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Anonymous Referee #1 

1 General comments: 

"A Physics-Constrained Deep-Learning Framework based on Long-Term Remote-

Sensing Data for Retrieving Vertical Distribution of PM2.5 Chemical Components” by 

Li et al., proposes a novel method to retrieve concentrations of major aerosol 

components (sulfate, nitrate, ammonium, organic matter, and black carbon) from 

ground-based lidar extinction data combined with ERA5 meteorological reanalysis. 

The authors validate their retrieved concentrations against surface, airborne, and 

tower observations in the greater Beijing region, reporting generally high correlations. 

Given the importance of aerosols in Earth's radiative balance and air quality, 

developing methods that leverage lidar's high vertical resolution to determine 

constituent species concentrations is a valuable endeavor. However, the manuscript in 

its current form requires significant revisions to adequately describe the methodology 

and contextualize the results. 

Authors’ response: 

We sincerely thank the Reviewer for the thoughtful assessment of our manuscript 

and for recognizing the potential value of our work. In response to the Reviewer’s 

comments, we have undertaken a comprehensive revision of the manuscript. 
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2 Major Comments: 

1) A fundamental issue is how PM2.5 concentrations are distinguished from larger 

particles using lidar extinction data. The lidar dataset presumably provides total 

aerosol extinction from particles of all sizes, yet the work presented here centers only 

on PM2.5. The authors provide no explanation of how contributions from larger 

particles (PM10, coarse mode, etc.) are excluded from the extinction signal (if they are). 

This represents a potentially significant source of error, particularly during dust events 

when coarse particles may dominate extinction. 

Authors’ response: 

We would like to thank the reviewer for the insightful suggestion. We fully concur 

that the identification of PM2.5 from the total aerosol extinction signal influenced by 

coarse-mode particles presents a potential source of error. We tackled this issue by 

employing end-to-end machine learning training that utilizes long-term lidar signals 

and observations of PM2.5 chemical compositions. The detailed explanations are as 

follows: 

a. The total aerosol extinction from particles of all sizes can serve as a direct 

indicator for retrieving PM2.5. Earlier studies have revealed a strong correlation 

between PM2.5 and total light attenuation from particles of all sizes, such as aerosol 

optical depth (AOD) (van Donkelaar et al., 2010; Zhang et al., 2009) and aerosol 

extinction coefficient (EXT) (Lowenthal and Kumar, 2016; Tao et al. 2012). Therefore, 

the total light attenuation has been widely served as a crucial indicator for directly 

predicting PM2.5 concentrations in machine learning models (Table 1). 

Table 1. Literature review of retrieving PM2.5 from the total light attenuation based on 

machine learning algorithms. 

Target feature Optical input feature 
Machine learning 

algorithm 
Citation 

Ground-level PM2.5 AOD at 550nm CNN Park et al., 2020 

Ground-level PM2.5 
TOA reflectance at 460nm, 

640nm and 2300nm 
Geoi-LSTM Wang et al., 2021 

Ground-level PM2.5 AOD at 470nm XGBoost 
Gutiérrez-Avila 

et al., 2022 
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PM2.5 vertical profile AOD at 532nm ET (best) Chen et al., 2022 

PM2.5 vertical profile EXT at 580nm and 590nm 
CNN-BiLSTM 

(best) 
Yi et al., 2025 

PM2.5 vertical profile EXT at 532nm CNN-BiLSTM Wang et al., 2025 

(CNN: Convolutional neural network; TOA: Top of atmosphere; Geoi-LSTM: Geo-intelligent Long 

Short-Term Memory; XGBoost: eXtreme Gradient Boosting; CALIOP: Cloud-Aerosol Lidar with 

Orthogonal Polarization; ET: Extra Trees; BiLSTM: Bidirectional LSTM) 

b. Machine learning methods can directly identify fine-mode particles from 

lidar extinction signals through end-to-end learning. The retrieval framework in our 

work establishes a nonlinear mapping relationship between the extinction coefficient at 

532nm and the chemical compositions of PM2.5 to identify fine-mode particles from 

lidar extinction data. This end-to-end learning prevents the filtering out of lidar 

extinction signals induced by larger particles (such as PM10), since the learning process 

specifically captures the signal patterns associated with variations in the chemical 

compositions of PM2.5, which were the data fed into the learning process. 

c. Meteorological reanalysis data is used as auxiliary training data to 

strengthen the EXT-PM2.5 relationship. As the reviewer noted, coarse particles may 

predominate in extinction during dust events, making the identification of fine particles 

based solely on the extinction coefficient inaccurate. Following the previous studies 

(Lee et al., 2011; Xie et al., 2015), we integrated meteorological conditions (such as 

temperature, relative humidity, wind conditions and vertical velocity) into the machine-

learning training process to better capture the spatiotemporal variations in the EXT-

PM2.5 relationship. 

d. Long-term training datasets allow machine learning models to learn the 

EXT-PM2.5 relationship across various aerosol mode scenarios. We utilized a 18-

month dataset to establish a nonlinear mapping relationship between lidar signals and 

PM2.5 chemical compositions. The training dataset encompasses various seasons and 

multiple aerosol mode scenarios, including strong dust events reported in Beijing 

during March 2021 (Gui et al., 2022). This diversity ensures that our machine learning 

model encounters a range of aerosol mode distributions and learns to make accurate 

predictions in the presence of coarse particles. 
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2025. 

Zhang, H., Hoff, R. M., & Engel-Cox, J. A.: The Relation between Moderate Resolution Imaging 

Spectroradiometer (MODIS) Aerosol Optical Depth and PM2.5 over the United States: A Geographical 

Comparison by U.S. Environmental Protection Agency Regions, J. Air Waste Manage., 59(11), 1358-

1369. https://doi.org/10.3155/1047-3289.59.11.1358, 2009. 

 

2) The data processing section, especially the lidar data processing, lacks essential 

technical details. Key missing information includes lidar instrument specifications, 

data quality control procedures (e.g, cloud screening), lidar extinction retrieval 

algorithms/methods, and the methods for reconciling the different vertical resolutions 

between the lidar data (6m) and the meteorological inputs. 

Authors’ response: 

We sincerely apologize for the omission of technical details related to lidar 

specification parameters and data processing in the original manuscript. In response to 

the reviewers’ feedback, we have revised the original manuscript and supplemented the 

content in the supplementary materials. Section 2.1 was exchanged with Section 2.2 

for better description. The specific additions are outlined below. 

Section 2.1.1: “The 𝜎𝑏𝑠𝑐,532  data for deep learning module training and PM2.5 

chemical component retrieving is obtained from a ground-based dual-wavelength 

polarization Mie lidar at the Institute of Atmospheric Physics (IAP), Chinese Academy 

of Sciences (CAS), Beijing (39.98°N,116.38°E). This Mie lidar has consistently detected 

optical signals since 2017, offering a temporal resolution of 15 minutes and a vertical 

resolution of 6 m. The lidar specification parameters and data preprocessing are 

detailed in Text S1 (and Table S1) and Text S2 of the supplement, respectively. The 

𝜎𝑏𝑠𝑐,532 data from February 8-15th, 2021 at 23 lidar sites in the North China Plain 

(NCP), provided by the China National Environmental Monitoring Center (CNEMC), 

were utilized to assess the spatial generalization ability. The multi-site data offers a 

temporal resolution of 5-20 minutes and a vertical resolution of 7.5 m. To generate an 

hourly resolution lidar dataset, minute-level data were resampled using a simple 

https://doi.org/10.3155/1047-3289.59.11.1358
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averaging method. Specifically, the arithmetic mean was calculated from all valid 

minute-level data points within each non-overlapping one-hour window aligned to the 

start of each hour (e.g., from 00:00 to 00:59).” 

Section 2.1.2, Line 111-115: “…The grid cells of EAC4 and ERA5 that contain the lidar 

sites were extracted using the k-nearest neighbor search method based on longitude 

and latitude data (Friedman et al., 1977). The lidar data and the reanalysis data were 

interpolated onto a preset vertical grid with a height range of 50 m to 3 km using linear 

interpolation. The preset height information is presented in Text S2 of the supplement.” 

Supplement, Text S1, Lidar instrument specifications: “As shown in Table S1, the laser 

emission at wavelengths of 532 nm and 1064 nm relies on a Nd:YAG laser with a second 

harmonic generator and is corrected by a beam expander before emission. The emitted 

laser energies at 532 nm and 1064 nm are 30 mJ and 20 mJ, respectively. The laser 

pulse repetition frequency can reach up to 20 Hz and is set to 10 Hz in practice. The 

scattered light is collected by a Schmidt-Cassegrain telescope with a diameter of 20 cm 

and then is collimated and corrected toward a dichroic mirror to separate the received 

lidar signals at 532 nm and 1064 nm. The lidar signal at 532 nm is separated into 

horizontal and vertical polarization components and is measured by a photomultiplier 

tube. The lidar signal at 1064 nm is directly detected by an avalanche photodiode. 

Finally, the detected lidar signals are recorded by a digital oscilloscope and then are 

transferred to a computer for data storage.” 

 

Table S1. The main specification parameters of dual-wavelength polarization Mie Lidar. 

Parameter categories Description 

Laser type Flashlamp pumped Nd:YAG 

Laser pulse energy 
532 nm 30 mJ/pulse 

1064 nm 20 mJ/pulse 

Pulse Repetition Frequency ≤ 20 Hz, 10 Hz used in this work 

Telescope Type Schmidt Cassegrain 

Telescope diameter 20 cm 

Field of view 1 mrad 

Detector type 
532 nm Photomultiplier tube (PMT) 

1064 nm Avalanche photodiode (APD) 

Data acquisition system Digital oscilloscope 

 



 

7 

 

Supplement, Text S2, Lidar data preprocessing: “A comprehensive data quality control 

procedure was implemented on the original lidar signals to mitigate issues raised by 

electrical signal errors and signal offsets caused by background radiation. First, 

background noise was removed by subtracting the average value of signals within the 

altitudes of 3-9 km from the original lidar signal. Second, the lidar signal was range-

corrected by multiplying by the square of the altitude and corrected for the geometric 

overlap effect using an empirically determined function derived from lidar profiles 

under well-mixed atmospheric conditions. Third, a cloud-screening algorithm was 

applied to identify and remove profiles contaminated by clouds. The algorithm operates 

by first calculating the vertical gradient of the range-corrected signal. It then identifies 

potential cloud bases as regions where this gradient exceeds a primary threshold of 4

×10-8 for at least 3 consecutive resolution layers. For each candidate cloud layer, the 

algorithm determines the cloud top and then validates the layer by checking if the 

maximum signal within it surpasses a secondary threshold of 5 × 10-6. Profiles 

containing such validated cloud layers were entirely excluded from the subsequent 

aerosol analysis. Finally, the extinction coefficient at a wavelength of 532 nm was 

retrieved based on Fernald algorithm (Fernald, 1984). 

To facilitate data fusion and comply with the input requirements of the machine 

learning model, all data were vertically re-sampled onto a standardized set of preset 

height levels ranging from 50 m to 3 km. The high-resolution lidar data and the low-

resolution global reanalysis data were interpolated onto this uniform vertical grid using 

linear interpolation. The preset height grid with logarithmic intervals can be 

determined by Eq. S1-S2. Logarithmic interval amplifies vertical resolution within the 

planetary boundary layer, where fine-mode particles and their chemical components 

are typically most concentrated (Yang et al., 2024). 

ℎ𝑖 = 10𝑙𝑜𝑔10(𝑍𝑚𝑖𝑛)+(𝑖−1)×∆𝑍, 𝑖 = 1, 2, … , 𝑛 (𝑆1) 

∆𝑍 =
𝑙𝑜𝑔10(𝑍𝑚𝑎𝑥) − 𝑙𝑜𝑔10(𝑍𝑚𝑖𝑛)

𝑛 − 1
(𝑆2) 

Where ℎ𝑖 is the height at 𝑖th vertical layer, 𝑍𝑚𝑖𝑛 is the minimum height, ∆𝑍 is 

the logarithmic interval, 𝑍𝑚𝑎𝑥 is the maximum height, and 𝑛 is the total number of 
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vertical layers.” 

Reference 

Fernald, F. G.: Analysis of atmospheric lidar observations: some comments, Appl. Opt., 23, 652-

653, https://doi.org/10.1364/AO.23.000652, 1984. 

Yang, T., Li, H., Xu, W., Song, Y., Xu, L., Wang, H., Wang, F., Sun, Y., Wang, Z., and Fu, P.: Strong 

Impacts of Regional Atmospheric Transport on the Vertical Distribution of Aerosol Ammonium over 

Beijing, Environ. Sci. Technol. Lett., 11, 29-34, https://doi.org/10.1021/acs.estlett.3c00791, 2024. 

 

3) The validation dataset is insufficient to support the broad conclusions presented. 

Aircraft validation comprises only four flights (limited to three different calendar 

months), while tower measurements span just 11 days across two time periods. This is 

of particular importance because the retrieved aerosol concentrations appear to show 

similar vertical distributions across different seasons. The limited validation prevents 

assessment of whether this method captures realistic atmospheric processes or simply 

learns scaling relationships under specific (mostly wintertime) meteorological 

conditions. 

Authors’ response: 

We fully agree that robust and comprehensive validation is essential to support the 

generalizability of our retrieval framework in spatiotemporally varying scenarios. In 

this work, we designed a multi-faceted validation strategy to thoroughly validate the 

model’s generalizability from different perspectives by using the non-training dataset. 

The non-training dataset contains spatiotemporal information that the machine learning 

model has never learned, enabling a validation of whether this method captures realistic 

atmospheric processes. The validation strategy is outlined as follows. 

a. The independent validation/testing sets, which were not used in deep learning, 

are employed to evaluate whether the nonlinear mapping relationship established by the 

model is reliable. As presented in Fig. 3 of Section 3.1.1, the results demonstrated high 

predictive accuracy on the independent validation/testing sets, with five PM2.5 chemical 

species showing high agreement (R ≥ 0.69, RMSE ≤ 8.87 µg m-3) with ground 

https://doi.org/10.1364/AO.23.000652
https://doi.org/10.1021/acs.estlett.3c00791
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observations, indicating that our model can learn complex and nonlinear relationships 

rather than memorizing the training data.  

b. We utilized an independent ground observation set of PM2.5 concentrations from 

three years not included in model training to validate the temporal generalization of our 

method. The sum of our retrieved PM2.5 chemical species concentrations was compared 

against these independent measurements. As presented in Fig. 4b, c and d of Section 

3.1.2, the results indicate that our method accurately characterizes the changes in mass 

concentrations of various PM2.5 chemical components across all seasons and under 

diverse meteorological conditions, not just the wintertime conditions. 

c. We utilized a ground observation set of chemical component concentrations 

from 23 independent sites across the North China Plain (NCP) to validate the spatial 

generalization of our method. As presented in Fig. 5 of Section 3.1.2, comparisons 

between our retrieved surface concentrations and measurements from these untrained 

sites showed moderate agreement, indicating that our method is not site-specific but 

possesses robust predictive power on a regional scale. 

d. We acknowledge the well-noted challenge of acquiring high-frequency vertical 

profile observation data. The validation results based on 4 aircraft campaigns and 11-

day tower-based measurements showed that our retrieved vertical profiles of chemical 

components showed encouraging consistency with observations in both shape and 

magnitude. Most importantly, these vertical validation cases must be interpreted within 

the context of the replies of Major Comments #3b, c. The strong performance in 

spatiotemporal generalization provides a foundational credibility that our method can 

capture realistic relationships between extinction coefficient and chemical species 

(Major Comments #3b, c). The vertical validation then confirms that these 

relationships correctly translate into accurate vertical structures (Major Comments 

#3d). 

We acknowledge that acquiring more observations from tower-based and aircraft-

based campaigns is essential for adequately strengthening the validation of our method. 

We openly discuss the limitations regarding the sample size of vertical validation data 
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in Section 3.4 Limitations and uncertainties. Besides, we emphasize the significant 

role of temporal generalization validation in addressing concerns about seasonal 

representativeness in Section 2.2.4. 

Section 2.2.4, Line 330-332: “… (1) We compare the retrieved mass concentrations with 

the observed values at the surface level during a training year (2021) and three non-

training years (2017, 2018 and 2024) to validate the temporal generalization in all 

seasons and under diverse meteorological conditions…” 

Section 3.4: “The deep learning module in our retrieval framework can establish a 

powerful mapping between optical and meteorological features and PM2.5 chemical 

species, and physics-based explicit constraints can enhance the reliability and 

expandability of the mapping relationships. However, several limitations and sources 

of uncertainty remain and should be acknowledged when interpreting the results and 

extending the framework to broader applications.  

 

First, the spatial scope of the training data is predominantly restricted to the NCP 

region. Expanding the retrieval framework with data from more diverse geographical 

locations is necessary to improve its global transferability. Second, the current retrieval 

framework primarily relies on extinction coefficients at a wavelength of 532 nm, 

exhibiting dependence on specific lidar instruments. Future retrieval framework should 

focus on integrating diverse optical features from additional wavelengths to enhancing 

adaptability and transferability. Third, the auxiliary input data used in both the deep 

learning module and the physics-constrained optimization are obtained from global 

reanalysis products, which may not fully capture local atmospheric conditions at 

specific observational sites, thereby introducing representativeness errors into the 

retrievals. Acquiring the vertical observational data for these auxiliary features can 

effectively mitigate the uncertainty induced by the input data. Fourth, the IMPROVE 

equation applied as an external physical constraint may introduce additional 

uncertainty into the retrievals due to its systematic estimation biases (Lowenthal and 

Kumar, 2016). Moreover, since the IMPROVE equation was applied as an external 
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physical constraint to optimize the retrievals of PM2.5 chemical components, the 

machine learning model itself was not intrinsically constrained by physical principles 

during its training. Future work could incorporate an internal physical constraint into 

the machine learning model to improve its physical interpretability by formulating a 

hybrid loss function for training that combines the traditional data-fitting term with a 

physical term. Finally, long-term acquisition of independent vertical profiling data from 

both tower-based and aircraft-based campaigns is essential for a comprehensive 

assessment of the robustness of the vertical retrievals with respect to varying sites, 

aerosol types, and seasons.” 

 

4) The manuscript would benefit from some extensive editing to improve its readability. 

Sentences are overly dense, and the model development section would be difficult for 

most readers to follow. The excessive number of figures (~75 figure/subplots) dilutes 

the presentation of key results. 

Authors’ response: 

We sincerely thank the reviewer for this critical feedback regarding the readability 

and presentation of the manuscript. In response to the reviewer’s suggestions, we have 

undertaken a comprehensive revision of the manuscript, including the entire text, all 

figures, and their captions. Several detailed supporting subfigures have been moved to 

the supplement materials to maintain a clean and focused flow in the main text while 

still providing all necessary data for interested specialists. The final revised manuscript 

can be found in the uploaded file manuscript_with track changes.docx. 

 

5) The manuscript lacks an adequate discussion of the limitations of this retrieval 

technique. This would be essential for readers considering applying this method in 

different regions or with slightly different instruments. 

Authors’ response: 

We sincerely thank the reviewer for this critical suggestion. We fully agree that a 
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thorough discussion of the limitations is essential for effective application in different 

scenarios. In response, we have added a new section titled “3.4 Limitations and 

uncertainties” of our revised manuscript. This section provides a detailed examination 

of the constraints and potential uncertainties of our proposed retrieval framework. 

Section 3.4 Limitations and uncertainties has been presented in the replies of Major 

Comments #3. 

 

6) The SHAP feature importance analysis raises some questions and methodological 

concerns. For example, why are specific humidity and relative humidity treated as 

independent? These are clearly related. There is also lacking a discussion about the 

definition of and why "geopotential" is so important. Also, it strikes me that the 

combined SHAP value of extinction, relative humidity, and v-wind being under 50% is 

relatively low considering they are noted to determine the vertical structure and 

chemical and physical processes (L410-411). 

Authors’ response: 

We thank the reviewer for these insightful comments and methodological concerns 

regarding the SHAP analysis. We have revised the manuscript accordingly to address 

each point. 

Q1: Why are specific humidity and relative humidity treated as independent? 

A1: Relative humidity exerts a well-established driving role on PM2.5 through its 

influence on hygroscopic growth, aqueous chemistry, and heterogeneous reactions 

(Chen et al., 2020). In contrast, specific humidity, which represents the total moisture 

content of a wet air mass, is more closely linked to the vertical diffusion and wet 

scavenging of PM2.5 (Chatfield et al., 2020). Therefore, including both relative humidity 

and specific humidity as independent features allows the machine model to leverage 

their complementary roles in governing PM2.5 chemical compositions. 

Q2: Lacking a discussion about the definition of and why “geopotential” is so 

important. 
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A2: Geopotential is an integrated feature that reflects the synoptic meteorological 

conditions when combined with wind fields and is closely related to PM2.5 pollution 

processes, such as accumulation, transboundary transport and dispersion (Jia et al., 

2022; Wang et al., 2021). Crucially, synoptic meteorological conditions identified by 

geopotential patterns largely determine the development of the planetary boundary 

layer, influencing the vertical distribution of PM2.5 (Miao et al., 2022; Xu et al., 2019). 

Section 3.2, Line 473-477: “…Specific humidity (SH) and geopotential (GEOP) also 

provided important contributions (13.04% and 12.85%, respectively). SH is related to 

the vertical diffusion and wet scavenging of pollutants (Chatfield et al., 2020) and 

GEOP identifies the synoptic meteorological patterns that affect both horizontal 

process (Jia et al., 2022; Wang et al., 2021) and vertical distribution of pollutants within 

the boundary layer (Miao et al., 2022; Xu et al., 2019).” 

Reference 

Chatfield, R. B., et al.: Satellite mapping of PM2.5 episodes in the wintertime San Joaquin Valley: a 

“static” model using column water vapor, Atmos. Chem. Phys., 20, 4379-4397, 

https://doi.org/10.5194/acp-20-4379-2020, 2020. 

Chen, Z., et al.: Influence of meteorological conditions on PM2.5 concentrations across China: A 

review of methodology and mechanism, Environ. Int., 139, 105558, 

https://doi.org/10.1016/j.envint.2020.105558, 2020. 

Jia, Z., et al.: The impact of large-scale circulation on daily fine particulate matter (PM2.5) over 

major populated regions of China in winter, Atmos. Chem. Phys., 22, 6471-6487, 

https://doi.org/10.5194/acp-22-6471-2022, 2022. 

Miao, Y., et al.: Influence of Multi-Scale Meteorological Processes on PM2.5 Pollution in Wuhan, 

Central China, Front. Environ. Sci., 10, https://doi.org/10.3389/fenvs.2022.918076, 2022. 

Wang, X., et al.: Dominant synoptic patterns associated with the decay process of PM2.5 pollution 

episodes around Beijing, Atmos. Chem. Phys., 21, 2491-2508, https://doi.org/10.5194/acp-21-2491-2021, 

2021. 

Xu, Y., et al.: Two Inversion Layers and Their Impacts on PM2.5 Concentration over the Yangtze 

River Delta, China, J. Appl. Meteor. Climatol., 58, 2349-2362, https://doi.org/10.1175/JAMC-D-19-

0008.1, 2019. 

Q3: The combined SHAP value of extinction, relative humidity, and v-wind being 

https://doi.org/10.5194/acp-20-4379-2020
https://doi.org/10.1016/j.envint.2020.105558
https://doi.org/10.5194/acp-22-6471-2022
https://doi.org/10.3389/fenvs.2022.918076
https://doi.org/10.5194/acp-21-2491-2021
https://doi.org/10.1175/JAMC-D-19-0008.1
https://doi.org/10.1175/JAMC-D-19-0008.1
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under 50% is relatively low considering they are noted to determine the vertical 

structure and chemical and physical processes. 

A3: The SHAP values presented in Section 3.2 were derived from a dataset 

spanning approximately two years. This long-term perspective reveals that the vertical 

distribution of PM2.5 chemical components is governed by the complex and nonlinear 

interaction of a multitude of driving features, which contrasts with specific pollution 

episodes where a single driver may be dominant. From another perspective, our results 

indicate that the machine learning model effectively captured a complex multi-factorial 

relationship, rather than relying on an oversimplified representation dependent on a few 

dominant features. In response to this comment, we have revised the manuscript by 

replacing “dominant” with the more appropriate term “significant”. The revision is as 

follows. 

Section 3.2, Line 459-462: “Figure 7a1-a5 depicts that the aerosol extinction 

coefficient at 532 nm (EXT), relative humidity (RH) and v-component wind (VW) are 

the significant input features for predicting the five PM2.5 chemical components with an 

averaged relative contribution of 14.43 %, 15.84 % and 16.77 %. These features largely 

affect the vertical structure, chemical and physical processes, respectively…” 

 

3 Minor Comments: 

1) The introduction would benefit from making note of previous work in retrieving PM2.5 

concentrations from space-based lidar (e.g., Matus et al., 2024; Toth et al., 2022). 

Authors’ response: 

We thank the reviewer for the suggestion. The revised version is as follows. 

Introduction, Line 45-47: “…Continuous remote-sensing lidar detection technologies 

with high temporal and vertical resolution serve as robust pathways for the constant 

identification of PM2.5 and its components across all altitudes (Matus et al., 2024; Toth 

et al., 2022; Wang et al., 2022) …” 

 

Reference 
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Matus, A. V., Nowottnick, E. P., Yorks, J. E., and da Silva, A. M.: Enhancing surface PM2.5 air 

quality estimates in GEOS using CATS lidar data, Earth and Space Sci., 12, e2024EA004078, 

https://doi.org/10.1029/2024EA004078, 2025. 

Toth, T. D., Zhang, J., Vaughan, M. A., Reid, J. S., and Campbell, J. R.: Retrieving particulate matter 

concentrations over the contiguous United States using CALIOP observations, Atmos. Environ., 274, 

118979, https://doi.org/10.1016/j.atmosenv.2022.118979, 2022. 

 

2) L23: Specify the Chinese megacity (Beijing-Tianjin-Hebei region) 

Authors’ response: 

We thank the reviewer for the suggestion. The revised version is as follows. 

Abstract, Line 21-23: “…Finally, a dataset of vertical mass concentration profiles of 

these components over six years in a Chinese megacity (Beijing) was generated by the 

retrieval framework…” 

 

3) L41-42: Citing papers for examples of tower, aircraft, balloon, and UAV campaigns 

is not necessary. These are very common platforms for atmosphere remote sensing. 

Authors’ response: 

We thank the reviewer for the suggestion, and we have removed these citations in 

the revised manuscript. 

Introduction, Line 41-42: “Field campaigns are widely conducted to obtain vertical 

profiles of PM2.5 chemical components by mounting observation instruments on 

meteorological towers, aircraft, tethered balloons and unmanned aerial vehicles…” 

 

4) L263-264: Specify how these data are averaged. 

Authors’ response: 

We thank the reviewer for the suggestion. The revised version is as follows. 

Section 2.1.1, Line 96-98: “…To generate an hourly resolution lidar dataset, minute-

level data were resampled using a simple averaging method. Specifically, the arithmetic 

https://doi.org/10.1029/2024EA004078
https://doi.org/10.1016/j.atmosenv.2022.118979
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mean was calculated from all valid minute-level data points within each non-

overlapping one-hour window aligned to the start of each hour (e.g., from 00:00 to 

00:59).” 

 

5) Figure 3: Specify the observations used in the figures. All altitudes from the tower 

and airplane? 

Authors’ response: 

We thank the reviewer for the suggestion. To clarify, Fig. 3 exclusively uses 

ground-level observations to independently validate the ground-level predictions from 

our machine learning model, as the model itself was trained and tested exclusively on 

surface data. The tower-based and aircraft-based measurements were reserved for the 

independent validation of the retrieved vertical profiles, which is presented in Fig 6. In 

response to the suggestion, the revised version is as follows. 

Section 2.2.4, Line 322-327: “An hourly multivariate dataset with extensive temporal 

coverage was employed to train and evaluate the deep learning module. To maintain 

temporal independence, the training (and validation) set was constructed from a 1-year 

(2021) time-series dataset obtained from a Beijing site (Fig. S1), while the testing set 

contains an independent 6-month (Jan 1-Mar 31 and Jun 1 to Aug 31, 2022) time-series 

dataset obtained from the same site. A 10-fold time-series cross‑validation (CV) scheme 

was designed for the training (and validation) set to preserve its temporal order and 

prevent future information leakage, which is detailed in Text S3 and Fig. S2 of the 

supplement. The iteration number of Bayesian optimization is set to 20.” 

Section 3.1.1, Line 345-347: “The 10-fold CV sets and a testing set with temporal 

independence are utilized to evaluate the predictive performance of the deep learning 

module, which is quantified by the discrepancies between simulations and observations 

at ground level for NH4
+, SO4

2-, NO3
-, OM and BC…” 

 

6) Figure 4: There are many cases where the retrieval is not particularly close to the 

observations. A broader discussion about these cases would be valuable. 
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Authors’ response: 

We thank the reviewer for the suggestion and have added a broader discussion in 

the revised manuscript as follows. Besides, the discussion in retrieval uncertainties has 

been presented in the replies of Major Comments #3. 

Section 3.1.2, Line 385-392: “…These results indicate that the retrieval framework 

roughly interprets the changes in concentrations of various chemical components 

across different periods, exhibiting fundamental temporal generalization capabilities. 

However, the retrieved concentrations show some overestimation cases during autumn 

in 2018 and spring in 2024, potentially associated with the uncertainties induced by the 

training data. The training data may lack a sufficiently diverse spectrum of 

meteorological conditions and pollution patterns, which limits the temporal 

generalizability of the retrieval framework across all complex and dynamic 

atmospheric scenarios. Future efforts should enhance retrieval accuracy by 

augmenting the training data with observations spanning a wider range of temporal 

conditions.” 

 

7) Figure 5: Subplot "a" needs a better explanation. What is conveyed differently in the 

histograms versus the dots? Subplots in the "b" and "c" rows would benefit from a better 

map. Readers from outside China may be lost without other context (coloring the 

ocean/seas, highlighting major cities, etc.) 

Authors’ response: 

Figure 5a highlights the data distribution properties derived from the retrieved and 

observed surface mass concentration of NH4
+, NO3

-, SO4
2-, OM and BC at 39 non-

training BTH lidar sites over a period of February 8-15th, 2021. Figure 5a combines 

dotplots, boxplots and Kernel density. Kernel density highlights the overall shape of the 

data distribution. Dotplots, while similar in Kernel density, also convey information 

about the exact number of datapoints across the distribution.  

In response to the Reviewer’s comments, we have removed the dotplots. Because 

the high density of data points resulted in a cluttered presentation, and the information 



 

18 

 

they convey about the distribution is effectively captured by the kernel density, which 

provides a smoother and more interpretable representation. Then we added geographic 

basemaps into Figure 5b, c for better presentation. 

 

Figure 5: Data distribution properties of retrieved and observed surface mass 

concentration (µg m-3) of NH4
+, NO3

-, SO4
2-, OM and BC at 23 non-training NCP lidar 

sites over a period of February 8-15th, 2021, presented by a combination of boxplots 

and kernel density (a). Spatial distribution of Pearson correlation coefficient (CORR) 

between retrieved and observed surface mass concentration of NH4
+ (b1), NO3

- (b2), 

SO4
2- (b3), OM (b4) and BC (b5). (c1-c5) Same as (b1-b5) but for root mean square 

error (RMSE, µg m-3). The geographic basemap is hosted by Esri 

(https://www.esri.com/en-us/home). 

 

8) L418: Define "upper atmosphere" in this context 

Authors’ response: 

We thank the reviewer for the reminder. The term “upper atmosphere” is 

inaccurate, and we have replaced with “upper planetary boundary layer” in the revised 

manuscript. 

https://www.esri.com/en-us/home
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Section 3.2, Line 469-470: “…The aerosol content in the upper planetary boundary 

layer is relatively low…” 

Section 3.2, Line 471-472: “…Conversely, pollution transport in the upper planetary 

boundary layer is less affected by interference from complex underlying surfaces than 

near-surface transport…” 

 


