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Abstract.

Trustworthy estimates of snow water equivalent and snow depth are essential for water resource management in snow-

dominated regions. While ensemble-based data assimilation techniques, such as the Ensemble Kalman Filter (EnKF), are

commonly used in this context to combine model predictions with observations therefore to improve model performance, these

ensemble methods are computationally demanding and thus face significant challenges when integrated into time-sensitive5

operational workflows. To address this challenge, we present a novel approach for data assimilation in snow hydrology by

utilizing Long Short-Term Memory (LSTM) networks. By leveraging data from 7 diverse study sites across the world to train

the algorithm on the output of an EnKF, the proposed framework aims to further unlock the use of data assimilation in snow

hydrology by balancing computational efficiency and complexity.

We found that a LSTM-based data assimilation framework achieves comparable performance to state estimation based on10

an EnKF in improving open-loop estimates with only a small performance drop in terms of RMSE for snow water equivalent

(+ 6 mm on average) and snow depth (+ 6 cm ), respectively. All but 2 out of 14 LSTM site specific
::::::::::::::::
site-specific-LSTM config-

urations improved on the Open Loop estimates. The inclusion of a memory component further enhanced LSTM stability and

performance, particularly in situations of data sparsity. When trained on long datasets (25 years), this LSTM data assimilation

approach also showed promising spatial transferability, with less than a 20% reduction in accuracy for snow water equivalent15

and snow depth estimation.

Once trained, the framework is computationally efficient, achieving a 70% reduction in computational time compared to

a parallelized EnKF. Training this new data assimilation approach on data from multiple sites showed that its performance

is robust across various climate regimes, during dry and average water-year types, with only a limited drop in performance

compared to the EnKF ( +6 mm RMSE for SWE and +18 cm RMSE for snow depth). This work paves the way for the20

use of deep learning for data assimilation in snow hydrology and provides novel insights into efficient, scalable, and less

computationally demanding modeling framework for operational applications.
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1 Introduction

When studying the hydrological cycle in mountain regions, one cannot underestimate the key role played by snow (Bales et al.,25

2006); indeed, for snow-dominated catchments, today’s snow is tomorrow’s water. In these regions, the snowpack functions

as a natural freshwater reservoir and is a primary source of streamflow, particularly during spring and summer (Fayad et al.,

2017). Information on the state and distribution of snow cover, therefore, provides helpful information to characterize seasonal

water storage (Zakeri et al., 2024), seasonal to annual water availability (Metref et al., 2023), and several cascading socio-

hydrologic implications (Avanzi et al., 2024). In other words, reliable estimates of Snow Water Equivalent (SWE) and snow30

depth in snow-dominated environments are essential for effective and timely management of water resources (Hartman et al.,

1995).

However, the models used in operational snow hydrology are hampered by uncertainties (Beven, 2012). Uncertainties arise

from the accuracy and reliability of the equations and their discretization used to numerically represent physical processes

on a computer (structural uncertainty), as well as from model inputs (e.g., meteorological uncertainty) and model parameters35

(parametric uncertainty, see Girotto et al., 2020). To constrain this uncertainty, independent snow-related data sources such as

ground-based measurements or remotely sensed measurements can be used (Tsai et al., 2019), but all observations are also sub-

ject to inherent uncertainty in the form of unknown observation and representation errors (Gascoin et al., 2024; Van Leeuwen,

2015). Ground-based snow measurements, for example, are limited to environmental conditions at the point-scale, which are

often influenced by instrumental noise as well as local distortions by wind, topography, and vegetation, which pose challenges40

at the scale of a model grid cell (Malek et al., 2017).
:
It

::
is

::::
also

:::::
worth

::::::::::
mentioning

:::
that

:::::
their

:::::::::::::::
representativeness

::
is

::::::::
expected

::
to

::::::
degrade

::
in

:::
the

:::::
future

::::
due

::
to

:::::::
evolving

:::::::
climate

:::
and

::::
land

::::::
surface

:::::::::
conditions,

::::::
further

:::::::
limiting

::::
their

:::::
utility

:::
for

:::::::::
large-scale

:::::::::
modelling

:::::
efforts

::::::::::::::::::::
(Cowherd et al., 2024b).

:
In contrast, remote sensing provides spatially explicit information, but its measurements are

frequently constrained by a coarse spatial resolution and additional uncertainties in retrieval algorithms (Aalstad et al., 2020).

Given the uncertainties inherent in both models and measurements, data assimilation presents a promising framework to45

optimally combine them (Evensen et al., 2022), so as to provide a statistically optimal estimate of the snowpack state. In the

recent decade, snow data assimilation has progressed from a limited number of case studies to more established and widely used

techniques (Largeron et al., 2020; Girotto et al., 2020; Alonso-González et al., 2022), largely driven by advancements in satellite

data products and computational resources (Houser et al., 2012; Aalstad et al., 2018; Deschamps-Berger et al., 2023; Lievens

et al., 2022; Mazzolini et al., 2024). Commonly assimilated variables include snow-covered area (SCA) (Margulis et al., 2016),50

snow depth (Girotto et al., 2024) and SWE (Magnusson et al., 2014). Recent research has also begun to explore the potential

of thermal infrared sensors and radar data (Alonso-González et al., 2023; Cluzet et al., 2024). From a methodological point of

view, while traditional methods such as direct insertion or nudging (Boni et al., 2010) are still widely used, research interest in

this field is increasingly shifting towards Bayesian data assimilation techniques such as the Ensemble Kalman Filter (EnKF)

and the Particle Filter (PF) (Evensen et al., 2022). These Bayesian methods, which account for uncertainties both in the model55
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and the observations, have demonstrated significant improvements in predictions of snow and streamflow variables (Huang

et al., 2017; Alonso-González et al., 2022; Metref et al., 2023). On the other hand, they typically incur high computational

costs (Girotto et al., 2020), which are often incompatible with operational procedures (Pagano et al., 2014).

The high computational cost of ensemble-based (Monte Carlo) data-assimilation techniques such as the EnKF and the PF

arises from the need to perform a large ensemble (collection) of model predictions, which can strain computational capacity60

and extend processing times (Evensen et al., 2022). Consequently, the deployment of these ensemble-based techniques in

real-time applications can be challenging, necessitating efficient algorithms and robust computing infrastructure to ensure

timely and accurate results. Decreasing such computational requirements would allow one to obtain estimates with a shorter

turnaround and/or to increase model complexity with the same computational burden. In this context, it is worth mentioning

the work of Oberrauch et al. (2024), one of the few studies that addresses the challenge of implementing a particle-based65

data assimilation scheme for large-scale, fully distributed, near real-time snow modeling
::::::::
modelling applications, effectively

balancing computational feasibility with operational efficiency.

Recently, Deep Learning (DL) has gained attention for its ability to model complex system dynamics without requiring

detailed knowledge of physical processes or relying on strict structural assumptions (Sit et al., 2020). Based on interconnected

neural networks, these model architectures excel at learning system dynamics from large datasets, and may overcome the70

structural limitations that challenge traditional physically-based models (LeCun et al., 2015; Murphy, 2023). Among the most

commonly used Deep Learning architectures, Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber,

1997), a type of recurrent neural networks, can memorize internal system states and capture long-term dependencies between

inputs and outputs. LSTM networks have demonstrated significant success in predicting time-series data, particularly in hydro-

logical applications, where they have shown comparable performance to traditional physically-based models (Fan et al., 2020;75

Chen et al., 2023; Kratzert et al., 2018, 2019). Due to the strong temporal autocorrelation and memory of the snowpack (Fiddes

et al., 2019), these networks appear to be especially well suited for snow analysis.

In the broader field of operational hydrology, Boucher et al. (2020) pioneered a novel ensemble-based data assimilation

approach leveraging neural networks. However, the use of Deep Learning for data assimilation remains largely underexplored

in the field of snow hydrology. One exception is the recent study by Guidicelli et al. (2024), who combined ensemble-based80

data assimilation with Deep Learning to improve spatio-temporal estimates of SWE using sparse ground track data in the

eastern Swiss Alps. This approach utilized an Iterative Ensemble Smoother, an iterative batch-smoother variant of the EnKF,

in conjunction with a degree-day model to reconstruct SWE temporal evolution, while a feedforward neural network (FNN)

facilitated spatial propagation based on topographic features.
:::
As

:
a
:::::
more

:::::
recent

:::::::::
exception

::
of

:::::::::
combining

:::::
Deep

::::::::
Learning

::::
and

::::
snow

::::
data

:::::::::::
assimilation,

:::::::::::::::
Song et al. (2024)

::::::::
developed

:::
an

:::::::::::
LSTM-based

:::::::::
framework

::
to

::::::::
assimilate

::::::
lagged

:::::::::::
observations

::
of

:::::
SWE

::
or85

:::::::::::::
satellite-derived

:::::
snow

:::::
cover

::::::
fraction

::::::
(SCF)

::::
over

:::
the

:::::::
western

::::
U.S.,

:::::::
aiming

::
to

:::::::
improve

:::::::
seasonal

:::::
snow

::::::::::
predictions.

:::::
While

:::::
their

:::::::
approach

::::::
further

:::::::::::
consolidates

:::
the

:::::::
potential

:::
of

::::
Deep

::::::::
Learning

:::
for

::::
data

::::::::::
assimilation

::
in

:::::
snow

:::::::::
hydrology,

::
it

:::::
relied

::
on

::
a
::::::::
relatively

:::::
simple

:::::::::::
assimilation

:::::
setup,

::::::
dealing

::::
with

::::
long

::::::
lagged

::::
time

::::
step

:::::
rather

::::
than

::
a
:::::::::::
consequential

::::
and

:::::
quasi

:::
real

::::
time

:::::::::
approach. Other

than these initial attempts, and the body of work on stand-alone Deep Learning for snow modeling
::::::::
modelling

:
(Cui et al.,
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2023; Daudt et al., 2023), the potential of combining advanced Deep Learning and data assimilation algorithms for predicting90

snowpack dynamics remains largely unexplored.

Building on the concept of Deep Data Assimilation introduced by Casas et al. (2020) and Arcucci et al. (2021) as well as

a growing literature of related methods (Cheng et al., 2023), this research aims to enhance data assimilation methods in snow

hydrology by proposing an alternative approach for assimilating snow-related quantities, specifically SWE and snow depth,

through the use of LSTM networks. These networks will be trained on the output from an EnKF, with the goal of improving95

snowpack estimations while minimizing computational efforts. Here we utilize S3M, a hybrid temperature-radiation-driven

cryospheric model (Avanzi et al., 2022), as our dynamical model combined with the state analysis (updates) of an EnKF to

train an LSTM to assimilate SWE and snow depth data in S3M for 7 disparate study sites across the northern hemisphere. The

study will focus on investigating four main research questions: (i) What is the performance of a LSTM network in filtering,

especially in comparison with an EnKF? (ii) How does the performance of the network respond to data sparsity? (iii) Is it100

feasible to transfer an LSTM algorithm trained on one site to other sites without a significant loss in performance? (iv) How

does the performance of the model vary between different types of water years?

2 Materials and Method

2.1 Data

When working with Deep Learning algorithms, the quality of the dataset is crucial, as the performance of the trained net-105

work will highly depend on it (He et al., 2019). Hence, in this study we employed high-quality, pre-processed datasets from

long-term, internationally acknowledged snow research stations across the northern hemisphere (Figure 1). The datasets used

where those of precipitation (mm/h), solar radiation (W/m
2), relative humidity (%), air temperature (◦C), and daily average

temperature (◦C) along with SWE (mm/h) and snow depth (cm) ground measurements.

Here is a list of the station locations, along with their associated reference papers and abbreviations:110

• Torgnon, Aosta Valley, Italy — TRG (Filippa et al., 2015).

• Col De Porte, Isère, France — CDP (Lejeune et al., 2019).

• Weissfluhjoch, Davos, Switzerland — WFJ (Wever, 2017).

• Kühtai, Tirol, Austria — KHT (Krajči et al., 2017).

• FMI-ARC Sodankylä Geophysical Observatory, Finnish Lapland — FMI-ARC (Essery et al., 2016).115

• Nagaoka, Japan — NGK (Avanzi et al., 2019).

• Reynolds Mountain East, Idaho, USA — RME (Reba et al., 2011).
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The sites were selected to ensure geographic and climatic diversity, spanning various regions that are exposed to a variety of

snow climates (Sturm and Liston, 2021), (see Table 1 and Table 2). The characteristics of the site vary widely, with elevations

ranging from lowland areas such as Sodankylä (179 m) to high alpine environments such as Weissfluhjoch (2540 m). Annual120

and winter precipitation varies significantly across different locations, ranging from relatively dry areas like Torgnon, with an

annual average of 794 mm, to much wetter regions such as Nagaoka, which receives 2773 mm per year. For this comparative

analysis, winter is defined as the meteorological winter in the northern Hemisphere, spanning the months of December through

February. Air temperature ranges reflect this environmental diversity, encompassing cold alpine regions, temperate meadows,

and wetlands.125

Site Description Altitude (m a.s.l) MAP (mm) MWP (mm) MAAT [min,max] (◦C)

TRG Subalpine grassland 2160 794 161 3 [−15,20]

CDP Grassy meadow 1325 1896 550 6 [−13,17]

WFJ Almost flat area 2540 1631 391 −1 [−21,17]

KHT Steep alpine valley 1920 1131 186 3 [−18,22]

FMI-ARC Large wetland area 179 551 125 0 [−35,27]

NGK Flat meadow 97 2773 1104 12 [−5,36]

RME Unsheltered mountain area 2137 817 350 5 [−20,30]

Table 1. Geographic and climatic characteristics (annual precipitation and air temperature statistics) at the selected study sites. MAP=mean

annual precipitation (mm), MWP= mean winter precipitation (mm), MAAT = mean annual average temperature (˚C)

Site Peak SWE (mm) Peak Snow depth (cm) Snow cover duration Snow Type

TRG 312 11 From October to May Tundra

CDP 414 14 From November to May Maritime

WFJ 802 23 From October/November to August Tundra

KHT 347 15 From October/November to mid June Tundra

FMI-ARC 197 8 From October to May Boreal Forest

NGK 381 14 From Novemeber to April Maritime

RME 529 17 From October to May Montane Forest
Table 2. Summary of snow characteristics at the selected study sites. Snow classification by Sturm and Liston (2021).

The record period for each dataset varied depending on the timeframes available at each site. To ensure uniform application

of the algorithm, all datasets were resampled to a 1-hour frequency using linear interpolation. This hourly resolution resolves

day-night cycles of melting and refreezing, revealing air temperature fluctuations and their relationship with snowpack outflow.

In addition, it enables the evaluation of the precipitation dynamics, the primary mass input to the seasonal snowpack (Avanzi

et al., 2014).130
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Measurement errors used in the data assimilation process (see Section 2.3) were assigned according to the specific instru-

mentation utilized at each site, drawing from a combination of expert knowledge and relevant literature ( see Tab. A1 in the

Appendix).

Based on data sparsity—defined as the presence of 80% or more of the record period containing missing data—or a low

temporal data granularity (i.e., temporal frequency coarser than 1 hour), the datasets were categorized into two groups:135

• Low data sparsity: NGK, KTH, FMI-ARC, and RME datasets.

• High data sparsity: CDP, TRG, and WFJ datasets.

Figure 1. Geographical distribution of study sites used for snow modeling and data assimilation: (left) Reynolds Mountain East (RME) in

the United States, (center) European sites including Col De Porte, Isère, France , Weissfluhjoch, Davos, Switzerland (WFJ), Torgnon, Aosta

Valley, Italy (TRG), Kühtai, Tirol, Austria (KHT) FMI-ARC Sodankylä Geophysical Observatory, Finnish Lapland (FMI-ARC) in Finland,

and (right) Nagaoka (NGK) Japan. Map created using the Free and Open Source QGIS.
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2.2 The Model: S3M 1D

"Snow Multidata Mapping and Modelling (S3M)" is a spatially distributed cryospheric model developed to compute the snow

mass balance and estimate snowmelt using a combined temperature index and radiation-driven melt approach (Avanzi et al.,140

2022). S3M also includes processes such as snow settling, liquid water outflow, changes in snow albedo, and the partitioning

of precipitation phases. S3M is the cornerstone of several operational chains managed by CIMA Research Foundation, which

provide real-time, spatially explicit estimates of snow cover patterns (Avanzi et al., 2023).

For this pilot application of a new deep data assimilation scheme, a point-scale version of S3M has been employed. This

version retains all the features of the original S3M model, such as precipitation-phase partitioning, snow mass balance, snow145

metamorphism, and hydraulics, but it models snow dynamics at one point rather than in grid cells distributed across the

landscape.

2.3 Ensemble Kalman Filter assimilation scheme
:::::::::::
Assimilation

:::::::
Scheme

Aiming at mimicking an established ensemble-based data assimilation algorithm with a Deep Learning
::::::::::::
Deep-Learning

:
-based

approach, we chose a supervised learning approach to our problem (Murphy, 2022). Hence, the training data had to be derived150

from the state analysis output by such data assimilation scheme. The assimilation algorithm used as training was designed to

focus on retrieving an accurate analysis of the state vector (x ∈ Rn with n the number of states), including both the wet and

dry components of SWE, the density of dry snow (kg/m3), and the snow albedo (-). Given the nonlinear nature of S3M , it

was decided to use an ensemble method that approximates the posterior probability density function of the analysis using the

mean and covariance matrix (Carrassi et al., 2018; Evensen et al., 2022). Given the high robustness even with a relatively small155

ensemble (Aalstad et al., 2018), an EnKF scheme was developed in S3M.

Kalman Filters, which are sequential data assimilation techniques, optimally combine linear model simulations and obser-

vations based on their respective Gaussian error covariances (Särkkä and Svensson, 2023). The analysis state is obtained by

applying a correction to the model forecast (or prior) state, weighted by the Kalman Gain, which incorporates information from

both model and observation error covariance.160

Mathematically, the Kalman filter cycles between a prediction step, known as the forecast or the prior in DA, propagating

the state from the pervious time tk−1 to the current time tk using a dynamical model and a subsequent update step, known

as the analysis or the posterior in DA, where the state is updated by assimilating observations through (Evensen et al., 2022;

Särkkä and Svensson, 2023):

xa
k = xf

k +Kk

(
yk −Hkx

f
k

)
, (1)165

where :

• xf
k ∈ Rn is the forecast (prior, background) mean model state vector at time tk.

• xa
k ∈ Rn is the analysis (posterior, updated) mean model state vector at time tk.
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• yk ∈ Rm is the vector of the observations at time tk where the number of observations m≥ 0 may vary in time.

• Hk ∈ Rm×n is a linear observation operator, that maps from the model state space to the observation space. The time170

index of this operator is a reminder that the number of observations m may vary over time.

• Kk is the Kalman gain at time tk, defined as :

Kk =Pf
kH

T
k

(
HPf

kH
T
k +Rk

)−1

(2)

• In the dynamic Kalman gain (2), Pf
k ∈ Rn×n is the forecast error covariance matrix and Rk ∈ Rm×m is the observation

error covariance matrix while T denotes the matrix transpose.175

The Kalman gain Kk in Equation (2) acts as a weighting factor, balancing the correction term (the innovation) by accounting

for the relative uncertainties in the forecasted model state
::::::
through

:::
the

:::::::
forecast

::::
error

:::::::::
covariance

::::::
matrix Pf

k and the observations

::
in

:::
the

:::::::::::
observations

:::::::
through

:::
the

::::::::::
observation

:::::::::
covariance

:::::
matrix

:
Rk.

Although classical Kalman filters are still widely used in signal processing and related fields (Särkkä and Svensson, 2023),

they require both linear and Gaussian models. Despite being based on the same linear Gaussian assumptions as the Kalman180

filter, many nonlinear extensions of the Kalman filter are able to overcome the strict requirement of a linear model. Among

these extensions, the EnKF is particularly well suited for high-dimensional nonlinear geoscientific models by relying on an

ensemble of simulations to estimate the prior mean and covariance in the update step (1) (Carrassi et al., 2018; Evensen et al.,

2022). In particular, together with particle methods, ensemble Kalman methods make up the ensemble-based methods that are

among the current state-of-the art methods for snow data assimilation (Aalstad et al., 2018; Alonso-González et al., 2022).185

In the present study, a joint data assimilation scheme was developed to update the system state by jointly assimilating

ground-based measurements of snow depth and SWE. Despite albedo being another potential data stream to assimilate (Navari

et al., 2018), due to the lack of measurements across the 7 sites, assimilation of albedo measurements was not considered

herein. Nonetheless, albedo was updated indirectly, based on the assimilation of SWE and snow depth. Moreover, as the model

is a point-based simulation, we could not pursue fractional snow-covered area assimilation and since the EnKF can not handle190

binary observations binary snow cover was not an option either. Finally, since S3M does not solve the full energy balance or

simulate snow-temperature profiles, no surface temperature proxy was assimilated.

Ensemble generation was performed by perturbing meteorological model forcing, which included total precipitation (mm/h),

solar radiation (W/m
2), relative humidity (%), air temperature (◦C), and daily average temperature (◦C).

To each meteorological forcing data point, an ensemble of multivariate errors was added. These errors were generated as195

realizations of a multivariate stochastic process designed to have a specified covariance matrix derived from the Gaussianized

historical meteorological series. The objective was to produce a multivariate time series of meteorological values in a Gaussian

space, ensuring that the imposed covariance matrix matched C, the temporal covariance matrix of the historical observations.

The procedure for constructing the stochastic process is base on similar approaches implemented by Reichle et al. (2007),Lan-

noy et al. (2010) and Durand and Margulis (2006) and is described below:200
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1. Generation of a random covariance matrix:

A random covariance matrix, Co, was generated.

2. Construction of a Gaussian stochastic process:

(a) A Cholesky decomposition was performed on Co, yielding:

Lo = Cholesky(Co).205

(b) The multivariate stochastic process was defined as:

uk+1 = uk +Loϵ,

where ϵ∼N (0,0.1) represents independent standard normal variables.

3. Calculation of the covariance matrix: A realization of the stochastic process was generated, and its covariance matrix,

C̃, was computed.210

4. Imposition of the target covariance matrix:

(a) The Cholesky decomposition of the target covariance matrix, C, was computed:

L= Cholesky(C).

(b) The stochastic process was constructed to impose the covariance matrix C as follows:

ũk+1 = ũk +Lo · ϵ215

Initially, this process was characterized by the covariance matrix C̃. To transform it into a process with the covariance

matrix C, the following steps were taken:

(a) The transformation:

L̃ · ũk+1

where L̃= Cholesky(C̃), was applied, normalizing the covariance matrix C̃ to the identity matrix I.220

(b) A second transformation was applied:

uk+1 = L ·
(
L̃ · ũk+1

)
which transformed the identity matrix I into the target covariance matrix C.
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5. Perturbation Calculation: Finally, to compute the perturbations to be added to the meteorological values, the following

expression was used:225

∆= ũk+1 −mean(ũk+1)

where mean(ũk+1) represents the ensemble mean.

The use of a stochastic process to generate the ensemble of errors was pivotal to ensure temporal coherence in meteorolog-

ical perturbations. This procedure was location-specific, tailored to the 7 study sites. The ensemble size was defined as 100

members. It was determined to be suitable for an EnKF, based on literature (Aalstad et al., 2018) and testing.230

To improve filter performance and stability, the forecast model state vector xf
k at each time step tk was also perturbed.

To obtain the perturbation, a series of multivariate Gaussian random error with imposed process noise covariance matrix Q

was added to each forecast model state vector point. The matrix was retrieved from S3M open loop forecast over the entire

historical period for each site. Different versions of the observation operator Hk were constructed to allow assimilation with

only one observed variable when necessary. Post-processing was applied to the filter outputs to ensure physical consistency,235

adjusting corrections to the filter output while maintaining the physical relationships between the elements of the state vector.

This included constraining the values within a physical range and modulating them accordingly.

2.4 Long-short term memory neural network

The development of data assimilation using neural networks was framed as a time series forecasting task, leading to the use

of Recurrent Neural Networks (RNNs). RNNs leverage internal memory to process sequences of data, making them useful240

for time-dependent analysis. However, they often struggle with long-term dependencies due to vanishing or exploding gradi-

ents (Tsantekidis et al., 2022). To address this, LSTM networks introduce gate mechanisms (input, forget, output) to control

information flow, effectively managing long-term dependencies (Hochreiter and Schmidhuber, 1997).

2.4.1 Data pre-processing

Effective data pre-processing is critical for the successful application of LSTM networks, as it improves prediction accuracy,245

reduces computational costs, and enhances model robustness and repeatability (Isik et al., 2012). Proper pre-processing not only

accelerates network convergence, but also helps the model capture essential patterns in the data. For LSTM networks, which

are sensitive to the distribution and scale of the inputs, pre-processing plays a key role in mitigating issues like exploding or

vanishing gradients and managing differences in feature magnitudes.

Data pre-processing in this study involved two key steps:250

• Distribution adjustment: Snow related variables frequently hit the lower physical boundary of 0 mm of SWE or 0 cm

of snow depth, posing challenges for the LSTM, which struggled to handle this behavior. To overcome this, the data

range was extended by redefining the lower limit to a value below zero. Furthermore, any LSTM prediction that fell

below zero was forced back to zero, effectively managing the intermittent nature of snow data.
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• Scaling with historical data: After adjusting the distribution, the input values were also standardized using the mean255

and standard deviation calculated from historical records at each site. This standardization ensured that all input features

were on a consistent scale.

2.4.2 Custom loss function

To ensure compliancy of the LSTM predictions to specific problem domain constraints, a custom loss function was developed.

This loss function comprises two main components:260

• Root Mean Square Error (RMSE): This measures the difference between the LSTM predictions xa⋆
k and the the

analysis state vectors generated by the EnKF, xa
k. By minimizing RMSE, the model was trained to closely follow the

reference trajectory provided by the EnKF.

• Physics-based Regularization Term: An additional U-shaped penalty function was introduced to enforce adherence

to physical constraints and guide the model towards specific physical behaviors. This term penalizes the network for265

making predictions that violate predefined physical boundaries. The function is expressed as:

Loss(xa⋆
k ) =

1∏n
i=1

∣∣∣xa⋆
k,i − ai

∣∣∣ · ∣∣∣xa⋆
k,i − bi

∣∣∣ (3)

where xa⋆
k is the analysis mean state predicted by the LSTM, n is the number of state vector components xa⋆

k,i and ai and bi

are the minimum and maximum physical bounds, respectively, of the i-th element of the state vector, defined as the minimum

historical and maximum historical records.270

::::::::::
Furthermore,

::::
any

::::::
LSTM

::::::::
prediction

::::
that

:::
fell

:::::
below

::::
zero

:::
was

::::::
forced

::::
back

::
to

::::
zero,

:::::::::
effectively

:::::::::
managing

:::
the

:::::::::
intermittent

::::::
nature

::
of

::::
snow

:::::
data.

This combined loss function is inspired by Physics-Informed Deep Learning (Cheng and Zhang, 2021), where domain-

specific physical constraints guide the learning process.

2.4.3 Algorithm development and test configurations275

The LSTM algorithm was trained using the analysis state vectors generated by the EnKF
::::
-xa

k- to predict the corrected analysis

mean state vector, xa
k :::
xa⋆
k . As a supervised learning task, the training process utilized both input features and target outputs.

The input features included meteorological forcing variables, the model’s forecast mean state vector xf
k , and the observation

vector, while the target outputs consisted of the analysis mean state vectors xa
k from the EnKF. To evaluate its effectiveness,

the LSTM predictTions
:::::::::
predictions

:
were compared to the analysis state vectors generated by the EnKF.280

To assess the LSTM robustness and transferability, four experimental setups were tested:

1 Site-Specific LSTMs for State Correction

Seven LSTMs were independently trained and tested on each site to optimize hyperparameters. For the site with > 95%
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missing SWE data (WFJ), the LSTM was trained using an observation vector containing only snow depth, which instead

were not missing. Site-specific limits, derived from historical data, were applied to constrain the training process.
:::::
Since285

::
the

:::::::
training

:::::::
process

::::
relies

:::
on

:
a
::::
cost

:::::::
function

:::
that

::::::::
combines

:::
the

::::::
RMSE

::::
with

:
a
:::::::
penalty

::::
term

::::::::
enforcing

:::::::
physical

:::::::
bounds,

:::
the

::::::::::
site-specific

:::::
limits

::
for

:::::
each

::::
state

:::::::::
component

:::
—

:::::::
namely,

:::
the

:::
dry

:::
and

::::
wet

::::::::::
components

::
of

:::::
SWE,

:::::
snow

::::::
density,

::::
and

::::::
albedo

::
—

:::::
were

::::::
derived

:::::
from

::::::::
historical

::::
data

:::::::
records.

:::::
These

:::::::
records

::::
were

::::::::::::
pre-processed

::::::::
following

:::
the

::::::::::
distribution

::::::::::
adjustment

:::
and

::::::
scaling

:::::::::
procedures

:::::::::
described

::
in

::::::
Section

::::::
2.4.1.

:::::
Since

:::::
direct

::::::::
historical

::::::::::
observations

:::
of

:::
wet

:::::
SWE

::::
were

::::
not

::::::::
available,

::
we

::::::::
assumed

:::
this

:::::::
variable

::
to
:::

be
::::::::::
proportional

:::
to

:::
the

::::
ratio

:::::::
between

:::::
LWC

:::
and

:::::
total

:::::
SWE,

::::
with

:::
dry

:::::
SWE

::::::::
estimated

:::
as

:::
the290

::::::::::::
complementary

:::::
term.

:

The available data were split into training, testing, and operational sets
::
by

:::::::::
continuous

::::
time

:::::
spans,

:::::
using

:::
the

:::::::::::
hydrological

:::
year

:::::
(from

:::
the

:::
1st

::
of

:::::::
October

::
to
:::
the

::::
30th

::
of
::::::::::
September)

::
as

:::
the

::::::::
reference

::::
unit. Specifically, first 80% of the data

:
,
::
in

:::::
terms

::
of

::::::::::
hydrological

::::::
years, was allocated for training and testing (with an

:::::
using

:
a
:
4:1 ratio), while the remaining 20% was

reserved for operational testing. In the operational setup, the framework combined S3M model prediction and state up-295

dating with the LSTM (see figure 2). At each time step tk, the prior state vector xf⋆
k = S3M

(
xa⋆
k−1

)
:::::::::::::::
xf
k = S3M

(
xa⋆
k−1

)
from the S3M model’s forward simulation was provided as input to the LSTM, along with meteorological forcing and

the observation vector yk. The LSTM outputs the updated analysis state vector xa⋆
k , which served as the initial con-

dition for the subsequent S3M prediction step xf⋆
k+1 = S3M(xa⋆

k )
:::::::::::::::
xf
k+1 = S3M(xa⋆

k )
:
and so on cycling between S3M

prediction and LSTM updating. The framework was validated using root mean square error (RMSE) metrics for snow300

depth and SWE between ground observations and model predictions. The metrics were computed for both the test and

the operational set; while the first was used to set hyperparameters, the second was used to analyze the performance of

the model.

2 Incorporating Memory to the Site-Specific LSTMs

The second test configuration introduced a memory component to the first LSTM configuration as an additional feature;305

the memory component includes the forecast from the previous timestep xf⋆
k−1 :::::

xf
k−1 as well as the meteorological

forcing from the previous time step k− 1 (relative to the current step k).
:::
The

:::::
input

:::::
vector

:
I
::
at

::::
time

::::
step

::
k,

::
is

::::::::::
constructed

::
as

:::::::
follows:

Ik =
[
mk ,mk−1 ,x

f
k−1

]
::::::::::::::::::::

(4)

:::::
where:

:
310

–
::::::::
mk ∈ Rd:

:::
the

::::::
vector

::
of
:::::::::::::

meteorological
:::::::

forcing
::::::::
variables

::
at

::::
time

::::
step

::
k
::::::
where

:::::
d= 6

::
is
:::
the

:::::::
number

:::
of

::::::
forcing

::::::::
variables.

–
::::::::::
mk−1 ∈ Rd:

:::
the

:::::::::::::
meteorological

::::::
forcing

::
at

:::
the

:::::::
previous

::::
time

::::
step

:::::
k− 1

:::
(see

:::
fig

:::
(2)

:::::::
memory

:::::::::
component

::::::::
element)

–
::::::::::
xf
k−1 ∈ Rn:

:::
the

:::::
model

:::::::
forecast

::
at

:::
the

:::::::
previous

::::
time

::::
step

:::::
k− 1

:::
(see

:::
fig

:::
(2)

:::::::
memory

:::::::::
component

::::::::
element)
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3 Testing Transferability of Site-Specific LSTMs315

The transferability of the
:::::
While

::
in
::::

the
:::::::::::
Configuration

:::
1,

:::::::
separate

::::::
LSTM

:::::::
models

::::
were

::::::
trained

::::
and

:::::
tested

:::::::::::
individually

::
on

::::
each

::::
site

:::::
using

::::
only site-specific LSTMs was assessed by testing each of

::::
data,

::
in
::::::::::::

Configuration
::
3,
:::
we

::::::::
assessed

:::
the

:::::
spatial

::::::::::::
transferability

::
of

:::::
these

::::::::::
site-specific

::::::
models

::
by

::::::::
applying

::::
each

::::::
LSTM

::::::
trained

::
on

:
the low data sparsity LSTMs

::::
sites

(NGK, KHT, RME, FMI-ARC) on
:
to

::::
new

::::
data

:::::
from

::
(i)

:
the remaining 20% of the low data sparsity datasets alongside

the
::::::
holdout

:::::::
portion

::
of

:::
the

::::::::::
low-sparsity

:::::
sites

:::
not

::::
used

::::::
during

:::::::
training,

::::
and

:::
(ii) high data sparsity datasets (CDP , WFJ,320

::::
sites

:::::
(CDP

:::
and

:
TRG).

:::
The

:::::
WFJ

:::
site

::::
was

:::::::
excluded

:::::
from

:::
this

:::::::::
evaluation

:::
due

::
to
::::::::
extensive

:::::
gaps

::
in

::
its

:::::
SWE

::::
time

::::::
series. In

this test we chose to use the LSTM setup with better performances among the prior tests.
:::
the

:::
best

::::::::::::
performances

::::::
among

::::
prior

::::
tests,

::::::
hence

:::
the

:::
one

::::
with

:::::::
memory

::::::::::
components

:
(
::::
see

::::
point

::
2)

:

4 Multisite LSTM with Global Limits

A multisite LSTM was trained using data from the four low data sparsity sites (NGK, KHT, RME, FMI-ARC), with325

global scaling derived from the combined datasets. The training dataset comprised 80% of the data from these four sites,

while the remaining 20% alongside all data from the high data sparsity datasets (CDP, WFJ, TRG) were used to test

the model generalization capacity over water year type, using the operational setup. Data split was made by randomly

sampling whole hydrological years. The water year types were classified based on the total snow depth and include wet

years, dry years, and average conditions.330

Site-specific EnKF results were always used as input for training the LSTM, even in the case of multisite LSTM testing the

EnKFs used to generate the training data were always site-specific.

2.4.4
::::::
LSTM

::::::::
structure

::::
and

:::::::::::::::
hyperparameters

::
In

:::
this

:::::
study,

:::
we

::::::::
manually

::::
tuned

:::
the

::::::::::::::
hyperparameters

::
of

:::
the

::::::
model,

:::::::
selecting

:::
the

:::::::
optimal

:::::::::::
configuration

::
for

:::::
each

:::::
LSTM

::::::::
network.

:::::
Below

:::
are

:::
the

::::::::::::::
hyperparameters

:::
we

:::::::::
fine-tuned:335

–
:::::
Batch

:::::
size:

:::
The

:::::
batch

::::
size

:::::::::
determines

:::
the

:::::::
number

::
of

:::::::
training

:::::::
samples

::::::::
processed

::
in
::

a
:::::
single

:::::::
forward

::::
and

::::::::
backward

:::::
pass.

::
A

::::::
critical

:::::::::::
consideration

:::::
when

:::::::
choosing

:::
the

:::::
batch

::::
size

::
is

::::::::
balancing

::::::::::::
computational

::::::::
efficiency

::::
with

:::
the

::::::
quality

:::
of

:::::
model

:::::::
outputs.

:::
To

:::::
match

:::
the

:::
size

::
of

:::
the

::::::::::
observation

:::::::
datasets

::
for

:::::
each

:::
site,

:::
we

::::
used

:
a
::::::::
standard

::::
batch

::::
size

::
of

:::
128

:::
for

:::
the

::::
sites

::
of

:::::
KHT

:::
and

::::
NG,

:::
and

:::
we

:::::::
reduced

:
it
::::
each

:::::
time

:::::::
selecting

:::
the

:::::
most

::::::
suitable

:::::
value

:::
for

:::::::
optimal

::::::
training

:::::::::::
performance

:::
on

::
all

:::
the

:::::
other

:::::::
datasets340

::::::::::::::::::::::
(Bishop and Bishop, 2023).

:

–
:::::::
Epochs:

:::
The

:::::::
number

::
of

::::::
epochs

:::::
refers

::
to

:::
the

::::
total

::::::
number

:::
of

:::::::
complete

::::::
passes

:::::::
through

:::
the

::::::
training

:::::::
dataset.

:::::
While

::
a

:::::
higher

:::::::
number

::
of

::::::
epochs

::::::
allows

:::
the

:::::
model

:::
to

:::::
better

::::::
capture

::::::::
complex

:::::::
patterns

::
in

:::
the

:::::
data,

:
it
::::

also
::::::::
increases

:::
the

::::
risk

::
of

:::::::::
overfitting

::::
and

:::::::::::
computational

:::::
cost.

::::
After

:::::::::::::
experimenting

::::
with

::::::
various

:::::::::::::
configurations,

::
we

:::
set

:::
the

:::::::
number

::
of

::::::
epochs

::
to

::::
500,

::::::::
allowing

:::
for345

:::::::
sufficient

:::::::
learning

:::::
while

:::::::::
balancing

::::::::
efficiency

:
.
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Figure 2. Operational Setup for deep data assimilation. This diagram illustrates the operational workflow for integrating observational data

with the S3M (CIMA’s Cryospheric Model) framework, through data assimilation via a Long-Short-Term-Memory neural network.

–
:::::
Early

:::::::::
Stopping:

::::
Early

::::::::
stopping

::
is

:
a
:::::::::

technique
::::
used

:::
to

::::::
prevent

:::::::::
overfitting

:::
by

::::::
halting

:::::::
training

:::::
when

:::
the

:::::::::
validation

::::::::::
performance

::::
fails

:::
to

:::::::
improve

::
for

::
a
:::::::
specified

:::::::
number

::
of

:::::::
epochs.

::
In

:::
our

::::
case,

:::
we

:::
set

:::
the

:::::::
patience

::
to

::::
100,

:::::::
meaning

::::
that

::::::
training

::::::
would

::::::::
terminate

:
if
:::
no

:::::::::::
improvement

:::
was

::::::::
observed

::
in

:::
the

:::::::::
validation

::::::::::
performance

:::
for

:::
100

::::::::::
consecutive

::::::
epochs

::::::::::::::
(Prechelt, 2002).

:
350

–
:::::
Initial

:::::::::
Learning

:::::
Rate:

:::
The

:::::::
learning

::::
rate

:::::::
controls

:::
the

:::
step

::::
size

::::::
during

:::
the

:::::::::::
optimization

:::::::
process.

::
A

:::::
higher

:::::::
learning

::::
rate

:::::::::
accelerates

:::::::::::
convergence

:::
but

:::
may

::::
lead

::
to

:::::::::
instability,

:::::
while

:
a
:::::
lower

:::::::
learning

:::
rate

::::
can

::::
slow

:::::
down

:::
the

::::::
learning

:::::::
process.

::::::
Given

:::
the

:::::::
relatively

:::::
small

::::
size

::
of

:::
our

:::::::
datasets,

:::
we

:::::
chose

:::
an

:::::
initial

:::::::
learning

::::
rate

::
of

::::
0.01

::
to

::::::
ensure

::::
rapid

:::::::::::
convergence

::::::
during

:::
the

::::
early

::::::
stages

::
of

:::::::
training

:::::::::::
(Smith, 2015)

:
.355

–
::::::::
Learning

::::
Rate

:::::::
Decay:

::
To

:::::::
enhance

:::::::::::
convergence

:::::::
stability

:::
and

:::::::
prevent

:::::::::::
overshooting,

:::
we

:::::::
applied

:
a
:::::::
learning

::::
rate

:::::
decay

:::::
factor

:::
of

:::
1.5

::::::::::
periodically

14



:::::::::
throughout

:::::::
training.

::::
This

:::::
decay

:::::::
reduces

:::
the

:::::::
learning

:::
rate

::::
over

:::::
time,

:::::::
allowing

:::
the

::::::
model

::
to

:::::::
fine-tune

:::
its

:::::::::
parameters

:::::
more

::::::::
effectively

::
in
:::
the

::::
later

::::::
stages

::
of

:::::::
training.

:

–
:::::
Dense

:::::::
Layers:360

::::
Each

::::::
LSTM

:::::::
network

::::
used

:
a
::::::
single

:::::
dense

::::
layer

:::
as

:::
the

:::::
output

:::::
layer.

::::
This

:::::
dense

:::::
layer

:::
was

::::
used

:::
to

::::
map

::
the

::::::
LSTM

:::::::
outputs

::
to

:
a
:::::::::
fixed-size

::::
state

::::::
vector.

::::
The

:::::::
number

::
of

::::::::
neurons

::
in

::::
this

::::
layer

::::
was

:::
set

::
to
:::

4,
::::::::::::
corresponding

::
to

:::
the

::::::::
required

::::::
output

:::::::::
dimensions

:::
for

::::
each

:::::::
network

:::::::::::::
(Murphy, 2023)

:
.

–
::::::
Hidden

:::::::
LSTM

:::::::
Layers:

:::
We

::::::::
employed

:::
two

:::::::
distinct

::::::
LSTM

::::::::::
architectures

:::::
based

:::
on

:::
the

::::
data

::::::
sparsity

::
at

:::::::
different

:::::
sites.

:::
For

:::::::::
data-dense

:::::
sites,

:::
we

::::
used365

:
a
:::::
single

::::::
LSTM

:::::
layer

::::::::
followed

:::
by

:
a
:::::
dense

::::::
output

:::::
layer,

::::::::
resulting

::
in
::

a
::::::
simple

::::::
2-layer

:::::::::::
architecture.

::::
This

::::::::::::
configuration

:::
was

::::::
chosen

::::::
under

:::
the

::::::::::
assumption

:::
that

::::
the

::::
data

::::::::
contained

:::::::
enough

:::::::
patterns

:::
for

:::
the

::::::
model

::
to

:::::
learn

:::::::::
effectively

:::::::
without

:::::::
requiring

:::::::::
excessive

:::::
model

::::::
depth.

::
In

::::::::
contrast,

:::
for

:::::
sparse

:::::
sites,

::
a
::::::
deeper

::::::
3-layer

::::::
LSTM

::::::::::
architecture

::::
was

::::::::::::
implemented,

:::::
which

:::::::
included

::::
two

::::::
LSTM

:::::
layers

:::
and

:
a
::::::
dense

:::::
output

:::::
layer.

::::
This

::::::::
approach

:::::
aimed

::
to

:::::::
capture

::::
more

:::::::
complex

::::::::::::
dependencies

:::::
within

:::
the

::::
data,

:::::::
thereby

:::::::::
improving

:::
the

::::::
model’s

::::::
ability

::
to

:::::
learn

::::
from

::::::
sparser

::::::::
temporal

:::::::
patterns

::::::::::::::::
(LeCun et al., 2015)

:
.370

–
::::::
Hidden

:::::
units

:::
per

:::::::
LSTM

::::::
Layer:

:::
The

:::::::
number

::
of

::::::
hidden

:::::
units

::
in

:::::
each

::::::
LSTM

::::
layer

::::::::::
determines

:::
the

:::::::
memory

::::::::
capacity

::
of

:::
the

::::::
model.

::::
For

:::::
dense

:::::
sites,

:::
the

::::::
number

::::
was

:::
set

::
to

::::
500,

::::::::
allowing

:::
the

::::::
model

::
to

::::
learn

:::::
from

:::::
more

:::::::
intricate

::::::::
temporal

::::::::::::
dependencies.

:::
For

::::::
sparse

:::::
sites,

:::
the

::::::
number

::::
was

:::::::
reduced

::
to

:::
100

::
to

:::::::
prevent

:::::::::
overfitting,

:::::
given

:::
the

::::::
smaller

:::
and

:::::::
sparser

::::::
datasets

::::::::::::::
(Murphy, 2023).

:

A note to the reader: In the following section, the term LSTM refers to the computation of the analysis mean model state375

vector, denoted as xa⋆
k ∈ Rn, using the LSTM approach. On the other hand, the term EnKF refers to the computation of the

analysis mean model state vector, denoted denoted as xa
k ∈ Rn, using ensemble-based data assimilation via the EnKF scheme.

3 Results

::::
This

::::::
section

:::::::
presents

:::
the

::::::
results

:::::
from

:::
the

::::
four

::::::::::::
configuration

::::
tests,

::::::
based

::
on

:::
the

::::::::::
operational

::::::
testing

:::::
setup

::::
(see

::::
Fig.

:::
2).

::::
Our

:::::::
objective

::::
was

::
to

:::::::
replicate

:::
the

::::::
actual

::::::::
algorithm

::::::::
coupling

:::::::::
mechanism

::::::::
required

::
in

:
a
::::::::
real-time

:::::
setup,

::::::
where

:::
the

::::::
LSTM

:
is
:::::

used
::
at380

::::
each

::::
time

:::
step

::
k
::
to

:::::::
perform

:::::::
filtering.

:

3.1 Performance with varying data sparsity

At sites where data is plentiful (that is, available data cover more than 80% of the period of record: NGK, KTH, FMI-ARC,

RME), the LSTM demonstrated robust performances, meaning that they were generally comparable to the original EnKF (Fig-

ure 3). This, however, came with a considerable nearly 70% decrease in computing time. For instance, one year of simulation385

using the parallelized EnKF took on average 20 minutes, while while using the trained LSTM took only 6 minutes. At most

of these sites (NGK ,
::::
Only

:::
in

:::
the

::::
case

::
of

:::::
NGK

:::
site,

:::
the

::::::::::
LSTM-DA

:::
was

::::
able

::
to

::::::::::
outperform

::::
both

:::
the

::::
open

::::
loop

:::::::::
simulation

::::
and
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::
the

::::::::::
EnKF-DA;

::
At

:::
all

:::
the

::::
other

::::::
dense

::::
sites

:
( KTH, RME,

:::::::::
FMI-ARC), the mean RMSE increase relative to the EnKF for SWE

estimation made by site specific LSTMs was 6 mm ; only in the case of FMI-ARC, the RMSE increase was higher, equal to

15 mm
:::::
within

:::
10

::::
mm (Figure 3, panel e). Similarly, the mean RMSE increase- averaged across sites- compared to the EnKF390

for snow depth estimation made by site specific LSTMs was
:::::
equal

::
to 6 cm (Figure 3, panel f). The

:::
only

::::::::
exception

::
is
:::
the

::::
site

::
of

:::::::::
FMI-ARC

::::
were

:::
the

::::::::::
LSTM-DA

:::
still

::::::::::::::
underperformed

::::::::
compared

::
to

:::
the

::::::
EnKF,

::::::::
although

:::
the

:::::::
absolute

::::::
values

::
of

::::::
RMSE

:::
are

::
1

::::
order

::
of

:::::::::
magnitude

:::::
lower

::::
than

:::
the

:::::
ones

::
on

:::
the

:::::
other

::::
sites.

::::
The bias analysis (Figure 3, panel g and h) showed that snow depth

exhibited a near zero bias, while the LSTM tended to overestimate SWE
:::::::
compared

:::
to

::
the

::::::
EnKF. However, both patterns were

consistent in the EnKF and in the S3M open loop.395

In the case of datasets with high data sparsity (CDP, WFJ, TRG), the performance of the LSTM was markedly worse than

the EnKF estimation of both SWE and snow depth (+50 mm RMSE for SWE and +19 cm RMSE for snow depth, Figure 4

panel e and f). On the other hand, the timing of SWE and snow depth peaks, as well as the magnitude of snow depth peaks,

are generally captured correctly, even in these challenging data sparse scenarios (see fig.4 panels a,b,c,d). However, minor

discrepancies were noted,
::::
even

::
in

:::
the

::::
case

::
of

::::
low

::::
data

:::::::
sparsity,

:
including an underestimation of peak snow depth (Figures 3,400

panels c and d) and a slight temporal shift in the SWE peak (Figure 3, panel a).

Both the EnKF and LSTM networks improved SWE and snow depth predictions over the Open Loop model, at least in the

case of low data sparsity; indeed the LSTM reduced
:::::::
resulted

::
in

:
a
::::::::
reduction

:::
of

::
25

::::
mm

::
in

:
RMSE for SWEby -25 mm, while

the EnKF achieved a better reduction of -31
::
31 mm. On the other hand, in case of high data sparsity, the LSTM increased the

RMSE by 15 mm, while the EnKF reduced the RMSE by -38
::
38 mm. For snow depth, the LSTM reduced RMSE by - 4 cm in405

low sparsity, while the EnKF showed a greater reduction of -9
:
9 cm. Under high sparsity, the LSTM reduced RMSE by - 8 cm,

with the EnKF providing a larger reduction of - 27 cm.

:::::
When

:
it
::::::
comes

::
to

:::::::::
evaluating

:::
the

::::::::::
Kling-Gupta

:::::::::
Efficiency

::::::
(KGE)

::::::::::::::::
(Gupta et al., 2009),

:::
for

::::
sites

::::
with

::::::
denser

::::::::::::
measurements

:::
(on

::::::
average

:::::::
0.72cm

:::
for

::::
both

::::
SWE

::::
and

:::::
snow

::::::
depth),

:::
the

::::::
values

:::
are

:::::::::
comparable

:::
to

::::
those

::::::::
obtained

::::
with

:::
the

:::::::::
EnKF-DA

:::
(on

:::::::
average

::::
0.75

::
for

:::::
SWE

:::
and

::::
0.85

:::
for

:::::
snow

::::::
depth),

:::::::::
supporting

:::
the

::::::::
observed

:::::::::::
improvement

::::
trend

::::
over

:::
the

::::
open

:::::
loop

:::::::::::
simulation(on

:::::::
average410

::::
0.75

::
for

:::::
SWE

::::
and

::::
0.68

::
for

:::::
snow

::::::
depth).

::::::::::
Conversely,

::
in

:::
the

::::
case

::
of

::::::
sparse

:::::::
datasets,

:::
the

:::::
lower

:::::
KGE

::::::
values(

:::
on

::::::
average

::::
-0.4

:::
for

::::
SWE

::::
and

::::
0.25

::
for

:::::
snow

::::::
depth)

:::::::
highlight

:::
the

:::::::::
limitations

:::
of

:::
the

:::::
LSTM

:::
in

::::::::
achieving

:::::::::::
performances

::::::::::
comparable

::
to

:::
the

:::::::::
EnKF-DA

:::
(on

::::::
average

::::
-0.5

:::
for

:::::
SWE

:::
and

::::
0.35

:::
for

::::
snow

:::::::::::::::::
depth).Nevertheless,

:::
the

::::::
LSTM

::::
still

:::::::::::
outperformed

:::
the

::::
open

:::::
loop,

:::::
which

::::::::
recorded

::::
even

:::::
lower

::::
KGE

::::::
scores

::
of

:::::
-0.50

::
for

:::::
SWE

::::
and

::::
-0.06

:::
for

:::::
snow

:::::
depth.

:

Overall, the LSTM demonstrates a reduction in bias compared to the Open Loop under low data sparsity conditions, with415

a bias reduction of -7
:
7
:
mm in SWE and -3

:
3
:
cm in snow depth (Figure 3, panel h). This improvement becomes even more

pronounced in high data sparsity scenarios, where the bias decreases by -15.96
::::
15.96

:
mm in SWE and -5

:
5
:
cm in snow depth

(Figure 4, panel h). However, despite these improvements, the LSTM still exhibits a higher bias compared to the EnKF.

3.2 The role of the memory component

For datasets with
:::::::::::
characterized

::
by

:
low data sparsity (NGK, KTH, FMI-ARC, RME), the inclusion of

:::::::::::
incorporating

:
a memory420

component enhanced the LSTM performance (see Figure 5). With this memory component, the LSTM assimilation scheme
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not only captured the seasonal patterns in
:::
into

:::
the

::::::
LSTM

:::::::::
improved

::
its

::::::
ability

::
to

::::::
capture

::::
the

:::::::
seasonal

::::::::
dynamics

::
of

:
SWE and

snow depth, but also accurately represented
:::::::::
particularly

::
in

:::::::::
accurately

::::::::::
representing

:
the timing and magnitude of peak SWE (see

Figure 5, panels
:
a

:::
and

:::
b).

::::::::
However,

::
in
:::::

some
::::::::

instances
::::
(see

::::::
Figure

::
5,

::::::
panels

:
c and d). In terms of average performance, the

LSTM with memory achieved a comparable SWE RMSE to the EnKF, with a mean RMSE increase of less than 2 mm (Figure425

5, panel a3). Meanwhile,
:::
the

:::::::
memory

:::::::::
component

:::
did

:::
not

::::
lead

::
to

:
a
:::::::::
significant

:::::::::::
performance

::::
gain.

:::::::
Instead,

::
it

::::::::
primarily

::::
acted

::
as

::
a

::::::::
smoother,

:::::::::
dampening

:::::::::
short-term

::::::::::
fluctuations

:::::::
without

::::::::::
substantially

:::::::::
enhancing

::::::::
predictive

::::::::
accuracy.

:::::::::::
Additionally,

:
no significant

changes were observed in the snow depth estimation, with a mean RMSE increase of only 6 cm
::::::::
compared

::
to

:::
the

:::::
EnKF

:
(Figure

5, panel f).

When considering sites with high data sparsity (CDP, WFJ, TRG), a LSTM with the addition of a memory component430

improved both quantitative and timing estimations of peak SWE and peak snow depth, compared to the LSTM estimates

without memory. In fact, we found a mean reduction in RMSE equal to 10 mm for SWE estimates and equal to 0.5 m
:::
cm for

snow depth estimates. However, for datasets with extremely high levels of missing data (e.g., >
:

95%, WFJ and TRG – due to

the manual sampling strategies of some of the assimilated SWE data
:
–
:::::
where

:::
the

::::::::::
assimilated

::::::::::
observations

:::::::
consist

::
of

::::::::
manually

::::::::
measured

:::::
SWE

::::
data,

::
as

:::::::
detailed

:::
in

:::
the

::::::::::::
corresponding

:::
site

:::::::::
references), improvements were still insufficient to obtain scores435

comparable to the EnKF (see Figure 5
:
6, panels e and f). Nevertheless, the introduction of the memory component reduced

model instability and improved snowmelt timing, particularly at sites with sparse observations.

Overall, considering both scenarios, biases (Figure 5
:
6, panel g ) were not affected by the introduction of a memory compo-

nent.

The inclusion of a memory component narrowed the performance gap between the EnKF and LSTM compared to the Open440

Loop. For low sparsity, the LSTM reduced RMSE for SWE by -29
::
29 mm, while in high sparsity, it limited the increase in SWE

RMSE to just 3 mm. In terms of snow depth, the LSTM reduced RMSE by -13
::
13

:
cm in low sparsity and -7

::
by

::
7 cm in high

sparsity. However, the EnKF still outperformed this LSTM configuration in both cases, highlighting its superior performance

despite the added memory and runtime cost.

:::
The

:::::
KGE

::::::
values,

:::
for

::::
both

:::::
dense

:::
and

::::::
sparse

:::::::
datasets,

:::::::
confirm

:::
that

:::
the

::::::::
memory

:::::::::
component

::::::::
primarily

::::
acts

::
as

:
a
::::::::
smoother

::::
and445

:::::::
enhances

:::::::::::
performance

::
in

::::
most

:::::::::
scenarios.

3.3 Spatial transferability

The LSTM trained on KHT emerged as the only one transferable across sites (Figure 7). For SWE estimation this LSTM

showed small drops in performances across other sites below 20% and, in some cases, even a performances boost (see LSTM

on FMI-ARC, RMSE AND TRG on Tab. 3). On the other hand, performance drops for snow depth estimation varied consid-450

erably, from 60% to -1 % (Tab. 3). Other LSTMs, such as those trained in NGK and FMI-ARC, performed less consistently,

showing notable increases in RMSE when transferred to several sites.
::::
While

::::::
recent

::::::
studies

::::::::::::::::::
(Kratzert et al., 2024)

::::
have

:::::::
strongly

::::::::
advocated

:::
for

::::::::::
multi-basin

::::::
training

::
to
:::::::
achieve

:::::
robust

::::
and

:::::::::::
generalizable

::::::
LSTM

:::::::::
streamflow

:::::::
models,

:::
we

::::::::::
intentionally

:::::::
present

:::
the

::::::::::
single-point

:::
case

::::
here

:::
for

::::
snow

:::::::::
hydrology

::
to

:::::::
establish

::
a

::::::::::
performance

:::::
lower

:::::
bound

:::
for

:::::
snow

:::::
spatial

::::::::::::::::::::::::
transferability—highlighting
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::::::
whether

:::::
even

::::
such

:
a
:::::::::
constrained

::::::
model

:::
can

:::::::::
outperform

:::
the

::::
open

::::
loop

::::
and

:::::::
compare

::::
with

::::::::
traditional

::::
data

::::::::::
assimilation

::::::::::
approaches.455

SWE RMSE [mm] Snow Depth RMSE [cm]

Site RMSELOCAL ∆% KTH ∆% NGK ∆% FMI-ARC ∆% RME RMSELOCAL [cm] ∆% KTH ∆% NGK ∆% FMI-ARC ∆% RME

NGK 14.09 +8 - +125 +199 8 +34 - +90 +126

KHT 14.10 - +271 +329 +155 22 - -13 +34 +2

FMI-ARC 9.06 -45 +119 - +32 11 +47 +25 - +78

RME 39.92 -51 +35 +59 - 17 -54 +14 +7 -

CDP 67.61 +18 +68 +74 +66 12 +60 +62 +253 +128

TRG 73.70 -76 -58 -37 -68 22 -1 +2 +19 +11

Average - -29 +87 +110 +77 - +17 +18 +81 +69

Table 3. Percentage change in Snow Water Equivalent
::::
snow

::::
water

::::::::
equivalent and Snow Depth

::::
snow

::::
depth

:
RMSE when using a transferred

LSTM assimilation scheme compared to a locally trained LSTM. Positive and negative values indicate improvements or degradation in

performance, respectively. ∆ values are obtained as the difference between the RMSE of a locally trained LSTM and that of a transferred

LSTM, respectively for SWE and Snow Depth
:::

snow
:::::
depth.

Tests on correlations between LSTMs performances and biases with various climatological variables showed no statistically

significant correlation (see fig. A1 and A2 in the appendix).

3.4 Multi-site Long-Short Term Memory

To guarantee a meaningful and practical evaluation of the multi-site LSTM performances, the analysis was performed by460

comparing RMSE distributions for SWE and snow depth across water year types. Figure 8 presents the RMSE distribution for

SWE and snow depth under varying water year types, comparing the performance of the S3M open-loop run, the estimates

retrieved from the analysis of EnKF, and the LSTM estimates.

A multi-site LSTM generally demonstrated improvements in performance compared to the S3M open-loop run, particularly

for SWE. For dry and average years ( Figure 8, panels c and e
:
b
:::
and

::
c), the SWE estimates from the LSTM showed competitive465

performance over EnKF, with a performance drop of less than 6 mm on average. On the other hand, the LSTM SWE estimation

RMSE values were higher in case of
:::::
during

:
wet years ( +15 mm ).

:::::::
Reduced

:::::::::::
performances

:::
of

::
the

:::::::::
Multi-site

::::::
LSTM

:::::::::
simulation

::
on

:::::
SWE

::::
over

::::
wet

:::::
years

::::
may

:::
be

:::::::
because

::
in
::::

wet
::::::
years,

::
an

:::::::::
increased

::::::
number

:::
of

::::::::
snowfall

:::::
events

:::::
may

::::::::
introduce

:::::::::
additional

:::::::::
complexity

::::
and

::::::::::
uncertainty,

::::
both

::::
due

::
to

:::
the

:::::::::
cascading

::::::
effects

::
of

:::::::::::
uncertainties

::
in
::::::

initial
:::::::::
conditions

::::
and

::::::::::
precipitation

::::::
phase

:::::::::
partitioning

::::::::::::::::::::::::
(Harder and Pomeroy, 2014).

:::::::::
Moreover,

:::
the

::::::::
formation

:::
of

::::::
several

::::
snow

::::::
layers

::::
may

:::
not

::
be

::::
fully

::::::::
captured

::
by

:::::
S3M.

:
470

For snow depth, the improvements were less clear across all water year types. The RMSE reduction remained modest, with

an average loss of 1.8 cm.
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4 Discussion

In snow-dominated regions, accurate snow estimations are crucial for water resources managing, floods forecasting (Andreadis

and Lettenmaier, 2006), and for assessing the impact of climate change on the hydrological cycle (Siirila-Woodburn et al.,475

2021). Nonetheless, significant uncertainties in model predictions and observational data make accurate snow estimates chal-

lenging (Blöschl, 1999). Data assimilation, which integrates both sources, is arguably one of the most effective methods for

improving snowpack-model reliability. However, state-of-the-art ensemble-based techniques like the EnKF are computationally

intensive, potentially limiting their use in operational contexts. Furthermore, one can argue that it is not just the computational

expense but also the time and effort required for parameter tuning, setup, and execution that pose significant challenges to their480

widespread adoption in such applications.

This paper suggests an alternative assimilation framework for snow, which relies on having a LSTM neural network (Adnan

et al., 2024; Song et al., 2024) to learn how to perform the filtering updates performed by an EnKF.

The key hypothesis underlying this research was that, leveraging Deep Learning, it is possible to preserve the skill of an

EnKF, while significantly reducing computational efforts. This paper outlined four key findings in this regard.485

First, site-specific LSTMs achieved comparable performances to an EnKF, both in predicting SWE and snow depth, as well

as their seasonal patterns, with also a significant reduction in computational time. Besides this temporal efficiency, the LSTM

enabled leveraging a complex tool like the EnKF only for initial training, then replicating its capabilities in operational settings

using a faster, simpler data assimilation framework.

To evaluate the computational efficiency of the proposed framework, this framework
:
it
:
was benchmarked against a parellized490

EnKF. Even though the EnKF already benefits from parallelization during the ensemble prediction step using 15 CPU cores,

once trained the LSTM-based approach provided a further 70% reduction in computational time. This result underscores the

potential of the framework to significantly lower computational overhead, particularly in scenarios with limited resources or

parallelization capabilities.

In line with the work of Guidicelli et al. (2024), this finding reinforces the potential of Deep Learning for data assimilation in495

snow hydrology. Yet, the LSTM performance turned out
:::
was

:::::
found

:
to be highly sensitive to the temporal resolution of the input

data, which is consistent with findings from other machine learning studies (Xu and Liang, 2021; Gong et al., 2023). These

results thus emphasize the importance of acquiring high-frequency snow data to ensure optimal performance and accuracy of

modern data-assimilation approaches (Dedieu et al., 2016), highlighting the need for investments in this direction (Cui et al.,

2023).500

Second, the introduction of memory into the algorithm improved both stability and performance, particularly when working

with the inherently noisy outputs of the EnKF and in locations where data sparsity was a major issue. Future efforts could

explore additional pre-processing of input data to reduce noise (e.g., smoothing or moving averages), though care must be

taken to preserve snow intermittency, which is critical in certain hydrological contexts.

Third, the LSTM trained on a long dataset (KHT) demonstrated some potential for spatial transferability with minimal505

performance loss, opening avenues for distributed applications of deep data assimilation provided that such long datasets
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are used in training. The
:::::::
Although

:::::
using

:::::::
limited

:::::::
datasets

::
in

::::
both

::::::::
temporal

:::
and

::::::
spatial

::::::::
coverage

:::::::::
compared

::
to

::::::
recent

::::::
studies

:::::::::::::::
(Song et al., 2024),

:::
our

::::::::
approach

::::::
proved

::
to

::
be

:::::::
effective

::
in

::::::::
speeding

::
up

:::::::::
traditional

::::
data

::::::::::
assimilation

:::::::::
techniques

::::
while

::::::::::
maintaining

:::::::::
comparable

:::::::::::
performance.

:::::::::::
Additionally,

:::
our

::::::::::
framework,

:::::::
designed

::
to
::::
test

::
the

::::::::::
operational

:::::::
viability

::
of

:
a
:::::::::::::
quasi–real-time

::::
pilot

:::::
point

:::::::
method,

::::
still

::::::
proved

:::
the

::::::::
feasibility

::
of

:::
an

:::::::::
alternative

:::
use

::
of

::::::
LSTM

::::::::
algorithm

:::::::
without

::::::
loosing

::
in

::::::::::::
performances.

:::
The

:::::::::::
encouraging510

:::::
results

:::::::
provide

:
a
:::::::::
foundation

:::
for

::::::::
extending

::::
this

:::::::::
framework

::
to

:::::::
broader,

::::
more

::::::
diverse

::::::::
networks

::
in

:::::
future

::::::::
research.

::::
The lack of sta-

tistically significant correlations between performance and specific climatological variables further supports transferability. Ac-

cording to Karniadakis et al. (2021), Deep Learning, which usually requires a large amount of data to optimally generalize over

samples, has a stronger generalization capability, even in small data regimes, if such algorithms are developed with a physics-

informed learning approach. In light of this, the introduction of soft constraints inside
:::
we

:::::::::
introduced

:::
soft

::::::::
physical

:::::::::
constraints515

:::
into

:
the cost function , which add a inductive bias, proved to be not effective enough in boosting generalization. Hence, future

implementations should focus on increasing physics adherence, to achieve higher transferability
:
as

::
a
::::
way

::
to

::::::::::
incorporate

:::
an

:::::::
inductive

:::::
bias.

::::::::
Although

:::
this

::::::::
particular

::::::::
approach

:::
did

:::
not

:::::
prove

:::::::
effective

::
in

::::::::::
significantly

:::::::::
enhancing

::::::::::::
generalization,

:::::::::::
considerable

:::::::
potential

:::::::
remains

::
in

::::::::
enforcing

:::::
snow

:::::::
physical

:::::::::
constraints

:::
in

::::::
LSTMs

::::::::::::::::::::::
(Charbonneau et al., 2024)

:
.
::::::
Further

:::::::
research

::
is
:::::::
needed

::
in

:::
this

::::::::
direction

::
to

:::::
better

:::::::::
understand

::::
how

::::
such

:::::::::
constraints

::::
can

::::::
support

::::::
model

:::::::::::
generalization

::::
and

:::::::
physical

::::::::::
consistency. This find-520

ing could add fuel to a discussion around the still open question of the transferability of deep learning models
::::::::
contribute

::
to

:::
the

:::::::
ongoing

:::::
debate

::::::
around

:::
the

::::::::::
unresolved

:::::::
question

::
of

:::::
Deep

:::::::
Learning

:::::::
models

:::::::::::
transferability

:
(Pakdehi et al., 2024).

With few exceptions, the comparison of RMSE reductions from the Open Loop to the analysis of the LSTM demonstrated

substantial improvements. All but 2 out of the 14 site specific LSTM framework
:::::::::
site-specific

::::::
LSTM

::::::::::
frameworks

:
significantly

outperformed the Open Loop, although none outperformed the EnKF. Nevertheless, the LSTM ability to deliver marked im-525

provements over the Open Loop underscores its promise as a computationally efficient and effective alternative, even under

challenging conditions.

Regularization in particular
:
,
:
and uncertainty-quantification more generally

:
, could be improved by using Bayesian Deep

Learning (Murphy, 2023). For example, a recent cryospheric study used an ensemble Kalman method (rather than stochastic

gradient descent) to train Bayesian neural network with an architecture that was tailored to the problem at hand (Pirk et al.,530

2024). The contrast between our study, where a neural network learns to mimic the EnKF update, and Pirk et al. (2024) where

an EnKF method trains an uncertainty-aware neural network, are just some recent examples of the synergies that exist between

Bayesian data assimilation and deep learning. The aforementioned study of Guidicelli et al. (2024) also explored how DA and

Deep Learning could be combined for better uncertainty quantification, not only by having a neural network learn the posterior

spread from an EnKF method but also by adopting a simple dropout technique for approximate uncertainty quantification in the535

neural network outputs. The links between deep learning
::::
Deep

::::::::
Learning and Bayesian data assimilation are well established

in the literature (Arcucci et al., 2021; Cheng et al., 2023; Murphy, 2023), but we emphasize them once more in this discussion

because they are perhaps less known to the snow science community.

The fourth and last key aspect that this study highlighted was no dependency of the performance of this algorithm on dry and

average water years, despite a diminished robustness in wet years. Nonetheless, this limitation is shared with both the EnKF540

and S3M in open-loop, as shown by the distributions in these scenarios. Given the predicted decline in snow cover over the
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coming decades and the emergence of more frequent snow droughts (Larsson Ivanov et al., 2022), the reduced performance of

the algorithm in wet years may have a relatively minor overall impact. Under such a fast-paced changing climate, a climatically

robust LSTM could account for physical processes changing faster than scientists change their models (Cowherd et al., 2024a).

The algorithm showed a significant drop in performance when handling missing or sparse data, contrary to an Ensemble545

Kalman Filter. Future work in this regard should focus on improving performance under circumstances of high data sparsity,

exploring advanced smoothing techniques, and extending transferability even to ungauged catchments.

5 Conclusions

We proposed a data assimilation framework based on Deep Learning, leveraging a Long-Short-Term-Memory neural network

(LSTM )
:::::
LSTM

:
to perform data assimilation for state estimation in a hybrid temperature-and-radiation driven hydrology-550

oriented cryosphere model. The LSTM framework showed performances in snow depth and Snow Water Equivalent
::::
SWE

estimation that were comparable to an EnKF, while significantly reducing computational time. Furthermore, a LSTM trained

on a long dataset, proved to be spatially transferable, with only a ∼20% reduction in SWE estimation performance when

applied to regions outside the training domain. LSTM robustness during dry and average water years further underscores

the generalization capacity of such a framework. The LSTM, however, showed limitations when dealing with sparse data555

scenarios. Addressing these limitations could involve exploring advanced smoothing techniques to be applied to input data or

evaluate the benefit from merging different kinds of data sources (e.g., remotely sensed data). These results open a window of

opportunity for spatially distributed deep data assimilation; hence future work should focus on testing such a spatio-temporal

configuration. Moreover, it would be valuable to assess the impact of Deep Learning in the assimilation of snow data for
:::::
water

::::::::
resources

::::::::::
applications,

:::::
such

::
as

:
streamflow estimation. This study contributes to the relatively under-explored literature on560

Deep-Learning-based data assimilation by suggesting Deep-Learning algorithms as efficient and computationally less intensive

data assimilation frameworks for operational snow hydrology.
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Figure 3. Results for sites with low data sparsity, site spefic LSTM. Panels a,b,c,d: comparison between ground observation (red) of Snow

Water Equivalent (top) and snow depth (bottom) and model estimates by S3M in the open loop (black), using an Ensemble Kalman filter

(grey), and using a Long Short Term Memory neural network (blue) in Kuhtai (row 1) and Nagaoka (row 2). Panels e,f,g,h
::
,i,j: box plots of

RMSEand ,
:

bias
:::
and

::::
KGE

:
for SWE (pan.e for RMSEand

:
, pan. f for bias

::
and

:::
pan

:
i
:::
for

::::
KGE) and snow depth (pan.g for RMSEand ,

:
pan h

for Bias
:::
and

:::
pan

:
j
::
for

::::
KGE); points represent sites with less than 3 years of validation data.
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Figure 4. Results for sites with high data sparsity, site spefic LSTM. Panel a,b,c,d: comparison between ground observation (red) of Snow

Water Equivalent (top) and snow depth (bottom) and model estimates by S3M in open loop (black), using an Ensemble Kalman filter (grey),

and using a Long Short Term Memory neural network (blue) in Col de Porte (row 1) and Weissfluhjoch (row 2).Panels e,f,g,h
::
,i,j: box plots

of RMSEand ,
:
bias

:::
and

::::
KGE

:
for SWE (pan.e for RMSEand ,

:
pan. f for bias

:::
and

:::
pan

:
i
:::
for

::::
KGE) and snow depth (pan.g for RMSEand

:
, pan

h for Bias
::

and
:::
pan

:
j
:::
for

::::
KGE); points represent sites with less than 3 years of validation data.
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Figure 5. Results for sites with low data sparsity. Panel a,b,c,d: comparison between ground observation (red) of Snow Water Equivalent

(top) and snow depth (bottom) and model estimates by S3M in open loop (black), using an Ensemble Kalman filter (grey), using a Long

Short Term Memory neural network (blue) and using a Long Short Term Memory neural network with memory (light blue) in Kuhtai(row 1)

and Nagaoka (row 2). Panels e,f,g,h
::
,i,j: box plots of RMSEand ,

:
bias

:::
and

::::
KGE

:
for SWE (pan.e for RMSEand ,

:
pan. f for bias

:::
and

:::
pan

:
i
:::
for

::::
KGE) and snow depth (pan.g for RMSEand

:
, pan h for Bias

:::
and

:::
pan

:
j
:::
for

::::
KGE); points represent sites with less than 3 years of validation

data.
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Figure 6. Results for sites with high data sparsity. Panel a,b,c,d: comparison between ground observation (red) of Snow Water Equivalent

(top) and snow depth (bottom) and model estimates by S3M in open loop (black), using an Ensemble Kalman filter (grey), using a Long

Short Term Memory neural network (blue) and using a Long Short Term Memory neural network with memory (light blue) in Col de Porte

(row 1) and Weissfluhjoch (row 2). Panels e,f,g,h
:
,i,j: box plots of RMSEand ,

:
bias

:::
and

::::
KGE for SWE (pan.e for RMSEand ,

:
pan. f for bias

:::
and

:::
pan

:
i
::
for

::::
KGE) and snow depth (pan.g for RMSEand

:
, pan h for Bias

:::
and

:::
pan

:
j
::
for

::::
KGE); points represent sites with less than 3 years of

validation data.
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Figure 7. Spatial transferability of site-specific LSTMs for SWE and snow depth estimation. Panel (a) shows a comparison between the

RMSE for SWE obtained by using each LSTM at the training site (x-axis) and the RMSE obtained when transferring the same LSTM to

other sites (y-axis). Panel (b) shows the same information, but for snow depth. The bisectors in the two panels represent the one-to-one lines

comparing the RMSE values for SWE and between the site-specific LSTM and the LSTM trained on a different site. The dotted lines in both

panels serve as benchmarks, indicating the RMSE values achieved by the site-specific LSTM models. Colors represent training sites, while

shapes correspond to the to sites where each LSTM was applied. The lowest granularity site, WFJ, is excluded.
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Figure 8. RMSE Distribution
::::::::
distribution

:
for SWE and Snow Depth Across Water Year Types

::::
snow

:::::
depth

:::::
across

::::
water

::::
year

::::
types

:
RMSE

distribution for SWE on wet, dry and average years type (panels a,c
:
b,e

:
c) and snow depth (panels b,d,

:
e,f) under varying water year types:

wet, dry, and average conditions.
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Appendix A: Coordinates information of the 7 study sites

– TRG (Torgnon, Aosta Valley, Italy): 45◦50′ N, 7◦34′ E

– CDP (Col De Porte, Isère, France): 45◦3′ N, 5◦77′ E

– WFJ (Weissfluhjoch, Davos, Switzerland): 46◦82′ N, 9◦8′ E580

– KHT (Kühtai, Tirol, Austria): 47◦20′71′′ N, 11◦00′6′′ E

– FMI-ARC (FMI-ARC Sodankylä Geophysical Observatory, Finnish Lapland): 67◦36′8′′ N, 26◦63′3′′ E

– NGK (Nagaoka, Japan): 37◦25′ N, 138◦53′ E

– RME (Reynolds Mountain East, Idaho, USA): 43◦11′9.36′′ N, 116◦46′58.9′′ W
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Site SWE Obs. (mm) HS Obs. (cm) Frequency Error (SWE/HS) [mm/cm] Time Range

TRG 6h, missing (2012–2013, 2014–2015) ✓ 30’ ±15/±10 Oct 2012–Mar 2023

CDP From 2002 ✓ 1h ±5/±1 Oct 1993–Sep 2022

WFJ Manual, sporadic ✓ 60’ ±10/±20 Oct 1999–Sep 2018

KHT ✓ ✓ 15’ ±1/±10 Oct 1990–Sep 2015

FMI-ARC Manual, sporadic ✓ 60’ ±15/±10 Oct 2007–Jul 2014

NGK ✓ ✓ 60’ ±10/±10 Oct 2006–Aug 2023

RME ✓ From 1999 60’ ±10/±10 Oct 1984–Sep 2008
Table A1. Measurement Characteristics Across Sites. TRG = Torgnon, Aosta Valley, Italy. CDP = Col de Porte, Isère, France. WFJ =

Weissfluhjoch, Davos, Switzerland. KHT = Kühtai, Tirol, Austria. FMI-ARC = FMI-ARC Sodankylä Geophysical Observatory, Finnish

Lapland. NGK = Nagaoka, Japan. RME = Reynolds Mountain East, Idaho, USA.
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Figure A1. Analysis of RMSE dependency on site characteristics for SWE and snow depth across different parameters. Subplots (a-b)

show RMSE vs. peak SWE, (c-d) vs. altitude, (e-f) vs. annual precipitation, (g-h) vs. latitude, and (i-l) vs. longitude. Blue and cyan markers

represent estimations from LSTM with and without memory, respectively. Correlation coefficients, confidence intervals, and p-values indicate

weak or negligible dependence of RMSE on these site characteristics, suggesting general independence of model performance from these

factors.
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Figure A2. Bias analysis of SWE and snow depth with respect to site characteristics. Subplots (a-b) illustrate bias vs. peak SWE, (c-d) vs.

altitude, (e-f) vs. annual precipitation, (g-h) vs. latitude, and (i-l) vs. longitude. Blue and cyan markers represent estimations from LSTM

without and with memory, respectively. Correlation coefficients and p-values suggest minimal or no significant bias dependency on these site

characteristics, except for a moderate correlation in specific cases, such as SWE bias with annual precipitation in (e).
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