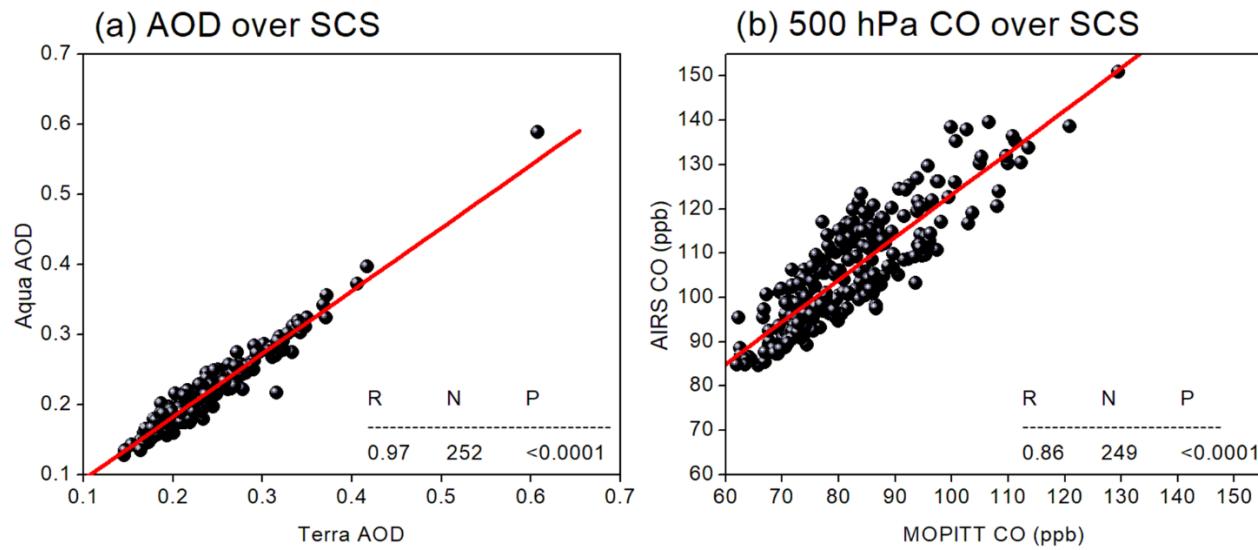


Response to Referee #3

2 The manuscript presents a thorough analysis of an unprecedented aerosol loading event over the
3 South China Sea (SCS) in April 2023, using multiple satellite datasets and reanalysis products.
4 The authors convincingly identify biomass burning in Laos and Myanmar as the primary source,
5 and they discuss the unusual circulation anomalies that directed smoke transport into the SCS. The
6 study is timely, relevant, and potentially impactful, especially given the increasing frequency of
7 climate–fire extremes. However, I believe the manuscript requires further development before it
8 can be accepted. My major concerns relate to the quantification of uncertainties, the robustness of
9 transport attribution, and the integration of climate drivers. I detail my comments below.

10 We highly appreciate the thoughtful and valuable suggestions from the reviewer, which will help
11 us improve the quality of our manuscript. We have revised the manuscript with consideration of
12 the reviewer's comments/suggestions.

13
14 The manuscript reports extreme anomalies in MODIS AOD ($>4\sigma$) and MOPITT/AIRS CO ($>3\sigma$),
15 but little discussion is provided regarding retrieval errors, biases, or limitations. Please provide a
16 clearer treatment of uncertainties, for example: known MODIS biases over ocean and land, vertical
17 sensitivity limits in MOPITT CO, and representativeness of reanalysis aerosol products. A
18 sensitivity analysis (e.g., comparison across Aqua vs. Terra MODIS, MOPITT vs. AIRS CO)
19 would help quantify robustness.

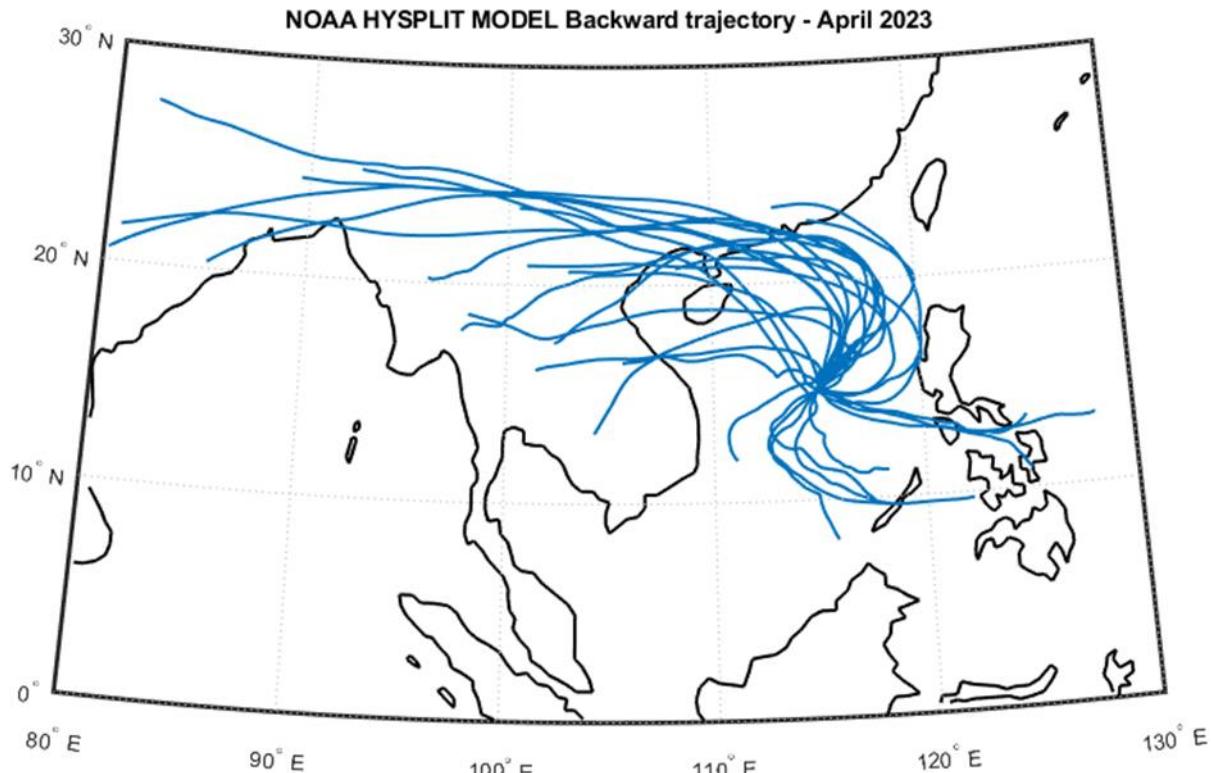

20 Reply: We thank the reviewer for this critical comment. In the revised manuscript, we have
21 expanded the discussion of uncertainties and limitations for the satellite and reanalysis products
22 used in this study. We have also carried out comparisons between Aqua and Terra MODIS AOD,
23 as well as MOPITT and AIRS CO at 500 hPa over the South China Sea (see attached Figure R1),
24 to assess robustness.

25 For MODIS AOD, the estimated uncertainty is approximately ± 0.05 over ocean and ± 0.15
26 over land. The Collection 6.1 (C6.1) products used in this study have been shown to capture
27 temporal variations effectively and agree closely with ground-based observations (Wei et al.,
28 2019b). Validation against AErosol RObotic NETwork (AERONET) measurements demonstrates
29 that the merged Dark Target and Deep Blue (DTB) products accurately capture aerosol variability
30 at both regional and global scales (Sayer et al., 2014; Wei et al., 2019). Comparison of Terra and

31 **Aqua MODIS AOD confirms consistent temporal patterns, with extreme anomalies exceeding 4σ**
32 **observed in both datasets.**

33 For MOPITT CO, primary sources of uncertainty include vertical sensitivity limits and
34 retrieval biases. The observed enhancements ($>3\sigma$) are consistent with independent AIRS CO
35 measurements, supporting the robustness of the reported anomalies. Although MOPITT's
36 sensitivity decreases near the surface, combining both instruments' observations and applying
37 quality filters mitigates this limitation.

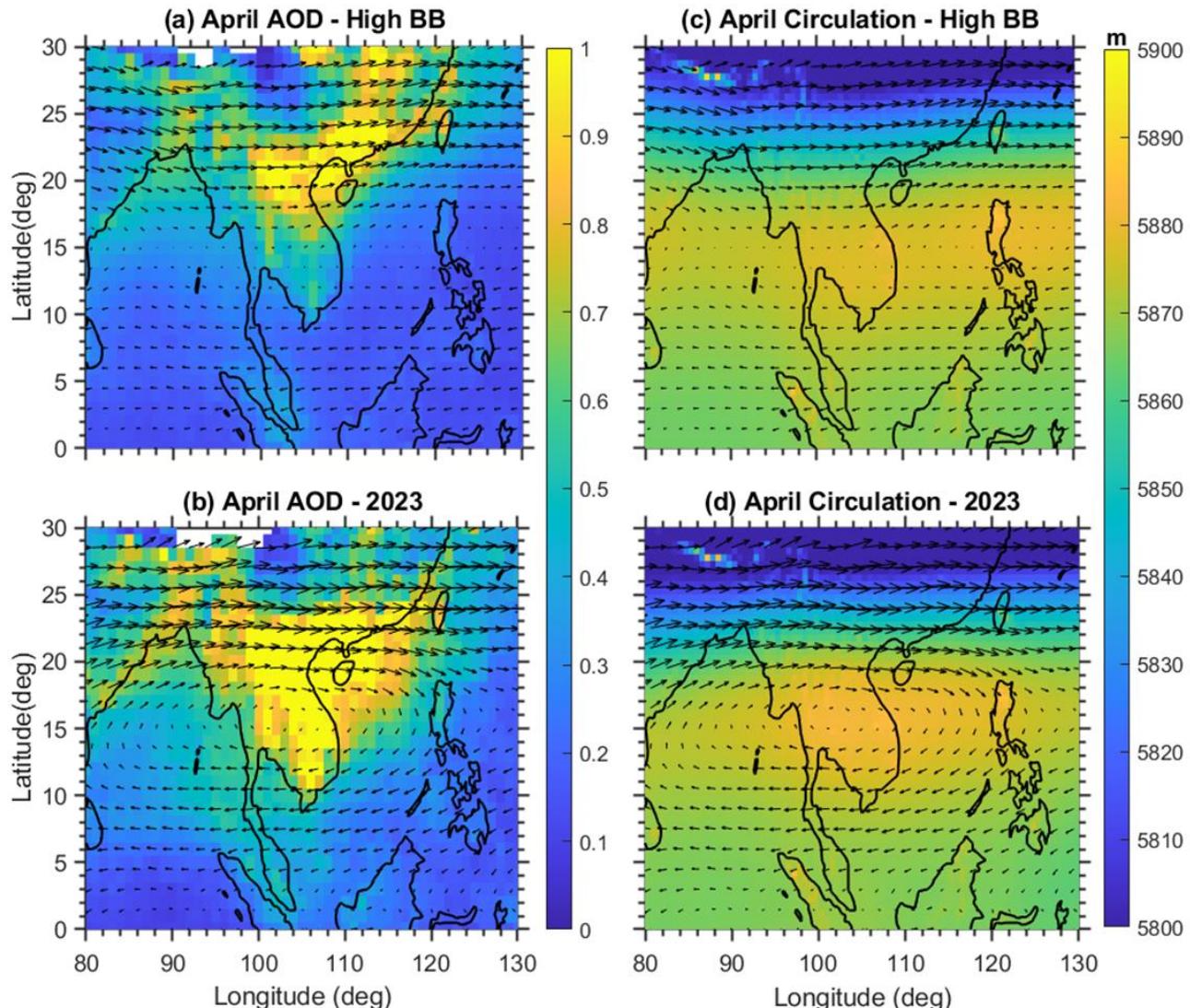
38 We have added these discussions in the revised manuscript and highlighted that, despite
39 known uncertainties, the extreme anomalies reported are robust across multiple datasets and
40 instruments, including MODIS Aqua/Terra, MOPITT, AIRS, and reanalysis fields. Relevant
41 validation studies are now explicitly cited (Sayer et al., 2014; Wei et al., 2019; Ziemke et al.,
42 2006).


44 **Figure R1. (a) Comparison between MODIS Terra AOD and MODIS Aqua AOD, (b) comparison**
45 **between MOPITT and AIRS measured 500 hPa CO over the South China Sea during January 2003**
46 **to December 2023. (R is the correlation coefficient; N is the sample size; P is the significance**
47 **value).**

48
49 Transport Attribution and Circulation Analysis

50 The explanation of northerly transport due to the Bay of Bengal anticyclone and western North
51 Pacific cyclone anomaly is plausible, but remains descriptive. I strongly recommend including

52 trajectory or dispersion modeling (e.g., HYSPLIT, FLEXPART) to explicitly demonstrate that
53 biomass burning plumes from Laos could reach the SCS. Alternatively, a composite analysis of
54 circulation anomalies in other strong-fire years could be used to strengthen causality.


55 **Reply:** Thanks for the helpful suggestion. In the revised manuscript, we have included an analysis
56 of the CALIPSO and MERRA-2 vertical aerosol distributions in April 2023. As aerosol optical
57 depth (AOD) is a column-integrated measure, it does not provide information on the vertical
58 distribution of aerosols. To overcome this limitation, we analyzed observations from the Cloud-
59 Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), which reveal pronounced
60 enhancements of smoke aerosols over the South China Sea (SCS). Elevated smoke layers were
61 also observed over the southern Bay of Bengal (BoB) in April 2023, predominantly within the
62 mid-troposphere at altitudes of approximately 3–5 km. Consistent with these lidar observations,
63 MERRA-2 reanalysis data indicate substantial increases in aerosol mass concentrations in 2023,
64 with black carbon (BC) increasing by ~250% and organic carbon (OC) by ~350%. The most
65 pronounced enhancements occur between 700 and 600 hPa, closely matching the altitude range
66 identified by CALIPSO. The concurrence of satellite and reanalysis evidence points to a severe
67 pollution episode in April 2023 over and near the SCS, characterized by elevated aerosol layers
68 indicative of long-range transported biomass-burning smoke. To examine the transport
69 mechanism, we have further analyzed HYSPLIT back trajectories for April 2023. We have run
70 daily HYSPLIT back trajectories at random (15N-115E, 3000 m), and the resulting trajectories are
71 shown in the following Figure R2. It is clear that air masses arriving over the SCS during April
72 2023 predominantly originated from the northern PSEA, consistent with the active BB regions
73 observed during this period.

75 Figure R2. Daily 72-h NOAA HYSPLIT backward trajectories ending at 12:00 UTC at a
76 representative location (15°N, 115°E) over the South China Sea at 3 km altitude in April 2023.

77 Following the reviewer's suggestion, we analyze the large-scale circulation and aerosol
78 loading in other high-biomass-burning (BB) years over Peninsular Southeast Asia (PSEA). High-
79 BB years are objectively identified by calculating standardized fire anomalies from total MODIS
80 fire counts over PSEA, with years exceeding a 0.5 threshold classified as high-BB (Figure R7).
81 Using this criterion, composite fields of MODIS aerosol optical depth (AOD), 500-hPa
82 geopotential height, and wind vectors are constructed to represent typical circulation and aerosol
83 patterns associated with enhanced biomass-burning activity. The accompanying figure compares
84 April 2023 with the high-BB composite, allowing an assessment of whether the circulation and
85 aerosol conditions in 2023 resemble those commonly observed during severe biomass-burning
86 periods. The comparison reveals notable differences between 2023 and other high-BB years
87 (Figure R3). In particular, April 2023 is characterized by a pronounced anticyclonic high-pressure
88 system over PSEA that is stronger and more spatially coherent than in the high-BB composite.
89 Correspondingly, AOD levels in 2023 are substantially higher than those in the high-BB

90 composite, indicating unusually intense aerosol loading. These distinctions suggest that the
91 circulation configuration in 2023 may have played a greater role in aerosol accumulation and
92 transport than in typical high-biomass-burning years.

94 Figure R3. Spatial distribution of MODIS aerosol optical depth (AOD) and MERRA-2 500-hPa
95 geopotential height with wind vectors for April: (a) AOD composite for high biomass-burning
96 years, (b) AOD for 2023, (c) 500-hPa geopotential height and wind vectors for high biomass-
97 burning years, and (d) 500-hPa geopotential height and wind vectors for 2023.

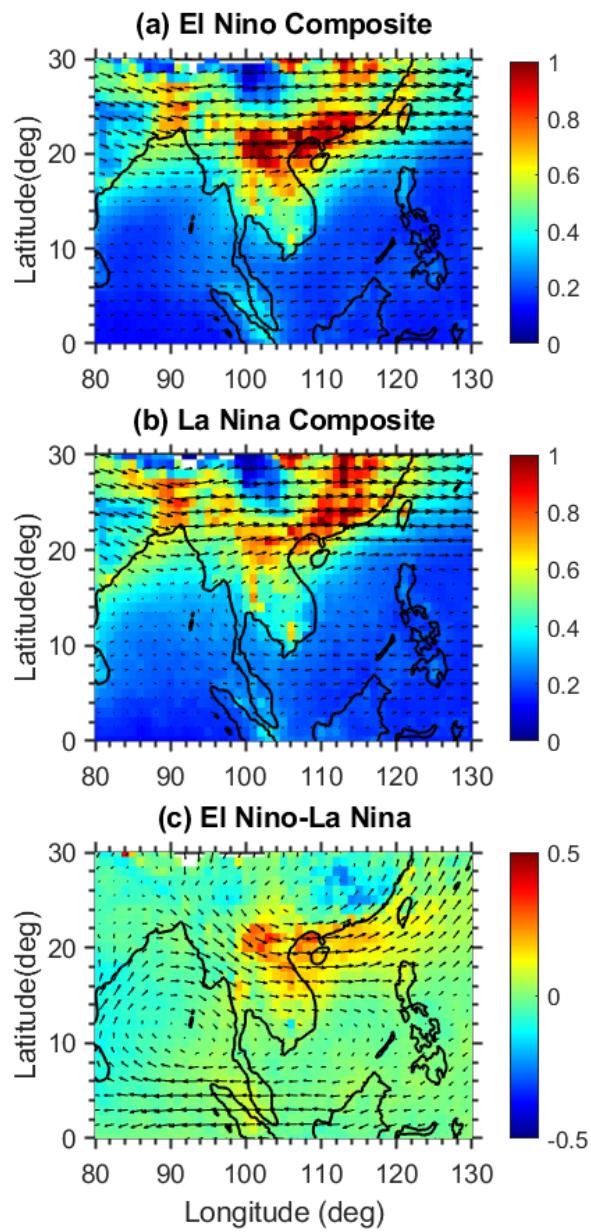
98

99

100

101

102 **Link to Large-Scale Climate Drivers**


103 The manuscript notes the La Niña–El Niño transition and a tri-polar SST anomaly structure but
104 does not fully connect these anomalies to the extreme biomass burning and circulation changes.
105 Please expand the discussion to show whether such SST/ENSO anomalies have historically
106 coincided with enhanced PSEA burning or altered circulation patterns. This would greatly
107 strengthen the broader climate relevance of the study.

108 **Reply:** Thank you for this valuable suggestion. We agree that establishing a more explicit linkage
109 between sea surface temperature (SST)/ENSO anomalies and regional fire and circulation
110 responses will enhance the broader climate relevance of the study. The interannual variability of
111 biomass-burning (BB) activity over Indochina has been closely tied to the El Niño–Southern
112 Oscillation (ENSO), as reported in previous studies (Yin, 2020; Zhu et al., 2021; Zheng et al.,
113 2023). ENSO is a dominant driver of interannual BB variability across South and Southeast Asia.
114 During El Niño events, prolonged drought and suppressed precipitation intensify fire activity over
115 northern Indochina, particularly in spring (Zhu et al., 2021). Zheng et al. (2023) further showed
116 that fire occurrences increase substantially during El Niño years, coinciding with more fire-prone
117 meteorological conditions compared to La Niña years. This asymmetry reflects stronger
118 correlations between fire weather and the ENSO index during El Niño phases, associated with
119 positive low-level geopotential height anomalies and reduced water vapor transport over Southeast
120 Asia (March–May), both of which favor enhanced burning.

121 However, the record-breaking aerosol event in April 2023 occurred during the La Niña–El
122 Niño transition, following an unusual triple-dip La Niña. This transitional state appears distinct
123 from previously documented ENSO–fire relationships and may have contributed to atypical
124 circulation and moisture anomalies. In the revised manuscript, we have expanded the discussion
125 to highlight these connections and compare the 2023 transition pattern with historical ENSO
126 phases, thereby emphasizing the broader climatic context of the observed extreme biomass
127 burning.

128 Additionally, we constructed composites of MODIS AOD and 500-hPa wind vectors for
129 El Niño and La Niña years during 2003–2022 (Figure R4). The results reveal an apparent increase
130 in AOD over northern PSEA and the coastal regions of South China during El Niño years
131 compared to La Niña years. The associated circulation patterns also differ, with El Niño years

132 characterized by a stronger anticyclonic system over PSEA extending from the Bay of Bengal,
133 consistent with enhanced aerosol accumulation in the region. These results support the
134 interpretation that ENSO-related circulation anomalies strongly modulate regional aerosol loading
135 and fire activity.

136

137 Figure R4. Composite fields of MODIS aerosol optical depth (AOD) and 500-hPa wind vectors
138 for April: (a) El Niño years, (b) La Niña years, and (c) the difference between El Niño and La Niña
139 composites.

140

141

142 **Minor Comments**

143 **Figures and Visualization**

144 Several figures (e.g., Figs. 2, 3, 5, 6) are visually dense with overlapping hatching and color
145 contours. Please simplify or separate key results, and ensure legends are large and consistent.

146 **Reply:** We thank the reviewer for this suggestion. In the revised manuscript, we have improved
147 the clarity and visual presentation of all figures.

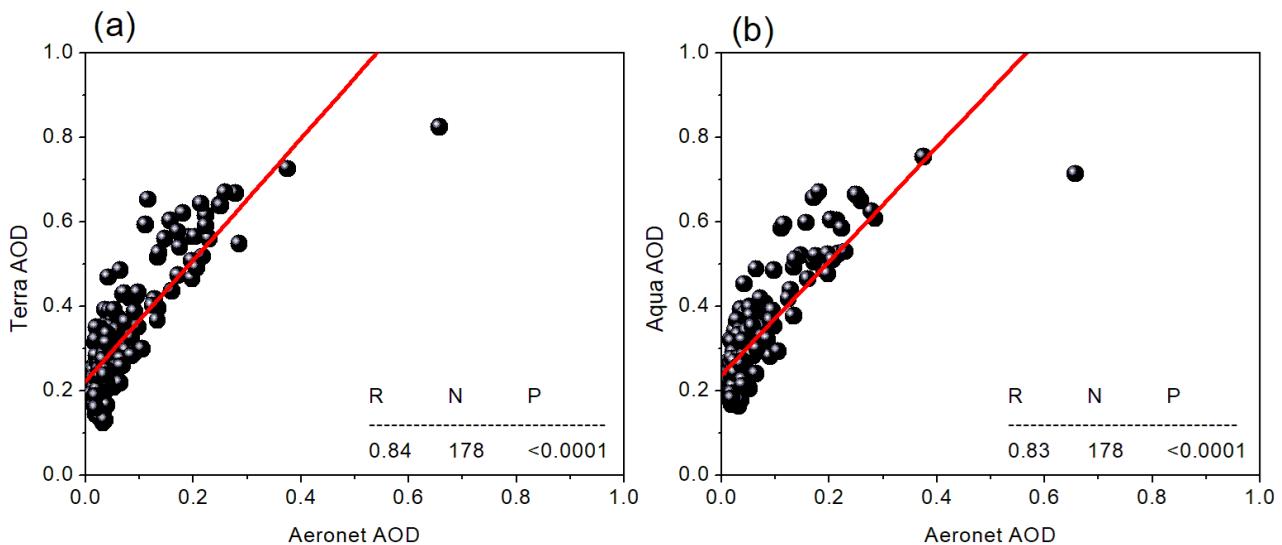
148

149 **Terminology Consistency**

150 The text alternates between “TCO” and “TOC” for tropospheric ozone. Please standardize
151 terminology throughout.


152 **Reply:** Corrected in the revised manuscript.

153


154 **Ground-Based Validation**

155 AERONET data from Dongsha Island and Lulin are mentioned but not analyzed in detail. I suggest
156 including explicit time series plots and quantitative comparisons with satellite AOD to reinforce
157 credibility.

158 **Reply:** We thank the reviewer for this suggestion. In the revised manuscript, we have added
159 explicit details, including time-series plots and quantitative evaluations, to strengthen the
160 credibility of the satellite observations. Specifically, we now provide direct comparisons between
161 AERONET AOD and MODIS AOD at these sites, highlighting both seasonal variability and
162 absolute agreement. Monthly AERONET AOD time series at Dongsha Island and Lulin are also
163 included to provide context (Figure R5 and R6). These additions allow a more comprehensive
164 assessment of the satellite-derived AOD and reinforce the reliability of our aerosol analysis.

165
 166 Figure R5. (a) Comparison between AERONET AOD and MODIS Terra AOD, (b) AERONET
 167 AOD and MODIS Aqua AOD over Dongsha Island during January 2009 to December 2023. (R is
 168 the correlation coefficient; N is the sample size; P is the significance value)

170 Figure R6. (a) Comparison between AERONET AOD and MODIS Terra AOD, (b) AERONET
 171 AOD and MODIS Aqua AOD over LABS during January 2006 to December 2023. (R is the
 172 correlation coefficient; N is the sample size; P is the significance value)

173
 174 Literature Context

175 The manuscript could benefit from more thorough discussion of prior SCS and Southeast Asian
 176 biomass burning studies (e.g., 7-SEAS campaigns, Lin et al. 2013; Reid et al. 2013). This would
 177 help contextualize the novelty of the April 2023 event.

178 **Reply:** We appreciate the reviewer's suggestion. Following the advice, we have discussed further
179 more about the previous 7-SEAS studies in the revised manuscript.

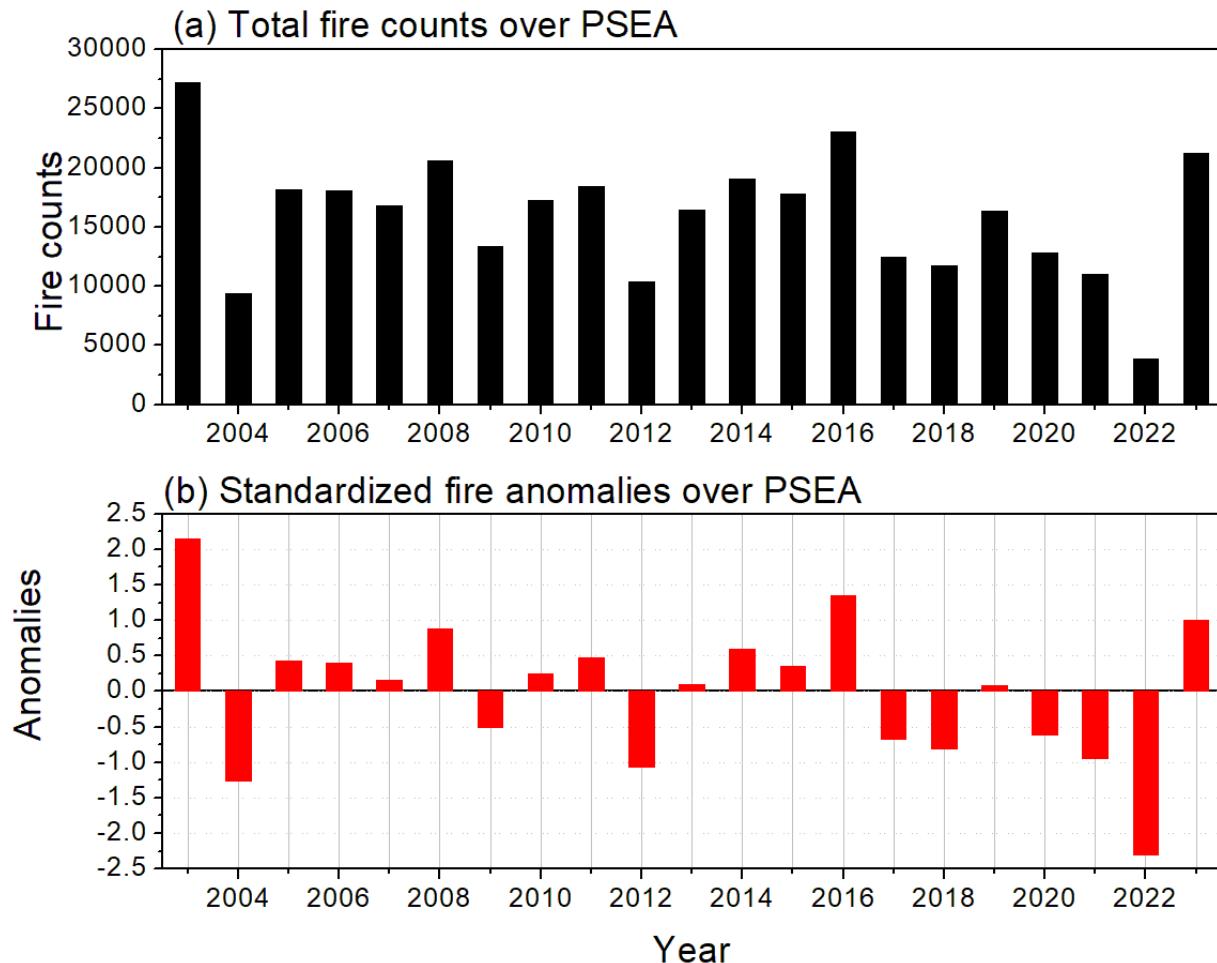
180

181 **Language and Style**

182 Some sentences are repetitive (e.g., emphasis on Laos' share of BB activity) and could be
183 streamlined. Please also ensure consistent reference to "Supplementary Figures" rather than "Sup.
184 Figures."

185 **Reply:** We thank the reviewer for this comment. We have carefully revised the manuscript to
186 streamline repetitive sentences, particularly those emphasizing Laos' contribution to biomass-
187 burning activity, and to improve clarity and readability. Additionally, we have standardized all
188 references to supplementary material, using "Supplementary Figures" consistently throughout the
189 text.

190


191 **Outlook / Future Work**

192 The conclusions briefly mention aerosol–radiation interactions and links to heatwaves. I encourage
193 a more explicit outlook section, highlighting next steps such as quantifying radiative forcing or
194 simulating impacts with chemistry–climate models.

195 **Reply:** We thank the reviewer for this valuable suggestion. In the revised manuscript, we have
196 expanded the outlook/future work section to provide a more explicit discussion of potential next
197 steps. Specifically, we highlight opportunities to quantify aerosol–radiation interactions and
198 estimate the associated radiative forcing, as well as to investigate the regional climate impacts,
199 including heatwaves, using chemistry–climate or Earth system model simulations. These
200 directions will help build on the present study by linking observed extreme biomass burning and
201 aerosol enhancements to broader climate and atmospheric consequences.

202

203

204
205 Figure R7. Inter-annual variability in (a) total fire counts, (b) the standardized fire anomalies over
206 Peninsula Southeast Asia (PSEA) from 2003 to 2023.

207
208
209
210
211
212 We once again thank the reviewer for carefully reviewing the manuscript and for offering potential
213 solutions that significantly improved its content.

214