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Abstract.

Peatlands are critical carbon (C) reservoirs, storing over a fifth of the global soil organic C stock. However, some peatlands

are drained and cultivated for agricultural use, which makes them a significant source of greenhouse gas (GHG) emissions.

Managing water table depth (WTD) is considered a key operation for mitigating GHG emissions in cultivated peatlands.

Modelling the impacts of water management would be a cost-efficient way of studying its large-scale effects, both in the present5

and in the future. Here, we used the process-based model LandscapeDNDC (LDNDC) to assess the relationships between

WTD, peat layer thickness and the GHG exchange. We simulated a boreal agricultural peatland (NorPeat, Finland), which was

cultivated with silage grass and barley during the study years 2019–2022. The site was monitored with an eddy covariance (EC)

tower, and divided into six drainage blocks with distinct peat profiles, each equipped with sensors for continuous water table

measurements. The model performance was evaluated on a daily and seasonal level using EC measurements of carbon dioxide10

(CO2), nitrous oxide (N2O) and water fluxes for the study years, alongside with satellite retrievals of the leaf area index and

three-year data from block-specific dark chamber flux measurements of CO2 and N2O. The LDNDC model was found to be

suitable for drained peatland simulations, although the performance was the highest when verified against measurements from

shallow peat soils. Although the simulated N2O annual balances were in the same range as the measurements, their accuracy

was not as high as it was for CO2. To study the impact of WTD on GHG fluxes, we had three different scenarios in addition to15

the baseline runs with measured conditions; these scenarios had an average WTD of 50 cm, 30 cm and 15 cm below the soil

surface. The study results showed a clear relationship between CO2 emissions and WTD (r = 0.84 between exposed organic

matter and net ecosystem carbon balance). GHG mitigation was achieved in all scenarios with increased water table; even in

the most modest scenario, the annual reduction from the baseline was 0.47 kg CO2e m−2 in deep peat blocks and 0.24 kg

CO2e m−2 in shallow peat blocks. CO2 emissions were found to be more strongly affected than N2O emissions. In the highest20

water table scenario, which resembled conditions close to paludiculture, the net ecosystem exchange of CO2 became close to

neutral. The implications of raising the WTD were found to be insensitive to model parameters that control evapotranspiration
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or organic matter decomposition. These findings highlight that even moderate water management practices are valuable in

order to mitigate GHG emissions in cultivated peatlands.

1 Introduction25

Although peatlands cover only 3% of the global land surface, they have a high carbon (C) density and are therefore considered

critical C reservoirs, storing 21% of the global soil organic C stock (Leifeld and Menichetti, 2018; Mander et al., 2024).

In Europe, the peatlands are mainly found in the north, with Finland accounting for almost a third of peatland resources

(Montanarella et al., 2006).

Peatlands are cultivated for their high organic matter content and ability to retain soil moisture even in drought periods.30

While many drained peatlands are favorable to agricultural use, cultivated peatlands are known to be a significant source of

greenhouse gas (GHG) emissions (Tiemeyer et al., 2016). Pristine peatlands are naturally waterlogged, so when the peatland

is drained for agriculture, it is no longer a notable source of methane (CH4) or a sink of carbon dioxide (CO2). Instead, as

more organic matter (OM) is exposed to oxygen, CO2 emissions increase through the microbial decomposition of peat, also

known as heterotrophic respiration (Rh), and oxidation of CH4 (Evans et al., 2021). In case of nutrient-rich peat, nitrous oxide35

(N2O) emissions can also increase after drainage through nitrification and denitrification processes (Martikainen et al., 1993).

However, CO2 remains the largest contributor to the climatic impact of GHGs in drained peatlands (Dinsmore et al., 2009;

Freeman et al., 2022; Gerin et al., 2023).

Raising the water table depth (WTD) has been proposed as an effective strategy for mitigating GHG emissions from drained

peatlands (Tiemeyer et al., 2016). Lång et al. (2024) in their study in Finland estimated that increasing the WTD by 0.1 m40

reduced the soil respiration by approximately 0.1 kg CO2-C m−2 y−1 over an agricultural peatland. Similarly, Evans et al.

(2021) found a strong correlation between effective WTD (i.e. the average depth of the aerated peat layer) and net ecosystem

productivity (NEP), which was calculated as the sum of the net ecosystem exchange of CO2 (NEE) and the C removed by

harvesting. Even though a clear relationship has been demonstrated between WTD and CO2 emissions, the potential to reduce

N2O emissions by raising the WTD has been more difficult to assess (Wilson et al., 2016a; Couwenberg et al., 2011). N2O45

emissions are driven by many different abiotic and biotic processes, and these dynamics are shown to be influenced by diverse

agricultural practices and meteorological events such as tilling, fertilization, and freeze-thaw cycles (Teepe et al., 2004; Mal-

janen et al., 2010; Wagner-Riddle et al., 2017; Wang et al., 2021; Kandel et al., 2020; Leppelt et al., 2014). In addition, the

nature of N2O emissions is intermittent, i.e. short periods of high releases can contribute substantially to annual N2O emissions

(Flessa et al., 1998; Berglund and Berglund, 2011), which adds complexity in estimating and predicting N2O emissions.50

Although field observations of GHG fluxes have increased in recent decades, the frequency of chamber measurements (often

conducted weekly, bi-weekly if not monthly) may lead to missed seasonal dynamics and introduce high uncertainties in annual

estimates (He and Roulet, 2023; Barton et al., 2015). Continuous measurements using the eddy covariance (EC) technique can

address this frequency issue, but are more challenging to implement due to their complexity and high equipment costs. On the

other hand, modelling the soil processes and ecosystem responds to environmental changes is also challenging, particularly55
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when employing empirical approaches that rely on observations and have a limited capacity to extrapolate beyond the observed

range of conditions (Duarte et al., 2003).

Cost-efficient scaling up in space and time, as well as studying the effects of alternative management actions, requires models

that take into account site-specific conditions, such as peat properties, management and climate. For this purpose, we can use

process-based models, which are designed to replicate the key biochemical processes occurring in the ecosystem (Cuddington60

et al., 2013). These models provide a mechanistic framework for understanding how various biological, physical and chemical

processes (e.g., photosynthesis, decomposition, and nutrient uptake) interact and contribute to biogeochemical dynamics which

drive the exchange of GHGs. Process-based models specifically adapted for organic soils (e.g. Huang et al., 2021a; Premrov

et al., 2021) have been successful at simulating GHG fluxes over agricultural peatlands. However, many general land ecosystem

models remain untested for simulating agricultural peatlands, even if they include the necessary process descriptions. One such65

ecosystem model is LandscapeDNDC (the Landscape Denitrification-Decomposition model, later LDNDC), which has been

shown to accurately simulate the GHG exchange (Haas et al., 2013; Liebermann et al., 2019; Sifounakis et al., 2024) over

mineral soils. The model provides a suitable basis for peat soil simulations, but its applicability has not yet been studied in

northern agricultural peatlands.

The aim of this study was to assess the relationships between water table depth, peat layer thickness and GHG exchange.70

In addition, we wanted to determine how these relationships affect the potential of water table management to mitigate GHG

emissions in northern agricultural peatlands. To address this, we had three specific research questions:

1. Is the LDNDC able to simulate daily CO2 and N2O exchange in northern agricultural peatland?

2. How does a raised WTD impact the carbon balance and N2O emissions, and does the mitigation potential depend on

peat depth?75

3. How sensitive is the simulated WTD effect on CO2 emissions to changes in parameters that determine the organic matter

decomposition and soil moisture dynamics?

To tackle these questions, we simulated an intensively measured and managed peatland site that has been monitored for GHG

fluxes and hydrological and chemical soil properties since 2019. We calibrated the model to reproduce the seasonal and in-

terannual patterns in the observed GHG exchange. The study site was divided into blocks with different peat depths, which80

furthermore enabled us to test the simulated relationships between peat depth and GHGs. Finally, we simulated counterfactual

water table depth scenarios to evaluate the potential of water management to mitigate GHG emissions on the study site.

2 Materials and methods

2.1 Site

The study site is part of the Ruukki research station located in the North Ostrobothnia (Pohjois-Pohjanmaa) region of Finland85

(N64°41.039’ E25°6.379’) and managed by the Natural Resources Institute Finland (Luke). The NorPeat facility is a ca. 27-
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ha study field that is a former minerotrophic peatland drained in 1910s and cultivated since ca. 1920. The field has been

continuously drained since the original drainage and drainage systems have been renewed multiple times from open ditches

to subsurface drainage with wooden pipes, tile drains and modern plastic pipes. The most recent drainage works were made

in 2014, when the drainage systems for each block were updated with adjustable weir to control drainage depth. Additional90

information on current drainage and geology of the site can be found in Yli-Halla et al. (2022).

The field is divided into eight drainage blocks, separated by a small sandy road in the center (Fig. 1). The focus is on blocks

1–6 as the detailed soil analysis was conducted only for these blocks. Blocks 1, 2 and 4 have a thicker peat layer ranging from

32 to 76 cm (on average 56 cm) while blocks 3, 5 and 6 have a thinner peat layer ranging from 16 to 56 cm (on average 34

cm). Blocks 5up and 6up have also a thinner peat layer similar to blocks 3, 5 and 6. The detailed soil properties of blocks 1–695

can be found in Table 1.

Figure 1. Study site with the different blocks highlighted by peat depth. Chamber measurements were done on blocks 1–6. EC measurements

presented in this study include blocks 5, 6, 5up and 6up.

The site follows a traditional grass-intensive crop rotation in which grass is cultivated for three to four years, followed by

one or two years of cereal crops. The sown seed mixture contained timothy (Phleum pratense) and meadow fescue (Festuca

pratensis). Until fall 2021, blocks 1–4 and 5–6 were at different stages of the crop rotation. Blocks 5–6 grew perennial grasses

4
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Table 1. Soil properties for each field block. C:N ratio, bulk density (BD, kg dw/dm3), carbon (C, %), nitrogen (N, g/kg) content from three

sampling depths (Depth, cm) and mean peat thickness with standard deviation (Peat, cm). Original data from Yli-Halla et al. (2022) were

recalculated by combining horizons. Samples were taken in 2020 from one replicate per block. WTD column shows average annual water

table depth with standard deviation during 4 monitoring years used in the simulations.

Block Depth C:N BD C N Peat WTD

0-10 19 0.475 23.7 12.6

1 10-20 18 0.475 24.2 13.1 59±9.1 77±6.3

20-30 20 0.211 51.6 25.9

0-10 16 0.49 30.7 19.5

2 10-20 16 0.49 26.8 16.7 58±11 89±17.9

20-30 19 0.215 47.3 25

0-10 17 0.522 21.9 12.7

3 10-20 17 0.205 15.3 8.8 39±7.5 93±12.1

20-30 17 0.894 6.1 3.6

0-10 17 0.62 22.8 13.8

4 10-20 17 0.62 23.5 13.9 51±7.5 78±32.2

20-30 17 0.62 24.9 15.1

0-10 17 0.611 24.6 14.5

5 10-20 15 0.214 31.1 20.3 30±7.3 84±24.9

20-30 10 1.62 0.6 0.62

0-10 19 0.657 11.9 7.8

6 10-20 20 0.647 18.1 9.1 32±5.6 106±27.5

20-30 11 1.653 1 0.93

from 2018 to 2021 (first sown in 2017 with triticale as a nurse crop). In blocks 1–4, barley (Hordeum vulgare) was first100

cultivated in summer 2019, then the grass mixture was grown from 2020 to 2021. Blocks 5up–6up had the same crop rotation

as blocks 5–6. In September 2021, glyphosate was applied to kill the vegetation in all blocks. In June 2022, the field was

first ploughed and harrowed, followed by barley sowing a few days later. In September 2022, glyphosate was applied, and in

October 2022, the field was ploughed. Every year, the field was fertilized and harvested once or twice. During barley years, the

field was also sprayed with herbicides (Table S8 and S9).105

Based on the FMI weather station Siikajoki Ruukki, located within 1 km of our site (Finnish Meteorological Institute, 2023),

the long-term 1991-2020 mean annual temperature and total precipitation were 3.2 °C and 555 mm, respectively. From 2019

to 2022, the mean annual temperatures were 3.2, 4.7, 2.4 and 3.4 °C, while the total precipitation was 519, 732, 580 and 514

mm, respectively (Fig. 2, Table S7).
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Figure 2. Average daily air temperature obtained from the study site and total daily precipitation obtained from the FMI weather station

Siikajoki Ruukki (located within 1 km of our site) during the years 2019–2022.

2.2 Measurements110

2.2.1 Eddy covariance measurements, filtering and gap-filling

The eddy covariance tower was installed in the middle of the field (Fig. 1) on 13 June 2019. The measurements started at a

height of 2.3 m, but it was raised to 3.15 m on 25 June 2019 and to 3.3 m on 4 November 2019, where it remained until the

end of the measurement period (December 2022). Since the tower installation on 13 June 2019, the EC tower was equipped

with a sonic anemometer (uSonic-3 Scientific, METEK Meteorologische Messtechnik GmbH, Germany) to measure wind115

speed in three dimensions and an enclosed-path non-dispersive infrared analyzer (LI-7200, LI-COR Biosciences, NE, USA)
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to measure CO2/H2O mixing ratios. On 4 November 2019, a continuous-wave quantum cascade laser absorption spectrometer

(LGR-CW-QCL N2O/CO-23d, Los Gatos Research Inc., CA, USA) was installed to measure N2O mixing ratio. The sampling

frequency was 10 Hz, and the fluxes were averaged over a period of 30 minutes. Standard, well-established methods were used

to calculate the 30-min turbulent fluxes. The details of the calculation and filtering procedures for CO2 fluxes are described in120

Vira et al. (2025) and for N2O fluxes in Gerin et al. (2023), except for variance of N2O mixing ratio which was here set to 5.5

10−5 ppm2. Due to the location of the instrument cabin and to the dominant wind direction being from the southwest, 72% of

the filtered flux data came from blocks 5–6 from June 2019 to December 2022. Since there were also different crop rotations

between blocks 1–4 and 5–6 (except for summer 2022), we decided not to include EC fluxes from blocks 1–4 in this study.

Gaps in CO2 and H2O flux data were filled using deep ensembles of neural networks following (Vekuri et al., 2025) using air125

temperature, photosynthetically active radiation, soil moisture, soil temperature, vapor pressure deficit, number of days from

the previous harvest and two cyclical functions describing the time of day and season (Vekuri et al., 2023) as drivers.

N2O fluxes were available from November 2019. First, gaps of two hours were gap-filled with linear interpolation. Days

with at least four observations were averaged to daily integrals, while other days were discarded. Lastly, N2O daily integrals

were gap-filled with a moving average (Gerin et al., 2023).130

Half-hourly evapotranspiration (ET) was calculated and processed simultaneously with CO2 fluxes with the Eddypro soft-

ware (v. 7.0.9, LI-COR Biosciences, USA) as described in Vira et al. (2025).

2.2.2 Chamber flux measurements

Total ecosystem respiration (TER) and N2O fluxes were measured weekly during snow-free seasons from 2019 to 2021 using

the closed static chamber method. Metal collars (60 cm x 60 cm) with water grooves were permanently installed in the soil at135

the depth of 20 cm near the WTD measuring points. There were four replicates in each block. During the 45-minute closure

time, an opaque metal chamber with an air mixing fan was placed on top of the collar and four 20-ml gas samples were taken at

0, 15, 30, and 45 minutes and analyzed with a gas chromatograph (HP 7890 series, GC system, Agilent, USA) equipped with

flame ionization (FID), electron capture detectors (ECD) and a nickel catalyst. Fluxes were calculated using linear regression.

2.2.3 Environmental variable measurements140

Air temperature at the height of 1.6 m (Humicap HMP155, Vaisala Oyj) and soil moisture at the depth of –10 cm (ML3

ThetaProbe sensor, Delta-T Devices Ltd., Cambridge, UK) were continuously measured near the EC tower in block 5. In

addition, soil moisture at –6 cm depth was measured concurrently with the chamber measurements in blocks 1–6 using an HH2

equipped with a ThetaProbe ML2x (Delta-T Devices Ltd., Cambridge, UK). WTD was monitored in blocks 1–6 using two

perforated groundwater pipes installed in each block (Fig. 1) and equipped with Solinst Levelogger sensors (Solinst, Ontario,145

Canada), recording values at 15-minute intervals (Pham et al., under revision).

The in-situ measurements were supported by satellite retrievals of the leaf area index (LAI), which was used for evaluating

the simulated vegetation dynamics. The LAI was evaluated using the methods described in (Nevalainen et al., 2022) from the

level 2A reflectance data recorded by the Sentinel-2 satellites and extracted using the Google Earth Engine.
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2.3 LandscapeDNDC150

We employed a process-based ecosystem model known as LandscapeDNDC to conduct the simulations in this study. The

LDNDC is a well-established biogeochemical model derived from the DNDC model (Gilhespy et al., 2014). The LDNDC

consists of several modules, each responsible for different ecosystem processes. Due to its high modularity, the model can

simulate arable, grassland and forest ecosystems, the first one being the focus of this study. The model includes a layer-wise

representation of biogeochemical (carbon and nitrogen cycling) and physical (moisture and heat) processes within the soil155

profile. This makes it well-suited for studying how these processes respond to variations in drivers such as water table depth

and how the responses are affected by soil stratification.

2.3.1 Model overview

In this study, we focused on the interactions between GHG fluxes, the water cycle and the growth of vegetation. We used

the Plamox module (Liebermann et al., 2019), which simulates the carbon and nitrogen cycles in vegetation as affected by160

soil characteristics (nitrogen uptake) and the water cycle (transpiration). The meteorological data (e.g. temperature, radiation),

which Plamox uses to calculate carbon uptake, were processed for the canopy layers using the CanopyECM module (Grote

et al., 2009). In addition, we used the MeTrx module (Kraus et al., 2015; Petersen et al., 2021) to simulate carbon and nitro-

gen cycles in the soil. In biogeochemical models such as MeTrx, soil organic matter is represented by conceptual pools with

different turnover times. These pools and their distribution cannot be measured directly, but are calibrated indirectly against165

observed fluxes of CO2 or long-term changes in bulk soil organic matter. Typically, during a spin-up phase and under given

boundary conditions (climate, groundwater, management), the pool structure is initialized such that overall soil organic matter

stocks are close to equilibrium preventing artefacts from a non-ideal initial pool distribution. However, in peat soils, especially

when drained, this equilibrium assumption does not hold, as soils may exhibit substantial annual losses, requiring a different

approach as described in Section 2.4.1. N2O-forming processes (nitrification and denitrification) are simulated based on sub-170

strate and oxygen availability, microbial activity and soil pH. Lastly, we used the WatercycleDNDC module (Petersen et al.,

2021) to simulate soil moisture. The module handles the dynamics of water within the soil profile, i.e. the amount of precipi-

tation intercepted by foliage, infiltration, percolation, transpiration, runoff, and possible changes in snow cover and ice content

in the soil. Evapotranspiration follows the potential evapotranspiration and is limited either by the amount of surface water or

remaining potential evapotranspiration, which ever is reached first.175

For this study, we applied version 1.36 of the model (revision 11770). One of the main updates in this version is the option

to relax the equilibrium assumption by the possibility to prescribe an annual target value of organic matter accumulation

or loss during the spin-up years. This was implemented by introducing the new parameter (spinupdeltac) for the MeTrx

submodel, which enables users to align long-term changes in simulated C pools with those derived from historical observations.

The default value of spinupdeltac is 0, corresponding to the original equilibrium assumption, but it can now be set to reflect180

user-defined annual changes.
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2.3.2 Parameters

We made adjustments to certain site and species parameters to improve the model performance in our simulated study site.

Since all of the simulated blocks had the same changes, there were no differences in the parameterisation between the blocks.

We focused first on heterotrophic respiration, which was found to be underestimated compared to the observations. There-185

fore, we increased the decomposition rates (METRX_KR_DC_HUM) of soil organic matter pools to match the respiration

derived from the EC measurements. The model initialises most of the carbon and nitrogen in two pools that represent young

and old organic matter, but there was a notable variation in allocation ratios for these pools between the blocks. We found it

necessary to simultaneously adjust the rates for both pools: adjusting either of the pools individually resulted in spurious block-

wise variability in soil respiration, caused by differences in the initial partitioning of organic matter between the model pools.190

This reduced the sensitivity of respiration to differences in allocation, and therefore, enabled us to simulate the respiration

fluxes in a more consistent and generally applicable way. Other changes to the site parameters were an increase of the maxi-

mum potential evapotranspiration. This matched the estimated evapotranspiration levels at the site and improved the seasonal

change in the moisture levels near soil surface. Finally, we adjusted a site parameter controlling the fraction of surface water

removed by runoff over each time step. The value was selected based on the study (Yli-Halla et al., 2022), which suggested195

that 30% of the total drainage would be due to the surface runoff on the study site.

Among the crop-specific parameters, we made changes to both forage grasses, which we refer as grass from now on, and

barley. We simulated the mixture of timothy and fescue together as a generic perennial grass during the grass years. For

the grass, we adjusted parameters handling the photosynthesis activity (H2OREF_A) and stomata closing (H2OREF_GS) at

drought. With default parametrisation the gross primary production stopped at some blocks (including block 5 where EC-tower200

was located) in the driest periods, when the soil moisture in the top soil layers dropped close to the wilting point. This was also

reflected by low simulated LAI values. The drought periods were not seen in EC measurements (gross primary production,

GPP) or satellite observations (LAI), and therefore parameters H2OREF_A and H2OREF_GS were set close to zero (1e-6)

to avoid underestimating the GPP in simulations. Furthermore, the species-dependent albedo factor (ALB) and maximum

water use efficiency (WUECMAX) were adjusted to improve the seasonal changes and annual outputs in GPP. In addition,205

we modified the senescence parameters to reduce overestimation of LAI and consequently photosynthesis in the simulations.

Increasing senescence due to frost stress was essential for capturing the decrease in LAI at the onset of frost. Finally, the

perennial grass plant type was also used to simulate weeds during pre-sow and post-harvest periods in year 2022. However, to

prevent it from dominating GPP output, we set the SLAMAX parameter value for it to 2.

For barley, we had similar objectives for parameter changes as for grass. We modified the growing degree day (GDD)210

thresholds that determine when crops enter different growth stages. These adjustments were necessary to align crop phenology

with local climate conditions. We also increased the decline of specific leaf area parameter (SLADECLINE) at the end of

the crop life cycle to prevent overestimation of GPP during late growing season. In addition to modifying the SLAMAX and

senescence parameters, we increased the harvest index in barley to simultaneously match the reported harvest levels and the

GPP derived from the EC measurements.215
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All modified parameters are shown alongside the model’s default values in the Supplementary Table S1.

2.4 Model setup

We set up model simulations for the six blocks at the site for the years 2010–2022, with the years 2010–2016 set as spin-up

years. Each block had four different scenarios: the base scenario representing the observed WTD and three other scenarios

with manipulated WTDs, to evaluate the effect of WTD on GHG fluxes. These scenarios are described in detail later in the220

subsection 2.4.4. In addition, each block and its scenarios underwent runs with some site or species parameters modified to

estimate the sensitivity of the model to these parameters. All runs shared the same climate data, as detailed in subsection 2.4.3.

Each block had its own soil profile and management events. The initialisation and management setups remained unmodified

for each scenario in order to study the effects of changes in WTD and the model parameters.

2.4.1 Site initialisation225

Soil initialisation covered hydrology and soil composition features. Hydrological aspects were controlled with Van Genuchten

parameters α and n (based on Mualem (1976)), porosity, hydraulic conductivity, and the minimum water-filled pore space in

the soil layer. The Van Genuchten parameters were used to reflect a typical water retention curve for peat. This process was

performed iteratively by starting from literature values (Menberu et al., 2021) and evaluating the response in the simulated

soil moisture. The Van Genuchten α parameter ranged from 0.75 to 6.0: the lower values associated with the organic matter230

layers in order to reproduce the slow drainage and high water retention. The Van Genuchten n parameter, which affects the

steepness of soil moisture curves, was set between 1.2–1.5 depending on soil layer and block. Even though some of the selected

Van Genuchten parameters differed significantly from the values reported by Menberu et al. (2021) for peatlands drained for

agriculture, the meta-analysis (Liu and Lennartz, 2019) examining the hydrology in peat soils emphasised the parameters’

complex relation and stressed that bulk density and stage of decomposition can significantly affect parameter values. The235

meta-analysis also indicated a large variation in these parameters across the published studies. The porosity was set lower in

the silt soil layers beneath the peat layers due to the fine-textured characteristic of silty soils. In the soil samples taken below

the peat layers, the porosity was measured to be around 0.4, which we used as a point of reference for our estimates. Finally,

the hydraulic conductivity was set to range from 0.00045 to 0.005 (cm min−1), where the highest values apply to the peat

layers as the pore size and peat structure support faster water flow than in silty subsoil.240

Soil carbon and nitrogen contents for each model layer were initialised based on values measured in soil samples (down to

200 cm) conducted in spring 2020 by Yli-Halla et al. (2022) (see supplement). The values for pH (4.4–6.1) and bulk density

(0.15–1.65) were also from the same dataset. The annual C change during the spin-up years (spinupdeltac) was set to –4500

kg ha−1 C for all blocks, which was approximately the C loss estimated on the shallow peat blocks 5 and 6 from the observed

NEE and harvest yield (Gerin et al., 2023) in years 2020–2021. However, the loss of C was also affected by the parametrisation245

changes, and therefore resulted in larger annual C depletion, especially in the deep peat blocks where the annual loss was up

to 10 000 kg ha−1 in individual study years. We extrapolated the C and N amounts independently for each block to account

for carbon depletion during the spin-up years; thereby aligning the simulated C and N stocks with the measurements for the
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year 2020. The extrapolation was performed in the baseline setup (i.e. no water table changes or sensitivity analysis), and

the resulting site setup was shared among all subsequent runs. The complete site initialisation for each block can be found250

Table S5.

2.4.2 Management

All management activities for 2019–2022 were straightforward to incorporate into the model runs as the dates of the events

and possible seed and fertilizer amounts were given. Tillage depth and cut height in the field were not specified, but we kept

them consistent (20 & 10 cm, respectively) across blocks. Glyphosate was applied in autumn 2021 and 2022 to terminate the255

grass stand and the weeds; this was simulated as a harvest event where 99 % of biomass was left on the field as residue. The

application of herbicide in July 2022 was furthermore taken into account by limiting the LAI of weeds (see Section 2.3.2).

Additionally, due to technical limitations in handling organic fertilizers, we included the organic manure applied to some fields

in 2019 as a mineral fertilization event, considering only the nitrogen input to the field. During the spin-up years, all simulations

were run with perennial grass which was mowed twice a year.260

2.4.3 Meteorology

For the driver (climate) data in the simulations, we used air temperature measured near the EC tower and the other meteoro-

logical data from the FMI weather station Siikajoki Ruukki located within 1 km of our site (Finnish Meteorological Institute,

2023); the shortwave radiation data was extracted from the Copernicus European Regional Reanalysis (CERRA; Ridal et al.,

2024). For the spin-up years (2010-2016), we furthermore used three-hourly data extracted from ERA5 reanalysis (Hersbach265

et al., 2020). The data from different sources were converted to hourly data to match the time steps of the simulations. For

ambient GHG concentrations, we used values of 415 ppm for CO2, 2 ppm for CH4 and 330 ppb for N2O. These values are

similar to the those measured at different locations in Finland (Met, 2025). Other air chemistry-related inputs were kept as

default in the model.

2.4.4 Water table depth270

A prescribed WTD was used in all simulations. In the baseline simulations, the WTD was specified by a measured time series.

Since WTD measurements were available from May 2018 onwards, we used the averaged hourly values from May 2018 to

December 2022 to represent the missing data period (i.e., January 2010 - May 2018) in the spin-up simulations. This was done

to provide a realistic representation of WTD variations, while taking into account seasonal changes.

Water table scenarios were applied to the period for which we had the measured data. In the baseline scenario, no changes275

were made to the water table, while in the first scenario, a constant 15 cm WTD was used as an input. The last two scenarios

used scaled WTDs, WTDscale which preserved the seasonal and annual hydrological variation and responses to precipitation

events. These were created by uniformly squeezing original water table observations WTDobs. with the ratio of target average
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water level WTDtarget. (30 cm, and 50 cm) and long term mean WTD WTDmean below the soil surface:

WTDscale =
WTDtarget

WTDmean
·WTDobs. (1)280

Examples of the measured water table and scenarios for Block 5 are shown in Figure 3.

Block5

Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021
−1.25

−1.00

−0.75

−0.50

−0.25

0.00

Year

W
T

D
 (

m
)

Groundwater 
input

Baseline WTD 15cm (fixed) WTD 30cm (flex) WTD 50cm (flex)

Figure 3. Water table depths (WTD) in year 2020 for the baseline and scenario simulations in block 5. May 2018 onward the WTDs for

scenarios were on average 15 cm, 30 cm and 50 cm below soil surface. The notation flex (for 30 cm and 50 cm) means the scenarios followed

the dynamics of the measured WTD. The notation fixed (for 15 cm), means that the WTD was kept consistent on given level, unless the water

table was higher based on the measurement data.
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2.5 Model evaluation and performance metrics

We evaluated the model performance for simulating NEE, N2O emission, and evapotranspiration by comparison against the

EC measurements. Although the EC measurements covered the blocks 5, 5up, 6 and 6up, these measurements are addressed

only against blocks 5 and 6 as blocks 5up and 6up are not considered in this study. We furthermore compared the predicted285

soil water content against the field measurements and evaluated the simulated leaf area index against the satellite retrievals

both described Section 2.2.3. These comparisons were performed on up to daily time resolution as determined by availability

of observations.

The evaluation against EC data was supplemented by comparing the simulated ecosystem respiration against the chamber

measurements conducted across the blocks with differing peat thickness (Section 2.2.2). This comparison was based on simu-290

lated daily averages; we did not try to to reproduce the 45-minute chamber closures with the model, in part because we lack

mechanisms to accurately simulate short term responses of the plant respiration to temporary darkness (e.g. Tcherkez et al.,

2017), and in part due to the more general uncertainties in simulating carbon allocation on a sub-daily level (Sierra et al., 2022).

Although the respiration fluxes measured by the chambers are likely to differ from the daily mean, we consider this tradeoff

acceptable given that the chamber measurements are here used mainly to quantify the spatial variation of the respired CO2.295

Finally, between the water table scenarios we compared the differences in heterotrophic respiration, as well as in autotrophic

respiration and CO2 uptake, to inspect the water table relation to these factors. We evaluated the model performance based on

the metrics defined below.

2.5.1 Nash-Sutcliffe Efficiency

Nash-Sutcliffe Efficiency (NSE) is commonly used to evaluate the effectiviness of hydrological models (Krause et al., 2005).300

The equation for NSE is similar to the equation to calculate the coefficient of determination for regression models, where it

is used to estimate the proportion of variance that the model is able to explain. The difference between R2 on the regression

model and NSE is the interpretation of the results. The NSE estimates the predictive power of a simulated model and focuses

on the accuracy of the predictions compared to the observed values. Since the predictive values are simulated, the range of the

results varies from -infinite to 1 (perfect fit), where a value of 0 indicates that the model does not succeed any better than taking305

the mean value of the observations. The equation for NSE is

E = 1−

n∑
i=1

(Oi −Pi)2

n∑
i=1

(Oi − Ō)2
, (2)

where the Oi was observed value and Pi was simulated value. Variable Ō was the mean of the observed values.
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2.5.2 Linear regression and bootstrapping

We used the function lm() from R package stats (R Core Team, 2024) to quantify the linear relationship between obtained CO2310

values from chamber measurements and the simulated CO2 values. We studied the differences in the relationships that shallow

peat and deep peat had to measured values. The linear regression model was expressed as

O = k ∗S + ϵ, (3)

where the O was the vector of observed values and S was the vector of simulated values. Vector ϵ included error terms as the

function seeks to minimize the sum of squared error terms by using the least square method to estimate the slope k. As seen315

in the equation 3, the intercept was set to 0 as we wanted to analyse the differences in the slope k. Confidence intervals (CI)

for the slope difference were calculated using the R package boot (Angelo Canty and B. D. Ripley, 2024) with 3000 bootstrap

samples.

2.6 Sensitivity analysis

An additional set of simulations was run to assess the robustness of the simulated differences between water table scenarios320

with respect to model parameters that influence soil biogeochemistry and water content. We perturbed three organic matter

decomposition rates (METRX_KR_HUM 1, 2 and 3) and two parameters affecting evapotranspiration (potential evaporation

fraction and WUECMAX) by individually decreasing or increasing the parameter value by 30 % of its value in the baseline

simulations. These parameters are a subset of those adjusted in Section 2.3.2. Since the impact of these perturbations can be

expected to interact with the impact of the water table scenarios (Section 2.4.4), we ran the perturbed simulations separately325

for each water table scenario. Finally, we evaluated the response of the treatment effect (scenario versus baseline) to each

parameter perturbation to provide an estimate of how sensitive the simulated GHG mitigation was with respect to the model

parametrization.

2.7 Net ecosystem carbon balance and CO2 equivalents

We calculated the Net ecosystem carbon balance (NECB) with the equation330

NECB = NEE + Cexport, (4)

where Cexport denotes the carbon removed in harvest. Organic fertilizers were neither simulated nor used in the years

covered by the EC measurements, and thus the net carbon balance resulted only from NEE with atmosphere and harvest

amounts. The Cexport variable in the simulations were drawn from the simulated yields.

Finally, to study the contribution of CO2 and N2O in the total climate impact of the peatland cultivation in each water table335

scenario, the N2O balances were converted to CO2-equivalents (CO2e) by applying the sustained global warming potential

(SGWP) coefficient of 270 mol CO2e per mol N2O over a 100-yr time horizon (Neubauer, 2021).
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3 Results

3.1 Applicability of LDNDC

3.1.1 Water cycle and leaf area index340

To assess the model performance, we first compared the simulated water cycle and LAI in the baseline runs (driven by the

measured water table depth) to the observations. The model captured the seasonal changes in the water content in the top soil

layers (Figure 4; Figure S2). However, especially in block 1, a temporal shift was observed between the measurements (taken

together with chamber flux measurements) and the simulations, as the measurements indicated that the soil was drier at the

beginning of the summer compared to the simulation. This was also reflected in the statistics for soil moisture, as the R2 and345

NSE for block 1 were 0.45 and –0.41, respectively, while the same values for the rest of the blocks were 0.37–0.78 and from

–0.03 to 0.75, respectively. The highest R2 and NSE were obtained for blocks 5 and 6, where the EC tower flux data was also

collected. Soil measurements during the winter time were unreliable and should not be emphasized due to the measurement

problems when the soil is frozen or close to that point.

The evapotranspiration simulated for blocks 5 and 6 generally reproduced the seasonal variation of the EC measurements350

(Figure 5; R2 were 0.75 and 0.71, respectively, for these two blocks, and between 0.64–0.67 for the rest). The simulated yearly

mean evapotranspiration from blocks 5 and 6 (1.22–1.41 mm d−1) was in line with the observation (1.11–1.20 mm d−1) for

the grass years, but for the cereal year 2022 the predicted average evapotranspiration was approximately 50 % higher than the

observed (0.96 mm d−1).

The temporal dynamics of the simulated LAI values agreed well with the observations (R2 ranging from 0.58 to 0.66; Fig. 6),355

as the start of the growing season and increase of LAI after the cuts were captured in the simulation. The model also captured

the leaf area decline at the end of the cereal years, when the crop started to reach harvest maturity. However, even though the

model predicted yearly peaks of LAI well for the grass year, the peaks at cereal years were about 40 % of the peaks retrieved

from the satellite data.

3.1.2 GHG fluxes and balances360

The simulated TER generally agreed well with the chamber measurements (R2 = 0.61; Fig. 7). However, the modeled respira-

tion fluxes were slightly underestimated for the shallow peat blocks and overestimated for the deep peat blocks. This can be

seen in the regression slopes, which were above 1 (1.05–1.13; 95 % CI) for the shallow peat blocks (3, 5, 6) and slopes below

1 (0.84–0.89) for the deep peat blocks (1, 2, 4). These values differ slightly from the numbers shown in Fig. 7 as the regression

lines were fitted over all of the data points from shallow and deep peat blocks. The 95 % CI for the difference between the365

slopes was 0.16–0.25.

The simulated daily NEE and N2O fluxes for blocks 5 and 6 followed the seasonal dynamics of the EC observations (Fig.

8). The performance with N2O fluxes were more variable than with NEE especially in late 2021 and 2022, after the glyphosate

applications. The R2 values of NEE in blocks 5 and 6 were 0.58 and 0.53, respectively, and for N2O, 0.070 and 0.014,
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Figure 4. Measured and simulated volumetric soil moisture (m3 m−3) in blocks 1 and 5. Manual measurements at the flux chamber locations

are shown with round markers; simulations and measurements at the EC tower are shown with lines. Each marker for manual measurements

represents the average value of four measurements taken at a given time point at a depth of 5 cm, and the error bars indicate the minimum

and maximum values of these measurements. The simulations and measurements at the EC tower represent the depth of 10 cm.

respectively. Since the EC data did not cover blocks 1–4, comparison with continuous flux data was not possible for any370

deep peat blocks.

Both the model and EC observations indicated a positive annual NEE for the years 2020–2022, meaning the field was a

net source of CO2. The observed annual balances were 0.106–0.512 kg C m−2 y−1 and the mean simulated balances were

0.139–0.374 kg C m−2 y−1 for blocks 5–6 during 2020–2022, showing a slightly narrower range of variation compared to the

measurements. The observed (EC-tower), annual N2O balances were 0.48-1.31 g N m−2 y−1 while the simulated balances for375
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Figure 5. The EC measured (dots) and simulated (line) daily evapotranspiration (mm d−1) for the years 2019–2022. The simulated values

are averages from blocks 5 and 6.

blocks 5 and 6 were (on average) 0.59–1.14 g N m−2 y−1. However, even though the ranges of balances were same magnitude,

the interannual variation showed discrepancies between the measured and simulated annual balances. For the shallow peats,

the highest N2O balances were get in year 2020 (Table S3), while for measurements, the highest N2O balance was in year 2022

(Table S4).

3.2 Water table scenarios380

We compared the respiration (auto- and heterotrophic; Ra and Rh) and CO2 uptake in baseline simulations with the scenarios

involving raised WTD. The impact of water table depth raise was notable to Rh, and on average, the increase in the WTD led
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Figure 6. Satellite-retrieved (dots) and simulated (line) Leaf Area Index (m2 m−2) for blocks 1 and 5 during 2019–2022.

to decrease in Rh (Fig. 9). There was more mitigation in the deeper peat blocks (1, 2, and 4) than in the shallower ones (3, 5,

and 6) when the WTD was raised, as on average over the study years, for deep peat blocks, the annual Rh decreased by 0.09

kg C m−2 (SD 0.12) in the 50 cm scenarios, 0.24 kg C m−2 (SD 0.13) in the 30 cm scenarios and 0.47 kg C m−2 (SD 0.1) in385

the 15 cm scenarios. The results in shallow peat blocks were on average 0.03 (SD 0.07), 0.06 (SD 0.08) and 0.18 (SD 0.06)

kg C m−2, respectively. Standard deviations were calculated over the blocks and years. Although Rh mainly decreased with

increased WTD, all blocks had yearly variation with Rh sometimes increasing compared to the baseline. The changes in Ra

and CO2 uptake were smaller than the changes in Rh. The largest CO2 uptake changes were seen in 15 cm scenario, where

the increases were, on average, 0.09 (SD 0.07) kg C m−2 for deep peat blocks and 0.07 (SD 0.07) kg C m−2 for shallow peat390
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Figure 7. Simulated daily mean and momentarily observed total ecosystem respiration (TER) by chamber measurements in the different

blocks in 2019–2021. The confidence intervals (CI) for each regression line slope are stated at the bottom right corners.
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blocks. However, the net impact for carbon balance was lower as the Ra increased approximately half of the obtained increase

in CO2 uptake.
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Figure 8. Observed (dots) and simulated (shaded areas) daily (A) net ecosystem exchange of CO2 (NEE) and (B) N2O fluxes at the study

site from 2019 to 2022. The simulated NEE is divided into gross primary production (GPP) and total ecosystem respiration (TER). Negative

values indicate a sink. CO2 and N2O fluxes were measured with the eddy covariance (EC) method, but N2O fluxes were also measured with

manual chambers, as indicated by the colored dots (B). The triangles indicate chamber measurements that were outside the scale. These

outliers occurred in four instances (two of them stacked) and varied from 0.06 to 0.21 g N2O m−2 d−1.
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3.2.1 Net ecosystem carbon balance

There was a strong correlation between simulated NECB and exposed OM (i.e organic matter above WTD) (r = 0.84), as more

organic matter was decomposed in the simulations that had more OM exposed. The simulated NECB values varied due to the395

different scenarios, variability in species between the years, and soil profile differences among the blocks. In Figure 10 we

have plotted the NECB values in relation to exposed organic matter for the baseline and all scenario simulations, as well as

the estimations from measurements. The estimations were based on the NEE from EC and harvest data for years 2020–2022,

and combined with the water table and soil properties (Table 1) to obtain organic matter stock above the water table. The

overall variability was notable, as the annual NECB values varied from 0.10 to 1.08 kg C m−2 y−1. For the three measured400

years, approximately 24.0 kg C m−2 OM remained above the WTD. The NECB values 0.43 - 0.69 kg C m−2 estimated from

measurements are in line with the 18 simulated cases with a similar level (23–25 kg C m−2) of exposed OM, as the average

NECB in these simulations was 0.44 kg C m−2 y−1 (SD 0.13).

3.2.2 N2O balance

Annual N2O balances in the baseline runs ranged from 0.46 to 3.14 g N m−2 y−1, and on average, the deep peat blocks had405

larger annual emissions (1.44–2.30 g N m−2 y−1 on average in blocks 1, 2, 4) than the shallow peat blocks (0.68–1.13 g N

m−2 y−1 in blocks 3, 5, 6; Table S3). The annual N2O balances were also affected by the WTD changes, and on average

were reduced by 0.19 g N m−2 y−1 (WTD 50 cm), 0.37 g N m−2 y−1 (WTD 30 cm) and 0.65 g N m−2 y−1 (WTD 15 cm),

accounting all of the blocks, in each scenario compared to the baseline.

3.2.3 CO2 equivalents410

The N2O balances were converted to CO2e and are shown together with the simulated NECB values in Figure 11. The CO2e

balances were highest in the baseline runs and decreased when the WTD was raised. In the deep peat blocks, the mitigation

effect was stronger (varying on average from 1.59 to 3.81 kg CO2 m−2 y−1) than in the shallow peat blocks (varying on

average from 1.19 to 2.11 kg CO2 m−2 y−1). The average reduction in CO2e differed notably even when expressed relative

to the change in water table depth; the largest reduction was obtained in 15 cm scenario (0.22 kg CO2-C m−2 y−1) per every415

0.1 m water table raise, while 30 cm and 50 cm scenarios the relative change was notably smaller (0.14 and 0.10 kg CO2-C

m−2 y−1, respectively). In all WTD scenarios, the share of N2O in total CO2e balances was consistent (18–20%). However,

the proportion of NEE reduced (ranging from –1% to 44 %) while the proportion from the harvest increased (ranging from 36

% to 81 %), although the harvest stayed consistent in absolute terms.

3.3 Sensitivity analysis420

By varying the decomposition rates (METRX_KR_HUM) in all the original runs, the annual Rh differences ranged from –0.16

to 0.11 kg C m−2 y−1. There was a large variation between the years and the blocks, but on average the largest differences were

seen in the scenarios, which had the lowest water table depth i.e. most exposed organic matter. A decrease in decomposition
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Figure 9. Changes in the annual heterotrophic respiration in the different blocks and at different water table depth scenarios compared to the

baseline scenario. The water table scenarios are introduced in section 2.4.4 and in Figure 3.
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at the different blocks with different peat depths using weather drivers from 2019-2022. The estimates derived from observations are presented
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rates of the larger organic matter pools (young and old recalcitrant humus) reduced Rh by 0.04–0.12 kg C m−2 y−1 in deep

peat and 0.03–0.08 kg C m−2 y−1 in shallow peat. Conversely, increasing these rates raised Rh by 0.03–0.08 kg C m−2 y−1425

in deep peat and 0.02–0.06 kg C m−2 y−1 in shallow peat, depending on the scenario. For the smallest organic matter pool

(labile humus), the changes were minor on average, varying only from –0.02 to 0.01 kg m−2 y−1 as a result of increases and

decreases. The aggregated results of annual means and peat depth categories are shown in Figure 12. The changes in CO2

uptake and Ra were smaller compared to the changes in Rh, and on average over the years and blocks the CO2 uptake varied

from –0.03 to 0.02 kg m−2 y−1, while in Ra the variance was even smaller.430

Changes in the parameter for potential evapotranspiration caused variability in Rh especially in the simulations with lower

WTD. For deep peat blocks, a decrease in potential evapotranspiration varied Rh from –0.05 to 0.16 kg C m−2 y−1, while

the increase led to changes less than 0.1 C m−2 y−1. In addition, the variability was only seen in the deep peat blocks, while

the shallow peat blocks had very minor variability. Similarly, the differences due to the changes in the water use efficiency

parameter, which was applied to perennial grasses, were generally small in Rh. On average, lowering or increasing this pa-435

rameter would have led to only 0.01 kg C m−2 y−1 change in Rh. The averages for shallow and deep peat blocks aggregated

over the years can be seen in Figure S3. Finally, although there was annual variability, and the WTD had a leverage effect on

the variability, we saw in the aggregated results that on average the responses to Rh varied in parallel in the base and scenario

runs. Therefore, these results indicate that we would have obtained similar outcomes between the base and scenario runs, even

if the aforementioned parameter values would have been different. Overall, the emission rates would be distinct, but the effect440

of raising the water table would still be present.

4 Discussion

4.1 Need for GHG mitigation

Drained agricultural peatlands are known to be hotspots for GHG emissions (Evans et al., 2021; Dinsmore et al., 2009; Gerin

et al., 2023), and raising the water table depth has been proposed as an effective mitigation strategy (Tiemeyer et al., 2016;445

Freeman et al., 2022). Here, we predict that even a slight increase in the water table could reduce the negative climatic effects

of peatland cultivation by decreasing heterotrophic respiration and N2O emissions, particularly in areas with substantial peat

deposits. These results align with studies Heikkinen et al. (2024), Huang et al. (2021b) and Wilson et al. (2016b) that have

found the water table depth to be a key driver of CO2 emissions. On the other hand, studies Leiber-Sauheitl et al. (2014) and

Eickenscheidt et al. (2015) challenge the significance of peat depth by demonstrating similar emission rates from soils with450

different SOC stocks, consistent with studies Bridgham and Richardson (1992); Waddington et al. (2014) indicating that soil

respiration would be formed mainly in upper layers. Therefore, it is crucial to evaluate the performance of the model under

varying conditions to better understand the effectiveness and limitations of the water table management, and to ensure that

management decisions are based on robust, evidence-based assessments.
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Figure 11. Calculated CO2 equivalents (CO2e) of the baseline and the water table depth (WTD) scenario simulations with WTD raised to a
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for years 2019–2022 for each block, with NECB as the sum of net ecosystem exchange (NEE) and the share of carbon from harvest. The

results in plot (A) are shown separately for deep peat blocks and shallow peat blocks, while deep and shallow peat blocks are combined in
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25

https://doi.org/10.5194/egusphere-2025-4219
Preprint. Discussion started: 4 September 2025
c© Author(s) 2025. CC BY 4.0 License.



1.12

1.16

0.66

0.68

0.88

0.91

1.02

1.06

1.02

1.22

0.61

0.72

0.81

0.96

0.94

1.12

1.07

1.2

0.63

0.7

0.85

0.94

0.98

1.1

0.75

0.78

0.58

0.6

0.7

0.72

0.72

0.75

0.69

0.83

0.55

0.63

0.65

0.76

0.67

0.79

0.74

0.8

0.57

0.62

0.68

0.74

0.7

0.77

Deep Shallow

Labile
Young

O
ld

Base

WTD 50cm (fle
x)

WTD 30cm (fle
x)

WTD 15cm (fix
ed)

Base

WTD 50cm (fle
x)

WTD 30cm (fle
x)

WTD 15cm (fix
ed)

Decreas. 30%

Increas. 30%

Decreas. 30%

Increas. 30%

Decreas. 30%

Increas. 30%

Scenario

C
ha

ng
e 

in
 p

ar
am

et
er

Annual heterotrophic respiration ( kg C m−2 y−1)

Figure 12. Average annual heterotrophic respiration in each water table depth (WTD) scenario for deep peat blocks and shallow peat blocks

after changing decomposition rates. In the baseline run, the annual heterotrophic respiration was 1.14 kg C m−2 y−1 for deep peat blocks,

0.78 kg C m−2 y−1 for shallow peat blocks, and on average 0.96 kg C m−2 y−1 for all blocks.

26

https://doi.org/10.5194/egusphere-2025-4219
Preprint. Discussion started: 4 September 2025
c© Author(s) 2025. CC BY 4.0 License.



4.2 Applicability of LDNDC to simulate agricultural peatlands455

The model evaluation focused foremost on CO2 fluxes, which are the major contributor to GHG emissions in peatlands. The

simulated daily net ecosystem exchange in the shallow peat field was consistent with the EC measurements (Fig. 8a), which

led to a good agreement between the simulated NECB and the estimates derived from the EC and field data (Table S3 and Fig.

10). Similar levels of agreement with observations were seen in LAI (Fig. 6) as well as soil moisture and evapotranspiration

(Figs. 4 and 5). Altogether, this confirmed that the model, with the parameter modifications documented in Section 2.3.2, was460

suitable for simulating crop growth and CO2 exchange in degraded peat soils with a shallow organic horizon.

On average, the simulated respiration fluxes were in agreement with the chamber measurements from shallow and deep peat

fields. However, the simulated respiration differed between shallow and deep peat fields, which led the model to underestimate

the ecosystem respiration for the shallow peat fields and overestimate it for deep peat fields.

The N2O fluxes showed more discrepancies than the CO2 fluxes, and while the annual balance for one year (2021) was in line465

with the EC measurements, the other years were either under or overestimated by up to a factor of two. By nature, N2O fluxes

are more difficult to simulate because these emissions have typically high temporal variability (Rees et al., 2013) and short-

term peak emissions occur after weather and management events such as freezing-thawing or fertilization (Rees et al., 2013;

Wagner-Riddle et al., 2017; Gerin et al., 2023). Even though the simulation captures many of the observed temporal patterns

relatively well (Fig. 8b), the missed N2O episodes especially following the herbicide applications led to a poor quantitative470

agreement on a daily to seasonal level.

4.3 Water table depth and SOC stock as drivers of GHG emissions

Raising the water table mitigated the simulated GHG emissions in both shallow and deep fields (Fig. 11) with the greatest

impact observed for CO2 emissions. Peat depth and water table depth could be combined for estimating the exposed organic

matter stock, which had a strong positive association with the CO2 emissions (Fig. 10). A similar but weaker relationship475

was established empirically for cultivated peatlands in the Netherlands by Aben et al. (2024). In the simulations, the change

in water table depth mainly affected the heterotrophic respiration, which was reduced even with the more conservative water

table changes in this study, where the water table followed the observed seasonal variation and was only moderately higher

than the measured water table (Fig. 9).

Similar to the CO2 emissions, the N2O emissions were reduced when the water table was raised. Although the comparison480

against the EC data indicated greater uncertainties in simulating the N2O emissions compared to the CO2 fluxes, this result is

consistent with several empirical studies (Jeewani et al., 2025; Lång et al., 2024) and supports the hypothesis that increasing

the water table can suppress nitrification and subsequently reduce the availability of nitrate for denitrification (Klemedtsson

et al., 2005; Pärn et al., 2018). The effect was still notably weaker than for CO2 emissions (Fig. 11) and as the amount of

carbon removed in harvest did not significantly change, the proportion of N2O emissions, relative to the total GHG burden,485

stayed consistent between the scenarios.
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The model was parametrized primarily based on the data that represented the part of the field with a shallow peat layer, and

therefore, the model results for deeper peat profiles involve additional uncertainties. Specifically, our initialization of organic

matter pools did not consider differences in chemical properties of the peat layer beyond the carbon and nitrogen contents.

Earlier studies, in contrast, suggest that the peat decomposition may be more strongly influenced by other aspects of peat490

quality, such as its polysaccharide content (Leifeld et al., 2012; Normand et al., 2021), which in turn may vary within the soil

profile. The primacy of peat quality as a driver of CO2 emissions is consistent with previous studies on organic soils where the

CO2 emissions have been found to be decoupled from the C stocks (Leiber-Sauheitl et al., 2014; Eickenscheidt et al., 2015). A

difference in peat quality could also explain why the chamber measurements, contrary to the simulations, showed little or no

difference in ecosystem respiration between the deep and shallow peat layers.495

Altering the decomposition rates was necessary in this study to achieve comparable CO2 fluxes with the observations. The

sensitivity analysis with respect to these parameters indicated that even by varying the key parameters in the model, similar

mitigation effects were achieved in CO2 by raising the water table depth as with our initial parametrisation. In addition, we

varied two parameters related to the water cycle (potential evapotranspiration and water use efficiency). Also these parameter

changes had a minor impact on the mitigation potential. This sensitivity analysis showed that our findings regarding of the CO2500

emissions were more robust to parametrisation than the absolute CO2 emissions.

4.4 Potential to mitigate GHG emissions with water table management

Combining the need to harvest biomass with the need to mitigate emissions creates a strong constraint for cropland manage-

ment, requiring large changes in agricultural practices and local water management. The largest reduction of GHG emissions

was here achieved in the scenario with average 15 cm water table depth, which implies conditions close to those typical in505

paludiculture. In this case, the net exchange of CO2 was close to neutral regardless of the peat layer thickness. This scenario

had a permanently high water table, and did not account for seasonal variation. In practice, seasonal variation of the WTD

exposes more soil organic matter to aerobic conditions during the warm season, potentially increasing the CO2 emissions from

soil (Heikkinen et al., 2024). This highlights the need to target water level management during summer months for maximum

mitigation.510

Nonetheless, the simulations also indicated that small but positive GHG mitigation is possible with less drastic changes to

the water table management. The scenario with a 50 cm average WTD required on average a 31 cm higher water table for deep

peat blocks and a 44 cm higher water table in shallow peat blocks. This increase in water table level can be achievable with a

controlled drainage system and is unlikely to cause issues for conventional agriculture (Salla et al., 2024). In our simulations,

this scenario resulted in an annual reduction of GHGs equivalent to approximately 0.47 (deep peat layers) to 0.24 (shallow peat515

layers) kg CO2e m−2, and in this scenario each 10 cm raise of water table levels reduced annual emission on average by 0.10

kg CO2e m−2. Such a change in long-term average WTD is sufficient for modest mitigation in emissions (Evans et al., 2021;

Lång et al., 2024). Somewhat surprisingly, the emissions were reduced even in the simulations with the average WTD very

close to or below the organic soil horizon in the shallow peat blocks. As the controlled drainage offers multiple benefits, such
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as reduced nutrient leaching (Carstensen et al., 2020) and increase in available water for plants (de Wit et al., 2022), a minor520

climate benefit is a worthwhile addition if conversion to a more climate-neutral land use is not possible.

The water table scenarios used in the simulations were not tied to any specific water management practices, such as ditch

blocking, controlled drainage or subsurface irrigation. While we evaluated the mitigation potential related to peat depth under

idealized scenarios, in practice, GHG mitigation efforts are limited by local climate, hydrogeology, and drainage management

practices (Boonman et al., 2022). Ideally, these aspects would be incorporated into the model structure to establish the site-525

specific mitigation potential.

5 Conclusions

Raising the water table depth was found to be an effective way of reducing emissions even in shallow peat fields. Overall, the

simulation results showed a clear association between the stock of exposed organic matter and CO2 emissions, indicating that

even moderate changes to water management practices can help mitigate greenhouse gas emissions. We found that the LDNDC530

model could be adapted to simulate agricultural peatlands, and a sensitivity analysis indicated that the estimated mitigation ef-

fect achieved by raising of water table depth was robust to changes in the parameters governing evapotranspiration and organic

matter decomposition. Future work is still needed to simulate N2O fluxes as accurately as CO2 emissions, particularly given

its high sensitivity to environmental conditions. Additionally, the model was parameterized and evaluated mainly using data

representing a shallow peat layer, and future studies should be conducted to understand relationship between GHG emissions535

and the peat layer thickness on a more mechanistic level. The results indicate that well-drained peat soils that still retain a high

carbon stock should be targeted to effectively mitigate climate change. Yet, the results also suggest that smaller reductions in

annual emissions are possible in cultivated peatlands with thinned peat deposits, even with conservative changes to the water

management practices.

Code and data availability. The simulations were done with the LDNDC model (v 1.36, revision 11770), which is only available from the540

model developers upon request. The model has been developed at KIT-Campus Alpin (https://ldndc.imk-ifu.kit.edu/about/model.php, last

access: 22 August 2025).

The model outputs along with the flux measurements (CO2, N2O, evapotranspiration; 2019 - 2022) are archived in METIS: https://doi.org/10.57707/FMI-

B2SHARE.60ED65A7CBB04147AE3EFCE572DD8FD0

The satellite data and soil moisture measurements were obtained from Field Observatory. This data can be downloaded interactively from545

the Field Observatory website (https://www.fieldobservatory.org, last access: 22 August 2025)

All other datasets used in this study are available upon request.
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