Savona (Italy)

May 29, 2025

Dear Editor,

We would like to re-submit the manuscript ”Learning to filter: Snow data assimilation
using a Long Short-Term Memory network” to The Cryosphere.

We thank the reviewers for the constructive and detailed feedback provided. We carefully
addressed each comment, and we believe that the changes improved the clarity and robustness
of the manuscript. Below, we provide point-by-point responses to the reviewers’ concerns.

With our best regards,

Giulia Blandini and coauthors



Reply to RC.1

General comment

This work developed a surrogate for EnKF-DA wusing an LSTM network. The introduction
and methods sections are well written and structured. However, there are several errors in the
results that are inconsistent with the plots. More importantly, the results lack sufficient expla-
nation and analysis reqgarding why the LSTM performs differently from EnKF at different sites
or scenarios. The discussion could benefit from additional comparisons with previous studies
and o deeper analysis of the results. Currently, it leans more toward reinforcing the need for
LSTM in data assimilation, which somewhat repeats points already made in the introduction.
Therefore, I recommend a major revision before publication.

We thank the reviewer for their helpful comments. We appreciate the positive feedback
on the introduction and methods, and we acknowledge the concerns raised. To improve our
manuscript clarity and coherence we will modify part of the results sections and update Figures
3-6 to better align with the text, and we will add additional clarification around the struc-
ture of the LSTM algorithm. Please find in the following our response to each specific comment.

Specific Comments

Line 103—-105: What is the source of the meteorological forcing data? Are they derived from
gridded datasets?

The meteorological forcing data used in this study are point-based and specific to each site.
Further details are available in the references cited in Section 2.1.

Table 2: The data time span for each site should be mentioned.

To maintain a concise structure, we have included this information in the Appendix (see
Table Al).

Line 171: Forecasted model state is x£

We acknowledge the ambiguity and will revise the sentence at line 171 as follows for clarity:

The Kalman gain Kj in Equation (2) acts as a weighting factor, balancing the
correction term (the innovation) by accounting for the relative uncertainties in the
forecasted model state through the forecast error covariance matrix P£ and in the
observations through the observation covariance matrix Ry.

Line 277-278: Please clarify how the data were split: by individual data points or by
continuous time spans?

We split the data by continuous time spans using hydrological years (October 1st — Septem-
ber 30th). The revised sentence will read:



The available data were split by continuous time spans, using the hydrological
year (from the 1st of October to the 30th of September) as the reference unit.
Specifically, the first 80% of the data, in terms of hydrological years, was allocated
for training and testing using a 4:1 ratio, while the remaining 20% was reserved for
testing.

Line 276: Please clarify what are site-specific limits here

We agree with the reviewer that the information given could benefit from additional expla-
nation. Hence, we plan to add this sentence at line 276 :
Initially planned change :

Since the training process relies on a cost function that combines the RMSE with a
penalty term enforcing physical bounds, the site-specific limits for each state com-
ponent — namely, the dry and wet components of SWE, snow density, and albedo
- were determined as physical bounds derived from historical data records. The
historical records were initially pre processed following the distribution adjustment
and scaling procedures described in Section 2.4.1.

Actual change :

Since the training process relies on a cost function that combines the RMSE with a
penalty term enforcing physical bounds, the site-specific limits for each state com-
ponent — namely, the dry and wet components of SWE, snow density, and albedo
— were derived from historical data records. These records were pre-processed
following the distribution adjustment and scaling procedures described in Section
2.4.1. Since direct historical observations of wet SWE were not available, we as-
sumed this variable to be proportional to the ratio between LWC and total SWE,
with dry SWE estimated as the complementary term.

Line 288-290: Please use a formula to clarify this configuration. Do you mean that 93£

and forcing at both time steps k and k-1 are used as LSTM inputs in the second test? Please
refer to Figure 2 for clarity.

We plan to add a clarifying formula at Line 290. Here it is the suggested clarification :

In this second test configuration, the input vector I at time step k, is constructed
as follows:

Initially planned change :

I, = [mk ,my_q ,Xiil] (1)

Actual change :

I, = {mk ,my_q =X£—1] (2)

where:



e m;, € R% the vector of meteorological forcing variables at time step k where
d = 6 is the number of forcing variables.

e my_; € R% the meteorological forcing at the previous time step k — 1 (see fig
(2) memory component element)

o X£—1) € R™: the model forecast at the previous time step k — 1(see fig (2)

memory component element)

Line 292—294: This part is confusing. What is the difference between Configuration 1 and
Configuration 3¢ Was a single LSTM selected from Configuration 1 and then applied to other
sites? Please clarify.

We thank the reviewer for this helpful comment towards improving the comprehension of
our work. To improve the manuscript we plan to re-write section 2.4.3 point 3 as follows :

While in the Configuration 1, separate LSTM models were trained and tested indi-
vidually on each site using only site-specific data, in Configuration 3, we assessed
the spatial transferability of these site-specific models by applying each LSTM
trained on the low data sparsity sites (NGK, KHT, RME, FMI-ARC) to new data
from (i) the remaining 20% holdout portion of the low-sparsity sites not used dur-
ing training, and (ii) high data sparsity sites (CDP and TRG). The WFJ site was
excluded from this evaluation due to extensive gaps in its SWE time series. In this
test we chose to use the LSTM setup with the best performances among prior tests,
hence the one with memory components ( see point 2)

Line 299-300: Is there a specific reason to randomly sample water years for data splitting
rather than using a continuous historical time span to train the model and a continuous future
time span to test it? Random sampling can create artificially easier test conditions by allowing
test data (time period) to fall between training water years, which may provide the model with
indirect information about future conditions.

We understand the reviewer remark. We chose to randomly sample water years to develop
a statistically robust algorithm with improved transferability across both temporal and spatial
domains. Our goal was to avoid overfitting to long-term climate trends that may be present
in a continuous historical time span, but that may not be representative of a warming future.

At the same time, by training and testing on entire water years, we ensure that snow-
pack conditions reset annually, eliminating inter-annual dependencies. Finally, since we work
with reanalysis data and aim to implement this as an operational tool, maintaining a strict
future—past separation is less critical. Instead, our priority is to enhance model generalization
and robustness across diverse conditions while minimizing bias from long-term temporal cor-
relations in the training set.

LSTM structure and hyperparameters were not mentioned in this work.
We plan to add a paragraph at section 2.4:

In this study, we manually tuned the hyperparameters of the model, selecting the
optimal configuration for each LSTM network. Below are the hyperparameters we
fine-tuned:



Batch size:

The batch size determines the number of training samples processed in a single
forward and backward pass. A critical consideration when choosing the batch
size is balancing computational efficiency with the quality of model outputs.
To aceommodate match the size of the observation datasets for each site, we
used a standard batch size of 128 for the sites of KHT and NG, and we reduced
it each time selecting the most suitable value for optimal training performance
on all the other datasets (Bishop & Bishop 2023).

Epochs:

The number of epochs refers to the total number of complete passes through
the training dataset. While a higher number of epochs allows the model
to better capture complex patterns in the data, it also increases the risk of
overfitting and computational cost. After experimenting with various config-
urations, we set the number of epochs to 500, allowing for sufficient learning
while balancing efficiency .

Early Stopping Patience:

Early stopping is a technique used to prevent overfitting by halting training
when the validation performance fails to improve for a specified number of
epochs. In our case, we set the patience to 100, meaning that training would
terminate if no improvement was observed in the validation performance for
100 consecutive epochs (Prechelt 2002).

Initial Learning Rate:

The learning rate controls the step size during the optimization process. A
higher learning rate accelerates convergence but may lead to instability, while
a lower learning rate can slow down the learning process. Given the relatively
small size of our datasets, we chose an initial learning rate of 0.01 to ensure
rapid convergence during the early stages of training (Smith 2015).

Learning Rate Decay:

To enhance convergence stability and prevent overshooting, we applied a learn-
ing rate decay factor of 1.5 periodically throughout training. This decay re-
duces the learning rate over time, allowing the model to fine-tune its param-
eters more effectively in the later stages of training.

Dense Layers:

Each LSTM network used a single dense layer as the output layer. This dense
layer was used to map the LSTM outputs to a fixed-size state vector. The
number of neurons in this layer was set to 4, corresponding to the required
output dimensions for each network (Murphy 2023).

Hidden LSTM Layers:




based on the data sparsity at different sites. For data-dense sites, we used
a single LSTM layer followed by a dense output layer, resulting in a simple
2-layer architecture. This configuration was chosen under the assumption that
the data contained enough patterns for the model to learn effectively without
requiring excessive model depth. In contrast, for sparse sites, a deeper 3-
layer LSTM architecture was implemented, which included two LSTM layers
and a dense output layer. This approach aimed to capture more complex
dependencies within the data, thereby improving the model’s ability to learn
from sparser temporal patterns (LeCun et al. 2015).

e Hidden units per LSTM Layer:
The number of hidden units in each LSTM layer determines the memory
capacity of the model. For dense sites, the number was set to 500, allowing
the model to learn from more intricate temporal dependencies. For sparse
sites, the number was reduced to 100 to prevent overfitting, given the smaller
and sparser datasets (Murphy 2023).

Line 309-311 (Figure 3): Is this result from testing or operational testing? Please
clarify

To clarify that the results refer to an operational testing, we plan to add this sentence at
the beginning of the section 3:

This section presents the results from the four configuration tests, based on the
operational testing setup (see Fig. 2). Our objective was to replicate the actual
algorithm coupling mechanism required in a real-time setup, where the LSTM is
used at each time step k to perform filtering.

Line 313-314: [t is somewhat difficult to distinguish the EnKF-DA and LSTM boxes
in the plots. If the last box in each panel represents LSTM-DA, it suggests that the RMSE
values of LSTM-DA for KHT, RME, and FMI-ARC increased compared to EnKF-DA, with
KHT showing the largest increase. This appears inconsistent with the narrative presented here.
Please check.

We apologize for the low quality of the figure and the inconsistency with the text; we plan
to modify the figures from 3 to 6 and particularly the sentence at line 313-318 to adhere more
to the graph. The new version will be :

Only in the case of NGK site, the LSTM-DA was able to outperform both the
open loop simulation and the EnKF-DA; At all the other dense sites ( KTH, RME,
FMI-ARC), the mean RMSE increase relative to the EnKF for SWE estimation
made by site specific LSTMs was within 10 mm (Figure 3, panel e). Similarly, the
mean RMSE increase- averaged across sites- compared to the EnKF for snow depth
estimation made by site specific LSTMs was equal to 6 cm (Figure 3, panel f). The
only exception is the site of FMI-ARC were the LSTM-DA still underperformed
compared to the EnKF, although the absolute values of RMSE are 1 order of
magnitude lower than the ones on the other sites. The bias analysis (Figure 3,
panel g and h) showed that snow depth exhibited a near zero bias, while the LSTM



tended to overestimate SWE compared to the EnKF. However, both patterns were
consistent in the EnKF and in the S3M open loop.

Figures 3 & 4: The Nash-Sutcliffe coefficient can be used as a score to evaluate the ac-
curacy of the time series in (a)—(d).

We agree with the reviewer that an additional metric was needed to better evaluate the
accuracy of the time series in Figures 3—-6. We chose to include the RMSE;, as it is a physical
quantity that provides a more intuitive understanding of the actual snow values. While we
appreciate the comment regarding the use of the Nash-Sutcliffe coefficient, we added the Kling-
Gupta Efficiency (KGE) to be more suitable for our purposes, as it better captures both small
and large discrepancies in the time series.

Having added the KGE to the Figure we plan to add a few sentences in the results section
after line 330:

Initially planned change :

When it comes to evaluating the Kling-Gupta Efficiency (KGE) (Gupta et al. 2009),
for sites with denser measurements, the values are comparable to those obtained
with the EnKF-DA, supporting the observed improvement trend over the open
loop simulation. Conversely, in the case of sparse datasets, the lower KGE values
highlight the limitations of the LSTM in achieving performances comparable to the
EnKF-DA.

Actual change :
in the results section after line 413:

When it comes to evaluating the Kling-Gupta Efficiency (KGE) (Gupta et al. 2009),
for sites with denser measurements (on average 0.72cm for both SWE and snow
depth), the values are comparable to those obtained with the EnKF-DA (on average
0.75 for SWE and 0.85 for snow depth), supporting the observed improvement trend
over the open loop simulation(on average 0.75 for SWE and 0.68 for snow depth).
Conversely, in the case of sparse datasets, the lower KGE values( on average -0.4 for
SWE and 0.25 for snow depth) highlight the limitations of the LSTM in achieving
performances comparable to the EnKF-DA (on average -0.5 for SWE and 0.35
for snow depth).Nevertheless, the LSTM still outperformed the open loop, which
recorded even lower KGE scores of -0.50 for SWE and -0.06 for snow depth.

After line 354 :

The KGE values, for both dense and sparse datasets, confirm that the memory
component primarily acts as a smoother and enhances performance in most sce-
narios.

Line 321-324: Why is the LSTM trained with outputs (states) from EnKF-DA more
sensitive to the sparsity of observation data? Could you explain this here? Including obser-
vation data as an input may introduce artificial errors when filling in missing data in the input.

The LSTM trained with EnKF-DA outputs is more sensitive to the sparsity of observational
data because, unlike the EnKF, it lacks the flexibility to dynamically handle missing inputs.



In the EnKF framework, the observation operator can be explicitly adjusted to account for
the availability or absence of data at each time step, allowing assimilation to proceed even
when observations are sparse. In contrast, the LSTM is trained in a supervised manner and
requires a complete set of inputs (joint assimilation of SWE and snow depth) at every time
step, making it more susceptible to performance degradation under irregular or incomplete
observational conditions.

Data sparsity is a well-known challenge in cryospheric science. Therefore, future work will
focus on increasing the model’s flexibility—exploring alternative neural network architectures,
leveraging synthetic data, and explicitly tracking the artificial error such data may introduce.

Despite these limitations, our LSTM provides a lower-bound benchmark for performance,
demonstrating the potential for improvement even under high-sparsity conditions—while main-
taining the same advantage in computational cost reduction.

Line 336—-337: Only Figure 5b shows improvement with memory component, rather than
c and d

We apologize for the absence of coherence between the text and the figure, and we plan to
modify the test to adhere to the updated version of the figure 5. Here is the proposed change
from line 336 to line 340:

For datasets characterized by low data sparsity (NGK, KTH, FMI-ARC, RME),
incorporating a memory component into the LSTM improved its ability to capture
the seasonal dynamics of SWE and snow depth, particularly in accurately repre-
senting the timing and magnitude of peak SWE (see Figure 5, panels a and b).
However, in some instances (see Figure 5, panels ¢ and d), the memory compo-
nent did not lead to a significant performance gain. Instead, it primarily acted
as a smoother, dampening short-term fluctuations without substantially enhancing
predictive accuracy.

Line 344:0.5 m? The reduction shown in figure 6f is not that large.
We apologize for the mistake in the units of measurements. We will replace it with 0.5 cm

Line 346: These strategies were not mentioned and explained in the method.
The manual sampling we refer to involves the collection of in-situ SWE data at specific site
locations. While we did not describe this process in detail—since it is already well documented
in the reference papers for each site—we acknowledge that its brief mention here might be
misleading. To clarify this point, we propose revising lines 345-346 as follows:

(e.g., 95%, WFJ and TRG — where the assimilated observations consist of manually
measured SWE data, as detailed in the corresponding site references)

Section 3.3: This result does not seem meaningful, as the spatial transferability of all
models appears to be poor. Please consider removing it.

To clarify, our results indicate that the LSTM model trained on the KHT site exhibits
a degree of spatial transferability, in some cases even outperforming locally trained models



at the test sites. However, we acknowledge the reviewer’s concern. Rather than suggesting
meaningful spatial transferability at this stage, our intent was to demonstrate the attainment
of promising performance with at least one algorithm, setting a lower bound for performances.
These findings open new avenues for extending the framework toward a 2D implementation,
which could better account for spatial variability and improve generalization across sites.

Line 370-371: Any explanation for this result?

To our understanding, during wet years, an increase in snow events is observed, which
could potentially amplify uncertainties in the model due to cascade effects arising from both
precipitation phase partitioning and initial condition uncertainties. Additionally, the formation
of multiple snow layers, which may not be fully captured by the physics of our model, further
contributes to these complexities. These factors could explain the observed lower performance
of the multi-site LSTM during wet years. However, this hypothesis has not been fully tested,
and any further explanation would require a comprehensive analysis. Nonetheless, we recognize
the need for more detailed discussion, and therefore, we plan to add the following statement
after line 371:

Reduced performances of the Multi-site LSTM simulation on snow water equivalent

over wet years may be explained-considering—the-differenee—inoececurrence—of-snow
events-during-theseperiods:indeed; because in wet years, an increased number of

snowfall events may introduce additional complexity and uncertainty, both due to
the cascading effects of uncertainties in initial conditions and precipitation phase
partitioning (Harder & Pomeroy 2014). Moreover, the formation of several snow
layers may not be fully captured by S3M.

Section 3.4: Instead of presenting the spatial transferability of a single model, it might
be more meaningful to compare and discuss the site-specific LSTM and the multi-site LSTM.
Please refer (this is not my work and no need to cite it.): Kratzert, Frederik, Martin Gauch,
Daniel Klotz, and Grey Nearing. "HESS Opinions: Never train a Long Short-Term Memory
(LSTM) network on a single basin.” Hydrology and Earth System Sciences 28, no. 17 (2024):
4187-4201.

We appreciate the reviewer’s comment and fully acknowledge the growing consensus in the
hydrological literature advocating for multi-basin training as a means to achieve more robust
and generalizable LSTM streamflow models. However, the purpose of presenting single-site
snow results in our study was to explore the lower bounds of snow model performance in a
transferability context. Specifically, we aimed to evaluate whether a model trained under such
limited conditions could still outperform the open loop and perform comparably to traditional
data assimilation techniques.

Among the available datasets, KHT represents the most suitable candidate for this analysis
due to its long time series, higher data quality, and relatively large sample size. These attributes
make it uniquely valuable for testing spatial transferability and informing the design of future
distributed modeling efforts.

It is also important to note that S3M is not a lumped hydrological model, but a spatially
distributed (gridded) snow model aimed at simulating snow water equivalent (SWE) across the
terrain, rather than its integrated effect on streamflow at a basin outlet. As such, insights from



streamflow-focused LSTM models may not transfer directly, given the differing computational
units (catchments/basin vs. points/grid cells) and modeling goals.

That said, we agree that there is likely an advantage to training an LSTM-based snow
model across multiple spatial locations, enabling the pooling of information in both space and
time. That will be a topic of future research, and the transferability experiments in this paper
are just a first tentative step in that direction.

To address the reviewer’s suggestion and clarify this intention, we will add the following
sentence after line 360:

While recent studies (Kratzert et al. 2024) have strongly advocated for multi-basin
training to achieve robust and generalizable LSTM streamflow models, we inten-
tionally present the single-point case here for snow hydrology to establish a perfor-
mance lower bound for snow spatial transferability—highlighting whether even such
a constrained model can outperform the open loop and compare with traditional
data assimilation approaches.

Line 410: No results were shown to support this.
We apologize for the lack of clarity around this point. While we did not present explicit results
to support this, our intention was to explore the introduction of soft physical constraints in
the cost function as a way to incorporate an inductive bias, as suggested in existing literature
(Karniadakis et al. 2021), with the goal of enhancing model generalization. However, this
approach did not lead to a notable improvement in model transferability. This suggests that
the current level of physics integration may be insufficient, and future efforts should prioritize
stronger physics adherence to better support generalization across sites.

we plan to change the sentence at line 410-411 to improve the quality:

In light of this, we introduced soft physical constraints into the cost function as
a way to incorporate an inductive bias. Although this particular approach did
not prove effective in significantly enhancing generalization, considerable poten-
tial remains in enforcing snow physical constraints in LSTMs (Charbonneau et al.
2024). Further research is needed in this direction to better understand how such
constraints can support model generalization and physical consistency.

Line 415: 7 sites?

Here we refer to the site-specific LSTM algorithm ( 1 without and 1 with memory features
for all the 7 sites). However the text poorly clarify this aspects so we plan to change the
sentence at line 415-416 in:

All but 2 out of the 14 site-specific LSTM frameworks significantly outperformed
the Open Loop, although none outperformed the EnKF.

We plan to modify the manuscript according to these comments :

Line 254: Double “the”

Line 271: “predictions”

Line 280: The inline formula here should not include “star,” as “star’ was previously used
to represent the LSTM output, not the input from S3M. Please keep consistent.

Line 342-348: Cite Figure 6 here.

10



Reply to RC.2

General comment

The paper “Learning to filter: Snow data assimilation using a Long Short-Term Memory net-
work” presents a novel framework for snowpack prediction combining physical-based model and
machine learning model. It could be a great fit for the journal. However, there are several
aspects of the experimental setup and methodology that would benefit from additional clarifi-
cation. I encourage the authors to provide more detailed descriptions of their experiments to
enhance the transparency and reproducibility of the study. Please see my comments below.

We thank the reviewer for the positive evaluation of our manuscript and we acknowledge
the need for additional clarification needed to sustain transparency and reproducibility of our
study. We plan to improve the quality thanks to the useful feedback received. Here below is a
list of answers to specific comment and planned changes.

Specific Comments

The overall data samples are limited (both years and sites), compared to https://doi.org/10.1175/JHM-
D-22-0220.1 Could the authors comment on this issue?

We acknowledge the reviewer’s concern. Our aim was to explore the application of pilot
point approach across different locations in the Northern Hemisphere that would be fit for
operational and quasi-real time applications. Despite working with a relatively limited dataset,
the results are still promising and provide a solid foundation for future developments, especially
in a 2D spatially distributed modeling case. Nevertheless, we acknowledge the importance to
point out this difference in our work, hence we plan to add a sentence in the introduction at
line and one in the discussion at line . Here the two sentences

Introduction: at line 83 after ”"based on topographic features.”:

As a more recent exception of combining deep learning and snow data assimilation,
Song et al. (2024) developed an LSTM-based framework to assimilate lagged ob-
servations of SWE or satellite-derived snow cover fraction (SCF) over the western
U.S., aiming to improve seasonal snow predictions. While their approach further
consolidates the potential of deep learning for data assimilation in snow hydrology,
it relied on a relatively simple assimilation setup, dealing with long lagged time
step rather than a consequential and quasi real time approach.

Discussion: at line 407 after "used in training”.:

Although using limited datasets in both temporal and spatial coverage compared to
recent studies pursuing a similar effort (Song et al. 2024), our approach proved to be
effective in speeding up traditional data assimilation techniques while maintaining
comparable performance; additionally , our framework, designed to test the opera-
tional viability of a quasi-real-time pilot point method, still proved the feasibility
of an alternative use of LSTM algorithm without loosing in performances. The
encouraging results provide a foundation for extending this framework to broader,
more diverse networks in future research.
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What is the temporal frequency of S3M? Is it 1 hour (Line 121)?

The temporal frequency used in this study is 1 hour, but S3M can be run with different
time steps.

What is the input time window size for the LSTM model? If my understanding is correct,
only one timestep of meteorological forcings are used as input, based on Fig. 2 and Line 269.
This is not a typical use of the LSTM model if multi-time steps are not involved. The archi-
tecture of the LSTM model also requires more details (e.g., hidden layers, hidden units).

We appreciate the reviewer’s insightful comment. Indeed, during the operational testing
phase, the LSTM model is provided with only one timestep of meteorological forcings as input.
However, this design is intentional, aimed at simulating real-time forecasting conditions, where
only the current timestep of meteorological data is available for prediction. During the training
phase, the model is trained with multi-time-step sequences to learn temporal dependencies,
consistent with traditional LSTM approaches. Therefore, although the operational phase uses
only one timestep of input, the model is trained with multi-timestep data to capture temporal
dynamics over time. Concerning the architecture of the LSTM model , we plan to add a
clarifying section as mentioned in the answer to RC1

Related to the previous comment, please clarify the “memory components” of the LSTM
model. By design, the previous time series should be used as inputs to the LSTM model. What
is the model without these “memory components”? If this is beneficial, do the authors consider
incorporating more previous timesteps?

The ”memory components” refer to additional sets of features provided to the LSTM during
both the training and testing phases. These components include:

e The meteorological forcing variables at each timestep (i.e., timestep k), and
e The state of the system at the previous timestep (i.e., at timestep k — 1).

Regarding the reviewer’s suggestion of incorporating more previous timesteps: we acknowl-
edge that this could improve the model’s predictive capability, particularly during the opera-
tional phase. We will consider exploring the use of longer input sequences of previous timesteps
in future work, contingent upon operational constraints.

Loss function. As noted in Line 246, the output of negative SWE is forced back to zero,
why is the regqularization term still necessary in Line 2607 Is the hard cut at zero only applied
after training the model?

We acknowledge that the current structure of the paragraph may lead to a misleading in-
terpretation of the procedure. Specifically, the hard cut to zero was applied after the LSTM
prediction, and therefore after the regularization term was used. This step was introduced to
preserve the intermittency of snow quantities while also helping the LSTM network learn to
detect the onset of a snowpack with new snowfall on bare ground. To enhance clarity, we plan
to move the sentence currently at lines 246-247 to follow line 265.
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Multisite LSTM. Do the authors consider the use of site-specific information as inputs
(e.g., lat-lon, slope hitps://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023 WR035009;
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021 WR031033)

We did not used elevation and coordinates of the site, but rather decide to decrease the
number of input as to match those used by the EnKF in a non-distributed modelling. However,
we plan to develop a 2D spatially distributed snow modeling framework of our LSTM EnKF
emulator using more basins and data within each basin to leverage such info.

Line 326. “Reduce” RMSE by “25” seems to increase RMSE for me. Please consider
rephrasing it.

We apologize for the lack of clarity and we will improve the revised manuscript. We plan
to modify the sentence at line 326 as follows:

indeed the LSTM resulted in a reduction of 25 mm in RMSE for SWE, while the
EnKF achieved a larger reduction of 31 mm.

Figure 5. Why is the RMSE for “open loop” not shown here?
We have modified the figures 5 and 6 to show also the RMSE of the open loop.

There are some caption inconsistencies. Please take time and revise them (e.g., the capital
letters in Figure 8 caption)

We thank the reviewer for pointing out these inconsistencies, we will revise and correct the
caption.

Figure 8. Is there any particular reason to assess the performance based on different water
year types? A similar and consistent RMSE as previous experiments would be helpful.

The rationale behind evaluating performance across different water year types was to test
the model’s robustness under varying hydrological conditions, such as dry, normal, and wet
years. This, according to our opinion and based on well established procedures in hydrol-
ogy(Osuch et al. 2015), allows us to better understand how the model performs beyond average
conditions, particularly in more challenging or extreme scenarios.
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