally independent
testing set aggregates a broader spectrum of temporal patterns compared to the
validation set at each fold. Our statistical results from the 10-fold CV exhibit
similarities or even improvements compared to those reported in other studies that
predicting PM>s5 chemical component concentrations based on machine learning
models (Lv et al., 2021; Lin et al., 2022; Araki et al., 2022; Liu et al., 2023), indicating

that the deep learning module demonstrates strong prediction capabilities.”

0.08

o (@ .
S i CORR 085 oo £
= IR .., i o 5
i 50 PO, J*"’ wz §
& | ../. e .%
& " Validation ool 2

0 50 100

o0 7] o
30 | ooRR = 1i78 D5

Simulation (yg m” %)

=2 N & Mmoo

0 o0 2 30 0 20 40 B0
Observation (ug m's) Observation (ug m'a) Observation (ug m'3) Observation (ug m'z) Observation (1g m's)

Figure 3: Scatterplots of the simulations (ug m™) versus the observations (ug m™) with

probability density (%) for NHs*, NOs, SO+, OM and BC during the 10-fold cross-
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validation process (al-a5) and temporally independent testing process (b1-b5). The
dotted grey lines represent the 2:1, 1:1, and 1:2 lines, and the solid red line represents
the fitted regression line. CORR represents the correlation coefficient, and RMSE

represents root mean square error.
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Figure S3: Probability distributions of error (observations minus simulations, ug m>)
for NHy*, NO3, SO+, OM and BC during the 10-fold cross-validation phase (al-a5)
and during the temporally independent testing phase (b1-b5). ME: Mean Error; SD:

Standard Deviation.

AS: We fully agree that including scatter plots at multiple vertical levels would
provide a more comprehensive validation of the model’s vertical retrieval capability.
However, conducting long-term vertical measurements (especially covering altitudes
of 0-3 km) of PM2s chemical compositions is exceptionally challenging. Vertical
measurements typically rely on costly airborne measurements (e.g., aircraft or balloon-
borne instruments), which are neither continuous at a fixed location nor provide broad
spatial coverage over extended periods. Given the scarcity of vertical samples, we
instead obtained a long-term and spatially extensive dataset of ground-level PMaz s
chemical observations. The sufficient ground-level dataset was used to train the deep
neural network in establishing the nonlinear mapping between lidar extinction
coefficients and chemical component concentrations. Consequently, the scatter-plot
validation focuses primarily on the ground level. We have added a dedicated Section

3.4 Limitations and uncertainties in the revised manuscript to discuss the current
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limitations regarding vertical measurement validation. The content of Section 3.4

Limitations and uncertainties is presented in the replies of Major Comments #6.

4) Weak vertical-profile validation

The manuscript focuses on retrieving vertical composition profiles but presents minimal
validation of these profiles. I strongly recommend including:

Q1: Direct comparisons with aircraft or in situ vertical measurements, using metrics
such as bias, RMSE, MAE, percent error, and correlation at each altitude bin.

Q2: Case studies across representative aerosol regimes (smoke, dust, pollution,
background).

03: Aggregated statistics by:

a) altitude,

b) site,

¢) aerosol type,

d) season.

If vertical observational data are limited, the manuscript should explicitly quantify

these limitations while still presenting as much vertical validation as possible.

Authors’ response:

We fully acknowledge the reviewer’s point that robust validation of the retrieved
vertical profiles is essential, and we agree that expanding the vertical validation with
detailed metrics, case studies, and aggregated statistics would be ideal. However, as the
reviewer anticipated, providing extensive vertical validation is inherently constrained
by vertical data availability.

Al: In response to the reviewer’s suggestion, we have added ZTable S3 to present
statistical metrics quantified by vertical retrievals and tower-based observations during
a period from December 30, 2018 to January 2, 2019. Besides, we have updated Fig. 6
and revised Section 3.1.3 using the revised retrieval framework.

Section 3.1.3: “In addition to the spatiotemporal verification of surface-level mass
concentrations, tower-based and aircraft-based observational experiments were
conducted to validate the retrieved vertical profiles of five PM> s chemical components

during non-training periods. From the surface to ~200 m altitude, the retrieved and
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observed vertical profiles exhibit similar vertical patterns during a period from
December 30, 2018 to January 2, 2019 in Beijing, with higher concentrations occurring
at altitudes of 50-80 m for NH;*, NOs, SO+ and OM (Fig. 6al, a2). Specifically, as
presented in Table S3, the CORR values are no less than 0.66 for all four PM> s chemical
components. However, the RMSE value for OM (23.04 ug m™) is notably higher than
that for the other components (4.08-10.48 ug m™), indicating limitations in the retrieval
framework when representing the vertical profile of OM during winter pollution
episodes. This discrepancy may be associated with retrieval uncertainties arising from
input data quality and imposed physical constraints. Additionally, the retrieved and
observed proportions of NH4', NOs3, SO/, OM and BC demonstrate significant
consistency (Fig. 6b1, b2). Among these chemical components, NOs and OM contribute
the largest proportions, followed by NHs" and SO/, while BC contributes the smallest
fraction. This proportional characteristic is evident in both the retrieved and observed
proportions at altitudes of 600 m and 1200 m (Fig. 6¢l, c¢2). Due to the lack of NHs"
measurements at 1500 m and the absence of both NHs" and SO~ measurements at
2100 m, the proportions at these altitudes are statistically inferred from the remaining
chemical components. The results indicate overall consistency between retrieved and
observed proportions at altitudes of 1500 m and 2100 m, although the proportion of
NOs is slightly overestimated at 2100 m and underestimated at 1500 m. Overall, the
tower-based and aircraft-based verifications indicate that the retrieval framework
achieves high accuracy in retrieving the vertical profiles of the five PM> s chemical
components during non-training period, demonstrating its robust generalization

capability and reliability when applied to independent datasets.”
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Figure 6: Vertical profiles (ug m>) of NHs', NOs, SO, and OM from retrieval (al)
and tower-based observation (a2) during a period from December 30, 2018 to January
2, 2019 in Beijing. The line represents the daily average of the hourly vertical profiles,
and the shaded area represents the standard deviation. Averaged proportions of NH,",
NOs, SO, OM, and BC from retrieval (bl) and tower-based observation (b2) for 10
days (December 27 and 30, 2023, January 2, 5, 9, 12, 15, 18, 24, and 27, 2024). (cl
and c2) Same as (bl and b2) but for aircraft-based verification for 3 days (September
26, October 10, December 11, 2024).

Table S3. Statistical metrics quantified by the vertical retrievals and the tower-based
observations during a period from December 30, 2018 to January 2, 2019 for NH,",
NOj, SO+, and OM. RMSE: Root Mean Square Error; MAE: Mean Absolute Error;
CORR: Pearson correlation coefficient.

RMSE (ugm>) MAE (ugm?) CORR
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NH4" 4.81 3.14 0.67

NOs 1048 6.19 0.67
SO4* 4.08 2.59 0.66
OM 23.04 15.37 0.67

A2 & A3: The available vertical observational dataset was limited to a 3-day
aircraft campaign at a site near Beijing and a 10-day tower measurement at a site in
Beijing, both conducted primarily during winter. The scarcity of vertical observational
data precludes a comprehensive statistical evaluation of the vertical retrievals with
respect to varying sites, aerosol types, and seasons. In response to the reviewer’s
suggestion, we have added the limitations into Section 3.4 Limitations and
uncertainties of the revised manuscript. The content of Section 3.4 Limitations and

uncertainties is presented in the replies of Major Comments #6.

5) Heterogeneous site performance

Q1: Figure 5b shows substantial site-to-site variability: some sites have nearly zero
correlation, while the best site reaches ~0.6.

Q2: Please investigate and report potential causes, such as:
a) aerosol-type mismatch,

b) representativeness of training data,

¢) site-specific meteorology or emissions,

d) instrument characteristics.

Q3: Consider:

a) a map showing training vs. test sites,

b) per-site metrics (MAE, RMSE, bias, percent error, N),

¢) problematic site scatterplots or boxplots to illustrate error spread.

Authors’ response:

We thank the reviewer for the constructive suggestions.

Al & A2: The observed variability in retrieval performance across different sites,
with correlation coefficients ranging from near zero to ~0.6, is primarily attributed to
the spatial representativeness of training data. The deep-learning module was trained
exclusively on a long-term dataset from a single site in Beijing. A single-site dataset is
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insufficient to interpret the varying emission intensity, local meteorological and
geographical conditions across the broader Northern China Plain, which limits the
spatial extrapolation capability of the deep-learning module. We have explicitly
discussed this remaining limitation in Section 3.1.2 and Section 3.4. The content of
Section 3.4 Limitations and uncertainties is presented in the replies of Major
Comments #6.

Section 3.1.2, Line 399-414: “The retrieval framework was also applied to retrieve the
vertical profiles of the five PM> s chemical components at 23 non-training NCP lidar
sites over a short-term period of February 8-15", 2021, aiming to validate its spatial
generalization capabilities. Compared with the observed surface concentrations at 23
non-training sites, the retrieved surface concentrations exhibit a more clustered data
distribution and exhibit a tendency toward underestimation across all components (Fig.
5a). The site-averaged CORR values for the five chemical components range from 0.21
to 0.46, with RMSE values spanning 2.7 ug m> to 20.37 ug m> (Fig. S4). From a spatial
perspective (Fig. 5b1-b5), non-training NCP sites located closer to the Beijing lidar
site exhibit higher CORR values, with the highest reaching 0.71 (NH4"), 0.56 (NO3),
0.81 (SO4), 0.48 (OM) and 0.41 (BC). Conversely, the RMSE values are not affected
by the distance from the Beijing lidar site (Fig. 5c1-c5), with the lowest reaching 2.91
ug m> (NH;*), 6.15 ug m> (NO3), 3.05 ug m3 (SO4), 6.59 ug m> (OM) and 0.78 ug
m~ (BC). However, several sites exhibit poor retrieval performance, with CORR values
ranging from ~0.20 to ~0.30 (Fig. S5), which is primarily attributed to limitations in
the spatial representativeness of the training data. The deep-learning module was
trained exclusively on a long-term dataset from a single site in Beijing, which is
insufficient to capture the spatial variability in emission intensity, as well as local
meteorological and geographical conditions across the broader NCP. As a result, the
spatial extrapolation capability of the deep-learning module is constrained. Although
the retrieval framework can retrieve PM>s5 chemical component concentrations at
spatially distributed lidar sites, future work should incorporate long-term datasets from

varying locations to enhance spatial generalization and extrapolation performance.”

A3: In response to the reviewer’s suggestions, we have added a map to show the
training and independent test sites (Fig. ST). Notably, 39 independent testing sites with

obvious outliers and missing values in the original manuscript were removed in the
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revised manuscript (the number of remaining sites is 23). And we have added Fig. S$4
and Fig. §5 to present statistical metrics by scatterplots and error distribution

histograms across all sites and problematic sites (CORR <0.5).

42N ' _
O Testing sites in-NCP
40°N
E
5 38°N
36°N
34°N
10°E 12°E 14°E 1B°E 118° 2 122°F 124°%F
Longitude

Figure S1: Spatial distribution of Beijing and spatially independent testing sites.
Beijing site provides 18-month datasets for the training, validation and temporally
independent testing of the deep-learning module. Other 23 sites in North China Plain
(NCP) provide 8-day datasets for the spatially independent testing of the final retrieval.

The geographic basemap is hosted by Esri (https://www.esri.com/en-us/home).
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Figure S4: Scatterplots of the retrievals (ug m) versus the observations (ug m) with
probability density (%) for NHs", NOs, SO, OM and BC across 23 spatially
independent testing sites (al-a5). The dotted grey lines represent the 2:1, 1:1, and 1:2
lines, and the solid red line represents the fitted regression line. CORR represents the
correlation coefficient, and RMSE represents root mean square error. Probability
distributions of error (observations minus retrievals, ug m>) for NHy*, NO3, SO+, OM

and BC across 23 spatially independent testing sites (b1-b5). ME: Mean Error; SD:

Standard Deviation.
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Figure S5: Scatterplots of the retrievals (ug m) versus the observations (ug m) with
probability density (%) for NHy", NOs, SO+, OM and BC across problematic (CORR
<0.5) spatially independent testing sites (al-a5). The dotted grey lines represent the
2:1, 1:1, and 1:2 lines, and the solid red line represents the fitted regression line. CORR
represents the correlation coefficient, and RMSE represents root mean square error.
Probability distributions of error (observations minus retrievals, ug m) for NHs*, NO3,

SO+, OM and BC across 23 spatially independent testing sites (b1-b5). ME: Mean
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Error; SD: Standard Deviation.

6) Lack of uncertainty quantification

Given the physics-constrained framing, the model should also provide uncertainty
estimates, or at minimum a discussion of uncertainty propagation. Possible approaches
include: Ensemble modeling, Monte Carlo dropout, error propagation from lidar
extinction + physics constraints. Uncertainty bounds would greatly strengthen

confidence in profile retrievals.

Authors’ response:

We thank the reviewer for this crucial suggestion, and we agree that providing
uncertainty assessment is essential for a robust and trustworthy retrieval framework. In
response to the reviewer’s suggestion, we have added a dedicated section to discuss the
uncertainties. The uncertainty sources primarily include the hyperparameters of the
deep learning module, the input data, and the physical constraints.

a. Uncertainty induced by the hyperparameters

Hyperparameters largely determine the deep neural network architecture, training
performance, training efficiency, and generalization capability, critically shaping the
accuracy of the mapping between aerosol extinction coefficients and PM> s chemical
composition concentrations. To mitigate the hyperparameter-induced uncertainty, we
employed the Bayesian optimization to identify the optimal set of hyperparameters that
minimized the average 10-fold CV mean absolute error (MAE). Consequently, the
hyperparameter-induced uncertainty will not be discussed further.

b. Uncertainty induced by the input data

The data of auxiliary features (e.g. meteorological parameters and aerosols) used
for deep learning and physics-constrained optimization, are obtained from the global
reanalysis products (e.g. ERAS and CAMS). These grid data with relatively coarse
spatial resolutions would yield errors when interpreting the local features at a specific
observational site. Therefore, acquiring the vertical observational data of these auxiliary
features for retrieval input can effectively mitigate the uncertainty induced by the input
data.

c. Uncertainty induced by the physical constraints

The physical constraint function currently adopted is derived from the revised
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IMPROVE equation (Pitchford et al., 2007). When compared with light scattering
coefficients (Bsp) measured by nephelometers at seven IMPROVE sites between 2003
and 2012, this equation tends to overestimate Bs, in the lower quintile and
underestimate them in the upper quintile (Lowenthal and Kumar, 2016). Although the
IMPROVE equation can estimate aerosol extinction coefficients using chemical
composition concentrations, mass scattering efficiencies, and hygroscopic properties,
its inherent estimation biases introduce additional uncertainty when it is applied as a
physical constraint.

In summary, the uncertainty related to hyperparameters has been mitigated through
Bayesian optimization, thus Section 3.4 focuses on uncertainties arising from input data
and physical constraints.

Section 3.4, Limitations and uncertainties: “The deep learning module in our retrieval
framework can establish a powerful mapping between optical and meteorological
features and PM>s chemical species, and physics-based explicit constraints can
enhance the reliability and expandability of the mapping relationships. However,

several limitations and sources of uncertainty remain and should be acknowledged

when interpreting the results and extending the framework to broader applications.

First, the spatial scope of the training data is predominantly restricted to the NCP
region. Expanding the retrieval framework with data from more diverse geographical
locations is necessary to improve its global transferability. Second, the current retrieval
framework primarily relies on extinction coefficients at a wavelength of 532 nm,
exhibiting dependence on specific lidar instruments. Future retrieval framework should
focus on integrating diverse optical features from additional wavelengths to enhancing
adaptability and transferability. Third, the auxiliary input data used in both the deep
learning module and the physics-constrained optimization are obtained from global
reanalysis products, which may not fully capture local atmospheric conditions at
specific observational sites, thereby introducing representativeness errors into the
retrievals. Acquiring the vertical observational data for these auxiliary features can
effectively mitigate the uncertainty induced by the input data. Fourth, the IMPROVE

equation applied as an external physical constraint may introduce additional
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uncertainty into the retrievals due to its systematic estimation biases (Lowenthal and
Kumar, 2016). Moreover, since the IMPROVE equation was applied as an external
physical constraint to optimize the retrievals of PM>s chemical components, the
machine learning model itself was not intrinsically constrained by physical principles
during its training. Future work could incorporate an internal physical constraint into
the machine learning model to improve its physical interpretability by formulating a
hybrid loss function for training that combines the traditional data-fitting term with a
physical term. Finally, long-term acquisition of independent vertical profiling data from
both tower-based and aircraft-based campaigns is essential for a comprehensive
assessment of the robustness of the vertical retrievals with respect to varying sites,

aerosol types, and seasons.”

Reference

Lowenthal, D. H. and Kumar, N.: Evaluation of the IMPROVE Equation for estimating aerosol light
extinction. J. Air Waste Manage., 66, 726-737. https://doi.org/10.1080/10962247.2016.1178187, 2016.

Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D., and Hand, J.: Revised Algorithm
for Estimating Light Extinction from IMPROVE Particle Speciation Data, J. Air Waste Manage., 57,
1326-1336, https://doi.org/10.3155/1047-3289.57.11.1326, 2007.

3 Minor Comments and Suggestions:

1) If possible, include an ablation study comparing architectures (CNN, BiLSTM,
CNN+BiLSTM, transformer) to justify the chosen hybrid design.

Authors’ response:

We thank the reviewer for the valuable suggestion. We fully agree that a systematic
ablation study is essential to justify our chosen hybrid architecture. Our decision to
employ the CNN-BiLSTM-Attention framework is informed by established findings in
related fields. For instance, our previous work demonstrated the superiority of a hybrid
CNN-BiLSTM over a standalone LSTM for interpreting PM2.s chemical components
(L1 et al., 2025). This conclusion is further supported by comparative studies in other
domains, such as geoscience and finance, where the hybrid CNN-BiLSTM-Attention

architecture was shown to outperform alternatives like CNN, LSTM, BiLSTM and
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BiLSTM-Attention (Kavianpour et al., 2023; Ma et al., 2022; Shan et al., 2021; Zhang
etal., 2023).

The primary goal of this study is to establish a novel framework that maps lidar

vertical extinction coefficients to PMa s chemical component concentrations using deep
learning with an external physical constraint. In response to the reviewer’s suggestion,
the rationale behind the selection of our hybrid architecture has been further elaborated
in the Introduction of the revised manuscript.
Section 2.2.2, Line 182-186: “...The CNN and BiLSTM layers, coupled with the
Attention Mechanism (AM), are designed to effectively capture the multivariate and
temporal characteristics in the training data, thereby establishing a robust nonlinear
mapping between the input and output features. The hybrid CNN-BiLSTM-AM
architecture consistently outperforms single-architecture models in predictive tasks, as
evidenced by numerous studies. (Kavianpour et al., 2023; Ma et al., 2022; Shan et al.,
2021; Zhang et al., 2023)...”

Reference

Kavianpour, P., Kavianpour, M., Jahani, E., and Ramezani, A.: A CNN-BiLSTM model with
attention mechanism for earthquake prediction, J. Supercomput., 79, 19194-19226,
https://doi.org/10.1007/s11227-023-05369-y, 2023.

Li, H., Yang, T., Du, Y., Tan, Y., Wang, Z.: Interpreting hourly mass concentrations of PMs
chemical components with an optimal deep-learning model, J. Environ. Sci., 151, 125-139,
https://doi.org/10.1016/].jes.2024.03.037, 2025.

Ma, T., Xiang, G., Shi, Y., Liu, Y.: Horizontal in situ stresses prediction using a CNN-BiLSTM-

attention hybrid neural network, Geomech. Geophys. Geo-energ. Geo-resour. 8, 152,
https://doi.org/10.1007/s40948-022-00467-2, 2022.
Shan, L., Liu, Y., Tang, M., Yang, M., Bai, X.: CNN-BiLSTM hybrid neural networks with attention

mechanism  for  well log  prediction, J.  Petrol. Sci. Eng., 205, 108838,
https://doi.org/10.1016/].petrol.2021.108838, 2021.

Zhang, J., Ye, L., Lai, Y.: Stock price prediction using CNN-BiLSTM-Attention model,
Mathematics, 11, 1985, https://doi.org/10.3390/math11091985, 2023.

2) Clarify the meaning of “estimated and observed extinction coefficients” (line 192).

Does “estimated” refer to IMPROVE-derived extinction?

Authors’ response:

We thank the reviewer for pointing out this lack of clarity. In response to the
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reviewer’s suggestion, we have clarified the meaning of “estimated and observed
extinction coefficients” in the revised manuscript.

Section 2.2.3, Line 267-269: “...The NSGA-II algorithm is utilized to determine the
optimal scale factors by solving the multi-objective function that simultaneously
enhances the correlation and reduces the discrepancy between the IMPROVE-

estimated and lidar-observed extinction coefficients.”

3) Define all acronyms at first use; ensure figure captions are self-contained.

Authors’ response:

We thank the reviewer for highlighting these important editorial points, which are
essential for manuscript clarity and accessibility. Following the reviewer’s suggestions,
we have addressed both points in the revised manuscript.

Figure 1: “Figure 1: Remote-sensing retrieval framework for vertical distribution of
five PM: 5 chemical components (NH;*, SO, NO5, OM and BC). (U: U-component
wind; V: V-component wind; T: Temperature; RH: Relative Humidity, q: Specific
Humidity;, w: Vertical Velocity, Z: Geopotential, Oex532 - Aerosol Extinction
Coefficient at 532 nm;, CNN. Convolutional Neural Network, ReLU: Rectified Linear
Unit; FC: Fully Connected; BiLSTM: Bidirectional Long Short-Term Memory;
IMPROVE: Interagency Monitoring of Projected Visual Environment; NSGA-11: Non-
dominated Sorting Genetic Algorithm II).”

Figure 2: “Figure 2: Brief workflow of NSGA-II (A: the parent population,; B: the
offspring population; C: the new population; P: the Pareto front).”

Figure 3: “Figure 3: Scatterplots of the simulations (ug m™) versus the observations
(ug m) with probability density (%) for NH,*, NOs, SO+, OM and BC during the 10-
fold cross-validation process (al-a5) and temporally independent testing process (b1-
b5). The dotted grey lines represent the 2:1, 1:1, and 1:2 lines, and the solid red line
represents the fitted regression line. CORR represents the correlation coefficient, and
RMSE represents root mean square error.”

Figure 4: “Figure 4: Weekly-smoothed variations in the retrieved and observed
concentrations (ug m>) of NHs" (al), NOs™ (a2), SO+ (a3), OM (a4) and BC (a5) in
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2021. (b) same as (al-a5) but for PM>s in 2017. (c) same as (al-a5) but for PM> s in
2018. (d) same as (al-a5) but for PM>s in 2024. CORR represents the correlation
coefficient, RMSE represents root mean square error.”

Figure S3: “Figure S3: Probability distributions of error (observations minus
simulations, ug m>) for NHs", NOs, SO+, OM and BC during the 10-fold cross-
validation phase (al-a5) and during the temporally independent testing phase (b1-b5).
ME: Mean Error; SD: Standard Deviation.”

Figure S4: “Figure S4: Scatterplots of the retrievals (ug m™) versus the observations
(ug m) with probability density (%) for NH+", NOs5, SO+, OM and BC across 23
spatially independent testing sites (al-a5). The dotted grey lines represent the 2:1, 1:1,
and 1:2 lines, and the solid red line represents the fitted regression line. CORR
represents the correlation coefficient, and RMSE represents root mean square error.
Probability distributions of error (observations minus retrievals, ug m>) for NHy*, NOs,
SO/, OM and BC across 23 spatially independent testing sites (b1-b5). ME: Mean
Error; SD: Standard Deviation.”

Figure S5: “Figure S5: Scatterplots of the retrievals (ug m™) versus the observations
(ug m3) with probability density (%) for NH;', NOs, SO/, OM and BC across
problematic (CORR <(0.5) spatially independent testing sites (al-a5). The dotted grey
lines represent the 2:1, 1:1, and 1:2 lines, and the solid red line represents the fitted
regression line. CORR represents the correlation coefficient, and RMSE represents root
mean square error. Probability distributions of error (observations minus retrievals, ug
m?) for NHs", NO35, SO+, OM and BC across 23 spatially independent testing sites
(b1-b5). ME: Mean Error; SD: Standard Deviation.”

4) The manuscript describes z-score normalization but not how denormalization is
performed. Why use aircraft-based measurements for denormalization instead of lidar-

derived extinction? Explain and quantify the sensitivity.

Authors’ response:
We sincerely thank the reviewer for this critical question, which has allowed us to

correct a significant point of confusion in our original description and to clarify our
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methodology. We wish to clarify that aircraft-based measurements should not be used
for the denormalization step. This was a serious misstatement in our original manuscript,
for which we apologize. The mean and standard deviation statistics used for inverse Z-
score transformation must be derived from the original training set. In response to the
reviewer’s suggestion, we have revised the entire manuscript by using the correct
denormalization parameters and added revised description of denormalization in the

revised manuscript.

Section 2.2.1, Line 157-169: *

Step 1. The multi-source input datasets undergo matching across spatiotemporal and
vertical dimensions. All input and output data are uniformly time-resolved to hourly
intervals, while vertical data are uniformly vertically resolved into 10 layers ranging
from 50 m to 3 km.

Step 2. The input data of the deep learning module are normalized by Z-score
normalization to stabilize the training process, accelerate training convergence, and
enhance model robustness (Al-Faiz et al., 2018; Cabello-Solorzano et al., 2023).

Step 3. Training deep learning module by using the normalized surface-level input data.
Step 4. Generating the normalized concentrations of the five PM>s chemical
components at each vertical layer by feeding the normalized height-level input data
into the deep learning module.

Step 5. Denormalizing the deep-learning output by using the inverse Z-score
transformation, with the mean and standard deviation statistics derived from the
original training set, thereby recovering the physical mass concentration unit (ug m>).
Step 6. Optimizing the denormalized deep learning output through implementing an
external physics constraint to obtain the high-quality vertical concentration profiles of
the five PM>s chemical components. Repeat steps 4-6 until the retrieval task is
complete.”

Section 2.2.3, Line 244-245: “The normalized vertical profiles of PM>s chemical
components generated by the deep learning module are denormalized by the statistical

characteristics of the initial input data of the surface-level observations...”
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5) The scaling procedure using the ratio of in situ to aircraft PM> s (“initially scaled...”)
is ambiguous. Provide a clear mathematical expression and discuss whether this

introduces bias.

Authors’ response:

We thank the reviewer for this important request for clarification. As presented in

the replies of Minor Comments #4, aircraft-based measurements should not be used
for the denormalization step. We have corrected the corresponding contents in the
revised manuscript, including the figures and results. The revised version can be found
in the uploaded file manuscript_with track changes.docx/pdf.
Section 2.2.3, Line 244-249: “The normalized vertical profiles of PM>s chemical
components generated by the deep learning module are denormalized by the statistical
characteristics of the initial input data of the surface-level observations. To reduce the
retrieval error induced by the inherent extrapolation limitations of deep learning
modules, a physics-constrained optimization scheme is incorporated into the retrieval
framework based on a revised Interagency Monitoring of Projected Visual Environment
(IMPROVE) Equation (Pitchford et al., 2007) and Non-dominated Sorting Genetic
Algorithm I (NSGA-II) (Verma et al., 2021).”

6) The description of the attention layer lacks physical interpretation. Is attention
purely data-driven, or does physics guide attention weights? If physics influences

attention, show how.

Authors’ response:

We thank the reviewer for prompting us to provide a clearer interpretation of the
attention mechanism within our retrieval framework.

In our framework, we employ a purely data-driven Channel Attention Mechanism
positioned between the CNN and BiLSTM layers. First, the multivariate features
learned by the convolutional layers are compressed through global average pooling.
Second, the compressed features are transmitted into fully connected layers with a
sigmoid activation function to generate a set of channel attention weights. Third, the
learned weights are utilized to re-scale the original feature channels from the

convolutional layers through element-wise multiplication.
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In response to the reviewer’s suggestion, we revised the methodology description

to clearly state the data-driven nature of the attention layer and its position within the
broader physics-constrained framework.
Section 2.2.2, Line 200-207: “The attention mechanism layer is incorporated with CNN
to amplify the weight of key information and mitigate the interference of redundant
information, leading to an enhancement in the quality of the CNN output (Wang and
Zhang, 2025). The attention mechanism is inspired by the ability of human vision to
selectively focus on key information (Guo et al., 2022). Our retrieval framework
integrates a data-driven channel attention mechanism, which rescales the original
feature channels from the convolutional layers through element-wise multiplication
using learned attention weights, thereby enhancing the importance of key features and
reduce the interference of irrelevant features. The attention weights are generated by
the FC layers with a sigmoid activation function (Eq. (2)) and then performs Schur
product operation with CNN multivariate output (Eq. (3)).”

7) Figure 1 needs explicit legends for color boxes/arrows and clear annotation of all

inputs and outputs.

Authors’ response:

In response to the reviewer’s suggestions, we have revised Fig .1 as follows.
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Figure 1: Remote-sensing retrieval framework for vertical distribution of five PM> s
chemical components (NH4", SO/, NOs, OM and BC). (U: U-component wind; V: V-
component wind, T: Temperature; RH: Relative Humidity, q: Specific Humidity; w:
Vertical Velocity; Z: Geopotential; O ¢y 532: Aerosol Extinction Coefficient at 532 nm;
CNN: Convolutional Neural Network, ReLU: Rectified Linear Unit; FC: Fully
Connected; BiLSTM: Bidirectional Long Short-Term Memory; IMPROVE: Interagency
Monitoring of Projected Visual Environment; NSGA-II: Non-dominated Sorting
Genetic Algorithm I).

8) Figure 5a does not effectively show differences between datasets. Consider: a)
scatterplots colored by site with standard deviations, b) an additional plot showing

error distribution histograms for each of the five components.

Authors’ response:
We thank the reviewer for the suggestions, and we have added Fig. $4 and Fig.

32



85 to provide supplementary information for Fig. 5a by using scatterplots and error
distribution histograms. Fig. $4 and Fig. S5 are presented in the replies of Major
Comments #5 A3.

9) Include full training hyperparameters: batch size, learning rate, optimizer, epochs,

early stopping criteria, normalization statistics.

Authors’ response:
In response to the reviewer’s suggestions, we have added a Table S2 into the
supplement to present full training hyperparameters.

Table S2. Optimal hyperparameters of the deep learning module.

Hyperparameter Decision space Optimal values
Initial learning rate [107° 107] 471 x 10
Factor for L, regularization [1071° 1072 1.54 x 10
Decay rate of gradient moving average [0.8 0.98] 0.80
Decay rate of squared gradient moving 0.8 0.99] 0.81
average
1 [864] 44

Number of filters 2 [864] 34

. 1 [316] 6
Size of filters 2 [316] 10
Number of layers [14] 2
Number of hidden units [60 200] 61
Maximum of Epochs \ 100
Size of mini-batch \ 64
Dropout value \ 0.25
Solver \ adam
Num of cross-validation folds \ 10

Section 2.2.2, Line 238-239: “...The number of optimization iteration is set to 30 and
the final optimal settings of model hyperparameters are presented in Table S2 of the

supplement.”
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