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Abstract 10 

Large-scale estimation of evapotranspiration (ET) remains challenging because no direct remote 11 
sensing estimates of ET exist and because most data-driven estimation approaches require 12 
assumptions about the impact of moisture conditions and biogeography on ET. The surface flux 13 
equilibrium (SFE) approach offers an alternative, deriving ET directly from atmospheric 14 
temperature and humidity under the assumption that conditions in the atmospheric boundary 15 
layer reflect ET’s land boundary condition. We present a 4 km resolution, continental United 16 
States-wide, daily ET dataset spanning from 1979 to 2024 using the SFE method. The Bowen 17 
ratio is first calculated using the SFE method solely based on temperature and specific humidity 18 
estimates from gridMET and then converted to ET using net radiation and ground heat fluxes 19 
from ERA5-Land. We evaluate its performance using extended triple collocation to estimate the 20 
standard deviation of the random error and the correlation coefficient of SFE ET compared to 21 
true ET, as well as those of three widely used alternative ET datasets: GLEAM, FluxCom, and 22 
ERA5-Land. Despite its extreme simplicity, SFE ET achieves performance comparable to or 23 
exceeding the other datasets across large portions of CONUS, particularly in the Western U.S., 24 
while requiring no information about land surface, vegetation, or soil properties and no 25 
assumptions about ET’s response to environmental and climate drivers. Our results support the 26 
use of SFE as a scalable, observation-driven method for estimating ET. 27 

28 

1. Introduction29 

Evapotranspiration (ET) dominates the terrestrial water cycle (Friedlingstein et al., 2019; Good 30 
et al., 2015), controls the partitioning of radiation into latent and sensible heat (McColl and 31 
Rigden, 2020), and plays a key role in driving the hydrologic cycle by returning water to the 32 
atmosphere (Oki and Kanae, 2006). ET therefore has downstream feedbacks on temperature 33 
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(Teuling et al., 2010), precipitation, and vegetation productivity (Green et al., 2017) in addition 34 
to directly impacting the carbon cycles through the trade-off between photosynthesis and 35 
transpiration (Yang et al., 2023). However, estimation of ET via remote sensing remains a 36 
significant challenge with implications for understanding of vegetation response to drought, fire 37 
risk, and the accounting of freshwater resources.   38 

One challenge for ET remote sensing is that, unlike some surface properties such as 39 
temperature, we are unable to directly sense the flux of water or latent heat associated with ET 40 
electromagnetically. Therefore, ET products must leverage modelling approaches - either 41 
physical, hybrid, or machine learning - constrained by the data that is observable via remote 42 
sensing. These modelling approaches for ET often assume - implicitly or explicitly - the response 43 
of evaporation and transpiration to environmental drivers, such as drought or variations in land 44 
cover.  45 

Alternatively, surface flux equilibrium (SFE) is a data-driven method for estimating ET 46 
directly from atmospheric conditions without relying on soil or vegetation parameterization. 47 
The concept of surface flux equilibrium was first proposed by McColl et al. (2019) and states 48 
that, under many circumstances, the atmosphere and land surface are coupled so that changes 49 
in surface fluxes (including ET) are reflected in atmospheric temperature and humidity. This 50 
approach has several advantages over other ET estimation methods. It requires no information 51 
about vegetation, soil, or subsurface properties. It also makes no assumptions about root-zone 52 
moisture status or vegetation response to water availability. This means it is well suited for 53 
hydrological research attempting to interrogate the relationship between ET and water 54 
availability or between ET and vegetation cover (or other biogeographic drivers). Additionally, 55 
SFE includes no tunable parameters and can be computed easily using only three inputs - air 56 
temperature, humidity, and net radiation - each of which is readily available at global scales 57 
(McColl and Rigden, 2020). 58 

However, more complex ET estimation methods would be expected to outperform SFE 59 
in many settings due to its extreme simplicity and lack of adjustable parameters. Nevertheless, 60 
previous SFE implementation and validation efforts indicate that SFE performance is 61 
comparable - or even better than - other ET estimation methods at the point- and watershed- 62 
scale (Chen et al., 2021; McColl and Rigden, 2020; Thakur et al., 2025). For example, SFE ET has 63 
been found to be within the range of in situ measurement errors at a selection of inland eddy 64 
covariance towers, an upper limit on the performance of any ET estimate (McColl and Rigden, 65 
2020). Thakur et al. (2025) also calculated SFE ET at inland eddy covariance sites across the 66 
continental United States (CONUS) using tower-based temperature, humidity, and net 67 
radiation. They found that SFE ET outperformed remotely sensed ET from MODIS (Mu et al., 68 
2011) as well as from three ET algorithms using data from the ECOsystem Spaceborne Thermal 69 
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Radiometer Experiment on Space Station (ECOSTRESS): the Simplified Surface Energy Balance 70 
(Savoca et al., 2013) SSEBop, (Savoca et al., 2013), the atmosphere-land exchange inverse 71 
disaggregation algorithm (DisALEXI) and the Priestley-Taylor Jet Propulsion Laboratory model 72 
(PT-JPL, Fisher et al., 2020). 73 

Thakur et al. (2025) further investigated the impact of input data on SFE performance by 74 
calculating SFE ET using three scenarios: only eddy covariance data, by using the North 75 
American Land Data Assimilation System (NLDAS, Xia et al., 2012) for temperature and humidity 76 
and the Clouds and the Earth's Radiant Energy System instrument (CERES, Doelling et al., 2013) 77 
for net radiation, and by finally using NLDAS for temperature and humidity and MODIS for net 78 
radiation. All three SFE ET implementations compared favorably to tower-based ET with R2 of 79 
0.70, 0.68, and 0.67 for the tower-based SFE, CERES-based SFE, and MODIS-based SFE, 80 
respectively. This suggests that the emergent simplicity of ET that SFE takes advantage of is 81 
robust to choices of input data, at least at the scale of eddy covariance towers. 82 

The only gridded estimates of SFE ET are reported by Chen et al. (2021), who calculated 83 
monthly ET at 0.125o across CONUS using net radiation from CERES and 2-m temperature and 84 
humidity from North American Regional Reanalysis (NARR, Mesinger et al., 2006). They 85 
compared SFE ET to estimates from the Coupled Model Intercomparison Project phase 6 86 
(CMIP6, Eyring et al., 2016) and to water balance-based ET estimates available at large 87 
catchments across CONUS. The error in the water balance-based estimates provides a minimum 88 
possible error, below which ET estimation approaches cannot be distinguished due to errors in 89 
the underlying reference data. They found that SFE ET errors are comparable to the error of the 90 
catchment water balances and that SFE outperforms the reanalysis (NARR) and most CMIP6 91 
models.  92 

However, even this sole gridded implementation of SFE - while promising - is unable to 93 
provide a thorough evaluation of the SFE approach because the comparison datasets each have 94 
their own unquantified uncertainties. Therefore, disagreement between SFE and CMIP6 cannot 95 
be attributed to either dataset because their errors cannot be distinguished. One solution to 96 
this is the statistical evaluation approach of triple collocation. Using triple collocation and its 97 
updated counterpart, extended triple collocation (McColl et al., 2014), it is possible to compare 98 
three datasets with co-located measurements and estimate two important performance 99 
metrics: (1) the variability in the random error of each dataset and (2) the correlation between 100 
the measured value and the underlying ‘true’ variable. Both performance metrics can be 101 
calculated without reference to this unknowable ‘true’ variable, in this case ET, and without 102 
assuming the error of any of the three comparison datasets.  103 
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Triple collocation - sometimes also referred to as the ‘three-cornered hat’ approach - 104 
has been widely used in evaluating datasets where a ‘truth’ or reference dataset is unavailable, 105 
for example in the evaluation of datasets for soil moisture (Draper et al., 2013; Gruber et al., 106 
2016; Scipal et al., 2008), ocean winds (Caires & Sterl, 2003), precipitation (Alemohammad et al, 107 
2015, Burnett et al 2020), sensible heat and carbon fluxes (Alemohammad et al, 2017), ET 108 
(Khan et al., 2018), near-surface air temperature and specific humidity (Sun et al., 2021), and 109 
terrestrial water storage (Ferreira et al., 2016). It can also be used to estimate the coupling of 110 
multiple variables, for example latent heat and soil moisture (Crow et al., 2015). Given three 111 
datasets with observations of the same state variable, each with their own non-correlated 112 
random errors, comparison of the three datasets via triple collocation enables calculation of 113 
each dataset’s random error variance (Stoffelen, 1998).  114 

Here, we accomplish two steps in advancing the estimation of ET. First, we release the 115 
first publicly available, gridded dataset of daily SFE ET. We calculate this dataset at 4 km 116 
resolution across the continental United States (CONUS) using gridMET for 2-m temperature 117 
and humidity and net radiation from ERA5-Land. Second, we compare our gridded estimates of 118 
SFE ET to three other remotely sensed ET estimates: Global Land Evaporation Amsterdam 119 
Model Version 4 (GLEAM, Miralles et al., 2011), FluxCom (Jung et al., 2019), and ERA5-Land 120 
(Muñoz-Sabater et al., 2021). In addition to comparing the spatial pattern and variance of all 121 
datasets, we further use the statistical method of extended triple collocation following McColl 122 
et al. (2014) to calculate the error statistics of each dataset, despite lacking observations of 123 
‘true’ ET (Gruber et al., 2016; McColl et al., 2014; Stoffelen, 1998).  124 

 125 

2. Methods 126 

2.1. Calculating ET from atmospheric conditions assuming surface flux equilibrium  127 
We calculate daily ET after McColl et al. (2019) by assuming that the near-surface atmosphere is 128 
in a state of ‘surface flux equilibrium’ where atmospheric conditions at the boundary layer 129 
reflect the recent fluxes of latent (𝜆𝐸) and sensible (H) heat on the Earth’s surface. If this is the 130 
case, then increasing ET (i.e. increasing latent heat) will correspond with diminished sensible 131 
heat and result in both atmospheric cooling and increased humidity. The ratio of sensible and 132 
latent heat fluxes - known as the Bowen ratio (B) - can therefore be approximated by 133 
temperature and humidity at the boundary layer, so long as atmospheric conditions reflect the 134 
integrated signal of fluxes on the Earth’s surface.  135 
 136 

We use 2-m air temperature (Ta) and relative humidity (qa) from gridMET (Abatzoglou, 137 
2013) to estimate the Bowen ratio, where Rv = 461.5 (J kg-1 K-1) is the gas constant for water 138 
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vapor, Cp = 1005 (J kg-1 K-1) is the specific heat capacity of air at constant pressure, and 𝜆 = 2.56 139 
x 106 (J kg-1) is the latent heat of vaporization of water (Eq 1).  140 

𝐵 = 	
𝐻
𝜆𝐸 ≈ 	

𝑅!𝑐"𝑇#$

𝜆$𝑞#
 

Eq. 1 

We choose gridMET due to its relatively fine spatial resolution of 4 km and its availability 141 
at the daily timescale across CONUS. Net radiation (Rn) allows conversion from the Bowen ratio 142 
to ET (Eq 2). We use Rn from ERA5-Land (Muñoz-Sabater et al., 2021) because of its high 143 
agreement with in situ measurements across CONUS (Yin et al., 2023). Additionally, we assume 144 
a ground heat flux (G) of 10%. We do not evaluate SFE ET on any days with negative Rn. 145 

𝜆𝐸	 = 	 (1 + 𝐵)%&(𝑅' − 𝐺) Eq. 2 

 146 

2.2 Triple collocation error estimation 147 
Triple collocation assumes a linear error model for each dataset, where the observed value for 148 
a given dataset (𝑥() is assumed to be a linear function of the “true” ET (𝑇) obscured by a 149 
constant additive bias (⍺), a constant multiplicative bias (ꞵ) and a time-varying additive random 150 
error with zero mean (ϵ) (Eq 3).  151 

𝑥( 	= 	𝛼( 	+ 	𝛽(𝑇	 +	𝜖(   Eq. 3 

 152 
In addition to assuming a linear error model for each dataset, triple collocation further 153 

assumes that the errors of each dataset are stationary and uncorrelated both with each other 154 
and with the unknown truth (Gruber et al., 2016; McColl et al., 2014). 155 

With these assumptions, the variance of each dataset (Q11,Q22, and Q33) represents the 156 
sensitivity of the dataset to variations in the true signal (via the product of 𝛽(  and 𝜎)) plus the 157 
variance of the random error (𝜎*!

$ ) (Eq 4). 158 

𝑄(( =	𝜎($ 	= 	𝛽($𝜎)$ + 𝜎*($  Eq. 4 

Covariance between pairs of datasets (e.g. Q12,Q13, and Q23) likewise provides 159 
information about each dataset’s sensitivity to the true unknown ET via 𝛽(  and 𝜎). (Eq 5).  160 

𝑄(+ =	𝜎(+$ = 𝛽(𝛽+𝜎)$ Eq. 5 
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By treating the product of 𝛽(  and 𝜎)  as a single unknown variable, the equations for the 161 
variance and covariance of each dataset and dataset pair result in six equations and six 162 
unknowns. These can be solved to calculate the standard deviation of the random error of each 163 
dataset, σε (Eq 6). 164 

 
  

Eq. 6 

The absolute values of 𝛽(cannot be separated from the absolute value of 𝜎). However, 165 
many studies assume 𝛽( = 1 for one dataset - effectively choosing it as a reference dataset 166 
which has no multiplicative bias - and calculate 𝛽( 	for the other two datasets relative to the 167 
actual unknown multiplicative bias of the reference dataset. In this study, however, we do not 168 
separate 𝛽(  and 𝜎). 169 

Extended triple collocation further allows the calculation of the correlation between 170 
each dataset and the unknown truth, RT, while requiring no additional information (McColl et 171 
al., 2014); Eq 7). 172 

 

Eq. 7 

 173 
Triple collocation requires several assumptions, all of which are likely to be at least 174 

partially violated (e.g., Yilmaz and Crow, 2014). However, these assumptions are not unique to 175 
triple collocation. Gruber et al. (2016) showed that more common validation strategies 176 
implicitly require the same assumptions. For example, if we were to instead estimate the 177 
correlation coefficient and root-mean-squared error (RMSE) between SFE ET and another 178 
reference ET product, we would be implicitly making the same assumptions. 179 

 180 
2.3. Comparison ET datasets 181 
We compare SFE ET to ET from FluxCom, GLEAM version 4, and ERA5-Land. We compare all ET 182 
datasets over the years 1980 to 2016, which represents the maximum overlap in temporal 183 
coverage between all four datasets. Additionally, we resample each dataset to match the native 184 
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resolution of FluxCom at 0.5°. We match the FluxCom resolution because it is the coarsest. We 185 
choose to compare SFE to these particular three ET datasets not just because they are 186 
commonly used, but also to minimize violation of the triple collocation assumptions, 187 
particularly the assumption of independent errors between datasets. This is commonly 188 
achieved by using datasets that differ in their input data sources and modeling frameworks 189 
(Gruber et al., 2016; McColl et al., 2014). We also remove the seasonal cycle from each dataset 190 
by subtracting the 30-day rolling average from each day (Chen et al., 2018; Draper et al., 2013; 191 
Miralles et al., 2010). This ensures that differences in the seasonality and timing of ET do not 192 
impact the triple collocation analysis and has been shown to improve error estimation with 193 
triple collocation for ET datasets specifically (He et al., 2023). Finally, we use extended triple 194 
collocation to calculate the standard deviation of the random error and the correlation 195 
coefficient of each dataset (see Sec 2.2 above). Because we have four comparison datasets and 196 
triple collocation requires just three, we are able to repeat our estimates of each dataset’s 197 
error statistics once for each possible ‘triplet’ (i.e. combination) of three datasets. Convergence 198 
of the error estimates regardless of the triplet chosen increases the robustness of the triple 199 
collocation assumptions and improves confidence in our calculated values (Draper et al., 2013; 200 
He et al., 2023). In addition to performing triple collocation, we also compare the four datasets 201 
via a general analysis of the variance and spatial patterns of ET.  202 

The FluxCom dataset we choose for our triple collocation analysis uses machine learning 203 
to upscale eddy covariance measurements from flux towers based on satellite and 204 
meteorological inputs. FluxCom provides an ensemble of latent heat estimates trained using 205 
different meteorological datasets. In order to have the longest data record with daily 206 
resolution, here we use the single FluxCom ensemble member trained with the CRUNCEPv6 207 
reanalysis product (Wei et al., 2014), as opposed to the mean of all possible FluxCom ensemble 208 
members. However, the different model setups (each with a different weather model) were 209 
previously found to have similar performance (Jung et al., 2019). In addition to the climate data 210 
from CRUNCEP, FluxCom uses radiation data from CERES (Doelling et al., 2013), precipitation 211 
from the Global Precipitation Climatology Project (GPCP, Huffman et al., 2001), and 212 
temperature, land cover, and other reflectance indicators from MODIS. The FluxCom model is 213 
run per plant functional type and then combined into a single estimate by weighting each plant 214 
functional type’s fractional areal coverage of the pixel (Jung et al., 2019). 215 

GLEAM estimates ET by using remote sensing and reanalysis data to force a hybrid 216 
model which includes modules for canopy interception, potential evapotranspiration, soil water 217 
content, and vegetation response to evaporative stress. Although FluxCom and GLEAM have 218 
some remote sensing inputs in common, for example radiation from CERES and vegetation 219 
information from MODIS, Gleam Version 4 takes a hybrid modelling approach and does not rely 220 
fully on machine learning like FluxCom. Specifically, GLEAM version 4 primarily uses physical 221 
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modelling modules with only a single module – for evaporative stress – using a deep neural 222 
network trained using in situ data from eddy covariance towers and sap flow measurements 223 
(Koppa et al., 2022; Martens et al., 2017; Miralles et al., 2025).  This is in contrast to GLEAM 224 
version 3, which estimates evaporative stress empirically as a function of soil moisture and 225 
vegetation optical depth - both from microwave remote sensing inputs. Additionally, GLEAM 226 
Version 4 calculates ET using Penman’s equation (as opposed to Priestley-Taylor, used in 227 
Version 3) and also updates the multi-layer water balance model so that vegetation access to 228 
groundwater can be represented. However, in GLEAM Version 4, plant rooting depths are static 229 
for each land cover within the groundwater scheme and there is still a prescribed multiplicative 230 
stress function to determine how vegetation responds to soil moisture stress. GLEAM is the 231 
only dataset in our comparison set which partitions ET between evaporation, transpiration, and 232 
interception. We use the variable referring to the total evaporation (E) to best match the other 233 
ET estimates.  234 

Finally, ERA5-Land uses the near-surface atmospheric reanalysis from ERA5, which 235 
assimilates observations from a range of satellites and in situ observation networks for many 236 
variables including land surface temperature, precipitation, wind speed, and soil moisture 237 
(Hersbach et al., 2020). ERA5-Land then takes the atmospheric states from ERA5 and re-runs 238 
the land surface model component at a finer resolution (9 km) offline (Muñoz-Sabater et al., 239 
2021). This allows for additional and refined land surface parameterizations and corrections. 240 
Unlike FluxCom and GLEAM, ERA5-Land has no machine learning components. For our analysis, 241 
we sum the hourly latent heat flux output of ERA5-Land to daily totals and then resample 242 
bilinearly to match the coarser 0.5° FluxCom grid. Finally, both ERA5-Land and FluxCom report 243 
latent heat flux in units of energy per unit area, which we convert to ET (mm/day) by dividing by 244 
the latent heat of vaporization (𝜆 = 2.56 × 10⁶ J kg⁻¹). 245 

 246 

2.4. Comparing performance across biogeographical factors 247 
We compare the resulting σε and RT estimates from triple collocation across a variety of 248 
biogeographical factors - specifically climate, elevation, land cover type, and the distance to the 249 
coast - to better understand under what conditions SFE ET performs well and how its 250 
performance across biogeography compares to that of the other ET estimates.  251 

We calculate the mean annual precipitation at each pixel using monthly precipitation (P) 252 
from 1991 to 2020 from TerraClimate (Abatzoglou, 2013).We use elevation from MERIT Hydro 253 
(Version 1.0.1., (Yamazaki et al., 2019). For land cover, we use the National Land Cover 254 
Database (NLCD) land cover map from 2021 (Dewitz, 2024). We consider the land cover types 255 
of forest (combining deciduous, evergreen, and mixed forests), shrub, grassland, wetland 256 
(combining woody and herbaceous wetlands), and agricultural (cultivated crops). 257 
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We further analyze the performance of each dataset by each pixel’s distance from the 258 
coast because the assumptions of SFE are likely to be violated near the ocean (McColl et al., 259 
2019). This is because in coastal regions, ocean moisture and temperature are expected to be a 260 
strong control on land surface fluxes. We calculate the distance of each pixel centroid from the 261 
nearest coast using the TIGER/Line Coastline National Shapefile (United States Census Bureau, 262 
2019). We also exclude pixels from all analyses if their centroid overlaps with the ten largest 263 
water bodies in CONUS (ArcGIS Data and Maps, 2023). 264 

 265 

3. Results 266 

3.1. Surface flux equilibrium ET across CONUS from 1979 to 2024 267 
Here, we publicly release a dataset of daily SFE ET from 1979 to 2024 at 4 km resolution across 268 
CONUS (see Data Availability section). The spatial mean (shown in Figure 1a) follows expected 269 
patterns across CONUS - with an aridity driven gradient from West to East and a radiation 270 
driven gradient from North to South in the Eastern US. The temporal variability in daily ET 271 
calculated using the SFE approach is consistent with the comparison datasets (Figure S1). 272 
However, SFE has a larger standard deviation across much of CONUS - particularly the Western 273 
US - than FluxCom and GLEAM. Across several sample pixels, chosen as heavily vegetated 274 
examples spanning multiple regions, the seasonal cycle of mean annual ET is likewise 275 
comparable across all four ET estimates, although the timing of maximum summer ET each year 276 
varies between datasets (Figure 1b-g). 277 

Although the magnitude of mean annual continental ET is most similar between SFE and 278 
FluxCom (Figure 2), the pattern of interannual variability which matches SFE the best is that of 279 
GLEAM (𝜌= 0.56). The two datasets with the overall closest match in ET interannual variability, 280 
however, are FluxCom and ERA5-Land (𝜌= 0.71). Although SFE and FluxCom each have 281 
intermediate magnitudes of mean continental ET relative to GLEAM and ERA5, both datasets - 282 
and FluxCom in particular - also have the lowest interannual variability magnitude (8 mm/year 283 
standard deviation for FluxCom and 12 mm/year for SFE, compared to 22 and 28 mm/year for 284 
ERA5-Land and GLEAM, respectively). Across the entire average record, the mean annual ET 285 
from SFE (598 mm/yr) sits roughly in the center of the four datasets, with GLEAM the lowest 286 
(555 mm/yr) and ERA5-Land the highest (641 mm/yr). 287 

 288 
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 289 
 290 
Figure 1. Mean annual SFE ET across CONUS from 1979 to 2024. Points show timeseries for 291 
example pixels for SFE (green), ERA5-Land (blue), GLEAM (purple) and FluxCom (pink). 292 
 293 
 294 
 295 
 296 
 297 
 298 
 299 
 300 
 301 
 302 
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 303 
Figure 2. Interannual variability in mean annual ET across CONUS from 1979 through the record 304 
length of each dataset.  305 
 306 
 307 
3.2. SFE is the only dataset that performs well in terms of both the standard deviation of the 308 
random error and the correlation coefficient 309 
SFE performance as estimated by triple collocation is comparable - and even exceeds - the 310 
performance of the comparison datasets across much of CONUS, despite its extreme simplicity, 311 
lack of tunable parameters, and relatively small number of assumptions (Figure 3). SFE, 312 
FluxCom, and GLEAM show a strong divide in performance between the Western and Eastern 313 
US. SFE and FluxCom both have the lowest σε and highest RT in the Western US compared to 314 
the Eastern US. In contrast, GLEAM has lower σε in the Western US, but higher RT in the Eastern 315 
US. ERA5-Land shows more heterogeneity in performance across space - especially compared 316 
to SFE and FluxCom - and has no clear performance gradient between the Western and Eastern 317 
US.  318 
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319 
Figure 3. The standard deviation of the random error, σε (left) and correlation coefficient to the 320 
truth, RT (right) for each dataset averaged across all triplet combinations. Increasingly light 321 
colors are better performance. White pixels have no valid data for any triplet. 322 

 323 

Despite its simplicity, SFE is the best or second-best dataset according to both σε and RT 324 
across more than half of CONUS (Figure 4). SFE has the lowest or second lowest σε and highest 325 
or second highest RT across 65.8% and 45.7% of pixels across CONUS, respectively (Figure 4, 326 
Table 1), mostly in the Western US. 327 

SFE’s high performance with regards to both σε and RT is unique among the comparison 328 
datasets. Other than SFE, the datasets with the best σε and RT, respectively, have the lowest 329 
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performance for the complementary metric. For example, FluxCom has the lowest σε across the 330 
majority of CONUS, but it also has the lowest RT (Figure 4). The opposite is true for ERA5, which 331 
is the highest performing dataset according to RT across much of CONUS but frequently has the 332 
worst performance according to σε, particularly in the US Southwest. SFE is the only dataset 333 
which consistently has high performance according to both metrics. 334 

 335 
 336 

 337 
 338 
Figure 4. Summary of relative performance of all four datasets. The dataset with highest 339 
performance for the standard deviation of the random error, σε (a) and the correlation 340 
coefficient with ‘true’ ET, RT (b) for each pixel. The worst performing datasets for σε (c) and RT  341 
(d). The relative ranking of SFE for σε (e) and RT  (f). The total number of pixels (and relative 342 
percent of pixels) of each color are shown in Table 1. Pixels with centroids within 4 km (i.e., one 343 
pixel) of the border have been removed. 344 
 345 
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Table 1. (Top) The number of pixels where each dataset has the best performance according to 346 
the standard deviation of the random error, σε, and the correlation coefficient to the truth, RT. 347 
(Bottom) The number of pixels by SFE ET ranking.  348 
 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

We note that the estimates of σε and RT  are consistent between triplets, indicating σε 363 
and RT estimates are robust to the choice of comparison datasets (Figure 5). Individual σε and RT 364 
maps for each dataset and triplet combination are shown in Figures S2 and S3. However, not all 365 
pixels have valid results for each triplet combination, which occurs when either σε is negative 366 
for one or more of the datasets or if any RT are greater than one. Figure 6 shows the total 367 
number of triplets which are valid for each pixel. The triplets with the most invalid pixels are 368 
those where FluxCom and ERA5-Land are both included. Invalid pixels are also more common in 369 
the Eastern US rather than the Western US. Even in the East, however, SFE - our main estimate 370 
of interest - still has at least one valid triplet in 96% of pixels and at least two valid triplets in 371 
86% of pixels. SFE has three valid triplets - the maximum possible number for our four dataset 372 
analysis - in 55% of pixels. 373 

Best dataset 

 By σε By RT 

 Pixels Percent Pixels Percent 

SFE 58 (1.9%) 117 (3.9%) 

GLEAM 17 (0.6%) 161 (5.3%) 

FLUXCOM 2665 (87.9%) 34 (1.1%) 

ERA5-Land 292 (9.6%) 2720 (89.7%) 

Ranking of SFE 

 By σε By RT 

 Pixels Percent Pixels Percent 

1st 48 (1.6%) 105 (3.5%) 

2nd 1946 (64.2%) 1279 (42.2%) 

3rd 975 (32.2%) 1455 (48.0%) 

4th 63 (2.1%) 193 (6.4%) 
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 374 
 375 
Figure 5. (left) The coefficient of variation of σε for each dataset across all possible triplet 376 
combinations with valid data. White pixels have no valid data for any triplet. (right) The 377 
standard deviation of RT for each dataset across all possible triplet combinations with valid data. 378 
White pixels have no valid data for any triplet and black pixels have only one triplet combination 379 
with valid data. 380 

 381 
  382 
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 383 
Figure 6. The total number of triple collocation estimates - one from each possible combination 384 
of datasets - that are averaged for each pixel and dataset combination. Pixels with no valid 385 
triple collocation results for any triplet are shown in white. The maximum number of valid 386 
triplets is three. 387 
 388 
 389 
3.3. Performance across biogeographical factors 390 
Comparing the trends of σε (Figure 7) and RT (Figure 8) across mean annual precipitation, 391 
elevation, landcover, and the distance to large water bodies shows that SFE performance is not 392 
more sensitive to any of these biogeographical factors than the comparison datasets. Even 393 
when comparing SFE performance with coastal proximity - a factor where we expect to see 394 
performance degradation due to the violation of SFE assumptions (McColl and Rigden, 2020) - 395 
the coastal proximity penalty of SFE is comparable to that of ERA5-Land. Indeed, ERA5-Land 396 
shows the sharpest decrease in performance within 20 km of the coast out of any of the 397 
datasets, however both SFE and ERA5-Land continue to show improved performance even up 398 
to 120 km inland. Neither GLEAM nor FluxCom have a strong relationship between coastal 399 
proximity and performance. 400 

Likely due to its correlation with coastal proximity, SFE also has decreased performance 401 
at lower elevations with respect to both evaluation metrics. FluxCom and GLEAM likewise show 402 
their highest σε at low elevations relative to higher elevations, with FluxCom σε peaking around 403 
500 m a.s.l. and GLEAM σε around 1000 m. a.s.l. All three datasets continue to have decreased 404 
σε as elevation increases. The relationship between elevation and RT is relatively flat for SFE and 405 
FluxCom in the intermediate elevations, with the lowest RT at the extreme low and high 406 
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elevations. GLEAM and ERA5, however, have continuously decreasing RT with increasing 407 
elevation, and the lowest RT at elevations exceeding 2000 m a.s.l.  408 

 409 

 410 
Figure 7. The standard deviation of the random error, σε, for each ET dataset across mean 411 
annual precipitation, the distance to large water bodies, elevation, and land cover. The number 412 
of pixels in each category per ET dataset is shown below boxes.  413 

 414 

The σε for SFE, GLEAM, and FluxCom is lowest at the driest and wettest pixels and 415 
highest at pixels with intermediate precipitation. However, the σε for GLEAM peaks at the 500-416 
750 mm/year bin whereas FluxCom and SFE have the highest σε at slightly wetter locations, 417 
receiving between 1000-1250 mm/year. ERA5-Land, on the other hand, has a weaker 418 
relationship between MAP and σε. ERA5-Land has the opposite pattern than the other datasets 419 
and shows the highest σε at the driest and wettest pixels with lower σε at intermediate aridity. 420 
The relationship between MAP and RT follows that of MAP and σε  in general, however RT does 421 
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not increase at the wettest pixels to the same degree as for the σε. For example, SFE has 422 
continually decreasing RT as MAP increases with only a minimal increase in performance at the 423 
pixels with >1500 mm/year of precipitation. 424 

 425 

 426 
Figure 8. The correlation coefficient, RT, for each ET dataset across mean annual precipitation, 427 
the distance to large water bodies, elevation, and land cover. The number of pixels in each 428 
category per ET dataset is shown below boxes.  429 

 430 

The performance variability across land cover is not consistent between any of the 431 
datasets. ERA5-Land has the lowest σε and highest RT in agricultural pixels, GLEAM in forest 432 
pixels, and FluxCom in shrubland pixels. The SFE RT is similar across all land cover types but SFE 433 
σε is highest in wetlands, followed by forest and agricultural pixels. Forested pixels also have a 434 
greater spread in σε for FluxCom and SFE compared to the other land cover types. SFE σε is 435 
lowest in shrublands, followed by grasslands. FluxCom σε is likewise lowest for grassland and 436 
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shrublands, which is the opposite of ERA5-Land, with the highest σε in grasslands and 437 
shrublands.  438 

 439 

4. Discussion 440 

4.1. Which ET estimate is most accurate? 441 
While triple collocation reveals that SFE is rarely the highest performing dataset, it is the 442 
second-best performing dataset across much of CONUS for both σε and RT (Figure 4e,f). In 443 
addition, we find that datasets which outperform SFE only exhibit better performance for one - 444 
not both - of either σε and RT. That SFE performs well - although not the best - for both metrics 445 
suggests its usefulness for a variety of applications, particularly those where it is not clear a 446 
priori whether having high RT or low σε is most useful. Furthermore, SFE may be a particularly 447 
good choice for studies interested in the response of ET to water limitations. Unlike the 448 
explicitly assumed dependence of ET on hydrologic conditions in ERA5-Land or the implicitly 449 
assumed dependence of GLEAM and FluxCom (which is limited by the constraints of the 450 
machine learning structure and input data), SFE contains no a priori assumptions about the 451 
effect of water stress on ET. Our release, alongside this manuscript, of a daily, 4km resolution 452 
CONUS-wide dataset of SFE-based ET spanning 1979 to 2024 should facilitate future 453 
applications of SFE for scientific analyses.  454 

SFE is generally the second-best dataset regardless of metric, while alternative datasets 455 
with low random noise also have low correlation with the truth and vice versa. For example, 456 
across the four datasets tested, FluxCom has the lowest (most desirable) σε across the majority 457 
of CONUS pixels (Figure 4a). However, it also has the lowest (least desirable) RT more often than 458 
any other datasets (Figure 4d). ERA5-Land shows the converse relationship, with the highest 459 
(most desirable) RT in almost all pixels compared to all other datasets, but poorer relative 460 
performance with regard to σε (Figure 4b,c). How is this possible? To understand why, note that 461 
the triple collocation error model implies that, 462 

 

Eq. 8 

as shown in McColl et al. (2014). For a dataset to exhibit both the lowest RT and lowest σε 463 
requires that 𝛽 is also sufficiently small (σT is the same for each dataset and does not impact 464 
the ranking). An extreme example would be a dataset that simply set ET to a fixed 465 
climatological value and exhibited no temporal variability, for which 𝛽 = 0 and RT = 0, even 466 
when σε is small. At the other extreme, for a dataset to exhibit both highest RT and highest σε 467 
requires 𝛽 to be sufficiently large. In the limit of 𝛽 → ∞, RT = 1, even when σε is large. The 468 
relative importance of choosing a dataset with a low σε, a high RT, or a low bias (which is not 469 
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assessed here), depends on the application for which the ET dataset will be used (Entekhabi et 470 
al., 2010). 471 

Beyond choosing a single dataset for a particular application, it is also possible to 472 
average multiple ET estimates into a single dataset weighted by each dataset’s performance. 473 
While not often practical for large-scale use, He et al., (2023) used triple collocation to estimate 474 
an ‘optimal’ ET product over China by weighting each dataset by its uncertainty. Burnett et al 475 
(2020) also used this approach to generate a new rainfall product for the Congo River Basin. 476 
Such an approach was also proposed as a possible way forward by the WAter Cycle Multi-477 
mission Observation Strategy (WACMOS) project, with the specific suggestion that ET datasets 478 
could be combined on a per-biome scale, if some datasets are known to perform better or 479 
worse under specific conditions (Miralles et al., 2016). However, this approach has the 480 
disadvantage of obscuring the individual problems with each dataset (Miralles et al., 2016). It 481 
may also perturb the larger-scale spatial patterns of ET. Additionally, knowledge of the 482 
individual product errors must be well known so that uncertainty propagation and weighting is 483 
possible. Given that the validity of the assumptions behind triple collocation are not fully 484 
known, any such effort would benefit from additional corroboration of the estimated 485 
uncertainties. 486 

 487 

4.2. Do spatial patterns in SFE performance match our expectation? 488 
We find that the performance of SFE is not more sensitive to biogeographical gradients than 489 
that of other datasets, suggesting that the simplicity of SFE does not exacerbate performance 490 
issues for specific climate, vegetation, or topographical environments. This is particularly 491 
surprising given the previously hypothesized limitation of SFE in coastal regions, where 492 
atmospheric conditions strongly depend on the influence of the ocean as well as on recent land 493 
fluxes (McColl and Rigden, 2020). However, the SFE method has not previously been applied 494 
within 250 km of the coast, let alone had its errors characterized in these regions. Therefore, 495 
the actual performance of SFE in coastal regions has previously remained unknown.  496 

While our statistical analysis (Figure 7, Figure 8) shows the expected increase in SFE σε 497 
and reduction in RT near the coast, particularly within the first four pixels (~20 km), this 498 
behavior is also true for ERA5-Land, which has even more severe performance decreases near 499 
the coast than SFE. This is despite the improved simulation of land surface temperature and 500 
surface energy fluxes in ERA5-Land compared ERA5 for coastal regions, which has been mainly 501 
attributed to ERA5-Land’s finer spatial resolution (Martens et al., 2020; Muñoz-Sabater et al., 502 
2021). However, ERA5-Land performance is not uniformly degraded for all coastal areas (Figure 503 
3). Instead, coastal areas in the North show higher σε and RT  compared to coastal areas in the 504 
Southwest and Southeast. This might suggest that the statistically lower performance of ERA5-505 
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Land with coastal proximity in general is due to cross correlation with other climatic factors. 506 
Despite the decreased performance of SFE and ERA5-Land near the coast, however, the 507 
absolute magnitude of σε and RT for both datasets is still comparable to those of the other 508 
datasets throughout the range of coastal proximities, particularly for σε. Therefore, coastal 509 
proximity may not necessarily limit the usefulness of SFE near coasts. Future SFE 510 
implementation and evaluation studies should further investigate these limitations and not 511 
exclude areas within 250 km of the coast a priori. 512 

SFE has the highest σε at low elevations, as does GLEAM and FluxCom. Spatially, 513 
however, topographical gradients (such as around the Rocky Mountains) are not apparent on 514 
maps of σε for any of the datasets (Figure 3), although several smaller mountain ranges (e.g. the 515 
Sierra Nevada in California and the upper Appalachian Mountains) do show lower performance 516 
for the RT  of SFE and FluxCom. This lack of coherence between the elevation trends and spatial 517 
patterns could indicate cross correlation between elevation and other factors impacting 518 
performance, which require further investigation.  519 

The most obvious spatial trend in dataset performance is the gradient of performance 520 
between the Eastern and Western US. Contrary to expectation, SFE and FluxCom have lower σε 521 
in the Western US than in the East. One possible explanation for our results is that ET amounts 522 
are lower in the West, where vegetation cover is in general lower and aridity higher, such that 523 
the overall magnitudes of σε are also lower. This would also explain the lack of systematic 524 
difference in FluxCom and SFE RT in the East vs the West. Another explanation might be that 525 
SFE and FluxCom both have the highest performance (for both low σε and high RT) in shrublands 526 
and grassland land cover types, both of which are often found in the Western US (Dewitz, 527 
2024). This finding is in contrast to Zhu et al. (2024), who found that daily and monthly SFE had 528 
the lowest correlation and highest root mean squared error at the eight towers in shrublands, 529 
relative to towers in other land covers.  530 

 531 

4.3. The benefits and limitations of triple collocation 532 
Triple collocation makes several assumptions, including that the random errors between the 533 
datasets are independent, that the random errors are stationary across time, and that the 534 
random errors can be described linearly. The assumptions of triple collocation are also implicitly 535 
made by more standard validation analyses such as comparison via RMSE (Gruber et al., 2016). 536 
However, these assumptions are expected to be violated to some degree, regardless of how 537 
carefully comparison datasets are chosen. One reason for this is that most ET models contain at 538 
least some overlapping input data, for example the commonly used MODIS reflectance 539 
products for vegetation, such as leaf area index, are used as inputs to FLUXCOM, ERA5-Land, 540 
and GLEAM (ECMWF, 2018; Jung et al., 2019; Miralles et al., 2025). Any overlap in model input 541 
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data reduces the likelihood that the resulting ET estimates will have independent errors. Triple 542 
collocation may also fail or wrongly estimate dataset errors if random error magnitudes vary in 543 
time or are not well described linearly. Therefore, it is not uncommon for triple collocation 544 
studies to have invalid pixel results (e.g. He et al., 2023). Some triple collocation studies also 545 
choose to pre-filter pixels to ensure high correlation coefficient between the raw datasets 546 
(Gruber et al., 2016; McColl et al., 2014), which also leads to pixels where triple collocation 547 
results are missing. 548 

One way to increase the confidence in an application of triple collocation is to repeat 549 
the analysis for multiple triplets, as performed here. Violations in the triple collocation 550 
assumptions would lead to differences in the estimated error statistic for a given dataset 551 
depending on which datasets are used for comparison (He et al., 2023; McColl et al., 2014). We 552 
found that invalid triple collocation results were more prevalent when FluxCom and ERA5-Land 553 
were compared within the same triplet, regardless of the third dataset. This suggests that the 554 
assumption of independent errors may be worse between these two datasets, despite their 555 
seemingly larger input difference than GLEAM and FluxCom, for example, which both 556 
incorporate machine learning. Nevertheless, the overall high agreement between different 557 
triple collocation estimates for the other triplets - and the lack of coherent spatial pattern in 558 
error variability across triplets (Figure 5) - strongly increases our confidence that our overall 559 
error estimates are robust. 560 

One limitation of triple collocation is that it cannot provide information about 561 
multiplicative dataset biases (𝛽( ) beyond estimating relative biases with reference to one 562 
member of each triplet which is assumed to have no bias (Gruber et al., 2016; McColl et al., 563 
2014). However, previous work suggests that SFE may have issues with bias particularly along 564 
aridity gradients. For example, Chen et al. (2021) and Zhu et al. (2024) both found that SFE ET 565 
had higher bias in arid conditions and tended to underestimate ET in wet conditions. This same 566 
pattern was also observed for comparisons of in situ SFE to eddy covariance data (McColl and 567 
Rigden, 2020; Thakur et al., 2025). While we do not consider bias because triple collocation only 568 
allows for its calculation relative to a comparison dataset, we do see that SFE σε is highest at the 569 
driest and wettest pixels compared to pixels with intermediate mean annual precipitation. SFE 570 
RT, on the other hand, shows only a weak but slightly decreasing relationship with increasing 571 
mean annual precipitation. Additional investigation into this is necessary. However the problem 572 
of ET overestimation in arid conditions - when surface evaporation is high in general - is not 573 
unique to SFE (McColl and Rigden, 2020; Miralles et al., 2016; Salvucci and Gentine, 2013). 574 
Despite the assumptions and limitations of triple collocation, the method’s ability to quantify 575 
error statistics relative to true ET without needing an error-free dataset of ET remains a 576 
substantial and unique benefit.  577 
 578 
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5. Conclusions 579 

SFE allows for observational, data-driven estimates of ET with no tunable parameters or land 580 
surface information required. In leveraging land-atmosphere coupling, SFE estimates ET from 581 
atmospheric conditions alone, and therefore provides an opportunity to test hypotheses about 582 
vegetation response to environmental drivers without assuming that response a priori in the 583 
creation of the ET estimate itself. The lack of parameterization for SFE eases issues of circularity 584 
constraining research into essential outstanding challenges in ecohydrology, such as the 585 
response of ET to drought (Zhao et al., 2022) and the inference of subsurface water storage 586 
from changes in vegetation behavior (Dralle et al., 2020; Feldman et al., 2023; Stocker et al., 587 
2023). Based on triple collocation - and despite its simplicity - SFE exhibits comparable 588 
performance to the more complicated ET estimates from GLEAM, FluxCom, and ERA5-Land.  589 
 590 
6. Code availability 591 
Code is available on GitHub at https://github.com/erica-mccormick/surface-flux-equilibrium.  592 
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7. Data availability 594 
All of the data used to estimate SFE ET as well as the comparison ET datasets are publicly 595 
available online. Daily 4 km estimates of SFE ET across CONUS calculated here from 1979 to 596 
2024 will be made available at Zenodo upon acceptance of the manuscript. 597 
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