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1 General comments:

"4 Physics-Constrained Deep-Learning Framework based on Long-Term Remote-
Sensing Data for Retrieving Vertical Distribution of PM>s Chemical Components” by
Li et al., proposes a novel method to retrieve concentrations of major aerosol
components (sulfate, nitrate, ammonium, organic matter, and black carbon) from
ground-based lidar extinction data combined with ERAS5 meteorological reanalysis.
The authors validate their retrieved concentrations against surface, airborne, and
tower observations in the greater Beijing region, reporting generally high correlations.
Given the importance of aerosols in Earth's radiative balance and air quality,
developing methods that leverage lidar's high vertical resolution to determine
constituent species concentrations is a valuable endeavor. However, the manuscript in
its current form requires significant revisions to adequately describe the methodology

and contextualize the results.

Authors’ response:

We sincerely thank the Reviewer for the thoughtful assessment of our manuscript
and for recognizing the potential value of our work. In response to the Reviewer’s

comments, we have undertaken a comprehensive revision of the manuscript.



2 Major Comments:

1) A fundamental issue is how PM>s concentrations are distinguished from larger
particles using lidar extinction data. The lidar dataset presumably provides total
aerosol extinction from particles of all sizes, yet the work presented here centers only
on PM>s. The authors provide no explanation of how contributions from larger
particles (PMo, coarse mode, etc.) are excluded from the extinction signal (if they are).
This represents a potentially significant source of error, particularly during dust events

when coarse particles may dominate extinction.

Authors’ response:

We would like to thank the reviewer for the insightful suggestion. We fully concur
that the identification of PM> s from the total aerosol extinction signal influenced by
coarse-mode particles presents a potential source of error. We tackled this issue by
employing end-to-end machine learning training that utilizes long-term lidar signals
and observations of PM2s chemical compositions. The detailed explanations are as
follows:

a. The total aerosol extinction from particles of all sizes can serve as a direct
indicator for retrieving PMzs. Earlier studies have revealed a strong correlation
between PM s and total light attenuation from particles of all sizes, such as aerosol
optical depth (AOD) (van Donkelaar et al., 2010; Zhang et al., 2009) and aerosol
extinction coefficient (EXT) (Lowenthal and Kumar, 2016; Tao et al. 2012). Therefore,
the total light attenuation has been widely served as a crucial indicator for directly
predicting PM2 s concentrations in machine learning models (Table 1).

Table 1. Literature review of retrieving PM2 s from the total light attenuation based on

machine learning algorithms.

Machine learning

Target feature Optical input feature ) Citation
algorithm
Ground-level PM3 s AOD at 550nm CNN Park et al., 2020
TOA reflectance at 460nm, .
Ground-level PMa s Geoi-LSTM Wang et al., 2021
640nm and 2300nm

Gutiérrez-Avila

Ground-level PM; 5 AQOD at 470nm XGBoost
etal., 2022



PM, s vertical profile AOD at 532nm ET (best) Chen et al., 2022

) CNN-BILSTM )
PM s vertical profile ~ EXT at 580nm and 590nm (best) Yietal., 2025
es
PM, s vertical profile EXT at 532nm CNN-BILSTM  Wang et al., 2025

(CNN: Convolutional neural network; TOA: Top of atmosphere; Geoi-LSTM: Geo-intelligent Long
Short-Term Memory; XGBoost: eXtreme Gradient Boosting; CALIOP: Cloud-Aerosol Lidar with
Orthogonal Polarization; ET: Extra Trees; BILSTM: Bidirectional LSTM)

b. Machine learning methods can directly identify fine-mode particles from
lidar extinction signals through end-to-end learning. The retrieval framework in our
work establishes a nonlinear mapping relationship between the extinction coefficient at
532nm and the chemical compositions of PM s to identify fine-mode particles from
lidar extinction data. This end-to-end learning prevents the filtering out of lidar
extinction signals induced by larger particles (such as PM o), since the learning process
specifically captures the signal patterns associated with variations in the chemical
compositions of PM; 5, which were the data fed into the learning process.

c. Meteorological reanalysis data is used as auxiliary training data to
strengthen the EXT-PM: s relationship. As the reviewer noted, coarse particles may
predominate in extinction during dust events, making the identification of fine particles
based solely on the extinction coefficient inaccurate. Following the previous studies
(Lee et al., 2011; Xie et al., 2015), we integrated meteorological conditions (such as
temperature, relative humidity, wind conditions and vertical velocity) into the machine-
learning training process to better capture the spatiotemporal variations in the EXT-
PM; 5 relationship.

d. Long-term training datasets allow machine learning models to learn the
EXT-PM:5 relationship across various aerosol mode scenarios. We utilized a 18-
month dataset to establish a nonlinear mapping relationship between lidar signals and
PM: s chemical compositions. The training dataset encompasses various seasons and
multiple aerosol mode scenarios, including strong dust events reported in Beijing
during March 2021 (Gui et al., 2022). This diversity ensures that our machine learning
model encounters a range of aerosol mode distributions and learns to make accurate

predictions in the presence of coarse particles.
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2025.

Zhang, H., Hoff, R. M., & Engel-Cox, J. A.: The Relation between Moderate Resolution Imaging
Spectroradiometer (MODIS) Aerosol Optical Depth and PM, s over the United States: A Geographical
Comparison by U.S. Environmental Protection Agency Regions, J. Air Waste Manage., 59(11), 1358-

1369. https://doi.org/10.3155/1047-3289.59.11.1358, 2009.

2) The data processing section, especially the lidar data processing, lacks essential
technical details. Key missing information includes lidar instrument specifications,
data quality control procedures (e.g, cloud screening), lidar extinction retrieval
algorithms/methods, and the methods for reconciling the different vertical resolutions

between the lidar data (6m) and the meteorological inputs.

Authors’ response:

We sincerely apologize for the omission of technical details related to lidar
specification parameters and data processing in the original manuscript. In response to
the reviewers’ feedback, we have revised the original manuscript and supplemented the
content in the supplementary materials. Section 2.1 was exchanged with Section 2.2
for better description. The specific additions are outlined below.

Section 2.1.1: “The o0ys. 53, data for deep learning module training and PM:s
chemical component retrieving is obtained from a ground-based dual-wavelength
polarization Mie lidar at the Institute of Atmospheric Physics (IAP), Chinese Academy
of Sciences (CAS), Beijing (39.98°N, 116.38°E). This Mie lidar has consistently detected
optical signals since 2017, offering a temporal resolution of 15 minutes and a vertical
resolution of 6 m. The lidar specification parameters and data preprocessing are
detailed in Text SI (and Table S1) and Text S2 of the supplement, respectively. The
Opscs3z data from February 8-15", 2021 at 23 lidar sites in the North China Plain
(NCP), provided by the China National Environmental Monitoring Center (CNEMC),
were utilized to assess the spatial generalization ability. The multi-site data offers a
temporal resolution of 5-20 minutes and a vertical resolution of 7.5 m. To generate an

hourly resolution lidar dataset, minute-level data were resampled using a simple
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averaging method. Specifically, the arithmetic mean was calculated from all valid
minute-level data points within each non-overlapping one-hour window aligned to the
start of each hour (e.g., from 00:00 to 00:59).”

Section 2.1.2, Line 111-115: ““... The grid cells of EAC4 and ERAS5 that contain the lidar
sites were extracted using the k-nearest neighbor search method based on longitude
and latitude data (Friedman et al., 1977). The lidar data and the reanalysis data were
interpolated onto a preset vertical grid with a height range of 50 m to 3 km using linear
interpolation. The preset height information is presented in Text S2 of the supplement.”
Supplement, Text S1, Lidar instrument specifications: “As shown in Table S1, the laser
emission at wavelengths of 532 nm and 1064 nm relies on a Nd:YAG laser with a second
harmonic generator and is corrected by a beam expander before emission. The emitted
laser energies at 532 nm and 1064 nm are 30 mJ and 20 mJ, respectively. The laser
pulse repetition frequency can reach up to 20 Hz and is set to 10 Hz in practice. The
scattered light is collected by a Schmidt-Cassegrain telescope with a diameter of 20 cm
and then is collimated and corrected toward a dichroic mirror to separate the received
lidar signals at 532 nm and 1064 nm. The lidar signal at 532 nm is separated into
horizontal and vertical polarization components and is measured by a photomultiplier
tube. The lidar signal at 1064 nm is directly detected by an avalanche photodiode.
Finally, the detected lidar signals are recorded by a digital oscilloscope and then are

transferred to a computer for data storage.”

Table S1. The main specification parameters of dual-wavelength polarization Mie Lidar.

Parameter categories Description
Laser type Flashlamp pumped Nd:YAG
Laser pulse energy 532 nm 30 mJ/pulse
1064 nm 20 mJ/pulse
Pulse Repetition Frequency <20 Hz, 10 Hz used in this work
Telescope Type Schmidt Cassegrain
Telescope diameter 20 cm
Field of view 1 mrad
Detector type 532 nm Photomultiplier tube (PMT)
1064 nm Avalanche photodiode (APD)
Data acquisition system Digital oscilloscope




Supplement, Text S2, Lidar data preprocessing: “A comprehensive data quality control
procedure was implemented on the original lidar signals to mitigate issues raised by
electrical signal errors and signal offsets caused by background radiation. First,
background noise was removed by subtracting the average value of signals within the
altitudes of 3-9 km from the original lidar signal. Second, the lidar signal was range-
corrected by multiplying by the square of the altitude and corrected for the geometric
overlap effect using an empirically determined function derived from lidar profiles
under well-mixed atmospheric conditions. Third, a cloud-screening algorithm was
applied to identify and remove profiles contaminated by clouds. The algorithm operates
by first calculating the vertical gradient of the range-corrected signal. It then identifies
potential cloud bases as regions where this gradient exceeds a primary threshold of 4
X10® for at least 3 consecutive resolution layers. For each candidate cloud layer, the
algorithm determines the cloud top and then validates the layer by checking if the
maximum signal within it surpasses a secondary threshold of 5 X 10°%. Profiles
containing such validated cloud layers were entirely excluded from the subsequent
aerosol analysis. Finally, the extinction coefficient at a wavelength of 532 nm was
retrieved based on Fernald algorithm (Fernald, 1984).

To facilitate data fusion and comply with the input requirements of the machine
learning model, all data were vertically re-sampled onto a standardized set of preset
height levels ranging from 50 m to 3 km. The high-resolution lidar data and the low-
resolution global reanalysis data were interpolated onto this uniform vertical grid using
linear interpolation. The preset height grid with logarithmic intervals can be
determined by Eq. SI-S2. Logarithmic interval amplifies vertical resolution within the
planetary boundary layer, where fine-mode particles and their chemical components

are typically most concentrated (Yang et al., 2024).

hi = 1010910(Zmin)+(i—1)><AZ,i =1,2,...n (51)
Az = 10910Zmax) - iogm(zmm) )
n —

Where h; is the height at i vertical layer, Z,;y, is the minimum height, AZ is

the logarithmic interval, Z,,, is the maximum height, and n is the total number of
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vertical layers.”
Reference
Fernald, F. G.: Analysis of atmospheric lidar observations: some comments, Appl. Opt., 23, 652-

653, https://doi.org/10.1364/A0.23.000652, 1984.

Yang, T., Li, H., Xu, W., Song, Y., Xu, L., Wang, H., Wang, F., Sun, Y., Wang, Z., and Fu, P.: Strong
Impacts of Regional Atmospheric Transport on the Vertical Distribution of Aerosol Ammonium over

Beijing, Environ. Sci. Technol. Lett., 11, 29-34, https://doi.org/10.1021/acs.estlett.3c00791, 2024.

3) The validation dataset is insufficient to support the broad conclusions presented.
Aircraft validation comprises only four flights (limited to three different calendar
months), while tower measurements span just 11 days across two time periods. This is
of particular importance because the retrieved aerosol concentrations appear to show
similar vertical distributions across different seasons. The limited validation prevents
assessment of whether this method captures realistic atmospheric processes or simply
learns scaling relationships under specific (mostly wintertime) meteorological

conditions.

Authors’ response:

We fully agree that robust and comprehensive validation is essential to support the
generalizability of our retrieval framework in spatiotemporally varying scenarios. In
this work, we designed a multi-faceted validation strategy to thoroughly validate the
model’s generalizability from different perspectives by using the non-training dataset.
The non-training dataset contains spatiotemporal information that the machine learning
model has never learned, enabling a validation of whether this method captures realistic
atmospheric processes. The validation strategy is outlined as follows.

a. The independent validation/testing sets, which were not used in deep learning,
are employed to evaluate whether the nonlinear mapping relationship established by the
model is reliable. As presented in Fig. 3 of Section 3.1.1, the results demonstrated high
predictive accuracy on the independent validation/testing sets, with five PM» s chemical

species showing high agreement (R > 0.69, RMSE < 8.87 pg m™) with ground
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observations, indicating that our model can learn complex and nonlinear relationships
rather than memorizing the training data.

b. We utilized an independent ground observation set of PM; s concentrations from
three years not included in model training to validate the temporal generalization of our
method. The sum of our retrieved PM» 5 chemical species concentrations was compared
against these independent measurements. As presented in Fig. 4b, ¢ and d of Section
3.1.2, the results indicate that our method accurately characterizes the changes in mass
concentrations of various PM2s chemical components across all seasons and under
diverse meteorological conditions, not just the wintertime conditions.

¢. We utilized a ground observation set of chemical component concentrations
from 23 independent sites across the North China Plain (NCP) to validate the spatial
generalization of our method. As presented in Fig. 5 of Section 3.1.2, comparisons
between our retrieved surface concentrations and measurements from these untrained
sites showed moderate agreement, indicating that our method is not site-specific but
possesses robust predictive power on a regional scale.

d. We acknowledge the well-noted challenge of acquiring high-frequency vertical
profile observation data. The validation results based on 4 aircraft campaigns and 11-
day tower-based measurements showed that our retrieved vertical profiles of chemical
components showed encouraging consistency with observations in both shape and
magnitude. Most importantly, these vertical validation cases must be interpreted within
the context of the replies of Major Comments #3b, ¢. The strong performance in
spatiotemporal generalization provides a foundational credibility that our method can
capture realistic relationships between extinction coefficient and chemical species
(Major Comments #3b, c). The vertical validation then confirms that these
relationships correctly translate into accurate vertical structures (Major Comments
#3d).

We acknowledge that acquiring more observations from tower-based and aircraft-
based campaigns is essential for adequately strengthening the validation of our method.

We openly discuss the limitations regarding the sample size of vertical validation data



in Section 3.4 Limitations and uncertainties. Besides, we emphasize the significant
role of temporal generalization validation in addressing concerns about seasonal
representativeness in Section 2.2.4.

Section 2.2.4, Line 330-332: “... (1) We compare the retrieved mass concentrations with
the observed values at the surface level during a training year (2021) and three non-
training years (2017, 2018 and 2024) to validate the temporal generalization in all
seasons and under diverse meteorological conditions...”

Section 3.4: “The deep learning module in our retrieval framework can establish a
powerful mapping between optical and meteorological features and PM> s chemical
species, and physics-based explicit constraints can enhance the reliability and
expandability of the mapping relationships. However, several limitations and sources
of uncertainty remain and should be acknowledged when interpreting the results and

extending the framework to broader applications.

First, the spatial scope of the training data is predominantly restricted to the NCP
region. Expanding the retrieval framework with data from more diverse geographical
locations is necessary to improve its global transferability. Second, the current retrieval
framework primarily relies on extinction coefficients at a wavelength of 532 nm,
exhibiting dependence on specific lidar instruments. Future retrieval framework should
focus on integrating diverse optical features from additional wavelengths to enhancing
adaptability and transferability. Third, the auxiliary input data used in both the deep
learning module and the physics-constrained optimization are obtained from global
reanalysis products, which may not fully capture local atmospheric conditions at
specific observational sites, thereby introducing representativeness errors into the
retrievals. Acquiring the vertical observational data for these auxiliary features can
effectively mitigate the uncertainty induced by the input data. Fourth, the IMPROVE
equation applied as an external physical constraint may introduce additional
uncertainty into the retrievals due to its systematic estimation biases (Lowenthal and

Kumar, 2016). Moreover, since the IMPROVE equation was applied as an external
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physical constraint to optimize the retrievals of PM>s chemical components, the
machine learning model itself was not intrinsically constrained by physical principles
during its training. Future work could incorporate an internal physical constraint into
the machine learning model to improve its physical interpretability by formulating a
hybrid loss function for training that combines the traditional data-fitting term with a
physical term. Finally, long-term acquisition of independent vertical profiling data from
both tower-based and aircraft-based campaigns is essential for a comprehensive
assessment of the robustness of the vertical retrievals with respect to varying sites,

aerosol types, and seasons.”

4) The manuscript would benefit from some extensive editing to improve its readability.
Sentences are overly dense, and the model development section would be difficult for
most readers to follow. The excessive number of figures (~75 figure/subplots) dilutes

the presentation of key results.

Authors’ response:

We sincerely thank the reviewer for this critical feedback regarding the readability
and presentation of the manuscript. In response to the reviewer’s suggestions, we have
undertaken a comprehensive revision of the manuscript, including the entire text, all
figures, and their captions. Several detailed supporting subfigures have been moved to
the supplement materials to maintain a clean and focused flow in the main text while
still providing all necessary data for interested specialists. The final revised manuscript

can be found in the uploaded file manuscript with track changes.docx.

5) The manuscript lacks an adequate discussion of the limitations of this retrieval
technique. This would be essential for readers considering applying this method in

different regions or with slightly different instruments.

Authors’ response:

We sincerely thank the reviewer for this critical suggestion. We fully agree that a
11



thorough discussion of the limitations is essential for effective application in different
scenarios. In response, we have added a new section titled “3.4 Limitations and
uncertainties” of our revised manuscript. This section provides a detailed examination
of the constraints and potential uncertainties of our proposed retrieval framework.
Section 3.4 Limitations and uncertainties has been presented in the replies of Major

Comments #3.

6) The SHAP feature importance analysis raises some questions and methodological
concerns. For example, why are specific humidity and relative humidity treated as
independent? These are clearly related. There is also lacking a discussion about the
definition of and why "geopotential” is so important. Also, it strikes me that the
combined SHAP value of extinction, relative humidity, and v-wind being under 50% is
relatively low considering they are noted to determine the vertical structure and

chemical and physical processes (L410-411).

Authors’ response:

We thank the reviewer for these insightful comments and methodological concerns
regarding the SHAP analysis. We have revised the manuscript accordingly to address

each point.
Q1: Why are specific humidity and relative humidity treated as independent?

Al: Relative humidity exerts a well-established driving role on PM; 5 through its
influence on hygroscopic growth, aqueous chemistry, and heterogeneous reactions
(Chen et al., 2020). In contrast, specific humidity, which represents the total moisture
content of a wet air mass, is more closely linked to the vertical diffusion and wet
scavenging of PMa s (Chatfield et al., 2020). Therefore, including both relative humidity
and specific humidity as independent features allows the machine model to leverage

their complementary roles in governing PM3 s chemical compositions.

Q2: Lacking a discussion about the definition of and why “geopotential” is so

important.
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A2: Geopotential is an integrated feature that reflects the synoptic meteorological
conditions when combined with wind fields and is closely related to PMa s pollution
processes, such as accumulation, transboundary transport and dispersion (Jia et al.,
2022; Wang et al., 2021). Crucially, synoptic meteorological conditions identified by
geopotential patterns largely determine the development of the planetary boundary

layer, influencing the vertical distribution of PM» s (Miao et al., 2022; Xu et al., 2019).

Section 3.2, Line 473-477: “...Specific humidity (SH) and geopotential (GEOP) also
provided important contributions (13.04% and 12.85%, respectively). SH is related to
the vertical diffusion and wet scavenging of pollutants (Chatfield et al., 2020) and
GEOP identifies the synoptic meteorological patterns that affect both horizontal
process (Jia et al., 2022; Wang et al., 2021) and vertical distribution of pollutants within
the boundary layer (Miao et al., 2022; Xu et al., 2019).”

Reference

Chatfield, R. B., et al.: Satellite mapping of PM, s episodes in the wintertime San Joaquin Valley: a
“static”  model using column water vapor, Atmos. Chem. Phys., 20, 4379-4397,
https://doi.org/10.5194/acp-20-4379-2020, 2020.

Chen, Z., et al.: Influence of meteorological conditions on PM, s concentrations across China: A
review of methodology and mechanism, Environ. Int., 139, 105558,

https://doi.org/10.1016/j.envint.2020.105558, 2020.

Jia, Z., et al.: The impact of large-scale circulation on daily fine particulate matter (PM»s) over
major populated regions of China in winter, Atmos. Chem. Phys., 22, 6471-6487,
https://doi.org/10.5194/acp-22-6471-2022, 2022.

Miao, Y., et al.: Influence of Multi-Scale Meteorological Processes on PM» s Pollution in Wuhan,

Central China, Front. Environ. Sci., 10, https://doi.org/10.3389/fenvs.2022.918076, 2022.

Wang, X., et al.. Dominant synoptic patterns associated with the decay process of PM2 s pollution
episodes around Beijing, Atmos. Chem. Phys., 21, 2491-2508, https://doi.org/10.5194/acp-21-2491-2021,
2021.

Xu, Y., et al.: Two Inversion Layers and Their Impacts on PM, s Concentration over the Yangtze
River Delta, China, J. Appl. Meteor. Climatol., 58, 2349-2362, https://doi.org/10.1175/JAMC-D-19-
0008.1, 2019.

Q3: The combined SHAP value of extinction, relative humidity, and v-wind being
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under 50% is relatively low considering they are noted to determine the vertical

structure and chemical and physical processes.

A3: The SHAP values presented in Section 3.2 were derived from a dataset
spanning approximately two years. This long-term perspective reveals that the vertical
distribution of PM» s chemical components is governed by the complex and nonlinear
interaction of a multitude of driving features, which contrasts with specific pollution
episodes where a single driver may be dominant. From another perspective, our results
indicate that the machine learning model effectively captured a complex multi-factorial
relationship, rather than relying on an oversimplified representation dependent on a few
dominant features. In response to this comment, we have revised the manuscript by
replacing “dominant” with the more appropriate term “significant”. The revision is as

follows.

Section 3.2, Line 459-462: “Figure 7al-a5 depicts that the aerosol extinction
coefficient at 532 nm (EXT), relative humidity (RH) and v-component wind (VW) are
the significant input features for predicting the five PM> 5 chemical components with an

averaged relative contribution of 14.43 %, 15.84 % and 16.77 %. These features largely

affect the vertical structure, chemical and physical processes, respectively...”

3 Minor Comments:

1) The introduction would benefit from making note of previous work in retrieving PM> s

concentrations from space-based lidar (e.g., Matus et al., 2024; Toth et al., 2022).

Authors’ response:

We thank the reviewer for the suggestion. The revised version is as follows.
Introduction, Line 45-47: “...Continuous remote-sensing lidar detection technologies
with high temporal and vertical resolution serve as robust pathways for the constant
identification of PM> s and its components across all altitudes (Matus et al., 2024, Toth

etal, 2022; Wang et al., 2022) ...”

Reference
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Matus, A. V., Nowottnick, E. P., Yorks, J. E., and da Silva, A. M.: Enhancing surface PM, s air
quality estimates in GEOS using CATS lidar data, Earth and Space Sci., 12, ¢2024EA004078,

https://doi.org/10.1029/2024EA 004078, 2025.

Toth, T. D., Zhang, J., Vaughan, M. A., Reid, J. S., and Campbell, J. R.: Retrieving particulate matter
concentrations over the contiguous United States using CALIOP observations, Atmos. Environ., 274,

118979, https://doi.org/10.1016/j.atmosenv.2022.118979, 2022.

2) L23: Specify the Chinese megacity (Beijing-Tianjin-Hebei region)

Authors’ response:

We thank the reviewer for the suggestion. The revised version is as follows.
Abstract, Line 21-23: “... Finally, a dataset of vertical mass concentration profiles of
these components over six years in a Chinese megacity (Beijing) was generated by the

retrieval framework...”

3) L41-42: Citing papers for examples of tower, aircraft, balloon, and UAV campaigns

is not necessary. These are very common platforms for atmosphere remote sensing.

Authors’ response:

We thank the reviewer for the suggestion, and we have removed these citations in
the revised manuscript.
Introduction, Line 41-42: “Field campaigns are widely conducted to obtain vertical
profiles of PM>s chemical components by mounting observation instruments on

meteorological towers, aircraft, tethered balloons and unmanned aerial vehicles...”

4) L263-264: Specify how these data are averaged.

Authors’ response:

We thank the reviewer for the suggestion. The revised version is as follows.
Section 2.1.1, Line 96-98: “...To generate an hourly resolution lidar dataset, minute-

level data were resampled using a simple averaging method. Specifically, the arithmetic
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mean was calculated from all valid minute-level data points within each non-
overlapping one-hour window aligned to the start of each hour (e.g., from 00:00 to
00:59).”

5) Figure 3: Specify the observations used in the figures. All altitudes from the tower

and airplane?

Authors’ response:

We thank the reviewer for the suggestion. To clarify, Fig. 3 exclusively uses
ground-level observations to independently validate the ground-level predictions from
our machine learning model, as the model itself was trained and tested exclusively on
surface data. The tower-based and aircraft-based measurements were reserved for the
independent validation of the retrieved vertical profiles, which is presented in Fig 6. In
response to the suggestion, the revised version is as follows.

Section 2.2.4, Line 322-327: “An hourly multivariate dataset with extensive temporal
coverage was employed to train and evaluate the deep learning module. To maintain
temporal independence, the training (and validation) set was constructed from a I-year
(2021) time-series dataset obtained from a Beijing site (Fig. S1), while the testing set
contains an independent 6-month (Jan 1-Mar 31 and Jun I to Aug 31, 2022) time-series
dataset obtained from the same site. A 10-fold time-series cross-validation (CV) scheme
was designed for the training (and validation) set to preserve its temporal order and
prevent future information leakage, which is detailed in Text S3 and Fig. S2 of the
supplement. The iteration number of Bayesian optimization is set to 20.”

Section 3.1.1, Line 345-347: “The 10-fold CV sets and a testing set with temporal
independence are utilized to evaluate the predictive performance of the deep learning
module, which is quantified by the discrepancies between simulations and observations

at ground level for NH,", SO+, NOs, OM and BC...”

6) Figure 4. There are many cases where the retrieval is not particularly close to the

observations. A broader discussion about these cases would be valuable.
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Authors’ response:

We thank the reviewer for the suggestion and have added a broader discussion in
the revised manuscript as follows. Besides, the discussion in retrieval uncertainties has
been presented in the replies of Major Comments #3.

Section 3.1.2, Line 385-392: “...These results indicate that the retrieval framework
roughly interprets the changes in concentrations of various chemical components
across different periods, exhibiting fundamental temporal generalization capabilities.
However, the retrieved concentrations show some overestimation cases during autumn
in 2018 and spring in 2024, potentially associated with the uncertainties induced by the
training data. The training data may lack a sufficiently diverse spectrum of
meteorological conditions and pollution patterns, which limits the temporal
generalizability of the retrieval framework across all complex and dynamic
atmospheric scenarios. Future efforts should enhance retrieval accuracy by
augmenting the training data with observations spanning a wider range of temporal

conditions.”

7) Figure 5: Subplot "a" needs a better explanation. What is conveyed differently in the
histograms versus the dots? Subplots in the "b" and "c" rows would benefit from a better
map. Readers from outside China may be lost without other context (coloring the

ocean/seas, highlighting major cities, etc.)

Authors’ response:

Figure 5a highlights the data distribution properties derived from the retrieved and
observed surface mass concentration of NH4", NO3", SO4*, OM and BC at 39 non-
training BTH lidar sites over a period of February 8-15th, 2021. Figure 5a combines
dotplots, boxplots and Kernel density. Kernel density highlights the overall shape of the
data distribution. Dotplots, while similar in Kernel density, also convey information
about the exact number of datapoints across the distribution.

In response to the Reviewer’s comments, we have removed the dotplots. Because

the high density of data points resulted in a cluttered presentation, and the information
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they convey about the distribution is effectively captured by the kernel density, which
provides a smoother and more interpretable representation. Then we added geographic

basemaps into Figure 5b, c for better presentation.
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Figure 5: Data distribution properties of retrieved and observed surface mass
concentration (ug m>) of NHy", NO3", SO+, OM and BC at 23 non-training NCP lidar
sites over a period of February 8-15", 2021, presented by a combination of boxplots
and kernel density (a). Spatial distribution of Pearson correlation coefficient (CORR)
between retrieved and observed surface mass concentration of NHs* (bl), NOs (b2),
SO+ (b3), OM (b4) and BC (b5). (cl-c5) Same as (bI1-b5) but for root mean square
error  (RMSE, ug m>). The geographic basemap is hosted by Esri

(https.://www.esri.com/en-us/home).

8) L418: Define "upper atmosphere" in this context

Authors’ response:

We thank the reviewer for the reminder. The term “upper atmosphere” is
inaccurate, and we have replaced with “upper planetary boundary layer” in the revised

manuscript.
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Section 3.2, Line 469-470: “...The aerosol content in the upper planetary boundary
layer is relatively low...”

Section 3.2, Line 471-472: “...Conversely, pollution transport in the upper planetary
boundary layer is less affected by interference from complex underlying surfaces than

near-surface transport...”
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