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Abstract. Multiyear droughts (MYDs) are recognized as severe drought events, with especially profound impacts on both

human activities and ecosystems. However, the optimal rainfall replenishment timing (toptimal) for MYDs mitigation remains

insufficiently understood. With that in mind, we conducted a retrospective analysis of historical MYDs based on the Palmer

Drought Severity Index (PDSI) in China during 1961-2020, and the calibration period was set to 1961-1990. We performed a15
series of numerical experiments involving precipitation gradient increases for 351 selected MYDs, distributed across 199

grids (2° × 2° ), from 1991 to 2020, and developed a drought mitigation quantitative model (DMQM). In addition, a key

coefficient (k) derived from DMQM was defined to quantify the mitigation efficiency, and toptimal was then identified as

the timing corresponding to the maximum k (kmax). Overall, drought severity exhibits a nonlinear response to increased

precipitation. kmax occurred most frequently in the first month of drought onset (t1), accounting for 58.79% of all grids, while20
the second (t2) and third (t3) months were also non-negligible, accounting for 22.11% and 11.06%, respectively. Compared to

the humid river basins in southern China, the arid and semi-arid northern regions had a higher probability for k at t2 or t3 to

exceed k at t1. Drought duration (DD) was identified as a key factor, as longer DD was associated with a greater likelihood of

t2 or t3 being the toptimal, evidenced by R2 values of 0.526 and 0.578, respectively. These findings contribute to ensuring

timely and regionally appropriate MYD mitigation strategies and interventions.25

1 Introduction

Droughts are recognized as a major natural hazard with profound negative effects on both human activities and the

environment (Berdugo et al., 2020; Shi et al., 2021; Palagi et al., 2022). Compared to other natural hazards, droughts often

rank higher in key characteristics of losses, such as total loss of life and total economic loss (Mishra and Singh, 2010). For

instance, in the United States, drought caused $250 billion in damages and nearly 3,000 deaths between 1980 and 2020,30
making them the costliest and second deadliest natural disaster (Ault, 2020). In Europe, drought-related financial losses over
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the three decades prior to 2007 were estimated to exceed EUR 100 billion (Blauhut et al., 2016). In China, prolonged

droughts in Southwest China during 2018-2020 resulted in economic losses of $240 million, underscoring the intensifying

impacts of prolonged droughts (Feng et al., 2025). Such devastating drought events, which typically last more than 12

months (Brunner and Tallaksen, 2019; Mourik et al., 2025), are referred to as multiyear droughts (MYDs). Under climate35
change, these persistent, expansive, and difficult-to-recover MYD events have shown an escalating trend in severity,

duration, and frequency (Dai, 2013; Zhang et al., 2016; Stevenson et al., 2022; Chen et al., 2025; Wang et al., 2025).

Droughts are primarily related to prolonged reductions in the precipitation for a region (McCabe and Wolock, 2015; Hao et

al., 2018; Zhang et al., 2021). For instance, the Millennium Drought in southeast Australia (2001-2009) was the longest

drought on record for the region (Van Dijk et al., 2013). Similarly, the California droughts from 2012 to 2015 included the40
driest three-year period on record in the state (2012-2014) (Mao et al., 2015; Luo et al., 2017). The MYD in Europe from

2014 to 2018 was also record-breaking for the region (Moravec et al., 2021; Büntgen et al., 2021). To better quantify the

severity of drought, various drought indices have been developed based on deviations in water availability against long-term

normal conditions. Currently, the most widely used drought indices include the Palmer Drought Severity Index (PDSI),

Standardized Precipitation Evapotranspiration Index (SPEI), and Standardized Precipitation Index (SPI) (Zhang et al., 2016;45
Liu et al., 2017; Mukherjee et al., 2021). These indices typically quantify drought severity on a monthly timescale based on

precipitation and/or potential evapotranspiration (PET) (Easterling et al., 2007; Vicente-Serrano et al., 2010). They generally

standardize monthly effective precipitation time series under the assumption of a normal distribution, enabling the

identification of thresholds that delineate different drought intensities (Dai, 2011; Vicente-Serrano et al., 2025). Moreover,

by thoughtfully incorporating auto-correlation processes (such as auto-correlation coefficients or the accumulation of50
antecedent water deficit/surplus), these indices can effectively capture the dynamic evolution of typical drought events,

including their onset, development, recovery, and termination (Gupta and Karthikeyan, 2024). To further characterize the

dynamic evolution of typical drought events, Yevjevich (1967) proposed the run theory, which extracts drought features

from three key dimensions. These include: (a) Drought duration (DD, the period during which a drought parameter is

continuously below the critical threshold), (b) Drought intensity (DI, the lowest index value during a drought event), (c)55
Drought severity (DS, the cumulative deficiency of a drought parameter below the critical threshold throughout the event).

Such drought indicators have been widely applied at station, regional, and global scales to assess drought processes and

related impacts (Gu et al., 2020; Wu et al., 2022; Ullah et al., 2022; Zhou et al., 2023), with DS particularly offering a more

integrated measure of drought impact (Cavus and Aksoy, 2020).

Previous studies have examined the dynamic evolution of drought events across the four stages (Ma et al., 2023; Lin et al.,60
2023). It has been widely observed that the recovery and termination phases are often accompanied by increased

precipitation (Haile et al., 2020). However, such hydrometeorological changes typically occur several months after the onset

of severe drought, by which time substantial ecological, agricultural, and socioeconomic damages may have already

occurred (DeChant and Moradkhani, 2015; Livneh and Hoerling, 2016; Wu et al., 2018). For example, in southeast Australia,

the Millennium Drought (2001-2009) was terminated by unusually high rainfall in early 2010, yet this MYD still exhibited65
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prolonged DD and high DS (Yang et al., 2017). Consequently, earlier precipitation replenishment is more effective in

mitigating drought impacts (Fig. 1a and 1b). From another perspective, drought indices typically represent anomalies from

normal conditions in a standardized way, allowing comparisons across space and time. This implies that during extreme

drought, when the index deviates far from zero, even small increases in precipitation can trigger substantial shifts toward

recovery. In contrast, during mild drought, when the index remains near zero, the same amount of precipitation leads to only70
marginal improvement. For instance, using the widely applied PDSI as an example, to induce the same one-unit change in

the index, the required shift in cumulative probability under extreme drought (PDSI = -4) is only 48% of that under milder

conditions (PDSI = -1) (Fig. 1c and 1d). This illustrates the nonlinear sensitivity of drought indices to precipitation inputs:

index responses to identical precipitation replenishment can vary significantly depending on drought severity. However, such

nonlinear responses are often overlooked. Small increases in precipitation during extreme drought are frequently dismissed75
as inconsequential, despite their potential to drive meaningful recovery (Pan et al., 2013). Zhang et al. (2024) noted that the

effect of a 1% precipitation increase on drought recovery probability under extremely dry conditions is 13.2 times greater

than under extremely wet conditions.

Figure 1: Conceptual and statistical illustrations related to drought mitigation and the normal distribution characteristics of80
commonly used drought indices (with PDSI as an example). (a) Drought severity is relatively mild during the early stages of a
drought event. (b) Severe droughts are generally associated with longer duration. (c) Change in cumulative probability induced by
a one-unit shift in PDSI under varying drought intensity. (d) PDSI shift required to achieve an equivalent change in cumulative
probability under different drought conditions.
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Currently, the optimal timing (toptimal) for drought mitigation remains insufficiently understood. Several existing studies focus85
on early drought monitoring, as well as on mitigation measures implemented during severe drought (Haile et al., 2020).

However, we suggest that effective drought mitigation may not necessarily occur at either of these two stages. In particular,

cases where early precipitation replenishment and drought severity are considered together remain under-investigated.

Therefore, it is necessary to clarify the relationship between different rainfall replenishment timings (tforcing) and drought

mitigation. To this end, we propose a new framework (Fig. 3) involving a series of numerical experiments to retrospectively90
investigate typical historical MYD events. Section 2 introduces the study area and datasets. In Section 3, representative

MYD events are identified based on existing literature, with a particular focus on assessing the extent of drought mitigation

during these events. A model based on increased precipitation forcing applied at different stages of MYD is developed to

parameterize mitigation efficiency. The accuracy of this parameter is validated by comparing model-derived estimates with

the results of independent numerical experiments. The results and related discussion are presented in section 4 and section 5.95
We close with a brief conclusion in Section 6.

2 Study area and datasets

To assess the role of nonlinear patterns in MYD mitigation, we utilize a daily meteorological dataset suitable for calculating

PDSI during the period of 1961 to 2020 over China. This dataset includes precipitation (pr), air temperature (mean,

maximum, and minimum), relative humidity, wind speed, and sunshine duration. This dataset consisting of 756 stations is100
provided by the National Climate Centre of the China Meteorological Administration and has been quality-controlled before

being released to the scientific community (http://www.nmic.gov.cn/). Given the importance of reliable statistics, we applied

additional temporal and spatial consistency control on the data based on the information of the length of available data (and

the missing data) and the density of stations, etc. First, we have done temporal consistency control using the information of

data length and select 620, out of the 756, meteorological stations with continuing measurements. The 620 stations are105
distributed in 10 large river basins covering China, as shown in Fig. 2. Second, we conduct further control on the spatial

inhomogeneity of station distribution. We select 199 grid boxes of 2° × 2° longitude by latitude (Fig. 2), and each grid box

should contain at least one station with continuing meteorological measurements. For the given grid box with multiple

stations, the station results were averaged to represent the grid box. In doing that, we reduce the possible influence from

temporal and spatial inhomogeneities in the data and ensure that the overall statistics are robust.110
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Figure 2: The study area covers 10 large river basins (regions). No. 1, the Songhua River; No. 2, the Liao River; No. 3,
Northwestern Rivers; No. 4, the Hai River; No. 5, the Yellow River; No. 6, the Yangtze River; No. 7, the Huai River; No. 8,
Southeastern Rivers; No. 9, Southwestern Rivers and No. 10, Pearl River. A total of 199 (�° × �°) grid boxes (color: cyan) were
identified as containing at least one station with continuous instrumental meteorological records. In total, 620 meteorological115
stations (purple dots) were used.

3 Methods

3.1 Overview

To determine toptimal for drought mitigation by jointly considering early precipitation replenishment (Conceptual Model 1 as

mentioned in Section 3.4) and drought severity (Conceptual Model 2 as mentioned in Section 3.4), we propose the following120
methodological framework (Fig. 3). We calculate the PDSI using data from meteorological stations, identify representative

MYD events and characterize them in terms of DS, DD, DI, Drought Development Period (DDP), and Peak Intensity Point

(PIP). The framework consists of the following three steps: (1) Validation of the nonlinear response of DS to increased

precipitation forcing applied incrementally along a gradient; (2) Construction of a novel drought mitigation quantitative

model (DMQM); (3) Verification of the applicability of the key parameter derived from the DMQM: k, the mitigation125
efficiency coefficient. The toptimal is then determined based on the timing at which k reaches its maximum value (kmax). Finally,

we evaluate the impact of tforcing on drought mitigation. A detailed description of each methodological component is provided

in the subsequent sections.
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Figure 3: Workflow and method overview.130

3.2 Estimation of PDSI using the Penman-Monteith method

In this study, PDSI was used to quantify the deviation between observed monthly precipitation and the required precipitation,

which is estimated each month under Climatically Appropriate For Existing Conditions (CAFEC). It was improved using a

simple two-layer water balance model (Palmer, 1965), which considered water supply and atmospheric evaporative demand.

To ensure the credibility of PDSI results, we use the Penman-FAO56 method with a physical mechanism (Xu et al., 2022) to135
estimate the potential evapotranspiration (denoted as PET_pm):
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���_�� =
0.408 ∙ ∆ ∙ �� − � + � ∙ 900

� + 273 ∙ �2 ∙ �� ∙ 1− �ℎ 100
∆ + � ∙ 1 + 0.34 ∙ �2

(1)

Where ∆ is the slope of the vapor pressure curve, Rn is the net radiation (calculated using surface downwelling/upwelling

shortwave/longwave radiation), G is the soil heat flux, � is the psychometric constant, T is the monthly averaged air

temperature, U2 is the wind speed at 2m height, es is the saturation vapor pressure at a given air temperature, Rh is the

relative humidity.140
In this study, long-term PDSI series for the period 1961-2020 were calculated using the tool provided by the Palmer Drought

Severity Index (Jacobi et al., 2013). The calibration period was set to 1961-1990 to calculate the CAFEC values, thereby

ensuring that PDSI thresholds remain fixed throughout the analysis.

3.3 Identification and characterization of MYD events based on run theory

Run theory is a threshold-based method that defines drought events as the values of PDSI less than -1 (Yang et al., 2024),145
and extracts such events from the monthly PDSI time series of each grid. According to this method, each identified drought

event was further characterized by a set of indicators, including DS, DD, DI, DDP, and PIP (Fig. 4a). In this study, based on

the characteristics of typical MYD events (Chen et al., 2025), the identified events were further selected according to the

criteria of DD > 12 and DI <− 3 . Since the calibration period was set to 1961-1990 and the CAFEC values needed to

remain fixed during numerical experiments, the final selection was restricted to MYD events occurring between 1991 and150
2020. A total of 351 MYD events meeting these criteria were identified. Each basin contained at least 11 events, thereby

helps ensuring the statistical robustness of the analysis.

3.4 Design of numerical experiments to quantify the precipitation-based mitigation efficiency of MYD

According to run theory, for a given drought event characterized by its baseline monthly PDSI series (Fig. 4a), an increase in

precipitation applied at a specific month will inevitably lead to a reduction in DS, assuming all other conditions remain155
unchanged. This provides a foundation for evaluating mitigation efficiency based on changes in DS. The tforcing is a key

parameter representing the timing of the applied forcing. In the numerical experiment, tforcing is denoted as tm, where tm refers

to the m-th month of MYD. For instance, t1 represents the first month of MYD. Two conceptual models are proposed to

characterize different patterns of mitigation efficiency. Conceptual Model 1 features the same precipitation forcing applied at

different tforcing during an MYD event (Fig. 4b). Since the forcing can only influence DS from the tforcing and thereafter, earlier160
rainfall replenishment allows a longer duration to affect the drought process. Thus, toptimal under Conceptual Model 1

(denoted as ta) approaches the beginning of the event, i.e., ta → t1 . Conceptual Model 2 features the same precipitation

forcing applied at the same tforcing, but under different PDSI values (Fig. 4c). As a standardized index, the PDSI associates

greater negative values (i.e., more severe drought conditions) with more substantial DS reductions following rainfall
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replenishment, indicating higher mitigation efficiency. Therefore, toptimal under Conceptual Model 2 (denoted as tb) tends to165

coincide with the timing of PIP (denoted as tPIP), i.e., tb → tPIP . To determine a composite toptimal (denoted as tc), which

integrates patterns described in both Conceptual Model 1 and Conceptual Model 2, we designed a series of numerical

experiments involving precipitation gradient increases at different tforcing (Fig. 4d). Since tc remains undetermined, it is

essential to first define a plausible time range in which it may occur. Given that the tPIP of MYD events typically occurs

much later than the onset (tPIP ≫ 1), the tc is expected to range from t1 to tPIP.170

Figure 4: Conceptual models illustrating MYD mitigation driven by increased precipitation forcing: (a) Baseline pattern without
increased forcing. DS is represented by the area of the red region. (b) Conceptual model 1: Same forcing applied at different tforcing
during an MYD event. Early rainfall replenishment leads to greater mitigation benefits (∆��+ , red area) and avoids additional
losses from cumulative precipitation deficits. (c) Conceptual model 2: The same forcing applied at the same tforcing, but with175
different drought index values. Since drought indices typically represent anomalies from normal conditions in a standardized way,
deeper droughts tend to exhibit greater mitigation effects (∆��� > ∆���). (d) Optimal solution model: By weighing the mismatch
influences of precipitation forcing in Conceptual models 1 and 2, toptimal (marked by the red point) can be identified.

Since this study focuses on drought mitigation, only precipitation increase scenarios with incremental gradients are

considered. The procedures of this numerical experiment were given as follows:180
Step 1: Validation of nonlinear process

To validate the nonlinear response of MYD mitigation to increased precipitation forcing applied at different tforcing and under

varying PDSI values, a single-timing precipitation forcing approach was employed. In this forcing scenario, precipitation is

increased at only one tforcing within the event, while all other periods remain unchanged. Since the baseline scenario in this
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study corresponds to the period 1961-1990 and all numerical experiments were conducted for events occurring after 1990,185
there is no temporal overlap between the two periods. Consequently, the baseline remains fixed throughout all gradient-

based numerical experiments. The forcing approach for a given event (1991-2020) is expressed as follows:

��������� = ���������� + � × ��� �� , � = 0, 5%, 10%, . . . , 100% (2)

Where ��������� is the precipitation in the targeted month after applying the forcing, ���������� is the actual precipitation in

the same month under the baseline (unforced) scenario, ��� �� is the long-term mean monthly precipitation, and � × ��� �� is the

applied precipitation forcing.190
As described above, applying precipitation forcing alters the DS of the corresponding MYD event. Therefore, the

relationship between ��������� and the resulting change in DS can be used to validate the existence of a nonlinear response

process.

Step 2: Construction of DMQM

To further parameterize the mitigation efficiency at individual tforcing of MYD, the following model was developed:195

�������

�������
= � ∙ 1 − ������ (3)

Where ������ (=
����������−���������

����������
, ���������� is the actual DS under the baseline scenario, and ��������� is the DS after

the precipitation forcing is applied) is the relative change in DS. ������ (= ���������−����������

����������
) is the relative change in

precipitation.

� is the mitigation efficiency coefficient, defined as the proportionality constant between the unit residual DS (unmitigated

DS) and the drought mitigation rate.200

It is clear that when no precipitation forcing is applied (������=0), there is no change in DS (������ = 0). Likewise, when

sufficient forcing is applied, the MYD is fully mitigated (������ = 1). Thus, the model is subject to the following boundary

and limiting conditions:

������ 0 = 0 (4)

���
������→∞

������ ������ = 1 (5)
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Thus, based on the differential equation 3 above and the boundary and limiting conditions in equations 4 and 5, the analytical

solution describing the relationship between ������ and ������ can be obtained as follows:205

������ = 1 − ��� −� ∙ ������ (6)

Step 3: Verification of parameter applicability

To verify the applicability of the parameter, its accuracy is assessed by comparing model-derived estimates with actual

values, as follows:

� =
��ℎ��������� − �������

�������
× 100% (7)

Where � is the relative error, ��ℎ��������� is the theoretical value, and ������� is the actual value.

4 Results210

4.1 Response relationship between DS and increased precipitation in China

The changes in DS are not proportional along the increasing precipitation gradient. Therefore, we developed the DMQM to

quantitatively capture this nonlinear response (as described in Section 3.4). Focusing on drought mitigation, the numerical

experiments were constrained to the tforcing range of DDP, with the minimum DDP among the selected MYD events being 8

months. Accordingly, t1, t2, ..., and t8, represent the first to the eighth month of MYD. The corresponding k values are215
denoted as k1, k2, ..., and k8, respectively. Within the same prrate range from 0 to 1, all timings from t1 to t8 exhibited a similar

nonlinear response pattern. However, the maximum DSrate (at prrate = 1) indicated that the most effective mitigation occurred

during t1 to t3 (Fig. 5). The values of maximum DSrate in the response curves for t1 to t3 were 0.60, 0.59, and 0.57,

respectively. Correspondingly, the values of k for t1 to t3 were 0.92, 0.88, and 0.84, respectively, with all R2 values exceeding

0.90. This result reflects the influence of Conceptual Model 1 as discussed in Section 3.4 (Fig. 4b), in which earlier rainfall220
replenishment has a greater capacity to reduce DS. In addition, we selected a gradient increase in prrate from 0 to 1 at tforcing as

a case to observe the corresponding changes in DSrate. Since PDSI values are negative during drought events, their absolute

values were used to facilitate clearer comparisons. As shown in Fig. 5, the drought mitigation process can be divided into

five stages based on a gradual increase in prrate from 0 to 1 (i.e., 0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, and 0.8-1.0). In the first stage,

when prrate increases from 0 to 0.2, the absolute PDSI value at prrate = 0.2 is lower than that at prrate = 0, indicating drought225
mitigation. In the second stage, as prrate increases from 0.2 to 0.4, the lower absolute PDSI value reached at the end of the

first stage (i.e., a milder drought) serves as the new starting point for this stage. Consequently, the initial absolute PDSI value

in the second stage is lower than that in the first stage, and the same pattern applies to subsequent stages. According to
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Conceptual Model 2 described in Section 3.4 (Fig. 4c), even when the increment in prrate is the same across two stages, a

lower absolute PDSI at the beginning of the stage (i.e., a milder drought) leads to a smaller increase in DSrate (Fig. 5). This230

explains the nonlinear response pattern observed between DSrate and prrate (
�(������)
�(������)

> 0, �2(������)
�(������)2 < 0) shown in Fig. 5. For

instance, the efficiency decline at t1 is illustrated by the blue shaded area in Fig. 5.

Figure 5: Nonlinear response of DS to precipitation during DDP in China. The blue area indicates the decline in mitigation
efficiency in t1 due to the nonlinear response of DS to precipitation, relative to the idealized linear response (i.e., the sustained235
efficiency scenario).

4.2 Validation of the mitigation efficiency coefficient in China

According to the DMQM constructed in Section 3.4, as the increment in prrate approaches zero, the corresponding DSrate also

approaches zero. Under this condition, the estimated value of k approaches the actual k. In other words, the actual k can be

approximated using a small value of prrate (such as prrate = 0.05) and its corresponding DSrate. Therefore, we calculated the240
actual values of k based on the DSrate at prrate = 0.05. These actual values were then compared with the theoretical k values

derived from the DMQM developed in Section 3.4, at the grid scale. The comparison helped to validate the applicability of

the theoretical model under varying spatial conditions. Fig. 6a shows the spatial distribution of � across all given grids, with

72.86% exhibiting a � below 5%. This high consistency suggests that the theoretical model provides reliable estimates of

drought mitigation efficiency across diverse regions. For each grid, the kmax (corresponding to the value of k at tc) value was245
first identified. Fig. 6b then illustrates the spatial pattern of the corresponding tforcing at which the kmax occurs across the study

area. Generally, t1 dominates, accounting for 58.79% of the grids. Nonetheless, t2 and t3 are also non-negligible, representing
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22.11% and 11.06%, respectively. Accordingly, we further investigate these timing-related spatial variations at the basin

scale. Overall, a strong positive correlation was observed between the theoretical and actual values, with R2 values exceeding

0.90 for t1, t2, and t3 across the ten river basins in China (Fig. 6c-e). The comparison results for each month revealed no250
significant deviation from the 1:1 reference line, with slopes of 1.063, 1.060, and 1.037 for t1, t2, and t3, respectively (Fig. 6c-

e). These results demonstrate the robustness and applicability of the theoretical values at both the grid and river basin scales.

For this reason, the DMQM was further employed to investigate drought mitigation efficiency at different tforcing. Particular

attention was given to how this efficiency varies when insights from Conceptual Model 1 and Conceptual Model 2 are

jointly considered. This quantitative model was also used to identify toptimal for rainfall replenishment across t1, t2, and t3.255

Figure 6: Verification of the applicability of k. (a) Spatial distribution of � for each grid. (b) Spatial distribution of the timing at
which the kmax occurs in each grid. The inset shows the frequency histogram of the timings of kmax values across all grids. (c-e)
Median actual versus median theoretical k values for the ten major river basins in (c) t1, (d) t2, and (e) t3. The red dashed line is the
1:1 line. The black solid line is the fitted line based on values from 10 river basins. Orange crosses are the values for individual260
river basins.

4.3 Quantification of the relationship between mitigation efficiency and rainfall replenishment timing in China

To identify toptimal in various river basins during t1, t2, and t3, a series of numerical experiments were conducted using the

DMQM. Fig. 7 presents the spatial distributions of the changes in k between t2 and t1 (∆�21 = �2 − �1), and between t3 and t1
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(∆�31 = �3 − �1 ). To enable a clearer comparison between negative values, their absolute values were used. Notably, the265

larger absolute values of negative ∆� ( ∆� < 0 ) were mainly observed in the humid river basins of southern China,

particularly in the Pearl River and Yangtze River basins (Fig. 7 and Table 1). By comparison, smaller absolute values of

negative ∆� were detected in the arid and semi-arid northern regions of China, particularly in the Liao River basin (Fig. 7

and Table 1). Moreover, in 118 out of 199 grids (59.30%), the absolute values of negative ∆�31 were larger than those of

∆�21 (Fig. 7 and Table 1). This disparity indicates that, in most occurrences of MYD, implementing drought mitigation270
measures (such as increasing effective precipitation) during the early stage of MYD events is more effective in reducing

drought risks, as described in Conceptual Model 1 in Section 3.4 (Fig. 4b). Meanwhile, as shown in Fig. 7, we found that 74

out of 199 grids (37.19%) exhibited at least one positive value in either ∆�21 or ∆�31 . These results indicate that, in a non-

negligible portion of grids, implementing drought mitigation measures at t1 is not the optimal choice, as described in

Conceptual Model 2 in Section 3.4 (Fig. 4c).275

Figure 7: Spatial distribution of the changes in k (∆�). (a) Change in k between t2 and t1 (∆���). (b) Change in k between t3 and t1
(∆���).

These experiments also aimed to identify the key drought characteristics responsible for the variation in tforcing. To this end,

we summarize the probability density function (PDF) of ∆�21, and ∆�31 for all of MYD events (Fig. 8 and Table 1). The ∆�280

values exhibit a roughly normal distribution across river basins (Fig. 8). The median values of both ∆�21 and ∆�31 are

negative in 9 out of 10 basins, with the median of ∆�31 being lower than that of ∆�21 (Table 1). In most basins, the standard

deviation of ∆�31 is also larger than that of ∆�21 , indicating greater variability in the efficiency difference between t3 and t1

(Fig. 8). These results suggest that the efficiency advantage of early rainfall replenishment ( �1 > �2 and �1 > �3 ). As

emphasized by Conceptual Model 1, earlier drought mitigation yields greater effectiveness. This advantage becomes more285

pronounced when comparing t1 and t3. However, positive ∆�21 and ∆�31values were found in 33.67% and 23.12% of all

grids, respectively (Fig. 7a and 7b). Similar results were also evident in the PDFs for all of China and each individual basin

(Fig. 8). These results suggest the non-negligible role of Conceptual Model 2. Longer DD tends to be associated with ∆�
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values closer to or even above zero (Fig. 8 and Table 1). In particular, the Liao River, with a second longest DD of 28

months (����� �ℎ��� = 21 ����ℎ�), shows median ∆� values of 0.022 for ∆�21 and 0.003 for ∆�31 (Fig. 8 and Table 1). In290

contrast, the Pearl River, characterized by a shorter DD of 19 months, exhibits more negative median ∆� values of -0.162

and -0.200 for ∆�21 and ∆�31 (Fig. 8 and Table 1), respectively.

Figure 8: Spatial distribution of drought duration from 1990 to 2020 across the 10 river basins in China. Surrounding panels show
the probability distribution of ∆� for all of China and each basin. Specifically, the orange lines represent ∆���, and the green lines295
represent ∆��� . The x-axis in each panel denotes ∆�, while the y-axis denotes probability. The number in the upper-right corner of
each panel indicates the basin code.

300
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Table 1: Summary of the median values of DD and ∆�, including ∆���, ∆���, and ∆��� = �� − �� , across the ten river basins and
all of China.

River basin DD (Months) P50 (∆���) P50 (∆���) P50 (∆���)

Songhua River 22 -0.091 -0.235 -0.142

Liao River 28 0.022 0.003 -0.024

Northwestern Rivers 17 -0.071 -0.152 -0.087

Hai River 29 -0.083 -0.110 -0.053

Yellow River 21 -0.069 -0.111 -0.090

Yangtze River 19 -0.145 -0.250 -0.127

Huai River 23 -0.081 -0.141 -0.042

Southeastern Rivers 14 -0.024 -0.196 -0.077

Southwestern Rivers 21 -0.148 -0.148 -0.083

Pearl River 19 -0.162 -0.200 -0.063

All of China 21 -0.080 -0.166 -0.094

Note: red and blue numbers indicate the maximum and minimum value of P50 for ten river basins in China, respectively.

To further investigate the influence of DD, an equal-width binning method was applied to examine the variation of ∆� under305
different DD values. Specifically, the original DD values of the selected MYD events ranged from 13 to 51 months. These

events were grouped into bins according to their DD values. To ensure the robustness of the results (each bin contained no

fewer than 10 events), the DD range was limited to 13 to 40 months, and the bin width was set to 4 months. This setting

yielded a total of seven bins (Fig. 9). We calculated the median values of both ∆� and DD within each bin. As shown in Fig.

9, we found a positive correlation between DD and ∆�, with R2 values of 0.526 and 0.578 for ∆�21 and ∆�31 , respectively.310

Notably, when DD exceeds 29 months (as shown in Fig. 9), the ∆� values approaching zero, indicating that the mitigation

efficiencies of t2 and t3 become comparable to that of t1. In contrast, when DD is shorter (around 17 months, as shown in Fig.

9), t1 demonstrates notably higher mitigation efficiency than t2 and t3. These results suggest that DD is a key indicator for

determining toptimal for drought mitigation.
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315

Figure 9: Median ∆� of MYD under different DD. The orange line represents ∆��� , and the green line represents ∆��� . Shaded
areas indicate half the standard error as the confidence interval.

To clarify the mitigation advantages of the composite toptimal (tc, defined in Section 3.4), both Conceptual Model 1 and

Conceptual Model 2 (as discussed in Section 3.4) were considered. Fig. 10 and Table 2 present a comparison between the

mitigation efficiency of tc and those of ta and tb (defined in Section 3.4). The corresponding k at ta (k1), tb (kPIP), and tc (kmax)320

exhibit differences. For simplicity, we define two ratios, ���� �1 and ���� ���� , to quantify the differences in k between tc

and ta, and between tc and tb, respectively. In terms of magnitude, ���� �1 is typically close to 1, while ���� ����

consistently exceeds 2 (Table 2). From the perspective of Conceptual Model 1, t1 tends to dominate (Fig. 10a and Table 2).

Nevertheless, the presence of grids with ���� �1 > 1 suggests toptimal > 1 should not be overlooked (Fig. 10a). At the basin

scale, t1 dominates in most regions, except in the Liao River basin, where the median ���� �1 reaches 1.135 (Table 2). In325
contrast, the comparison with Conceptual Model 2 suggests that tc offers a more substantial advantage in mitigation

efficiency compared to tPIP (Fig. 10b and Table 2). This advantage is particularly pronounced in the Liao River and Songhua

River basins, where the median ���� ���� values reach 15.430 and 12.555, respectively. By contrast, the advantage of tc is

less evident in the Southeastern River and Hai River basins, with median ���� ���� values of 3.428 and 2.413, respectively.
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330

Figure 10: Spatial distribution of the ratios in k from the perspective of Conceptual Model 1 (�������� → ��) and Conceptual Model
2 (�������� → ����). (a) The ratio of k between the tc and t1 (���� ��), (b) the ratio of k between the tc and tPIP (���� ����).

Table 2: Summary of the median values of ���� �� and ���� ���� across the ten river basins and all of China.

River basin P50 (���� �1) P50 (���� ����)

Songhua River 1.000 12.555

Liao River 1.135 15.430

Northwestern Rivers 1.023 7.677

Hai River 1.000 2.413

Yellow River 1.001 4.932

Yangtze River 1.000 4.704

Huai River 1.000 3.707

Southeastern Rivers 1.000 3.428

Southwestern Rivers 1.069 6.539

Pearl River 1.000 3.429

All of China 1.000 6.979

Note: red and blue numbers indicate the maximum and minimum value of P50 for ten river basins in China, respectively.

335
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5 Discussion

5.1 MYD mitigation response to increased precipitation

Current studies on precipitation-based drought mitigation have primarily focused on early intervention (DeChant and

Moradkhani, 2015; Livneh and Hoerling, 2016; Wu et al., 2018). Yang et al. (2017) integrated early precipitation340
replenishment with drought-induced losses and concluded that earlier interventions are more effective in mitigating drought

impacts. This is consistent with the discussion of Conceptual Model 1 in Section 3.4. However, due to the statistical

properties of standardized drought indices, more severe drought conditions are often associated with higher mitigation

efficiency under increased precipitation (Fig. 1). Zhang et al. (2024) highlighted that extremely dry conditions tend to exhibit

a higher probability of drought recovery under the same level of increased precipitation. This finding can be explained by345
Conceptual Model 2 presented in Section 3.4. The nonlinear pattern in DS response to increased precipitation (Fig. 1 and Fig.

5) can be more comprehensively understood by jointly considering these two conceptual models. To further clarify this

relationship, we derived response curves at different tforcing (Fig. 5) based on the DMQM developed in Section 3.4. Under the

same precipitation forcing, a higher value of k at a given tforcing indicates greater mitigation efficiency. Our findings reveal

that the toptimal of MYD ranges from t1 to tPIP (Fig. 10 and Table 2).350
Consistent with several existing studies (Pan et al., 2013; Haile et al., 2020), t1 remains the dominant toptimal across China.

However, we noted that t2 and t3, while occurring later than t1, are still non-negligible in the early stage of MYD. Spatially,

the grids where t2 and t3 are dominant account for 22.11% and 11.06% of all grids, respectively (Fig. 6b). According to the

classification of climate zones based on average annual precipitation (Yang et al., 2022), compared with the humid river

basins in southern China, the arid and semi-arid northern regions exhibited a higher probability that mitigation efficiency in355
response to increased precipitation at t2 and t3 exceeds that at t1 (Fig. 7 and Fig. 10a). We noticed that the Liao River basin

(semi-arid basin) and Pearl River basin (humid basin) exhibited relatively high and low MYD mitigation efficiency,

respectively. This may be attributed to the generally more severe drought conditions in the Liao River basin compared to

those in the Pearl River basin (Huang et al., 2019; Lai et al., 2024; Zhang et al., 2025). Due to the characteristics of

standardized drought indices (as discussed in Sections 1 and 3.4), increased precipitation tends to be more effective in360
mitigating drought impacts in the Liao River basin. This conclusion was consistent with previous findings (Zhang et al.,

2024; Wang et al., 2025), showing the importance of earlier rainfall replenishment for mitigating MYD in the humid basins

of China. In a word, understanding MYD mitigation responses to increased precipitation is essential for guiding more

targeted and effective drought mitigation strategies, ensuring that interventions are both timely and regionally appropriate.

5.2 Factors influencing MYD mitigation efficiency365

Recent studies have shown that droughts are increasing in both frequency and severity (Dai, et al., 2020; Fischer, et al., 2025;

Gebrechorkos, et al., 2025). Similarly, Chen et al. (2025) highlighted that MYDs are also becoming more frequent and

severe at global scales. To further characterize the dynamic evolution of MYD, three commonly used indices include DD,
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DS, and DI. Among these, DD is a key factor for identifying MYDs, as MYDs are typically defined by a duration exceeding

12 months (Massari et al., 2022). DS represents the overall impact of MYD, while DI is related to the onset timing of the370
recovery stage. In current studies, standardized drought indices are commonly used to quantify drought severity (Mishra and

Singh, 2010). According to the statistical characteristics of the normal distribution (Dai, 2011), drought indices responses to

identical precipitation inputs can vary considerably depending on drought severity. This aligns with Conceptual Model 2

presented in Section 3.4, where small increases in precipitation have the potential to induce substantial shifts toward

recovery when the index deviates far from zero. Our findings further indicate that t1 and tPIP of MYD do not coincide,375
especially in longer-duration MYD, where tPIP tends to occur much later than t1. With that in mind, we examined the

relationship between DD and k. Our results demonstrate a positive correlation between DD and k in MYD (Fig. 8 and Fig. 9).

Specifically, basins in northern China, characterized by longer DD, tend to have a higher probability of t2 or t3 being the

toptimal in contrast to southern basins with shorter DD (Fig. 8 and Table 1).

5.3 Limitations and uncertainties380

Droughts are not only influenced by pr, but also by other non-precipitation factors such as wind speed, air temperature,

radiation, and relative humidity, among others. These non-precipitation factors are widely used to estimate potential

evapotranspiration (Gebrechorkos et al., 2025). However, this study focuses solely on pr. This is primarily because drought

mitigation mainly depends on the effective management and allocation of available water resources. In future studies, the

performance of the framework could be further enhanced by considering these non-precipitation factors. It is essential to385
recognize that our study is a retrospective analysis based on historical MYDs. This study provides a framework for

identifying toptimal at the early stage of MYD development in drought early warning systems. However, determining whether

a drought event would develop into an MYD at an early stage remains a major challenge (Xu et al., 2021; Gumus, 2023).

This challenge arises from the complexity of the factors influencing the development of droughts into MYDs. Furthermore,

this study currently focuses solely on meteorological drought. Research on other types of drought, such as agricultural,390
hydrological, and socio-economic droughts, will also be a key focus in future studies. Future research should evaluate the

applicability of our framework to other types of drought. To this end, it is also necessary to further optimize the framework

by fully considering additional influencing factors (Tian et al., 2022; Wu et al., 2022; Meresa et al., 2023).

6 Conclusion

This study applied a series of numerical experiments involving pr gradient increases to investigate toptimal of drought395
mitigation for 351 historical MYDs across ten river basins in China, based on PDSI derived from daily meteorological data

(1961-2020). Following these experiments, we developed the DMQM, a single-parameter model designed to quantify

mitigation efficiency through the key coefficient, k, with toptimal identified as the timing corresponding to kmax. The main

conclusions can be summarized as follows:
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(1) We revealed a nonlinear response relationship between DS and precipitation forcing applied incrementally along a400
gradient. This nonlinear response is well characterized by the DMQM, as shown by close alignment between model

estimates and actual values (slopes of 1.063, 1.060, and 1.037 for t1, t2, and t3 along the 1:1 reference line), confirming its

reliability in quantifying mitigation efficiency.

(2) While t1 remains the dominant toptimal in most regions, accounting for 58.79% of all grids, t2 and t3 are also non-negligible,

accounting for 22.11% and 11.06%, respectively. These findings indicate that although early-stage drought mitigation405
measures during t1 is generally more effective in reducing drought risks, a non-negligible portion of grids suggest that t1 is

not always optimal, and delayed rainfall replenishment at t2 or t3 can yield better outcomes under certain conditions.

Compared to the humid river basins in Southern China, the arid and semi-arid northern regions exhibited a higher probability

that the k at t2 or t3 would exceed that at t1.

(3) DD is a key factor for determining toptimal for drought mitigation, as MYDs are typically defined by a duration exceeding410
12 months. Longer DD was associated with a greater likelihood of t2 or t3 being the toptimal, evidenced by R2 values of 0.526

and 0.578, respectively. When DD exceeds 29 months, the mitigation efficiencies of t2 and t3 become comparable to that of t1.

With the increasing frequency and severity of MYDs in the future, our findings can offer methodological guidance for

designing more targeted and effective mitigation strategies, ensuring that rainfall replenishment measures are both timely

and regionally appropriate.415
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