Reply to RC.1

General comments

The authors of “Learning to filter: Snow data assimilation using a Long Short-
Term Memory network” have made efforts to address previous comments. Please
see my comment below for further clarification and improvement.

We thank the reviewer for the time dedicated to the evaluation of our manuscript to further
improve its quality and to make it better understandable to a broader audience. We modified
the manuscript following reviewer’s comments, as we detail below.

Specific comments

1. Please consider adding longitude lines for the European sites, and one more
latitude line for both European and Asian sites in Figure 1.

Comment addressed.

2. If my understanding is correct, the LSTM model—at least in the opera-
tional testing configuration—uses only a single previous timestep as input. The
main difference compared to a basic model appears to be that the LSTM’s memory
component includes meteorological forcings from the previous timestep (as shown
in Equation 4). This raises the question: is the use of an LSTM necessary in this
case? Would a simpler ANN model suffice? Additionally, the authors state that
this setting is to mimic the real forecast setting, but it is unclear why this is the
case. Typically, historical meteorological data should be accessible for forecasting
applications. Could the authors clarify this point? Finally, the response mentions
that the training phase uses multi-time-step input sequences. What is the specific
timestep length used during training? Does this imply that the model is trained
using a different temporal input structure than what is used during testing? If so,
a more explicit explanation of this mismatch would be helpful.

As correctly understood by the reviewer, the operational testing configuration of the LSTM
model indeed uses only the previous single timestep as input. However, contrary to a basic
Artificial Neural Network, the LSTM can retain and implicitly utilize information from a longer
sequence of past time steps through its internal cell states and hidden states previously trained.
This ability to maintain a ”memory” of historical conditions, even when only a single previous
timestep is given as input, is why we choose to use a LSTM even while relying on this alternative
single-step testing setup. Additionally, during the training phase, the model was trained using
multi-time-step input sequences. Specifically, approximately 10 years of hourly data records
for each site were used during training. Acknowledging that the different approach between
training and testing may not be satisfactory explained, we added an explanatory comment on
line 304 after ”... observations and model predictions.:

”Tt is important to stress that, while the training phase was performed in the
conventional way of training neural networks -meaning multiple timestep as input



to obtain a sequence of outputs - the operational testing phase was performed giving
to the LSTM trained models only one timestep at a time, to be coupled with the
forward step of the cryospheric model.”

Finally, we agree with the reviewer that historical meteorological data is accessible for
model development and training, in a true operational forecast scenario; however, we would
like to point out that the framework we built was to couple our LSTM as an online sequen-
tial data assimilation step (i.e., so-called filtering) to re-initialize our cryospheric model, which
relies only on the most current observations and its internal learned dynamics during each com-
putational step to project snow conditions forward. This argument is particularly important
in terms of reducing the amount of storage needed to run a model operationally for forecasting
purposes. This is why we chose to only rely on the most recent timestep in testing.

3. Figure 5. Please check the colors in the legend. It seems to me the color
for LSTM-DA and LSTM-DA with memory in the legend is too light and do not
match with the figure.

Comment addressed.



Reply to RC.2

General comments

I think the authors have done good revision work and improved the quality of this
manuscript. My concerns have been addressed or explained.

We appreciate the help of the reviewer in further improving the quality of the manuscript
and we will perform an in-depth grammar and typo check before submitting the new version.

Specific comments

I only have two minor comments left:

1. The colors of the result figures are difficult to distinguish between the dif-
ferent models. Please further improve the clarity of these figures. Figure Al: The
legend is hard to read.

Comment addressed.

2. Please correct the grammar and typo errors throughout the manuscript.

For example:

Line 403: "KGE” should not have a unit.
Line 498: ”without loss in performance.”

There are more besides these two examples.

Comment addressed.



Reply to RC.3

General comments

The topic of the manuscript is interesting and relevant for the readers of Cryosphere,
as well as for the larger international hydrology community. It is also in line with
the actual popularity of machine learning in hydrology (and everywhere, really!).
If I understand the situation correctly, the manuscript has already been reviewed
by two anonymous referees, who might not be available anymore, or the editor
wanted a third opinion. Considering this, I have tried my best to prioritise ver-
ifying that the authors have addressed all the comments made by the two initial
referees and I will refrain from starting the review process all over again. I did,
however, notice a few minor points that were not raised during the initial review
that I think would be wort addressing. Overall, I would consider this a minor
revision

We appreciate the reviewer comment on the impact of our paper on the Cryosphere com-
munity and we thank them for the further effort made to help us improve our manuscript.
We provide here more in-detail answers to reviewer’s comments and modified the manuscript
following the reviewer’s suggestions.

Specific comments

1. Introduction: too much emphasis on mountains- The introduction of the
manuscript start with emphasising the importance of snow in mountain regions.
As someone who lives in a non-mountainous area where snow plays a very impor-
tant role in the hydrological cycle, I tend to nd this a little bit annoying. The data
assimilation method you propose is presented as a point-based method, at least
for now. One of the challenges of modelling (or assimilating) snow in mountainous
regions is the high spatial variability, and this is something that the current ver-
sion of your method is not addressing. However, your method is still interesting
an useful, in general, for snow dominated areas. All of this to say: I think it would
make more sense to start the introduction from a more general point of view,
and not ”"mountains ” specially. For instance, you could just start the introduc-
tion with ”reliable estimates of snow water equivalent (SWE) and snow depth in
snow-dominated environments are essential (...) ”,explain why, and then maybe
mention the specific case of mountains.

We understand the reviewer’s concern. We addressed this comment by changing the intro-
duction as follows:

”When studying the hydrological cycle, one cannot underestimate the key role
played by snow (Pagano & Sorooshian 2002); indeed, for snow-dominated catch-
ments, today’s snow is tomorrow’s water. Information on the state and distribution
of snow cover provides helpful information to characterize seasonal water storage
(Zakeri et al. 2024), seasonal to annual water availability (Metref et al. 2023), and
several cascading socio-hydrologic implications (Avanzi et al. 2024).



Especially in cold regions, which are heavily affected by climate change (Hock et al.
2019), the snowpack often functions as the primary source of streamflow, particu-
larly during spring and summer (Bales et al. 2006). Moreover, considering the high
spatial variability in these regions, the scientific community agrees on the needs
of reliable estimates of Snow Water Equivalent (SWE) and snow depth in snow-
dominated environments, which are essential for effective and timely management
of water resources (Hartman et al. 1995).”

2. Data quality: how do you measure it? Section 2.1 mentions that you used
‘(...) high-quality, pre-processed datasets from long-term, internationally ac-
knowledged snow research stations across the northern hemisphere (...) ’. Can
you specify how data quality was measured and provide some details?

To assess the quality of the dataset used in our study, we relied on the quality control
procedures and documentation provided by the original data providers, who typically ap-
ply standardized protocols for data collection, sensor calibration, and outlier removal. These
datasets are widely used and cited in the scientific community, and their quality assurance
practices are well established. While we did not perform an independent quality assessment,
we selected stations with a long history of data availability and peer-reviewed documentation
to ensure the reliability of the input used in our analysis.

3. Data quality: how robust is the proposed method? Maybe this comment is
more for the discussion, and it also depends on your reply to my previous ques-
tion, but I think it would be interesting to reflect on how robust you think the
method will be to lower quality data? Operationally, one would want to apply
your method using data of slightly lower quality, if that is what is available to
them. How will this affect the results? Would the method be able to ‘ignore’ a
portion of the data if the quality is too low?

We appreciate this timely and relevant question, which indeed opens a broader discussion
around the applicability of artificial intelligence-based (AI) methods in real-world operational
contexts. It is well known that Al and, in particular, deep learning techniques are highly
sensitive to data quality and quantity. The performance of these models tends to degrade
when trained or applied to noisy, incomplete, or low-resolution data.

However, this limitation can often be addressed through robust data pre-processing and
augmentation strategies. Indeed, a significant portion of time in AI workflows is devoted to
improving data quality before model training. Moreover, there is growing interest in hybrid ap-
proaches that combine traditional statistical techniques with deep learning, offering a potential
pathway to enhance robustness in low-quality data settings.

For instance, recent work by Gauch et al. (2025) provides valuable insights into handling
missing data in operational environments, suggesting imputation and correction methods that
could be integrated into Al pipelines. Additionally, On the Al side, generative models (e.g.,
GANs or diffusion-based models) have shown promise in enriching and recovering incomplete
datasets, as illustrated by Dhoni (2023).

In order to add a discussion of this timely topic to our paper, we have added a sentence
after line 557:



While our results are based on high-quality forcing and observational datasets,
we acknowledge that operational applications may involve lower-quality inputs.
In such cases, pre-processing strategies (e.g., bias correction, gap-filling) and hy-
brid DA—-AI frameworks could help mitigate performance loss, with the potential
to selectively down-weight unreliable inputs rather than propagating their errors
through the model. Recent work by Gauch et al. (2025) demonstrates the effec-
tiveness of imputation and correction methods for handling missing or degraded
data in operational environments, while generative models such as those explored
by Dhoni (2023) offer promising avenues for enriching and augmenting incomplete
datasets.

4. Reviewer 1’s comment about section 3.4 (spatial transferability vs multisite
training) The original Reviewer 1 commented that ¢ instead of presenting the spa-
tial transferability of a single model, it might be more meaningful to compare and
discuss the site-specific LSTM and the multi-site LSTM °’. I completely agree with
them, and I don’t think the authors have addressed that comment satisfactorily.
I understand your concern and interest with exploring the lower bounds of snow
model performance, etc., but this comparison between single-site and multi-site
training is one of the most relevant aspect of the paper, considering the current
literature in hydrology and LSTMs. In that sense, I really don’t think that the
addition you made after line 360 is sufficient. I would strongly encourage you to
provide a more thorough comparison, as it would be of very high interest to the
scientific community. On the same topic, I found Figure 8 extremely difficult to
interpret, even just on its own, and impossible to compare with Figures 3 to 6.
Please provide a figure that will allow the readers to directly compare the results
of single site vs multi-site training. Theoretically, it seems like a good idea to
train the LSTMs on multiple sites, as it provides them with more data, and more
diversity. Is it the case in practice for data assimilation? This should be discussed.
Also regarding Figure 8: please write ¢ probability density function ’ instead of
the acronym ¢ PDF ’ or, even better, remove the title above the figure altogether,
keeping only the caption below.

We acknowledge the point of the reviewer and we now provide a comparison between the
best site-specific LSTM and the multiple site LSTM. We added a new section in the Results :

Comparing the multi-site LSTM DA with the site-specific LSTM DA trained over
KHT, results show comparable performance for SWE, with neither approach con-
sistently outperforming the other(see Fig. 9). In some cases, the site-specific model
achieves lower errors, while in others the multi-site model performs equally well or
slightly better. For snow depth, however, the multi-site LSTM DA tends to out-
perform the site-specific LSTM DA across most sites, although the improvements
are generally modest (e.g. see Fig. 9 pannel d)

Then, in the discussion section, after line 544, we added this paragraph :

Additionally, considering a comparison between two approach, neither the site-
specific nor the multi-site LSTM-DA consistently outperforms the other. While



multi-site training is theoretically expected to improve generalization by exposing
the model to a broader range of conditions, this benefit is not clearly observed
for SWE. A likely reason could be an uneven representation of sites, combined
with variability in snowpack properties, meteorological drivers, and measurement
methods, which may bias the model and introduce noise, leading to underfitting.
Snow density also plays a crucial role; SWE is defined as W = dp, where W is SWE
[kg/m?], d is snow depth [m], and p is bulk snow density [kg/m3]. A site-specific
model such as KHT may implicitly capture a representative density evolution that
transfers well across sites, whereas a multi-site model must attempt to generalize
density dynamics across all environments, often with less accuracy. Overall, the
multi-site LSTM-DA and the EnKF-DA perform similarly, with the latter only
marginally better. This is encouraging, as it highlights the potential of the multi-
site LSTM-DA to achieve comparable performance while substantially reducing the
computational cost associated with ensemble-based methods.

Additionally, We modified the title on figure 8 (Now figure 9) accordingly to reviewer’s
suggestion.

5. Reviewer 2’s general comment about the lack of details in the description of
your experiments. I agree with this comment and I acknowledge the efforts that
you already made to improve this. However, I think some important details are
still missing or too vague:

- What is the programming language that was used to build the LSTMs? Any
specific toolboxes or libraries?

To address this comment we added a sentence after line 282:

To develop the LSTM algorithm, we used Python 3.9.21 programming language and
the open source libraries Keras v.2.10.0 (Chollet et al. 2015) and Scikit-learn
v.1.1.1 (Pedregosa et al. 2011).

-In section 2.4.4: what is the length of the lookback window? Related to that,
Rev 2 asked to ¢ please clarify the memory component (...) ’. Normally, LSTMs
do not need to be provided with data from previous timesteps, because of the
lookback window (sometimes called lookback period, or just lookback). This is
an important advantage of LSTMs compared to multilayer perceptrons, for in-
stance, which have no memory. As their name indicates, LSTMs were designed
specifically to have a memory. It is difficult to understand why you are adding a
supplementary memory component. Including input variables form previous time
steps is something we would typically do with a MLP, because of their lack of
memory. Therefore, in addition to specifying the length of the lookback window,
can you explain how adding more time steps for input variables is not redundant
with the lookback window?

The lookback in the training phase is on average 10 years of hourly data (24x365x10),
following the comments of Liu et al. (2015) who raised the concern that for long sequences
the important information from the beginning of the sequence has to be dragged through the



whole sequence. Then during the testing the lookback is ether 1 or 2 hours (in the memory
component configuration). So in that sense the memory component configuration name is
used to stress a ”longer” memory call rather than a shorter memory component usage. We
acknowledge this may still be not so clear so we modified the sentences at line 311 as follows:

”The second test configuration introduced an additional feature component to call
back on the use of the "long” memory component of the LSTM during the opera-
tional test phase.”

- Rev 2 had a specific comment about ‘Furthermore, any LSTM prediction
that fell below zero was forced back to the zero, effectively managing intermittent
nature of snow data. ’. You modified the sentence and moved it to lines 271-272,
but in my opinion this is still not clear. How exactly was this ‘forcing back to
zero’ performed? I guess that you determined specific dates for each one of the 7
study sites where there should not be any snow, and then for each year, between
those dates you replaced the LSTM prediction by zeros? If this is the case, can
you please explain how the dates were determined for each site?

The ‘forcing back to zero’ was a direct post-processing step applied to the LSTMs output.
Any negative predictions for Snow Water Equivalent or snow depth was forced back to zero by
applying the ramp function. This was a simple, per-timestep constraint on the model’s output,
not a process based on predefined snow-free periods or specific dates for each study site.

6. A point for the discussion: how to move from the current model to a spatial-
ized version. As you mention, S3M is a distributed model. In the discussion, you
briefly mention that ¢ These results open a window of opportunity for spatially
distributed deep data assimilation; hence future work should focus on testing such
a spatio-temporal water configuration. > Could you please expand on what would
need to be modified in the proposed data assimilated method in order for it to be
applied in a spatially distributed way?

We thank the reviewer for the opportunity to further expand on this point and improve the
clarity of our manuscript. We have added a comment after line 570 after the sentence -”LSTM
robustness during dry and average water years further underscores the generalization capacity
of such a framework.”.

?Using the LSTM as an emulator of the ensemble Kalman Filter allows us to sig-
nificantly reduce the computational cost of ensemble-based data assimilation. This
is particularly advantageous in a spatially distributed configuration, where running
a full ensemble over large domains could otherwise be prohibitively expensive. In
our current setup, ensembles are required only during the LSTM training phase,
not at inference time — resulting in a more efficient approach for operational use.

Preliminary tests with multi-site LSTM configurations have shown promising re-
sults: a single LSTM model trained on data from multiple locations can generalize
well to other sites. Building on this idea, we envision extending the application of
LSTMs from single-point setups to multiple representative points within a catch-
ment. This spatially sparse assimilation could then be combined with an inter-



polation or spatial mapping strategy to propagate the correction across the entire
domain.

Such an approach would provide a practical compromise between the need for
spatially distributed corrections and the computational limitations of full-domain
deep data assimilation. This transition from point-based to distributed correction
—Ileveraging spatial generalization and interpolation — will be a key focus of our
future work.”

Minor comments, typos

- Figures Al and A2: the text on those figures is much too small. Please make it bigger
- Line 1999 there is a space missing here ¢ by Reichle et al. (2007),Lanoy et al. (2010) ’
- Line 285: there is a missing space before the new part that was added in blue.

- Line 299: there is a missing comma before ‘ cycling between ’

- Figures 3-4-5-6, replace ‘ pan ’ by ¢ panel ’

- Beginning of section 3.1, line 386: remove one of the ¢ whiles ’ in * while while ’

Comments addressed.
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