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Abstract. Accurate estimation of evapotranspiration (ET) is critical for hydrological, agricultural, and climate-related appli-

cations. However, spatially and temporally consistent ET datasets are often limited, particularly in regions like Ireland, where

cloud cover is high and ground-based observations are sparse. This study evaluates ten global, operational open-access ET

products by comparing them to Penman-Monteith (PM) reference values derived from weather station data across 22 locations

in Ireland between 2019 and 2023. Systematic errors were identified in all ET products, varying across sites, seasons, and5

years. An adaptive bias correction (AB) method was applied, which dynamically adjusts each product based on recent errors.

Although the AB method significantly improved individual ET estimates, no single product consistently exhibited superior

performance under all conditions. To further enhance ET accuracy, a novel Combination (COM) method was introduced. This

method assigns dynamic weights to each bias-corrected ET product based on recent skill scores, enabling the creation of an

optimally merged ET estimate. Unlike traditional static statistical methods, which are interpretable but inflexible, and machine10

learning approaches, which are adaptive but opaque and data-intensive, the COM method offers a transparent, computationally

efficient, and interpretable solution. It requires minimal historical data and runs efficiently on non-specialised systems, making

it particularly suitable for operational settings. Results show that the merged COM product outperformed all individual ET

datasets, achieving lower errors and stronger correlations with PM observations. Given the persistent cloud cover and vari-

able satellite retrieval accuracy in regions like the Ireland, the ability to adapt to recent performance represents a significant15

advancement. Overall, the proposed adaptive merging framework provides a scalable, lightweight solution for improving ET

monitoring. This method holds promise for enhancing operational hydrology, agricultural decision-making, and climate impact

assessments in Ireland and other regions facing similar challenges.

1 Introduction

Evapotranspiration (ET) is a vital part of the hydrological cycle, governing the transfer of water from the land surface—such as20

open water, ice, soil, and vegetation—into the atmosphere and influencing local climate patterns (IPCC, 2023). It encompasses
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both evaporation from soil, plant canopies, and water bodies, and transpiration from plant leaves through stomata. Transpiration

is linked to both total leaf area and plant water relations, with stomatal conductance responding to environmental factors, such

as temperature, humidity, solar radiation and CO2 concentration (Collatz et al., 1991) and leaf area infuleced by land-use and

land management activities (Khattak et al., 2025).25

ET provides a crucial link between the surface energy balance (including micrometeorology and the atmospheric boundary

layer) and the soil water balance (involving rainfall and hydrological components). ET influences near-surface temperature and

boundary-layer development through latent and sensible heat partitioning as well as entrainment effects (Stap et al., 2014).

It accounts for approximately 60% of terrestrial precipitation, making it the dominant component of the water balance in

many vegetated landscapes (Katul et al., 2012). As climate change alters these environmental conditions, resulting shifts in30

transpiration and overall ET rates underscore the importance of reliable ET estimates for understanding the water balance,

supporting sustainable water resource management, agriculture, and enhancing resilience to a changing climate (Wanniarachchi

and Sarukkalige, 2022).

Eddy covariance systems (commonly referred to as flux towers) provide aerially averaged ground-based measurements of

ET for a footprint area, but their complexity and high-cost limits extensive operational implementation. Several flux towers,35

monitoring CO2 and ET fluxes over a range of land uses, have been installed across Ireland in recent years (Richards et al.,

2023). Unfortunately, a long-term, gap-filled dataset was not available for use in this study. Hence, we generated a multi-year

field-level ET dataset for grass to benchmark the accuracy of remotely sensed ET at locations across Ireland. We used the

Penman–Monteith (PM) equation (Allen et al., 1998) and Met Éireann weather station data as input for each point. The PM

model integrates temperature, humidity, wind speed, and solar radiation, and is widely recognized for its strong theoretical40

foundation and has been extensively validated (Westerhoff, 2015; Amazirh et al., 2017). Endorsed by the Food and Agriculture

Organization (FAO) as the standard method for calculating reference evapotranspiration (ETo) due to its accuracy across

diverse climates (Allen et al., 1998), the PM equation is also recommended for crop water requirements (Cai et al., 2007) and

is commonly used in the literature for evaluation (Chen et al., 2005). The PM equation has also been applied with remote

sensing data, combining energy balance and mass transfer approaches through resistance or conductance factors to improve45

ET accuracy across diverse climates and land covers (García-Gutiérrez et al., 2021). Its robust basis and broad use make it a

reliable standard for assessing remotely sensed ET in the absence of ground observations.

Remote sensing and reanalysis products provide ET estimates with broad spatial coverage, making them particularly useful

for regions with sparse ground-based measurements (Li et al., 2009). However, these products are subject to uncertainties, as

their accuracy depends on factors such as sensor limitations, retrieval algorithms, and input data quality (Tran et al., 2023).50

Consequently, their reliability can vary across different locations, seasons, and weather conditions. In areas of persistent and

extensive cloud cover which results in missing data, ET estimates are often interpolated or infilled (Li et al., 2021; Song et al.,

2021).

To quantify the uncertainty of available ET products and produce more accurate estimates, several studies have employed

data fusion techniques combining ET products from different sources (Wang et al., 2022a). These efforts have utilized diverse55

methodological approaches, with statistical methods being particularly well-studied.
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One commonly used statistical method is Bayesian Model Averaging (BMA), which assigns probabilistic weights to different

models based on their performance (Yao et al., 2014, 2016; Feng et al., 2016; Kazemi et al., 2021; Zhu et al., 2016; Wang et al.,

2021a). Simple Taylor Skill fusion (STS) has also been applied, optimally combining datasets based on Taylor skill scores

(Yao et al., 2017; Wang et al., 2021b; Baik et al., 2018, 2019). The Triple Collocation (TC) method has proven particularly60

valuable for estimating error variances among three independent datasets (Wang et al., 2024; Cui et al., 2023; Park et al., 2023;

Li et al., 2022, 2023, 2024a, b; Cheng et al., 2024; He et al., 2020). Other statistical methods include the Empirical Orthogonal

Function (EOF) approach (Feng et al., 2016), Modified Kling-Gupta Efficiency (KGE) fusion (Baik et al., 2019), Maximize R

method (Baik et al., 2018), and Reliability Ensemble Averaging (REA) (Lu et al., 2021).

Statistical methods, while more interpretable, generate static datasets that cannot adapt to recent errors - a particular limita-65

tion in regions like Ireland where persistent cloud cover affects satellite-based ET accuracy. Recent years have seen growing

application of machine learning approaches, including deep learning-based multimodal ensemble methods (Guo et al., 2024),

artificial neural networks (ANNs) (Chen et al., 2020), and extremely randomized trees (ERT) (Shang et al., 2020). However,

these methods often entail high computational costs and function as "black-box" models, limiting interpretability of errors and

uncertainties.70

To address these limitations, this paper presents a novel approach that avoids both machine learning and static techniques.

The proposed method is computationally efficient, requires minimal historical data, runs on non-specialised systems, and dy-

namically adjusts to recent skill scores while maintaining transparency in optimally merging ET products. This approach is

detailed through a description of the datasets used and the data preparation process, including standardization and aggregation.

This is followed by performance comparisons using skill scores (Error, Bias, Root Mean Squared Error, and Correlation Coef-75

ficient) and adaptive bias preprocessing—comprising bias removal (seasonal correction) and adaptive combination (dynamic

weighting). We then present the results before and after bias correction and combination, and provide methodological and

product-level insights, highlighting the benefits and potential of the proposed approach.

2 Data

Data were extracted for the period 2019–2023, the earliest interval where all 10 ET products overlapped completely. Although80

2018 also offered full coverage, it was excluded to avoid bias from that year’s extreme European heatwave. Validation data

were calculated for the selected period to ensure temporal consistency.

2.1 Satellite-based ET Products

2.1.1 LSA_SAF

The LSA-SAF DMET product (LSA) (Ghilain et al., 2011, 2012) provides daily ET estimates at a 3 km spatial resolution85

using ECMWF’s H-TESSEL land surface model. It integrates SAF (Trigo et al., 2011) radiation, soil, and vegetation products
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from the MSG satellite, ECMWF meteorological forecasts, and the ECOCLIMAP (Champeaux et al., 2006) land cover data.

LSA-SAF DMET defines ET as the sum of evaporation from all surfaces (soil, plants, water bodies) and transpiration.

2.1.2 GLEAM

GLEAM Version 4.1a (GLEAM) (Miralles et al., 2025) provides daily ET estimates at a ∼9 km spatial resolution. It integrates90

meteorological inputs from weather datasets downscaled from ERA5, vegetation inputs from different satellites including

MODIS and Landsat, a soil moisture dataset that incorporates SAF soil moisture, and HiHydroSoil (Simons et al., 2020) land

cover data. The GLEAM E (actual evaporation) variable is defined as the sum of transpiration, interception loss, evaporation

from bare soil, open-water surfaces, snow sublimation and surface condensation.

2.1.3 MOD1695

The two MOD16 products (MYD16A2GF from AQUA (AQUA) and MOD16A2GF from TERRA (TERRA)) (Mu et al.,

2007) provide global ET estimates at a 500 m spatial resolution and an 8-day temporal resolution using an algorithm based

on the Penman-Monteith equation. They integrate daily meteorological data from MERRA’s GMAO reanalysis and satellite

vegetation data from the MODIS and VIIRS sensors. The ET estimates from both the AQUA and TERRA products were used.

They define ET as the sum of transpiration, interception losses and evaporation from soil.100

2.1.4 WaPOR

WaPOR Version 3 (WaPOR)(FAO, 2020) provides dekadal (10 days) global ET estimates at a 300 m resolution using a Penman-

Monteith based model. It incorporates meteorological inputs from GAMO’s GEOS-5 and ERA5, along with land and vegetation

data from VIIRS, Landsat, Sentinel, and MSG sensors and WorldCover land cover map. The AETI product provides an estimate

of actual evaporation, transpiration and interception.105

2.1.5 SSEBop

SSEBop Version 6 (SSEBop) (Senay et al., 2022) applies the principle of satellite psychrometry using the FANO algorithm

(Senay et al., 2023) to integrate VIIRS thermal imagery, temperature data downscaled from ERA5, ERA5 radiation, and

reference ET data calculated from JRA-55 data plus others using Penman-Monteith to provide dekadal ET estimates at a 500

m resolution. The ETa product includes transpiration, soil evaporation and interception losses.110

2.2 Reanalysis ET Products

2.2.1 ERA5_Land

ERA5-Land (ERA5) (Hersbach et al., 2020) provides hourly ET estimates at a ∼9 Km resolution using the ECMWF IFS

H-TESSEL land surface model. It utilizes atmospheric forcing from ERA5, MODIS vegetation data, and Global Land Cover

Characteristics (GLCC) (Earth Resources Observation And Science (EROS) Center, 2017) derived from AVHRR as inputs.115
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ERA5-Land provides a "total evaporation" product, which includes evaporation from the earth’s surface plus a simple repre-

sentation of transpiration.

2.2.2 MERRA_2

MERRA-2 (MERRA) (Gelaro et al., 2017) provides hourly estimates at a∼50 x 70 km resolution approximately using NASA’s

GEOS-5 model with the Catchment Land Surface Model (CLSM), It uses GLCC land cover data, with vegetation inputs120

from MODIS and Advanced Very High-Resolution Radiometer (AVHRR). The "EVLAND" variable from the M2T1NXLND

collection includes transpiration, evaporation from bare soil and intercepted water.

2.2.3 GLDAS

GLDAS (GLDAS) (Rodell et al., 2004) daily CLSM provides ET estimates at a ∼27 km resolution using the CLSM model

version 2.2 within the Land Information System (LIS) Version 7. It is forced with ECMWF IFS meteorological fields and125

incorporates UMD land cover classification scheme (Hansen et al., 2000) from AVHRR with MODIS vegetation data and

GRACE data assimilation. the variable "Evap_tavg" from the GLDAS CLSM025_D dataset is used. This variable encompasses

both evaporation from the land surface and transpiration from plants.

2.2.4 JRA_3Q

JRA-3Q (JRA) (Japan Meteorological Agency, 2023) is based on the TL479 version of JMA’s NWP system. It provides hourly130

ET estimates at a ∼40 km resolution using the Simple Biosphere model (SiB) land surface scheme. It incorporates forcing

fields from previous JMA JRA-55 reanalysis dataset and satellite data from various sensors including MODIS, AVHRR, and

Meteosat. latent heat net flux (lhtfl1have-sfc-fc-gauss) from the 0.375 degrees grid dataset was used which represents total ET

from land surface.

2.3 Validation (Field) data135

Actual ET estimates are not yet readily available in Ireland despite the expansion of a flux tower network (Richards et al.,

2023). Historically, a network of weighing lysimeters was used to estimate actual ET from grass but this network was dis-

continued/ceased in 2015 (Donegan, 2024). In the absence of actual ET estimates, meteorological data are often used in

combination with the Penman-Monteith formulation for reference ET (ETo) and crop coefficients to provide such estimates.

140

The Penman-Monteith equation (Allen et al., 1998) provides an estimate of ET for a specific reference crop (ETo) e.g. grass,

experiencing no stress. ETo is converted to a crop specific actual ET using a single (Kc) or dual (KcKs) crop coefficient. The

Kc value is a function of the crop type and the stage of growth and Ks introduce crop stress conditions.
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Figure 1. Spatial distribution and geographical location of field data points that were used for ET calculations and data extraction of ET

products.

In this study, meteorological data from 22 selected stations located across Ireland (Figure 1), installed according to standard145

conditions (well-watered short grass surface), were used to estimate reference grass ETo according to Allen et al. (1998).

Figure 2 shows an image of the weather station at Valentia Observatory installed above managed short grass, one of the 22

weather observing stations used in this study.

For methodology development under well-maintained synoptic station conditions, Ks = Kc = 1 (denoting no water stress150

and alignment with the reference grass standard) are justified, as the crop environment matches the idealized ETo conditions.

We therefore assume the grass reference ETo represents actual ET from the grass surface at these stations (ET = ETo).
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Figure 2. Valentia Observatory, one of Met Éireann’s 22 synoptic weather stations.

3 Methods

3.1 Data Preparation155

3.1.1 Validation Data

The variables required to calculate the ET validation dataset using the PM equation were obtained from daily and hourly files

downloaded from Met Éireann’s historical data (MetÉireann, 2025). Daily data included maximum temperature, minimum

temperature, wind speed, and global radiation, while relative humidity was provided at an hourly resolution. However, some

data gaps were present during the five-year study period.160

Missing data were identified for all variables: maximum and minimum temperature (4 days), wind speed (11 days), and

relative humidity (4 days). Additionally, global radiation was not measured at three stations (Casement, Cork Airport, and

Shannon Airport), and where measurements were available, 72 days of data were missing.

165

To address these gaps, different gap-filling approaches were applied. For missing maximum temperature, minimum temper-

ature, wind speed, and relative humidity values, daily climatological averages were used. In the case of global radiation, two

methods were employed: at the three non-measuring stations, radiation was estimated from sunshine hours following Allen

et al. (1998) recommendations; for the 72 missing days where sunshine data were also unavailable, radiation was calculated

using air temperature differences following the method described in Allen et al. (1998).170

The equation with specific parameters to estimate Penman-Monteith ET for short well-watered grass (Allen et al., 1998) was

used in this study using the gapfillled datasets of daily and hourly meteorological data for all stations and for the entire period.
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Table 1. Spatial and temporal resolution of products

Product Spatial Resolution (km) Temporal Resolution

MERRA ∼69.375 × ∼55.5 Hourly

JRA ∼41.625 × ∼138.75 Hourly

GLDAS ∼27.75 × ∼27.75 Daily

ERA5 9 × 9 Daily

GLEAM 9 × 9 Daily

LSA 3 × 3 Daily

SSEBop 1 × 1 10-days

AQUA 0.5 × 0.5 8-days

TERRA 0.5 × 0.5 8-days

WaPOR 0.3 × 0.3 10-days

3.1.2 Remote Data

Remote sensing-derived and reanalysis data are available in gridded formats with different spatial resolutions to the field175

data collected at point locations as shown in Table 1. Additionally, the data were provided in different units. To facilitate

data comparison and the development of an optimization methodology (Figure 3), all datasets were standardized to the same

geographical locations and units.

The geographical coordinates of each field site (Figure 1) were used to extract corresponding remote sensing and reanalysis

data from the nearest pixel in each product. For low-resolution products where the nearest pixel fell over water (shown as ’no180

data’ in the original files), we instead used the closest valid land pixel with available estimates.

All ET estimates were converted to 8-day cumulative values in millimeters (mm), consistent with the MODIS products

format widely adopted in ET studies. For hourly and daily estimates, values were summed. 10-day resolution composites were

uniformly distributed into daily averages, then reaggregated into 8-day summed totals. Depth estimates in meters (ERA5-Land)

were converted to millimeters. Flux estimates (GLDAS and JRA_3Q) were converted to depth equivalents (mm).185

All processing, statistical analysis, and model development were performed using Python scripts in a Jupyter Notebook

environment, with raw data extracted from remote sensing-based and reanalysis products, as well as calculated ETo validation

data.

Figure 3 illustrates the methodological workflow for generating an optimized ET product by integrating weather station

observations with remote sensing and reanalysis data. The process begins with ET calculations using the PM equation based on190

observations from 22 weather stations. In parallel, ET estimates are extracted from remote sensing (6 products) and reanalysis

datasets (4 products) at pixel locations corresponding to the station coordinates. All ET values are then aggregated into 8-day

estimates to standardize the temporal resolution. These aggregated values are compared using the PM estimates as the reference

or "truth." The comparison results inform an adaptive post-processing method, which consists of an adaptive bias removal step,
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Figure 3. Description of key process followed to prepare data for data comparison and inclusion in the methodology development and

analysis.

followed by an adaptive combination of the multiple ET sources. This integration process culminates in the production of an195

optimized ET product that leverages the strengths of all available data sources while minimizing individual biases.
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3.2 Skill Scores

Several statistical measures, including error, bias, root mean square error, and correlation coefficients, were calculated and used

as skill scores in the methodology.

200

The error (E) is defined as the difference between the remote estimate (R) and the PM estimate (O). Ej is the error at time

j, given by:

Ej = Rj −Oj (1)

The bias (ME) is the mean of the errors. Where N is the number of observations, the bias is given by:

ME =
1
N

N∑

j=1

Ej (2)205

The root mean square error (RMSE) is the square root of the mean of the squared errors. This is a useful skill sore, as it

avoids errors of opposite signs cancelling, and penalises larger errors more heavily. The RMSE is given by:

RMSE =

√√√√ 1
N

N∑

j=1

E2
j (3)

The correlation coefficient (CC) is a measure of the linear relationship between the remote and PM estimates. The CC is

given by:210

CC =

∑N
j=1(Rj − R̄)(Oj − Ō)

NσRσO
(4)

where R̄ and Ō are the mean values, and σR and σO are the standard deviations of the remote and PM estimates, respectively.

3.3 Adaptive Post-processing

The adaptive post-processing approach is considered in two parts.

3.3.1 Adaptive Bias Removal215

The first part aims to remove the seasonal bias from the ET estimates using an adaptive bias removal (AB) method. This

correction is applied by using a rolling mean of errors over different time windows (iw) each representing 8-day periods. The

goal was to identify the optimal iw that minimizes the mean error after correction. After testing window sizes ranging from iw

= 1 to 8 using the entire dataset, we found that iw = 4 yielded the lowest mean error. Figure 4 demonstrates that this window

size effectively reduced systematic biases while maintaining responsiveness to temporal variations, making it the best choice220

for bias correction. The AB correction is re-calculated at each time step using equation 5, allowing it to adapt to the seasonal

cycle and to varying biases across different years.
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Figure 4. Mean error plots for each window size using the entire dataset for adaptive bias removal process.

ABj = Rj −
1
4

j−1∑

i=j−4

Ei (5)

3.3.2 Adaptive Combination

The second part is the COM method, which combines the individual ET products by generating weights based on their recent225

errors, following the approach of Sweeney et al. (2013). The error values are squared to avoid cancellation of opposing errors

and to penalise larger errors more heavily. A sliding window of the most recent 8 data values (iw = 8) was used to compute

the mean of these errors. This window size was selected after testing a range of values, with iw = 8 achieving the best balance

between error reduction and responsiveness, as the RMSE decreased and stabilised around this point as shown in Figure 5.

Larger window sizes did not significantly improve RMSE and risked introducing lag in adapting to changing error patterns.230

The ET products are then combined, using weights which are inversely proportional to their mean errors. There are 10 ET

products to combine, and so the weights are calculated using equations (6).

erri = (1/8)
∑8

j=1 err2
(i−j)

wi = 1/erri∑10
i=1(1/erri)

COM =
∑10

i=1 wiABi (6)235

3.4 Relative Performance of ET Products

To capture the spatial and temporal variability in product performance that may be masked by aggregated statistics, we imple-

mented a frequency-based method to assess the relative performance of each ET product. For every station and each day in the
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Figure 5. RMSE plots for each window size for adaptive combination process.

study period, the product with the lowest absolute error relative to the PM reference was identified. This daily “best performer”

was recorded per station.240

For each product, the number of times it ranked as the most accurate was counted at each station and then divided by the total

number of time steps for that station. This yielded a station-specific percentage indicating how frequently each product was the

most accurate. These percentages were then averaged across all 22 stations to produce an overall value for each product. This

method provides a complementary perspective on product performance by highlighting which product performed best most

often across different conditions, rather than relying solely on overall statistical metrics.245

4 Results

4.1 Seasonal Variation in ET

Mean ET values for the five years considered (2019–2023), based on data from all 22 sites distributed across Ireland, are shown

in Figure 6(a) . ET has a strong seasonal cycle, as expected, with higher ET values during the summer, when solar radiation,

temperature and vegetation levels are at their highest. Figure 6(b) shows the errors of the remote estimates. The seasonal cycle250

is clearly visible in the ET values, but also apparent in the errors, with the largest errors in the summer months and the smallest

errors in the winter months. The ET estimates are low, characteristic of a cool or temperate maritime climate; relative errors

appear to be high.

4.2 Original Skill Scores

The original skill scores for the ET estimates, averaged across all stations and years, are shown in the Taylor diagram in255

Figure 7. The diagram concisely compares the 10 remote-based ET products (LSA, GLEAM, ERA5, AQUA, TERRA, GLDAS,
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(a) ET values. (b) ET errors.

Figure 6. (a) Mean ET estimates from PM (blue) and from Remote sensing Estimates (green) plotted against Day of Year (DOY), for the

period 1 January 2019–31 December 2023. (b) ET error estimates plotted against DOY. Shaded areas represent the interquartile ranges. Bold

lines represent the mean of the estimates for all stations and all years.

SSEBop, JRA, MERRA, and WaPOR) against the reference dataset (PM) using three key metrics: standard deviation (radial

distance from the origin), correlation coefficient (angular position), and centered RMSE (distance from the reference point).

These results are based on data from all 22 sites distributed across Ireland over the five-year period from 2019 to 2023.

In the diagram, the dashed arc represents the standard deviation of the reference dataset (PM), providing a visual benchmark260

for comparing the variability of each product to that of the observations. Products closer to the reference point (PM) along the x-

axis exhibit better agreement in magnitude and temporal variability; higher correlations indicate stronger pattern matching, and

proximity to the reference point reflects lower errors. This visualization efficiently highlights relative performance, enabling

quick identification of the most accurate ET estimates across the entire dataset.

Figure 7 clearly demonstrates that LSA shows the closest agreement with the reference PM model, exhibiting the highest265

correlation coefficient, lowest centered RMSE, and a standard deviation nearly matching the reference. GLEAM also performs

well, with a high correlation coefficient and moderate standard deviation, indicating it reproduces similar temporal patterns

but with slightly different magnitudes of ET estimates. Among the other products, AQUA, TERRA, and GLDAS maintain

good correlations and relatively low variability, suggesting generally consistent patterns and magnitudes compared to PM.

WaPOR, SSEBop, and ERA5 display intermediate performance, with reasonable correlations but more pronounced deviations270

in standard deviation, reflecting systematic biases in their ET estimates. In contrast, MERRA and JRA show the poorest

performance, characterized by weak correlations and either substantial overestimation or underestimation (evident in their

higher standard deviations) relative to PM. Overall, LSA and GLEAM stand out as the most reliable ET products, while

MERRA and JRA exhibit the largest discrepancies when validated against the PM reference for sites in Ireland.
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Figure 7. Taylor diagram showing the skill scores for the ET estimates. Circles represent reanalysis products (ERA5, GLDAS, JRA,

MERRA), while triangles denote satellite-derived estimates (LSA, GLEAM, AQUA, TERRA, SSEBop, WaPOR).

4.3 Adaptive Skill Scores275

The adaptive bias removal method (AB) is applied to each product. Figure 8 shows the mean error for each product at each

of the 22 station locations, before and after adaptive bias removal.The green circles show the original mean error at each

station, while the black crosses—often overlapping due to values clustering near zero error—represent the mean error after

adaptive bias removal. This demonstrates that AB is successful in removing the systematic bias for each product at each

station. However, this does not mean that all errors are removed, as underlying positive and negative errors may cancel each280

other.

The Taylor diagram in Figure 9 shows that the skill scores for all products have improved, compared with their original

scores (Figure 7). Products have moved close to the dashed line, which represents the standard deviation of the PM values,

showing that correlation has improved for all products. Some products have also shown a reduction in their centred RMSE

values, seen by the product markers moving closer to the PM star on the x-axis.285

4.4 Relative Performance of ET Products

Figures 7 and 9 both show that the LSA product has the best overall performance before and after AB. However, this aggregate

view can obscure the day-to-day and location-specific variability in accuracy.

To explore this variability, we applied the frequency-based method to track how often each product was the most accurate

on a given day at each station. The summary results are presented in Figure 10, where values reflect the average percentage of290

time a product ranked as the best performer across all stations. For instance, LSA’s 19.5% indicates it was the most accurate

product in about 19.5% of all station-day combinations.
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Figure 8. Mean Error for each product at each station. Green circles are for the original data. Black crosses are after adaptive bias removal.

Figure 9. Taylor diagram showing skill scores for original products (transparent) and products after AB (solid).

The results show that no product consistently outperformed all others. Rather, the top-performing product varied across

time and space. Before AB, some products like GLEAM and LSA dominated at particular stations. After AB correction,

these localized advantages were reduced, and LSA emerged as a consistently strong performer across geographically diverse295

locations.
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Figure 10. Relative performance of ET products after adaptive bias correction, expressed as percentage of times each product achieved

lowest error across the 22 stations for the study period.

Figure 11. Taylor diagram showing skill scores at each station location for original LSA (transparent blue triangles), AB LSA (solid blue

triangles) and COM (red circles) ET products.

4.5 Combined Product Scores

To leverage this complementary behavior, the COM method was developed, generating a new ET product that synthesizes all

inputs from all products, weighted by their recent skill performance. This approach systematically combines the strengths of

each individual product to achieve superior estimation accuracy that no single product achieves alone.300

Figure 11 shows the Taylor diagram for the best-performing single product (LSA) and the COM product at each station

location. Transparent triangles show the scores for the original LSA data, filled triangles show the scores for LSA after AB-

correction, and circles show the scores for the COM product. The COM product is an improvement on the AB LSA product.
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Figure 12. Time series plot comparing ET errors from LSA (black) and COM (green) ET products. Bold lines represent the mean of the

errors, and shaded areas represent the interquartile ranges.

The overall RMSE skill scores, averaged across all stations, are reduced from 2.94 for the original LSA product to 1.47 for the

AB LSA product, and to 1.40 for the COM product.305

Figure 12 compares the seasonal ET error patterns of the LSA and COM products relative to PM estimates from all stations.

The error values reveal key differences in performance. The COM product generally maintains lower and more stable errors

throughout the period, particularly during peak ET seasons, suggesting better consistency with PM estimates. In contrast, the

LSA product exhibits greater error variability, with more pronounced spikes that correspond to periods of high vegetation

activity or rapid environmental changes. This comparison highlights COM’s superior error mitigation, likely attributable to its310

multi-source data fusion approach compared to LSA’s single-algorithm methodology.

Figure 13 presents a seasonal comparison of ET product performance, distinguishing between Original ET products, AB

products, and the COM product. The upper panel shows the average percentage of time the top-performing product from the

Original and AB categories was the best per season, along with the average percentage of time the COM product was the best

when compared to all products from both categories.315

The COM product consistently outperforms the best-performing Original and AB products across all seasons, with particu-

larly strong performance in summer and autumn, where it is the top product nearly 30% of the time. The bottom panel shows

the MAE for each category. The COM product again performs best, achieving the lowest MAE in every season, followed by

the AB products and then the Original products. These results demonstrate the effectiveness of the AB correction and highlight

the COM product’s superiority in both consistency and accuracy under varying seasonal conditions.320
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Figure 13. Comparison of seasonal performance metrics for Original, AB, and COM products. The upper panel shows the average percentage

of time each product ranks as the best (higher is better) across four seasons (Winter, Spring, Summer, Autumn). Labels above bars indicate

the top-performing product for each season. The lower panel presents the MAE in millimeters over 8-day periods for the same products

and seasons (lower is better). Bars are colored consistently across panels: Original (gray, lighter), AB (gray, darker), and COM (purple with

hatch). Seasons are arranged horizontally with reduced spacing for compactness.

5 Discussion

5.1 Biases in Remote ET Products

Figure 14 shows the relationship between the spatial and temporal resolution and the RMSE for the different ET products.

The analysis reveals no clear relationship between spatial/temporal resolution and RMSE in remote ET products. While finer

spatial resolution theoretically improves local accuracy, products like WaPOR, SSEBop, AQUA and TEERA (sub-Km to Km325

resolution) show higher errors than coarser alternatives like LSA and GLEAM (3 and 9 km respectively). Notably, coarser res-

olution products inherently represent larger areas that typically contain multiple land use types, while finer resolution products

capture more homogeneous land cover conditions. This spatial averaging in coarse resolution products effectively smooths out

the variability across different land surface conditions, which could explain why they show smaller RMSE values than finer

resolution products that preserve more natural spatial heterogeneity.330

Similarly, temporal resolution alone doesn’t guarantee accuracy - hourly products (JRA and MERRA) underperform some

daily datasets (LSA and GLEAM), though the worst errors occur in the 10 day composites (WaPOR and SSEBop). However,

the temporal resolution effect may be less significant than spatial resolution since the 10-day composite values are calculated

from daily or sub-daily observations. The primary differences may therefore stem more from spatial representation character-335
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Figure 14. The relationship between the temporal resolution and spatial resolution and the RMSE for the different ET products.

istics than from nominal temporal sampling frequency.

All the ET products examined are based on the same core approach of solving the surface energy balance to estimate latent

heat flux and, consequently, ET. Although higher spatial resolution is often assumed to improve accuracy, our analysis showed

that this is not necessarily the case. Instead, the main sources of variation in accuracy across products stem from differences340

in how each model represents vegetation and soil processes, the specific parameterizations used, and the quality of the input

data (Cao et al., 2021; Tran et al., 2023). These factors exert a stronger influence on product accuracy than spatial resolution

alone. Users should therefore prioritize products that have undergone bias correction and validation, and that are based on

high-quality input data, as spatial resolution alone is an unreliable indicator of performance.

345

Among the ET products analyzed, LSA SAF and GLEAM outperform others overall, primarily due to their incorporation

of microwave-based soil moisture observations, which provide a critical advantage over products that rely solely on optical

and thermal data. Unlike optical sensors, microwave sensors can penetrate clouds, enabling both LSA SAF and GLEAM to

maintain data continuity and accuracy under overcast or rainy conditions. By leveraging soil moisture from sensors such as

ASCAT (in both LSA SAF and GLEAM), SMOS, and AMSR2 (in GLEAM), these two products are better equipped to reflect350
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surface water availability and vegetation stress in real time.

In contrast, MODIS Aqua/Terra, WaPOR, and SSEBop rely almost entirely on cloud-sensitive optical and thermal inputs.

These include NDVI, LST, albedo, and vegetation indices—parameters that are essential for modeling ET under clear skies

but are often unavailable or unreliable under cloud cover. As a result, their ET estimates are more prone to inconsistencies355

and missing data, particularly in cloudy regions like Ireland. Consequently, the integration of cloud-penetrating microwave soil

moisture with frequent optical observations gives LSA SAF—and to a slightly lesser extent GLEAM—a significant advantage

in generating consistent and reliable ET estimates across diverse climatic conditions.

Additionally, within this high-performing group, LSA SAF appears to have an edge over GLEAM, likely due to the temporal360

resolution of their optical data sources. LSA SAF uses inputs from the SEVIRI sensor aboard Meteosat, which delivers 15-

minute updates of land surface temperature (LST), albedo, and vegetation indices. This high-frequency data allows LSA SAF

to detect short-term fluctuations in surface energy balance and vegetation dynamics, and to adjust ET estimates accordingly.

In contrast, GLEAM incorporates optical data from MODIS MOD15A2H, which provides LAI and FAPAR composites at an

8-day temporal resolution. While GLEAM’s strength lies in its detailed water balance modeling and robust use of microwave365

inputs, the infrequent updates from MODIS may reduce its sensitivity to rapidly changing conditions.

Similarly, the reanalysis-based ET products—ERA5-Land, GLDAS, JRA-3Q, and MERRA-2—also exhibited lower perfor-

mance in comparison to LSA SAF and GLEAM. While these products benefit from data assimilation systems and consistent

global coverage, their ET estimates are derived primarily from land surface models driven by atmospheric variables such as370

temperature, humidity, radiation, and wind speed, rather than real-time satellite-based surface observations. This often leads to

smoothed or generalized representations of surface conditions. Moreover, reanalysis systems may incorporate satellite-derived

vegetation indices or radiation inputs that are based on optical imagery acquired only under clear-sky conditions, which intro-

duces a bias toward fair-weather estimates and reduces sensitivity to cloudy or variable atmospheric conditions. As a result,

their ET outputs tend to be less responsive to short-term fluctuations in land surface conditions, leading to biases particularly in375

cloudy or heterogeneous regions like Ireland, similar to the limitations seen in optical-only products like MODIS Aqua/Terra,

WaPOR, and SSEBop.

As shown in Figure 15(a) , remote products exhibit systematically higher errors (RMSE mean: 5.23 and RMSE median:

4.61) in coastal stations compared to inland stations (RMSE mean: 3.80 and RMSE median: 3.16). This performance gap380

persists across nearly all products, regardless of their spatial resolution. These statistics were calculated across all data from

the 22 stations (12 coastal and 10 inland) over the five-year period from 2019 to 2023. Two primary factors contribute to this

discrepancy:

1. Mixed pixel effects: A key driver of model error is the presence of mixed land cover types within individual pixels, which

complicates signal interpretation and degrades accuracy. In coastal stations, this often involves water bodies that introduce385
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spectral contamination and boundary effects. Visual analyses showed that high-error coastal stations frequently contained

a substantial proportion of water pixels. However, mixed signals are not limited to coastal areas or to water alone. Urban

land cover also contributes to retrieval errors due to its complex thermal and surface properties. For example, Casement—an

inland station with the highest RMSE among non-coastal sites—was found to have a high percentage of urban pixels across

several products. This suggests that urban-induced mixed pixel effects can significantly affect model performance regardless390

of proximity to the coast. These heterogeneous land cover conditions challenge both high- and low-resolution products, as they

obscure the surface characteristics needed for accurate ET estimation.

2. Challenging coastal environments: Even in the absence of mixed land cover, coastal stations pose inherent challenges

for evapotranspiration modeling. Conditions such as strong and variable winds, rapid humidity shifts, and maritime influences

create dynamic microclimates that standard remote sensing algorithms and physically based models struggle to capture. These395

atmospheric complexities introduce further uncertainty independent of land type.

The persistent coastal-inland gap across nearly all products underscores that current algorithms systematically underper-

form in environments where land cover heterogeneity—such as water or urban infrastructure—interacts with natural surfaces

(Faridatul et al., 2020). This represents a critical limitation for accurate ET estimation in both coastal and urban-influenced

inland settings. Notably, the COM product successfully mitigated this gap, as demonstrated in Figure 15(b) . The mean RMSE400

difference between coastal and inland stations (∆(Coastal-Inland)) was reduced from 1.4 mm/8days with original data to just

0.4 mm/8days from the COM product.

5.2 RS and reanalysis data for cloudy environments

Several remote sensing–based ET algorithms rely on multiple inputs like visible to near-infrared (VNIR) satellite derived

products, including surface albedo, LST, emissivity, land cover; key biophysical parameters (leaf area index and fractional405

vegetation cover) (Zhang et al., 2016; Li et al., 2021) and methods of scaling instantaneous to daily estimates (Li et al., 2009).

Cloud cover often limits optical sensors by obscuring land surface properties, resulting in missing LST data and gaps in ET

estimates that require infilling with several approaches to do this (Tran et al., 2023).

Some studies have integrated microwave observations — e.g soil moisture and LST—into satellite ET models which also

show promise in reducing cloud-induced uncertainties and improving ET accuracy under all-sky conditions (Wang et al.,410

2022b).

Satellite passive microwave measurements can penetrate cloud cover and are sensitive to variations in vegetation water

content over vegetated surfaces (Wang et al., 2022b).

In addition to surface variables, core meteorological drivers of ET — including net radiation, air temperature, and relative

humidity — are modulated by cloud cover. This affects both their magnitude and spatial distribution, leading to increased415

uncertainty in satellite and model-derived ET estimates under variable cloud conditions. Several studies have investigated this

(Wang et al., 2022b).

Our study area (Ireland) is characterized by frequent and persistent cloud cover. Ireland experiences complete cloud cover

for more than 50% of the time and has an average, hourly cloud cover range of between five and six oktas (Met Éireann, 2025).
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(a) Remote products RMSE comparison: coastal vs. inland sta-

tions.

(b) RMSE comparison between original remote products and

COM product: coastal vs. inland stations.

Figure 15. (a) Box plots of RMSE for coastal stations (blue) versus inland stations (orange). (b) RMSE comparison between: original coastal

(transparent blue) and inland (transparent orange) stations, and COM coastal (hatched blue) and COM inland (hatched orange) stations.

It is important to take note of the impact of cloud cover on the accuracy of satellite derived ET estimates and derived input420

climatic variables. Our study used ET product datasets as provided, without examining data infilling methods, or assessing the

impact of cloud cover on data accuracy. To our knowledge no assessment has been done for Ireland.

Although the impact of cloud cover on the availability of ET data derived from VNIR data is generally widely acknowledged,

few studies have documented this. The recent study by Wang et al. (2023) aims to do this for global ET data products. They also

assessed the impact of cloud cover on key drivers of ET, like radiation, temperature, and humidity highlighting the importance425

of accounting for all-sky conditions in ET modelling and evaluation.

Wang et al. (2023) evaluated seven ET data sets from satellite microwave and optical models, atmospheric reanalysis and

land surface models (EDVI, GLEAM, GLASS, MOD16, ERA5, NOAH, CLSM) against eddy covariance flux tower obser-

vation from 20 stations located over East Asia. They showed that under heavy cloud conditions, the data products evaluated

overestimated ET and produced large bias errors in ET changes (73.82% for EDVI to 159.75% for CLSM). This was substan-430

tially higher than the bias errors in the ET changes for small (-40.16 to 8.6%) and moderate cloud changes (-5.39 to 42.91%).

Of the data products evaluated by Wang et al. (2023), the satellite microwave-based ET (EDVI) maintained overall lower bias

errors and a stable accuracy under all-sky conditions (clear sky to heavily cloudy sky). They highlighted the impact of bias

errors in ET under heavy cloud conditions for dense vegetation. The study by Wang et al. (2023) further evaluated the impact

of the accuracy of climatic variables, specifically radiation, temperature and humidity, on ET accuracy for all-sky conditions435
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and how it impacts different land uses. They highlight that overestimations in incoming shortwave radiation under cloudy

conditions, negatively impact ET accuracy.

In addition, Wang et al. (2023) noted that errors in ET may not only be due to the impact of data inputs and clouds, but also

by model physical representations.

5.3 Static and ML vs Adaptive Methodologies440

The results presented in this study highlight the limitations of traditional static fusion methods and underscore the advantages

of our adaptive approach in producing more accurate and responsive ET estimates. Static methods such as BMA, STS, TC, and

other statistical fusion techniques rely on fixed weighting schemes derived from historical model performance. While these

methods are well-established and interpretable, they assume that the relative performance of ET products remains stable over

time and space. This assumption does not hold in practice, especially in regions like Ireland, where satellite-based ET esti-445

mates are frequently challenged by variable cloud cover, sensor limitations, or seasonal vegetation changes. As a result, static

methods can propagate outdated or suboptimal weights, reducing the accuracy of the merged ET product.

In contrast, our adaptive method introduces a dynamic framework that recalibrates product weights based on their most

recent performance. This real-time responsiveness ensures that errors from individual datasets are not only identified quickly450

but also immediately corrected for in the fusion process. The adaptive nature of the method enhances its robustness in the face

of shifting observational quality and environmental conditions—factors that are particularly relevant in humid and frequently

overcast regions.

The limitations of static methods are echoed in recent work by Zhang and Liang (2020), who fused multiple global forest455

aboveground biomass (AGB) datasets. Their study demonstrated that conventional weighted averaging methods (e.g., skill-

based or independence-weighted averages) failed to account for spatially and temporally varying errors in individual AGB

products, resulting in suboptimal fusion (R2 = 0.42, RMSE = 88.51 Mg/ha). Instead, they proposed an error removal and

dynamic calibration approach, where pixel-level errors in each dataset were estimated using random forest models trained on

reference data (e.g., canopy height, climate variables). By dynamically correcting biases before averaging, their fused AGB460

map achieved significantly higher accuracy (R2 = 0.61, RMSE = 53.68 Mg/ha). This aligns with our findings: static weights

cannot adapt to localized or transient errors, whereas dynamic recalibration mitigates these issues.

However, while Zhang and Liang (2020)’s use of machine learning (random forests) for error correction improved accuracy,

it introduced a layer of complexity: the pixel-level error estimates, though data-driven, are inherently opaque and computa-465

tionally intensive to generate at scale. This trade-off mirrors broader challenges in adaptive ML frameworks. For instance,

Mouatadid et al. (2023) achieved notable success in bias correction for subseasonal forecasts using their Adaptive Bias Cor-

rection (ABC) ensemble—a trio of adaptive ML models—yet their method obscures how individual corrections are derived

(Mouatadid et al., 2023). In contrast, our method avoids these pitfalls by maintaining full transparency in how weights are
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derived and adjusted. It strikes a critical balance between flexibility and explainability, allowing researchers and policymakers470

to understand and trust the merged product’s behavior over time.

These advantages make the proposed adaptive framework a more suitable and forward-looking solution for ET data fusion

in dynamic and data-scarce environments.

475

6 Conclusions

This study evaluated ten global ET products against PM estimates at 22 Irish stations from 2019 to 2023. All products exhibited

systematic and spatially variable errors. The AB correction, which dynamically adjusts each product based on recent errors,

reduced the mean RMSE of the best-performing product (LSA-SAF) from 2.94 to 1.47 mm per 8 days. The subsequent COM

method, which assigns adaptive weights to each bias-corrected product and merges them into a single combined ET estimate,480

achieved the lowest overall RMSE (1.40 mm per 8 days). COM consistently outperformed all individual datasets, achieving

the lowest MAE in every season and up to 25–30% higher accuracy during summer and autumn—periods of peak ET and

greatest product divergence. The framework also narrowed the coastal–inland RMSE gap from 1.4 to 0.4 mm per 8 days,

improving consistency under cloudy Irish conditions. Overall, the AB–COM framework provides a transparent, adaptive, and

computationally efficient approach to bias correction and data fusion, enhancing ET estimation for operational hydrology,485

agriculture, and climate monitoring in regions with limited ground data.

7 Future Work

Several international studies (Meng et al., 2024; Salazar-Martínez et al., 2022; Zhu et al., 2022; Guo et al., 2022; Xu et al.,

2019) have evaluated the performance of remote sensing-based ET estimates by comparing them with in-situ measurements

from eddy covariance flux towers, which are widely regarded as the most direct and reliable method for quantifying actual ET490

at the ecosystem scale. These studies have provided valuable benchmarks for assessing the accuracy and spatial representa-

tiveness of satellite-derived ET products across diverse climatic and land cover conditions. However, such flux tower datasets

have not been readily available for Ireland—particularly for the time period considered in this study—posing a key limitation

in validating ET estimates in the Irish context. Looking ahead, the emerging data from the National Agricultural Soil Carbon

Observatory (NASCO)—a network of eddy covariance towers established since 2020 across representative Irish agricultural495

landscapes (Richards et al., 2023)—presents a significant opportunity. Once sufficient temporal coverage is achieved, these

high-frequency ground-based ET measurements can serve as an independent benchmark to validate and improve ET estima-

tion approaches.
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The next phase of this research will build on the current work by extending the COM method from site-based analysis to a500

gridded national-scale application. This will involve generating spatially continuous ET maps across Ireland by applying the

COM framework to each pixel, using inputs from remote sensing and reanalysis products. The NASCO flux tower data will be

used to correct and validate the spatial performance of the merged product, particularly in agricultural areas. This spatial exten-

sion will test the scalability of the COM method and assess its utility in capturing landscape-level ET patterns under Ireland’s

complex land cover and meteorological conditions. Together, this follow-up work will enhance the operational applicability of505

the COM framework and contribute to a more robust, high-resolution ET monitoring system for Ireland—supporting national

efforts in sustainable water resource management, climate adaptation, and agri-environmental policy development.

Code availability. All global ET products used in this study are publicly available and cited in the manuscript. The derived bias-corrected

ET dataset, adaptive bias removal (AB) and merging code (COM), and all scripts for reproducibility are openly accessible on GitHub at:

[https://github.com/HaneenMuhammad/ET4I_COM].510

Weather station data used for validation were obtained from Met Éireann (Ireland’s meteorological service) historical data and are avail-

able freely at [https://www.met.ie/climate/available-data/historical-data]. We encourage researchers to use, adapt, and build upon this work,

particularly for regions with similar challenges of sparse ground observations and persistent cloud cover. For any questions, please contact

the corresponding author.
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