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 Abstract:  9 

In April 2023, the South China Sea (SCS) experienced an unprecedented surge in aerosol loading, 10 

reaching the highest levels recorded in the two-decade Moderate Resolution Imaging 11 

Spectroradiometer (MODIS) satellite data period (2003–2023). Satellite observations revealed a 12 

150% increase in aerosol optical depth (AOD) from MODIS and a 50% rise in carbon monoxide 13 

(CO) at 700 and 500 hPa from Measurements Of Pollution In The Troposphere (MOPITT) over 14 

SCS. Here, we investigate the drivers and atmospheric mechanisms responsible for this extreme 15 

event, identifying large-scale biomass burning (BB) across northern Peninsular Southeast Asia 16 

(PSEA), particularly Laos and Myanmar as the primary source. Our analysis indicates that 17 

anomalously high surface temperatures, low soil moisture, reduced precipitation, and a persistent 18 

upper-tropospheric anticyclone created favorable BB conditions over PSEA. Laos alone accounted 19 

for ~56% of the BB activity in the region, recording its largest monthly burned area (1.08 million 20 

hectares) since 2002. Dynamical analysis of the large-scale atmospheric circulation patterns 21 

revealed a major shift in regional wind regimes: the climatological south-westerlies over the SCS 22 

were replaced by anomalous northerlies, driven by the eastward shift of the Bay of Bengal 23 

anticyclone and the development of a cyclone anomaly over the western North Pacific (WNP). 24 

These changes redirected smoke transport from the usual WNP pathway to the SCS, resulting in 25 

significant transboundary pollution. This study highlights the critical role of compound 26 

meteorological extremes and circulation anomalies in amplifying regional aerosol loading, with 27 

implications for air quality, climate feedbacks, and environmental monitoring across Southeast 28 

Asia. 29 
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1. Introduction 31 

In the changing climate scenario, both natural and anthropogenic activities have contributed to a 32 

continuous increase in surface temperatures worldwide over the past decade (Seneviratne et al., 33 

2021). In 2023, a record-high global mean surface temperature was observed, marking the warmest 34 

period in the last seven months (June to December), surpassing the previous record set in 2016 by 35 

a significant margin of 0.13°C to 0.17°C (Esper et al., 2024; Forster et al., 2024; Min, 2024; 36 

Raghuraman et al., 2024). The extreme temperatures contributed to record-breaking wildfires 37 

worldwide in 2023, with 70% of the total burning occurring in the Northern Hemisphere (Kolden 38 

et al., 2024). Among all, Canadian wildfires emerged as the primary hotspot in 2023, with 39 

significant fires in both the eastern and western regions causing notable increases in carbon 40 

monoxide (CO) and tropospheric aerosols over the past twenty years (Liu et al., 2024). The 41 

unprecedented wildfire season in Canada from May to September 2023 burned three times more 42 

biomass than the previous record, leading to the highest annual carbon emissions from biomass 43 

burning (BB) since 2015 (Byrne et al., 2024; MacCarthy et al., 2024). Furthermore, catastrophic 44 

wildfires have also occurred in regions such as Hawaii, the Mediterranean, central Amazonia, and 45 

central Chile (Roy et al., 2024; Lemus- Canovas et al., 2024; Espinoza et al., 2024; Jones et al., 46 

2024; Cordero et al., 2024). Greece experienced its most severe wildfire on record, with a burned 47 

area of 96,000 hectares in 2023 (Michailidis et al., 2024). The August 2023 wildfires on Maui, 48 

Hawaii, were among the deadliest U.S. wildfire incidents, resulting in 100 deaths and an estimated 49 

loss of $5.5 billion (NOAA NCE, 2023). As a result of multiple fire spots across the globe, the 50 

global mean concentrations of atmospheric carbon dioxide (CO2), methane (CH4), and nitrous 51 

oxide (N2O) reached new annual record highs of 419.3 ppm, 1922.6 ppb, and 336.7 ppb, 52 

respectively. The global atmospheric CO2 growth rate in 2023 was 2.79 ± 0.08 ppm (Ke et al., 53 

2024; Gui et al., 2024), the third-largest since 2000 and the fourth-largest since 1959.  54 

The Asian region frequently experiences forest fires and biomass-burning activities, 55 

significantly impacting the global carbon footprint (Xia et al., 2025). The South China Sea (SCS) 56 

in Asia is the largest marginal ocean region in the tropical–subtropical western North Pacific. It is 57 

a prime example of a marine area with minimal air pollution (Pani et al., 2023). This is further 58 

supported by long-term satellite-measured Aerosol Optical Depth (AOD) spatial distribution. Sup. 59 

Figures 1a and 1b indicate shallow AOD values with minimal standard deviations in the SCS, 60 
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illustrating a clean marine environment.  The SCS has a monsoon climate characterized by a 61 

northeast monsoon during winter and spring and a southwest monsoon during summer and autumn 62 

(Cui et al., 2016). These monsoon circulations allow natural and anthropogenic pollutants from 63 

East Asia to be lifted and transported over long distances to the SCS (Lin et al., 2013). During the 64 

summer monsoon season (August and September), the frequent burning of peat forests on the 65 

Maritime Continent (MC) also affects the adjacent regions of the southern SCS. In addition to East 66 

Asia and the MC, the springtime open biomass burning (BB) over Peninsular Southeast Asia 67 

(PSEA, including Myanmar, Thailand, Cambodia, Laos, and Vietnam) also impacts the SCS. The 68 

PSEA is one of the hotspot regions with the most intensive biomass-burning activities in the world 69 

(Lin et al., 2013; Reid et al., 2013) and is a major contributor to carbon emissions and atmospheric 70 

aerosols during the springtime (March-April). Open BB occurs almost every year during spring in 71 

the PSEA due to slash-and-burn agricultural activities (Lee et al., 2016; Tsay et al., 2016; Huang 72 

et al., 2020), emitting a substantial number of aerosols and trace gases into the atmosphere (Ou-73 

Yang et al., 2022). The influence of aerosol loading over the SCS is strongly associated with the 74 

sources of aerosols and the prevailing wind circulation.  75 

Although the unprecedented Canadian wildfires in 2023 garnered immense scientific 76 

interest and were well-documented in several studies, the record-breaking aerosol loading in the 77 

SCS in April 2023 received relatively little international attention. The historic event over the SCS 78 

in April 2023 can be observed from the Moderate Resolution Imaging Spectroradiometer 79 

(MODIS) Aqua AOD anomalies compared to the long-term mean (2003-2022), which shows 80 

extreme positive anomalies over the SCS and surrounding regions in April 2023, in contrast to the 81 

rest of the globe (Fig. 1). However, AOD anomalies in May further illustrate the absence of 82 

positive anomalies over the SCS and the presence of higher positive anomalies specifically over 83 

North America, particularly Canada. The time series of monthly mean AOD over the SCS further 84 

indicates a record-high AOD in April 2023 compared to the rest of the MODIS data from 2003 to 85 

2023 (Sup. Fig. 2d). The exceptional record-breaking aerosol loading in April 2023 is unusual for 86 

remote marine locations such as the SCS and requires detailed investigation. In this 87 

communication, we examine the factors and physical processes that contributed to the 88 

unprecedented aerosol levels observed in April 2023, utilizing extensive data collected from 89 

multiple sources over an extended period. The following three major topics are explored in detail 90 

in the present study: 91 
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 How extreme are these AOD/CO anomalies, and what magnitude was increased? 92 

 What are the sources for these record-breaking aerosol loadings over SCS? 93 

 Were dynamic and large-scale circulations responsible for this event?   94 

 95 

Figure 1. MODIS Aqua measured AOD anomalies in (a) April 2023 and (b) May 2023 compared 96 

to the long-term mean (2003-2022). The highlighted circles in (a) and (b) indicate the AOD 97 

anomalies over the South China Sea (SCS) and Canada regions. This figure highlights that the 98 

AOD anomalies observed by MODIS are significant and particularly pronounced over the SCS 99 

compared to the other areas globally. It illustrates the unique characteristics of April 2023 in terms 100 

of climatology. Data visualizations produced using MATLAB 2023b 101 

(https://matlab.mathworks.com). 102 

 103 

 104 
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2. Data and Methodology 105 

2.1.1 Data 106 

This study relies entirely on publicly available data, covering the period from 2003 to 2023. We 107 

used data products from various satellite measurements. For example, AOD data is obtained from 108 

MODIS, while CO data is obtained from MOPITT and AIRS satellites, respectively. The 109 

tropospheric column ozone data are obtained from OMI/MLS along with AIRS ozone data at 700 110 

hPa and 500 hPa, respectively. 111 

Moderate Resolution Imaging Spectroradiometer (MODIS) 112 

MODIS is a passive sensor aboard the Aqua and Terra satellites, which are in a sun-synchronous 113 

orbit, and pass the Equator in the morning (Aqua) and afternoon (Terra). From MODIS satellite 114 

measurements, we utilized aerosol optical depth (AOD), fire counts, fire radiative power (FRP), 115 

cloud fraction, and burned area products. We used Level 3 monthly AOD at 1∘ × 1∘ spatial 116 

resolution derived from the mean of the Dark Target and Deep Blue Combined Aerosol Products 117 

from the Terra satellite (MOD08_M3 Collection 6.1) and Aqua satellite (MYD08_M3 Collection 118 

6.1) (Platnick et al., 2015; Buchholz et al., 2020). Additionally, we utilized MODIS’s product of 119 

daily fire counts and fire radiative power (FRP) (Giglio et al., 2006, 2016, 2018). Direct fire counts 120 

from MODIS were obtained from the Fire Information for Resource Management System 121 

(FIRMS) dataset. We selected all MODIS fire counts from the Terra and Aqua sensors with a 122 

confidence level of 80% or higher. Each month, the total MODIS daily fire counts and FRP are 123 

constructed and gridded at a resolution of 0.25° latitude × 0.25° longitude. Finally, we utilized Cloud 124 

Fraction data from both the Terra and Aqua satellites.  125 

Measurements Of Pollution In The Troposphere (MOPITT) 126 

MOPITT is a multi-channel thermal infrared (TIR) and near-infrared (NIR) instrument operating 127 

on board the sun-synchronous polar-orbiting NASA Terra satellite. This study uses a version 9 128 

(MOP03TM_9) gridded monthly product (Worden et al., 2010; Deeter et al., 2019). For more 129 

details about the retrieval algorithm, validation, and uncertainties in MOPITT CO, refer to Deeter 130 

et al. (2019). 131 

Atmospheric Infrared Sounder (AIRS) 132 
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In addition to the MOPITT measurements, we utilized CO from the AIRS on the NASA Aqua 133 

satellite, which provides CO at different vertical levels twice daily and has near-global coverage. 134 

AIRS uses wavenumbers 2183–2200 cm−1 (4.58–4.5 µm) for retrieving CO (McMillan et al., 135 

2005). The V9 level 3 CO product, available at 1∘ × 1∘ resolution at various pressure levels, was 136 

utilized in the present study. AIRS sensitivity to CO is broad and optimal in the mid-troposphere 137 

between approximately 300 and 600 hPa (Warner et al., 2007, 2013; AIRS project, 2019). CO 138 

retrievals exhibit a 6%–10 % bias between 900 and 300 hPa with a root mean square error of 8%–139 

12 % (McMillan et al., 2011). In addition to CO, we also utilized ozone, skin temperature, and 140 

outgoing longwave radiation (OLR) data from the AIRS satellite. 141 

Ozone Monitoring Instrument (OMI)/Microwave Limb Sounder (MLS)  142 

We utilized the OMI/MLS dataset of global tropospheric column ozone (TCO) concentrations, 143 

covering the period from 2005 to 2023, obtained from the Ozone Monitoring Instrument (OMI) 144 

and the Microwave Limb Sounder (MLS) (Ziemke et al., 2006). The total ozone column from OMI 145 

is derived using the Total Ozone Mapping Spectrometer (TOMS) version 8 algorithm. MLS 146 

measures vertical ozone profiles above the upper troposphere via limb scans ahead of the Aura 147 

satellite. TCO is then determined by subtracting MLS's stratospheric ozone measurements from 148 

OMI's total column ozone, after calibration adjustments between the two instruments via the 149 

convective-cloud differential method (Ziemke et al., 2006). The OMI/MLS product provides 150 

monthly mean TCO data between 60°S and 60°N at a 1° × 1° resolution, starting from October 151 

2004. This dataset has been extensively used to analyze global tropospheric ozone patterns 152 

(Ziemke et al., 2019; Cooper et al., 2010) and long-term trends (Gaudel et al., 2018; Lu et al., 153 

2019).  154 

MERRA-2 reanalysis products 155 

We also utilized monthly mean geopotential height, wind vectors (zonal and meridional wind 156 

speed), total column black carbon, organic carbon, and particulate matter from the Modern-Era 157 

Retrospective Analysis for Research and Applications, version 2 (MERRA-2). MERRA-2 is the 158 

latest atmospheric reanalysis data produced by the NASA Global Modeling and Assimilation 159 

Office (GMAO; Gelaro et al., 2017). The horizontal resolution of the MERRA-2 reanalysis is 0.5° 160 

× 0.625°.  161 
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Soil Moisture 162 

Monthly mean soil moisture content (10 - 40 cm underground) from the Global Land Data 163 

Assimilation System (GLDAS)_NOAH025_M v2.1 is utilized. The data can be downloaded from 164 

https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_NOAH025_M.2.1/ (last accessed: 165 

June 05, 2025). 166 

Precipitation 167 

The Global Precipitation Climatology Project (GPCP) Version 3.2 Satellite-Gauge (SG) 168 

Combined Precipitation Data Set was used during the study period. The data is available for 169 

download from https://measures.gesdisc.eosdis.nasa.gov/data/GPCP/GPCPMON.3.2/ (last 170 

accessed June 5, 2025).    171 

2.1.2 Methodology 172 

The anomalies in the various parameters for April 2023 were estimated by subtracting the 173 

background long-term mean for April (2003-2022) from the value for April 2023. 174 

The magnitude of the AOD/CO enhancement in April 2023 above the long-term background was 175 

determined by comparing the average of April 2003-2022. We obtained the percentage change in 176 

AOD/CO relative to the respective background using Equation 1: 177 

                               Relative change in percentage = (
𝑥𝑖−𝑥̅

𝑥̅
) × 100           (Eq. 1) 178 

where 𝑥𝑖  represents the monthly mean of April in 2023, and 𝑥̅ is the long-term mean of April 179 

calculated using the data from 2003 to 2022. 180 

3. Results and Discussion 181 

3.1 Record-breaking AOD and CO anomalies over SCS in April 2023 182 

Aerosol optical depth (AOD) is a standard measure used to estimate aerosol loading and is a key 183 

parameter in calculating radiative effects. We utilize AOD data from MODIS instruments on the 184 

Aqua and Terra satellites from 2003 to 2023. Sup. Figures 2a and 2b show the long-term (2003-185 

2022) average AOD for April and the monthly mean AOD for April 2023. Time series of average 186 
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monthly AOD values over northern PSEA (17-23 N, 99-106 E) and SCS (109-119 E, 11-18 N) 187 

from 2003 to 2023 are shown in Sup—Figures 2c and 2d.  188 

 189 

Figure 2. Spatial distribution of the change (%) in April 2023 Aerosol Optical Depth (AOD) values 190 

compared with the inter-annual April average (2003-2022). (a) AOD anomalies are obtained from 191 

the MODIS Aqua and (b) from the MODIS Terra satellite. The black hatches indicate that the 192 

anomalies exceed 4σ standard deviations of the long-term mean. (c) Time series of area-averaged 193 

AOD anomalies expressed in percentage change over the South China Sea (SCS) domain from the 194 

Aqua (black line) and Terra (red line) satellites.  The most significant enhancement was in SCS, 195 

where the April AOD anomalies fell more than 4σ standard deviations. 196 

The AOD distribution in April over two decades indicates high aerosol loading from northern Laos 197 

to coastal South China (15-25 N, 100-120 E). In April 2023, extreme AOD values extended from 198 

PSEA to South China and SCS, with the highest center between northern Laos and the SCS. 199 

Record-breaking AOD levels were observed for the area averaged over the SCS in April 2023, 200 

showing a nominal increase in northern PSEA (Sup. Fig. 2c-d). The highest AOD value for 201 

northern PSEA in April 2023 correlates with record AOD over the SCS.  To assess the magnitude 202 

of the increase, we estimated the percentage change in AOD by comparing April 2023 with the 203 
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long-term average for April from 2003 to 2022. Figures 2a and 2b depict the spatial extent of 204 

AOD anomalies expressed as percentage changes from MODIS Aqua and Terra. A surprising and 205 

widespread enhancement, with an increase of over 150% in most of the SCS and the southern Bay 206 

of Bengal (BoB), was evident in April 2023, and the increased anomalies exceeded approximately 207 

four standard deviation units.  The area-averaged AOD anomalies (%) over the SCS domain from 208 

Aqua (black line) and Terra (red line) satellites show that the increase in April 2023 was a record 209 

high compared to MODIS data from 2003 to 2023, highlighting the extremity of AOD 210 

enhancement in that month. Satellite observations were further corroborated by ground-based in 211 

situ measurements from the AErosol RObotic NETwork (AERONET). The only operational 212 

AERONET remote station downwind of PSEA biomass burning, with over a decade of continuous 213 

AOD measurements (Sup. Fig. 3a), within the SCS region is located on Dongsha Island (also 214 

known as Pratas Island, 20.70°N, 116.73°E; 5 m a.s.l.). Analysis of the monthly mean AOD data 215 

from Dongsha Island indicates that April 2023 recorded the highest AOD value in the entire 216 

observational period from January 2009 to December 2023 (Sup. Fig. 3c).  217 

We further investigated CO changes in April 2023 across the study region using MOPITT 218 

and AIRS satellite measurements, which provide over two decades of continuous CO data. CO is 219 

a crucial trace gas due to its role as a tropospheric pollutant, atmospheric transport tracer, and 220 

involvement in tropospheric chemistry. We analyzed CO data at 700 and 500 hPa from both 221 

satellites between 2003 and 2023. The 500 hPa level is the most sensitive altitude for CO 222 

measurements (Buchholz et al., 2021). The observed CO anomalies from the two satellites are 223 

shown in Figure 3, highlighting significantly elevated CO levels in April 2023 over the SCS, with 224 

increases up to 3σ standard deviations compared to the climatology from 2003 to 2022. Both 225 

instruments reveal distinct spatial anomalies, with MOPITT displaying more concentrated CO 226 

anomalies than AIRS. However, both show positive CO anomalies at both levels, indicating a 227 

significant increase in CO in April 2023. It is worth noting that the spatial distribution of CO 228 

anomalies aligns closely with AOD anomalies (Fig. 2). The area-averaged anomalies of AOD and 229 

500 hPa CO over the SCS from 2003 to 2023 revealed a significant positive correlation of 230 

approximately 0.65 (Sup. Figure 4). This strong correlation in April (2003–2023) suggests that 231 

long-range pollution transport likely drives AOD variability in this region during April. The bubble 232 

chart illustrates the severity of April 2023 compared to other years over the SCS (Sup. Figure 4).  233 

CO production from incomplete combustion indicates that elevated levels far from traffic or 234 
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industrial sources suggest biomass burning and wildfire emissions. This implies smoke transport 235 

from surrounding regions to the SCS and the BoB, near significant BB hotspots, including the MC 236 

and PSEA. Sup. Figure 1c-1d shows annual AOD fluctuations, with peaks in April over PSEA 237 

and September over MC. The MC's fire season is from August to October, while PSEA experiences 238 

a BB season from January to April, peaking in March. This strongly suggested that the high AOD 239 

levels in April 2023 over the SCS were linked to BB activities in PSEA.  240 

 241 

Figure 3. Spatial distribution of carbon monoxide anomalies in April 2023 at (a) 500 hPa and (b) 242 

700 hPa obtained from MOPITT satellite measurements. Subplots (c) and (d) are identical to 243 

subplots (a) and (b), but the results are obtained from AIRS satellite measurements. The anomalies 244 

compared to the long-term mean of April from 2003 to 2022. The black and white hatches indicate 245 

that the anomalies are more significant than 3σ and 2σ standard deviations, respectively.  246 

 247 

 248 
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3.2 Biomass Burning activity over PSEA in April 2023  249 

We further examined BB activity over PSEA in April 2023, using MODIS fire counts and 250 

fire radiative power (FRP) as proxies for BB activities and wildfires.  It is noted that there were a 251 

total of 21198 fire counts and a total FRP of 2407283 (MW) throughout PSEA (Sup. Table 1). 252 

Fire counts and FRP varied significantly between countries, with Laos reporting the highest 253 

number of fire counts (11877) and FRP (1530000 MW). Notably, Laos accounted for 56% of the 254 

total fire counts and 63% of the FRP for PSEA, establishing it as a hotspot for BB activity in April 255 

2023. Figures 4a and b show the spatial distribution of fire counts and the related FRP over PSEA 256 

in April 2023.  Persistent and more intense fires were observed over northern Laos and Myanmar, 257 

with the most intense fires occurring north of Laos. The number of fires in Laos in April 2023 was 258 

the highest recorded in the past 20 years (Fig. 4c). It should be noted that Laos is characterized by 259 

around 60% of its land cover types being forests (Sup. Fig. 5). Most of this forest is situated in 260 

northern Laos, where most fires occurred in April 2023. This suggests that forest fires in Laos 261 

were primarily responsible for the majority of fires in 2023. Although the FRP in 2023 was not at 262 

its peak, it was still among the highest BB activities, following 2016 and 2003. However, the 263 

nighttime fires and corresponding FRP demonstrate that the 2023 BB activity was the highest in 264 

the entire MODIS data record and exceptionally intense in terms of FRP (Figs. 4e-4f). This 265 

demonstrated the intensity of the fires in April 2023 compared to the last 20 years. The extreme 266 

nighttime fire activity highlights changes in fire behavior and environmental or human factors that 267 

favored intense nighttime burning in April 2023. We further examined area-averaged fires and 268 

FRP over northern Laos (17-23oN), indicating that the highest fires and FRP were recorded in 269 

April 2023 in MODIS data from January 2003 to December 2023 (Sup. Fig. 6).  Furthermore, the 270 

MODIS estimated monthly burned area product (MCD64A1) reveals a total area of 1.08 million 271 

hectares burned in Laos in April 2023, the highest monthly value in the available data for that 272 

dataset (2002–2023; Sup. Fig. 7). The spatial distribution of the MODIS burned area (Sup. Fig. 273 

8a) shows that the most significant area affected by fires in 2023 was located in northern Laos, 274 

which closely aligns with the total number of fires and the FRP illustrated in Figure 4. This raises 275 

the question: What caused the anomalous fire activity in Laos in April 2023? We examined various 276 

meteorological and dynamic conditions in April 2023 to address this.  277 
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 278 

Figure 4. Spatial distribution (0.25° × 0.25°) of MODIS (a) fire counts and (b) total fire radiative 279 

power (FRP) in April 2023. A notable increase in fire activity over northern Laos is observed.  (c) 280 

Inter-annual (2003 to 2023) monthly fire counts (day and night), and (d) the total FRP for April 281 

over Laos. (e) Inter-annual monthly nighttime fire counts and (f) the total FRP for nighttime fire 282 

counts over Laos in April. Fires with a confidence level of more than 80% are considered for the 283 

present analysis. 284 
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 285 

Figure 5. Surface and atmosphere conditions in April 2023. April anomalies in 2023 compared to 286 

the 2003-2022 climatological period for (a) Outgoing Longwave radiation (OLR), (b) cloud 287 

fraction (CF) from Aqua, (c) cloud fraction from Terra, (d) precipitation, (e) Surface Temperature, 288 

(f) surface latent heat flux, (g) Atmospheric Boundary Layer (ABL) Height, (h) soil moisture (10 289 

- 40 cm underground), and (i) surface sensible heat flux. OLR and surface temperatures are 290 

obtained from AIRS satellite measurements. CF data from MODIS Aqua and Terra. ABL height 291 

obtained from MERRA-2 reanalysis. Soil moisture, surface latent heat, and sensible heat flux are 292 

obtained from the GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2.1. 293 

Precipitation data is obtained from the Global Precipitation Climatology Project (GPCP) Version 294 

3.2.  295 

In April 2023, Outgoing Longwave Radiation (OLR) anomalies reflected decreased 296 

convective activity over PSEA, resulting in reduced precipitation, higher temperatures, and low 297 
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soil moisture (SM), as shown in Fig. 5. Precipitation, temperature, and SM anomalies correlate 298 

with enhanced MODIS fire counts and FRP over northern Laos (Fig. 4). Long-term SM anomalies 299 

in northern Laos reached record lows in April 2023, the lowest in two decades (Sup. Figs. 9a and 300 

b). We further examined the evolution of SM anomalies during 2021-2023, which indicates 301 

maximum positive values in March 2022 and maximum negative anomalies in April 2023, 302 

signifying prolonged drought from winter 2022 to April 2023 (Sup. Fig. 9c). Interestingly, the 303 

record-low SM anomalies occurred during the transition period from La Niña to El Niño. Under 304 

dry conditions, increased sensible heat flux warms the near-surface atmosphere, resulting in a 305 

positive land-atmosphere feedback (Alexander 2011). To explore how record SM anomalies in 306 

April 2023 affected land-atmospheric coupling, we analyzed surface heat flux changes over PSEA, 307 

revealing decreased surface latent heat flux and increased sensible heat flux. The negative latent 308 

heat flux anomalies indicated limited evapotranspiration due to dry soil conditions. A deeper 309 

Atmospheric Boundary Layer (ABL) height (>400 m increase) was observed over northern PSEA, 310 

particularly in Laos, aligning with other anomalies in April 2023. Negative SM anomalies favor a 311 

positive geopotential height anomaly in upper levels, maintaining local high pressure and 312 

promoting surface warming (Fischer et al., 2007; Dong et al., 2023). The northern PSEA 313 

experienced a high-pressure anticyclone in April 2023 (Fig. 6a), which decreased cloud cover, 314 

increased solar radiation and surface temperature, and reduced precipitation. MODIS cloud 315 

fraction (CF) anomalies exhibited extreme negative values, particularly in the northern PSEA, 316 

decreasing by over 100% compared to the 2003-2022 average, closely aligning with the high-317 

pressure anticyclone depicted in Figure 6a. Reduced cloud cover and drier soil will increase heat, 318 

landscape flammability, and wildfire potential. It is concluded that record-breaking negative SM 319 

anomalies under a deeper, drier, and warmer ABL, coupled with increased temperatures, low 320 

precipitation, and anomalous low cloud cover associated with the upper tropospheric high-pressure 321 

system, contributed to record-breaking BB and wildfires over Laos in April 2023.  322 

3.3 Dynamical and large-scale circulations in April 2023  323 

Previous research shows that in spring, smoke aerosols (BC and OC) and trace gases are 324 

transported from PSEA to downstream areas like southern SC, Taiwan, and the northwestern 325 

Pacific via free tropospheric westerlies (Wai et al., 2008; Lin et al., 2009; Lin et al., 2013; Yen et 326 

al., 2013; Chuang et al., 2014; Ou-Yang et al., 2014; Lin et al., 2017; Pani et al., 2019). 327 
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Remarkably, in April 2023, PSEA BB smoke aerosols and trace gases were transported to the far 328 

southern regions of the SCS and the BoB, marking a significant departure from the usual transport 329 

pathway to downwind Taiwan and the northwest Pacific, respectively.  330 

 331 

Figure 6. Spatial distribution of (a) 500 hPa geopotential height (Z500), (b) 700 hPa geopotential 332 

height (Z700), and (c) Sea Surface Temperature (SST) anomalies in April 2023. The anomalies 333 

are calculated by subtracting the monthly mean of April 2023 from the April climatology for the 334 

period from 1991 to 2020. The wind anomalies for the respective pressure levels are overlaid in 335 

Z500 and Z700 anomalies. The geopotential height and wind data are from the MERRA-2 336 
reanalysis, while SST data are from the NOAA Extended Reconstructed SST V5.   337 
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Here, background dynamics and large-scale circulations are crucial for transporting smoke 338 

aerosols over longer distances from the sources (Ravindra Babu et al., 2023; Huang et al., 2024). 339 

To provide context for the April 2023 event, we briefly analyzed the large-scale circulation 340 

patterns responsible for the unprecedented aerosol loading. Our focus was on the geopotential 341 

height and winds, both zonal and meridional, at 700 and 500 hPa levels. The geopotential height 342 

observed at these levels (Z700 and Z500) in April 2023 contrasts with the background climatology 343 

of April (1991-2020) (Sup. Figs. 10 and 11). Specifically, at 700 hPa (Z700), a high-pressure 344 

system over the Indian region shifted eastward, reaching the PSEA. In comparison, at 500 hPa 345 

(Z500), the western Pacific anticyclone shifted westward to sit directly above the PSEA. To get a 346 

clearer picture, we further obtained the anomaly in Z700 and Z500 in April 2023 by comparing 347 

the long-term mean of 1991-2020. The observed Z700 and Z500 anomaly composites are 348 

illustrated in Figure 6a and b. There is a prominent anomalous anticyclone over northern PSEA, 349 

centered roughly at 20°N, 100°E (Fig. 6a). Additionally, a significant anomalous low-level 350 

cyclone is present over the western North Pacific (WNP) around the Philippines, with an 351 

anomalous cyclone forming upstream and downstream of the anticyclone over the PSEA, creating 352 

a zonal low-high-low (L-H-L) pattern. This arrangement might suggest the movement of a Rossby 353 

wave train (Hu et al., 2024). Concurrently, a strong anticyclone anomaly was situated over the 354 

northern Pacific Ocean, just above the western Pacific cyclone anomaly. It is strongly indicated 355 

from Figures 5 and 6 that the upper- and lower-level anomalous anticyclones significantly caused 356 

cloudless skies, reduced precipitation, and elevated surface temperatures in the PSEA. These 357 

favorable conditions, occurring over drier soil, led to extreme BB and wildfires in Laos, which 358 

released significant quantities of aerosols and trace gases into the atmosphere.  359 

We hypothesize that these systems, including an anomalous WNP cyclone, a BoB 360 

anticyclone at 700 hPa, and a high-pressure anticyclone over PSEA at 500 hPa, substantially 361 

influenced the background circulations in the PSEA and its surroundings. This interaction likely 362 

contributed to the unusual BB smoke transport from northern PSEA to the SCS and the BoB in 363 

April 2023, as corroborated by the meridional wind anomalies in Sup. Figs. 12b and c, which 364 

indicate unusual northerly winds over the SCS. The northerly wind anomalies inhibited smoke 365 

transport from northern PSEA to the SCS, resulting in unprecedented aerosol loading over the SCS 366 

and the BoB. Additionally, zonal wind anomalies showed typical background westerlies 367 

supplanted by easterlies over the North Pacific near Japan, due to an anomalous high-pressure 368 
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system in April 2023 (Sup. Figs. 12a and b). This high-pressure system weakened the westerlies 369 

to its south, obstructing the usual smoke transport from PSEA to the downwind northwestern 370 

Pacific. This is further supported by AERONET observations from Lulin Atmospheric 371 

Background Station (LABS, 23°28′N, 120°52′E, 2,862 m; Sheu et al., 2010), located downwind 372 

of the PSEA smoke (Sup. Fig. 12a). The AOD data revealed no notable rise in AOD at Lulin in 373 

April 2023 compared to previous years, similar to what was observed at Dongsha Island (Sup. 374 

Fig. 13c).  In conclusion, the unusual circulation from the BoB anticyclone and the WNP cyclone 375 

transported PSEA smoke into the SCS, resulting in unprecedented aerosol loading in April 2023. 376 

Exploring the causes and dynamics behind the anti-cyclonic and cyclonic circulations over the 377 

BoB and WNP in April 2023 is intriguing; however, it falls outside the scope of this study. 378 

Preliminary analysis of sea surface temperature (SST) anomalies in April 2023 revealed a distinct 379 

and spatially coherent pattern across the Pacific Ocean (Fig. 6c). Notably, positive SST anomalies 380 

were observed over the western Pacific warm pool near the equatorial region, while negative 381 

anomalies appeared over the central to eastern equatorial Pacific. In addition, strong positive SST 382 

anomalies were present over the mid-latitude North Pacific. This tri-polar SST structure is known 383 

to influence large-scale atmospheric circulation patterns. According to the Matsuno–Gill 384 

framework, enhanced warming in the tropical western Pacific can induce anomalous cyclonic 385 

circulation over the WNP (Gill, 1980; Zeng and Sun, 2022). Concurrently, regional SST anomalies 386 

over the Indian Ocean exhibited positive values in the Arabian Sea and negative anomalies in the 387 

BoB. These SST anomalies corresponded closely with 700 hPa geopotential height (Z700) 388 

anomalies, which were positive over the BoB and negative over the Arabian Sea. The spatial 389 

alignment of SST and Z700 anomalies suggests that the observed SST anomaly configuration in 390 

April 2023 likely exerted a substantial influence on tropospheric circulation over both the Indian 391 

and Pacific Oceans. 392 

3.4 Impact on Tropospheric Ozone 393 

It is well known that BB smoke can emit aerosols and various gaseous compounds, 394 

including nitrogen oxides (NOx), CO, methane (CH4), and multiple volatile organic compounds 395 

(VOCs). Once emitted, BB smoke undergoes chemical transformations in the atmosphere, altering 396 

the mix of compounds and generating secondary pollutants such as ozone (O3) and secondary 397 

organic aerosol (Jaffe and Wigder, 2012; Ogino et al., 2022). BB emissions from the PSEA have 398 

a significant impact on air quality and weather in both source and downwind regions. In previous 399 
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sections, we demonstrated the record-breaking increase in AOD, along with the unusual 400 

enhancement in tropospheric CO (at 700 and 500 hPa) over SCS due to PSEA biomass burning. It 401 

is known that the presence of CO is one of the factors that control the abundance of tropospheric 402 

ozone, a short-lived pollutant and climate forcer (Liu et al., 1999; Chan et al., 2003; Ou-Yang et 403 

al., 2012; Yadav et al., 2017; Liao et al., 2021).  404 

 405 

Figure 7.  Spatial distribution of tropospheric column ozone (TCO) (surface - 300 hPa ozone 406 

column) concentrations in (a) April (2005-2022), (b) April 2023. (c). The observed spatial 407 

distribution of TCO anomaly in April 2023. Anomalies based on removing the 2005-2022 April 408 

mean. (d) The area-averaged TCO anomalies observed over SCS between January 2005 and 409 

December 2023—anomalies based on removing the long-term mean from 2005 to 2022. The 410 

highest increase in the TCO for the SCS region is recorded in April 2023 during the OMI/MLS 411 

data period. The black hatches in sub-plot (c) indicate that the anomalies are more significant than 412 

3σ standard deviations, respectively.  413 

Here, we investigated how this record-breaking pollution event may have influenced tropospheric 414 

ozone levels in April 2023. We analyzed long-term tropospheric ozone column (TOC) data 415 

(surface to 300 hPa) from the combined Aura Ozone Monitoring Instrument and Microwave Limb 416 
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Sounder satellite ozone measurements (OMI/MLS) from 2005 to 2023 (Ziemke et al., 2006; 2019). 417 

Figures 7a and 7b illustrate the spatial distribution of the long-term April mean and the April 2023 418 

TOC over the study area. Additionally, Figure 7c illustrates the observed anomaly in April 2023 419 

in comparison to the long-term average. We also include area-averaged TOC anomalies over the 420 

SCS spanning the entire OMI/MLS dataset. The OMI/MLS TOC anomaly indicates significantly 421 

elevated ozone levels over the SCS and nearby regions during April 2023. The observed anomalies 422 

are statistically significant, being three standard deviations above the long-term mean of total 423 

column ozone (TOC). Furthermore, the monthly mean anomalies, averaged over the SCS 424 

throughout the entire OMI/MLS data period, reveal the highest increase in TOC, approximately 8 425 

Dobson Units (DU), in April 2023. These exceptional TCO increases from the OMI/MLS data are 426 

further supported by the AIRS satellite O3 measurements and the downwind ozonesonde 427 

measurements at Hong Kong, which are presented in Sup. Figure 14, respectively. We utilized 428 

long-term ozone measurements from the AIRS satellite from 2003 to 2023. Our analysis of 700 429 

and 500 hPa levels reveals a substantial O3 increase over SCS and nearby areas, about 20 ppb, 430 

exceeding two standard deviations of the long-term mean, corroborated by downwind Hong Kong 431 

ozonesonde measurements (Sup. Figs. 14c and d). The ozone profile peaks at altitudes of 3 to 4 432 

km, with anomalies exceeding 30 ppb in the 3 to 5 km region, correlating exactly with the 433 

CALIPSO vertical aerosol enhancement. This illustrates the exceptional augmentation of TOC 434 

over the SCS in April 2023, comparable to the AOD increase observed in the MODIS data. Such 435 

findings are corroborated by the corresponding increases in CO levels recorded by MOPITT and 436 

AIRS at 700 hPa and 500 hPa, respectively, indicating a substantial influence of BB plumes 437 

originating from the PSEA region in 2023. Overall, the present analysis concludes that the April 438 

2023 event had a significant impact on air quality over PSEA and its surrounding areas. 439 

4. Summary and Conclusions 440 

In April 2023, we observed an unprecedented increase in aerosol loading over the South 441 

China Sea (SCS), which had not been observed in the past two decades of the MODIS period, 442 

spanning from 2003 to 2023. Satellite observations revealed a 150% rise in aerosol optical depth 443 

(MODIS), alongside 50% increases in carbon monoxide (MOPITT) at 700 and 500 hPa over SCS.  444 

This study primarily focused on analyzing the drivers, physical and dynamical mechanisms behind 445 

the record-breaking aerosol loading over the SCS in April 2023. Our findings indicate that extreme 446 
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biomass burning (BB) activity over northern PSEA was the primary source of the record-breaking 447 

aerosols in April 2023.  448 

 449 

Figure 8. The schematic diagram illustrates the physical mechanisms responsible for the record-450 

breaking aerosol loading over the South China Sea in April 2023. The top panel displays the long-451 

term mean state in April, whereas the bottom panel shows the April 2023 mean state of the large-452 
scale dynamical and circulatory systems. A denotes the presence of an anticyclone anomaly, and 453 

C represents the presence of a cyclone anomaly. The horizontal arrows indicate subtropical free-454 
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tropospheric westerlies and easterlies. The green arrow indicates southerlies, and northerlies are 455 

shown by the brown arrow, respectively. Two anticyclone systems were present in climatology 456 

over the western Pacific and the Indian Ocean. Southwesterly and southerly winds in the free 457 

troposphere dominate the SCS. Free tropospheric westerlies transport smoke into the downwind 458 

areas of Taiwan and the western North Pacific. In April 2023, the western North Pacific 459 

anticyclone transitioned into an anomalous cyclone over the western North Pacific. The Indian 460 

anticyclone system further shifted eastward around the PSEA. Unusual northerly winds replaced 461 

the southerly winds due to a cyclone anomaly over the western North Pacific and an expanded 462 

Indian anticyclone. Additionally, in April 2023, easterlies around Taiwan and above hindered 463 

downwind transport to the northwestern Pacific.  464 

An analysis of various meteorological and atmospheric factors reveals that the PSEA region has 465 

experienced unusual weather patterns, creating conditions conducive to BB and wildfires. Key 466 

contributors include extremely low soil moisture, higher surface temperatures, lower precipitation 467 

levels, and an upper tropospheric high-pressure anticyclone. These factors increase the likelihood 468 

of severe fire events, especially in Laos and Myanmar. Particularly, Laos became one of the 469 

hotspot regions for extreme BB activity in April 2023. Among all the countries in PSEA, Laos 470 

alone contributed approximately 56% of the total fire activity over PSEA, followed by Myanmar 471 

at around 33%. Under prolonged dry conditions, BB activity over Laos in April 2023 was higher 472 

than in the past two decades. The largest area burned, 1.08 million hectares, in a single month 473 

(2002-2023), occurred in April 2023. Additionally, unusually large-scale atmospheric circulations 474 

significantly spread smoke, trace gases, and pollutants to downwind regions from the source. Our 475 

analysis of large-scale circulations associated with dynamical changes illustrates the mechanism 476 

behind the April 2023 event, as schematically shown in Figure 8. In climatology, two anticyclone 477 

systems were situated over the WNP and the Indian Ocean. The SCS experiences predominantly 478 

southwesterly and southerly winds in the free troposphere. Westerly winds in the free troposphere 479 

generally transport BB smoke from PSEA to downwind areas of Taiwan and the WNP. In April 480 

2023, the anticyclone over the WNP transformed into an unusual cyclone. Meanwhile, the Indian 481 

anticyclone shifted eastward over the BoB and near the PSEA. Due to a cyclone anomaly in the 482 

WNP and a persistent anticyclone in the BoB, northerly winds replaced the southerly winds in the 483 

free troposphere over the SCS. Additionally, in April 2023, easterlies near Taiwan obstructed 484 

downwind transport towards the northwestern Pacific. Overall, it is concluded that the regime 485 

shifted from southerlies to northerlies over the SCS due to the combined impact of the extended 486 

BoB anticyclone and the WNP cyclone, causing BB smoke transport from the PSEA to the SCS. 487 
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The present findings would benefit regional monitoring and a better understanding of the 488 

transboundary pollution over the PSEA. 489 

Interestingly, PSEA is linked to an extreme heatwave in April 2023, with record-high 490 

temperatures (Zachariah et al., 2024; Lyu et al., 2024). Studies have attributed this heatwave to 491 

climate change (Zachariah et al., 2024), as well as to the strengthening of high pressure from 492 

tropical waves, moisture deficiency, and strong land-atmosphere coupling (Lyu et al., 2024). Our 493 

results further suggest a plausible role for BB-associated aerosols and greenhouse gases in the 494 

April 2023 heatwave. What role does heat trapping play in increasing greenhouse gases resulting 495 

from record-breaking BB activity? What is the impact of increased BB aerosols? Further research 496 

is needed to understand the exceptional conditions in PSEA and its surrounding regions, including 497 

BB-associated greenhouse gas emissions (GHGs) and aerosol anomalies. Additionally, smoke 498 

aerosols impact surface and atmospheric radiation budgets, affecting regional weather and climate. 499 

Future work will focus on the radiative energy balance and weather changes resulting from the 500 

April 2023 aerosol increase.   501 
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