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Abstract. Aethalometers measure black carbon mass concentrations by monitoring light attenuation through a particle filter 

as it becomes laden with aerosols. As the uncertainties in the resulting measurements are not easily quantified via a bottom-up 

traceable approach, there is a need for inter-device comparisons to provide operationally defined uncertainties. The present 

work compared five micro-aethalometers to known mass concentrations of laboratory-generated soot, formed using an inverted 

ethylene flame and a Centrifugal Particle Mass Analyzer-Electrometer Reference Mass Standard (CERMS). Uncertainties 15 

were found to scale with mass concentration, with multiplicative errors between devices of approximately 10 % in the best 

case of long sampling times and/or high mass concentrations. A quantitative expression is provided for the uncertainty in the 

aethalometer measurements as a function of mass concentration, sampling interval, and flow rate. An open-source algorithm 

is also provided for the unsupervised reanalysis of aethalometer or other filter photometer data over varying periods to reach 

a specified target uncertainty. 20 

1. Introduction 

Typical filter photometers measure the light attenuation of a particle-laden filter, from which a reasonably accurate 

measurement of aerosol light absorption or equivalent mass can be derived (Lack et al., 2014; Moosmüller et al., 2009). Such 

light absorption measurements are obtained by assuming a proportionality between light attenuation and absorption, which 

can then be used to estimate the radiative properties of the atmosphere. Alternatively, by assuming a proportionality between 25 

light absorption and mass (i.e., a mass absorption cross-section, σMAC) photometer data can be used to estimate equivalent 

black-carbon mass (eBC) (Petzold et al., 2013) for use in human exposure assessments (Weichenthal et al., 2015). These 

assumed constants of proportionality are in fact subject to variability with particle size and mixing state (Nakayama et al., 

2010; Drinovec et al., 2015) as well as spurious eBC signals when attenuation is caused by light scattering rather than 

absorption (Drinovec et al., 2015). Nevertheless, filter photometers remain widely used due to their low cost, low weight 30 

(advantageous for both aircraft and personal exposure studies), and ability to measure at multiple wavelengths (Chakraborty 

et al., 2023; Pikridas et al., 2019; Caubel et al., 2018). 
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The accuracy of filter photometers has been evaluated by multiple studies. It is well known that the proportionality between 

filter attenuation and particulate light absorption is sensitive to the absolute attenuation of the filter, which has been formulated 

in terms of correction factors – such as an empirical correction factor, R (Weingartner et al., 2003), and a correction factor for 35 

loading, k (Virkkula et al., 2007) – using various algorithms, some of which take into account scattering cross-sensitivities 

(Collaud Coen et al., 2010). This issue has been addressed recently by dual-spot photometers which sample in duplicate at 

different flow rates (Drinovec et al., 2015). Accuracy may also be affected by particle size and morphology. Nakayama et al. 

(2010) measured the response of a particle soot absorption photometer (PSAP) and a continuous soot monitoring system 

(COSMOS) to nigrosine aerosols of different sizes. Those authors showed that the attenuation-to-absorption conversion 40 

function depends on particle size. The spherical morphology of nigrosine allowed those authors to use Mie theory as a 

reference. In contrast, for AE33 aethalometers, Drinovec et al. (2015) used nephelometer measurements as a reference and 

reported that attenuation-to-absorption conversion did not depend greatly on particle size. These correction factors are not 

perfect. For example, rapid changes in gas-phase composition such as humidity spikes can also lead to measurement biases, 

as has been shown for three different filter photometer models (AE51, MA200, and PSAP) (Düsing et al., 2019; Cai et al., 45 

2014; Arnott et al., 2003). 

Independently, the mass absorption cross-section σMAC is known to vary between samples. For example, the σMAC of soot 

at 550 nm wavelength for mass-integrated samples may vary from 8.0 ± 0.7 m2 g-1 (Liu et al., 2020) up to about 14 m2 g-1 due 

to intraparticle scattering (“lensing effect”) upon condensation of semi-volatile materials on soot (Cappa et al., 2019; Fierce et 

al., 2020). Extremely small soot particles may also have smaller MACs (Corbin et al., 2020). The conversion of light absorption 50 

to eBC is also complicated by the presence of light-absorbing carbon other than soot, including soluble brown carbon and tar 

brown carbon (“tarballs”), which can absorb even in the infrared (McMeeking et al., 2014; Chakrabarty et al., 2023; Cheng et 

al., 2024; Corbin et al., 2019). Nevertheless, these issues reflect the complexity of atmospheric aerosols rather than limitations 

of the filter-based approach. 

In addition to the fundamental physical uncertainties discussed above, uncertainties for filter photometers may also be 55 

considered in terms of measurement reproducibility between instruments. Cuesta-Mosquera et al. (2021) compared 23 dual-

spot Magee AE33 aethalometers and reported roughly ± 10% reproducibility between instruments. Chakraborty et al. (2023) 

compared three AethLabs MA300 micro-aethalometers with an AE33 aethalometer and reported strong correlations of R2 = 

0.9. The latter study did not report its results in terms of between-instrument reproducibility, and both studies used other 

aethalometers as references, rather than reference measurements of eBC concentration or light absorption.  60 

The intercomparison studies summarized above report overall comparisons, but do not present quantitative uncertainty 

models representing between-instrument reproducibility for aethalometers. Such models allow for uncertainty evaluations 

under such scenarios as changing sample flow rate or mass concentrations. When developed using reference measurements of 

mass concentration (as done here) or light absorption, such models also allow for the evaluation of aethalometer biases, in 

contrast to aethalometer-only intercomparisons. In this study, we report a laboratory characterization of the reproducibility of 65 

five micro-aethalometers (Aethlabs MA200 and MA300) using non-volatile soot aerosols. We quantify reproducibility 
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between devices and between filter changes and formulate a simple error model for uncertainty estimation in future micro-

aethalometer measurements. A corollary of this error model is that it can be used to estimate the optimal aethalometer sampling 

time for a given mass concentration. An algorithm to implement this optimal sampling time, based on earlier work by Hagler 

et al. (2011) is presented. Since our aerosol model represents a simple source of eBC, with negligible content of non-absorbing 70 

PM and stable gas-phase composition, our results provide a lower limit on between-instrument reproducibility.  

2. Experimental setup 

We tested five microAeths (two MA200, three MA300, AethLabs, USA) that were previously deployed at ambient monitoring 

sites across Canada. The aethalometers were collected and placed in a metal chamber with a circulation fan to ensure even 

mixing for testing. The equivalent black carbon (eBC) mass concentration from the aethalometers is derived from (Drinovec 75 

et al., 2015) 

a MAC c

d ATN 1 1

d 1 ATN

 
=  

 −  

S
M

t Q C k
 , (1) 

where M is the eBC mass concentration; ATN is the attenuation through the filter; t is time; Qa is the flow rate through the 

aethalometer filter, after accounting for leakage; S is the cross-sectional area of the filter; σMAC is the mass absorption cross 

section or coefficient (m2/g); C is an optical absorption enhancement factor, accounting for apparent enhancement of the 

absorption, mostly due to light scattering by both the particles and filter; and kc is the dual spot correction factor accounting 80 

for attenuation effects on the filter, which is defined in (Drinovec et al., 2015). The correction factor is taken as that provided 

by the instrument firmware and applied during post-processing. In practice, the mass concentration is computed over a sample 

interval and the attenuation mass attenuation cross section is rewritten in terms of particle and filter properties,  

a MAC c

ATN 100 1 1

1 ATN

 
  

 −  



 

S
M

t Q C k
 , (2) 

where Δt is the sampling interval and ΔATN is the change in the attenuation over that interval, with the factor of 100 allowing 

for consistency with the original definition of Gundel et al. (1984). Initially, we consider the minimum sampling interval of Δt 85 

= 10 s.  

It is further noted that Eq. (2) can be phrased in terms of a change of particulate mass Δm on the filter in a given time 

interval, where  

a 
=





m
M

Q t
 , (3) 

such that 
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c
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S
  (4) 

where Δm is the mass collected on the filter in each time interval. This formulation of the aethalometer response allows for the 90 

uncertainty associated with sample flow and sampling duration to be considered independently from uncertainties associated 

with the amount of mass loaded onto the filter. It also results in fundamentally meaningful units of mass for the analysis below.  

For testing, the aethalometer chamber was periodically filled with soot, after which the inlet to the chamber was closed 

and the concentration of particles in the chamber was allowed to decay slowly over time, as shown in Figure 1. BC particles 

were generated using a Mini Inverted Soot Generator operated on ethylene (MISG; Argonaut Scientific; (Kazemimanesh et 95 

al., 2019)). The particle stream was passed through a unipolar charger (Unipolar Diffusion Aerosol Charger, UDAC; 

Cambustion Ltd, UK) with an ion-concentration time product of 5x1012 s/m3, and a Centrifugal Particle Mass Analyzer 

(CPMA; Mk II, Cambustion; (Olfert and Collings, 2005)), which selects particles of a narrow range of mass-to-charge ratios. 

Particles are then directed to the experimental chamber. Flow leaving the experimental chamber is passed to a Faraday cup 

aerosol electrometer (FCAE; 3068B, TSI), which measures the total current. The flow rate in the FCAE was controlled with 100 

an external mass flow controller (MCP-10SLPM-D/5M, Alicat Scientific, USA). Given that the particles were previously 

classified by the CPMA and thus have a fixed mass-to-charge ratio, the mass concentration in the chamber can be computed 

as  

*

c

=
m I

M
eQ

 , (5) 

where M is the mass concentration (μg/m3), m* is the CPMA mass-to-charge setpoint (fg), I is the measured electrometer 

current (fC/s), e = 0.1602 aC is the elementary charge, and Qc is the flow rate through the FCAE (cm3/s) (Symonds et al, 2013). 105 

For all experiments, the CPMA was set to a single setpoint, a mass-to-charge setpoint of m* = 0.4 fg/e and a resolution of 

Rm = 5. The FCAE flow rate was fixed at Qc = 1 L/min (with temperature and pressure near ambient conditions).  

To calculate the amount of mass expected to be collected on the aethalometer filter, we applied Eq. (3) to the reference 

mass concentration from the CERMS,  

*

c a

c

 
=   

 


m
Q t

Q
m

I

e
 , (6) 

where Δt and Qa correspond to the aforementioned aethalometer sampling interval and flow rate. Note, if Qa·Δt is given in mL 110 

and the mass concentration in μg/m3, Δm will be returned in pg.  

A scanning mobility particle sizer (SMPS) – composed of an electrostatic classifier (3082, TSI), a differential mobility 

analyzer (3081, TSI), and an Ultrafine Condensation Particle Counter (3776, TSI) – was situated downstream and indicated 

that the size distribution had a geometric mean mobility diameter of 235 nm and geometric standard deviation of 1.53. This 
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distribution was unimodal, and did not show multiple-charging effects, because the multiple charges imparted to each particle 115 

from the UDAC results in blurring of such effects (Sipkens et al., 2023). 

 

 

 

Figure 1. Experimental setup wherein a reference mass produced by the CERMS is used to feed a known mass concentration of soot 120 
particles into chamber containing a series of aethalometers.  

 

3. Results and discussion 

Figure 2 shows data from one of the aethalometers (Device 1). Measurements clearly show the periodic nature of the 

measurements, where the aethalometer chamber is filled with particles, following which the concentration in the chamber is 125 

allowed to decay over time. Two instances of the tape changing in the aethalometer are also visible when the mass 

concentrations were high. Only dual-spot corrected data is used in the analysis (i.e., when ATN > 3, as measurements of 3 < 

ATN < 70 are dual-spot corrected and the filter changes when ATN = 70). This choice was made because of the low volume 

of data and because correction factors were not provided by the instrument software when ATN < 3. 

 130 
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Figure 2. Mass concentrations reported by a single aethalometer (Device 1) at a sampling interval of 10 s. The periodic filling of the 

box with particles is clearly visible, as well as the change of the tape for two cases where the mass concentrations in the box were 

high. (c) A subset of the data from Day 2, focusing on data around a tape change, including data where ATN < 3. Inspection shows 

the reduction in the noise when ATN < 3, where the dual-spot algorithm is not yet applied to the data.  135 

 

3.1. Types of variability in aethalometer data 

Figure 3 shows scatter plots of the mass collected by the aethalometer (over 10 s sampling intervals, corresponding roughly to 

5-minute sampling intervals at M = 0.3 μg m-3; Eq. (4)) against that measured by the reference, as well as the difference and 

ratio between the two measurements. The collected mass is correlated as expected, roughly distributed about the line of parity. 140 

In this subsection, we first make several observations from these plots before proposing a quantitative aethalometer uncertainty 

model in the next subsection.  
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 145 

Figure 3. Comparison of eBC mass reported by the aethalometers to reference (CERMS) mass measurements. The upper row 

indicates parity plots, (a) using a linear scale and (b) using a log scale. Bottom panels show (c) the difference between the reference 

and aethalometer mass and (d) percentage difference between the CERMS reference and aethalometer mass concentrations, 

calculated as Δma / Δmc – 1. Data have been thinned by a factor of three (every third data point is plotted) for visualization. 

Measurements taken when the attenuation was below 3 are excluded. Green annotations indicate model fits derived later in this 150 
work.   

 

(1) At low mass concentrations, variability in the measurements exhibited a consistent spread on a linear scale (cf. the 

left portion of Figure 3c where Δmc < 300 pg), consistent with additive, Gaussian noise. Based on inspection of the 

raw data where no dual-spot correction was applied (cf. Figure 2c), we attribute this Gaussian noise to the correction 155 

factor, kc. We denote the standard error of the mass concentration-independent, Gaussian noise level as γ. We note 

that the correction effectively removed biases due to attenuation, with structured artifacts as a function of attenuation 

appearing in the measurements when not correcting the data (cf. Figure 2b). Thus, while the correction was found to 
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contribute considerable uncertainties, the correction is essential to ensuring that a correct (unbiased) mass 

concentration is returned, as has been well established (Drinovec et al., 2015). 160 

(2) As the mass concentration increases, the absolute error expands (cf. Figure 3c), while the relative error decreases (cf. 

Figure 3d). The growth in the errors seems consistent with Poisson noise and such noise is a logical addition. Poisson 

noise would result when considering the discrete arrival of particles at the filter over a given interval. As the particle 

counts should be high, the noise should be well-approximated as Gaussian but with a variance that scales with 

collected mass. Mathematically,   165 

2

p = s p m  , (7) 

where sp
2 is the variance due to Poisson noise and p is a factor indicating the significance of the Poisson noise, and 

stems from the fact that raw counts would be scaled to obtain a mass. 

(3) While not explicit in Figure 3, a second source of Poisson noise could stem from photon shot noise in the detector. 

For a given sampling interval, this noise will not vary significantly across the observations. However, unlike the 

previous source of Poisson noise, this source of Poisson noise will increase with the sampling interval, as more 170 

photons will be collected by the detector. Combined with (1) and (2), this would suggest that the random scatter in 

Figure 3 (and, by extension, Figure 5 later in this work) can be modeled as  

( ) ( )( )2

0var  +   = m tp te  , (8) 

where e denotes the random measurement error, which constitutes an error term under repeatability conditions (i.e., 

the noise observed when sampling a stable aerosol); Δt is the sampling interval; and Δt0 is a reference sampling 

interval that acts to normalize the contribution (Δt0 = 10 s in the current work).  175 

(4) Device effects (i.e., biases for a specific device) present as multiplicative errors. Such errors manifest in a difference 

between the aethalometers and reference mass that scale with mass and a ratio that has a roughly constant spread (cf. 

Figure 3b and d). This choice also matches the observations of previous studies of Magee AE31 Aethalometers 

(Cuesta-Mosquera et al., 2020). Due to the multiplicative nature of the device effects, they are not discernible at low 

mass concentrations, where the Gaussian and Poisson noise terms dominate. However, at high mass concentrations, 180 

there is some stratification where some aethalometers measured higher than others and vice versa. The multiplicative 

nature of the inter-device error is an indication of an error that comes from fluctuations in a contribution that is 

multiplied by the quantity-of-interest (e.g., flow rate discrepancies, or filter leakage terms; see also (Drinovec et al., 

2015)).  

(5) There is a systematic, additive bias in the measurements at low mass concentrations, manifesting as an offset in the 185 

y-axis that is particularly visible in Figure 3c (horizontal green line). Reanalysis of the data showed that this bias is 

directly proportional to the sampling interval Δt in Eq. (6). This offset has not been identified in previous aethalometer 

intercomparisons that included only filter photometers (Cuesta-Mosquera et al., 2020; Chakraborty et al., 2023), or in 
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which the analysis forced fits through the intercept (Cuesta-Mosquera et al., 2021). In our data, this bias seems to be 

consistent across all the measurements, that is the aethalometers themselves are self-consistent, which remains 190 

consistent with previous work. A common bias across aethalometers could be caused by biases in reference mass 

concentrations. The precise cause of this offset is not currently understood and will be treated naively as a bias in the 

model.  

(6) Inaccuracy in any of the multiplicative terms in Eq. (2), including the MAC, flow rate (or leakage of the aerosol flow), 

and loading correction would manifest as a systematic, multiplicative error. In other words, if the MAC used by the 195 

device is 10% larger than it should be, this would contribute to the aethalometer-derived mass concentrations being 

10% lower than CERMS mass concentrations across the domain. This kind of error is different to those described in 

(1) and (2) above, as a fixed inaccuracy results in a systematic bias, not random noise. Fitting a model with this kind 

of multiplicative bias indicated this effect was negligible for the IR channel, such that this value was not considered 

in subsequent analysis. This would suggest that the applied conversion to mass concentration by the device is 200 

reasonable.  

(7) While not shown in Figure 3, it is noted that the attenuation coefficient has minimal effect above an attenuation of 3, 

that is following an initial period after the tape changed. Below this point, the data was not corrected (cf. Figure 2) 

such that fitting was performed neglecting these data.  

These observations support a model for the aethalometer response of the form:  205 

( )   ( )c ca c a +  = + + jj Q t lm em m m   (9) 

where Δma(j) is an aethalometer measurement from the jth device; Δmc is the expected change in mass on the filter, computed 

here from the reference (CERMS) mass concentrations; β is an additive bias in the measurements, accounting for the y-offset 

observed in the parity plots, and is a function of Qa and Δt according to Eq. (8); lj is a device-specific bias, analogous to the 

laboratory effect in an interlaboratory study (ISO, 2019); and e(Δmc) is the measurement error defined in Eq. (8).  

3.2. Model fitting and uncertainty quantification 210 

The model is fit within the Bayesian framework, which encodes prior knowledge in terms of probability distributions. The 

framework is based on Bayes’ equation  

( ) ( ) ( )po li pr, | | , ,p p p θx bθ θb x x  , (10) 

or, in logarithmic form,  

( ) ( ) ( )po li pr 0ln , | ln | , ln ,= + +p p p Cx b b x θxθ θ  , (11) 
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where pli(b|x,θ) is the likelihood, used to relate the observations to the mixed effects model; ppr(x,θ) is the prior, describing 

information known about the parameters a priori; ppo(x,θ|b) is the posterior, which is used to compute the expected value of 215 

and uncertainties in the various model parameters; and C0 is a constant to yield a properly scaled posterior probability density 

function. Within this formulation, there are added nuisance parameters, θ = [sl
2, γ, p], which here corresponds to the unknown 

inter-device variance, sl
2, and the error model parameters from Eq. (8). These quantities are inferred alongside the effects in x.  

In order to fit the uncertainty model given in Eq. (9), we arrange each effect into a vector, 

 
T

1 2 3 4 5, , , , ,= l l l l lx  , (12) 

where the five device-specific biases 𝑙𝑗 correspond to the five devices considered in this study, and β corresponds to any bias 220 

consistently observed between the aethalometers and the reference. We then arrange the measurement data as a vector as b,  

  ( ) ( )
TT

1 2 a,1 1 c, c21 ,1 2a ,, , , , = = − −    m m mb j mb jb  , (13) 

where Δma,i(ji) is the ith Δma measurement made with the jith device. The matrices x and b may be related one another by a 

design matrix, D, and a random-error matrix, e, such that 

= +b Dx e  , (14) 

where e compiles the random measurement errors. Eq. (14) is formulated such that the ith row in D, denoted as di, corresponds 

to a single measurement, and will be mostly zero, since the effects in x are device specific. For example, the di corresponding 225 

to any measurement corresponding to the 1st device would be,  

 a c, , 0, 0, 0, 0 =i mQ td , (15) 

where the detailed uncertainty terms representing Poisson, Gaussian, and multiplicative noise discussed in Section 3.1 are 

represented within Δmc.  

We fit the error terms in Eq. (15) as follows. Errors in the measurements are assumed to be Gaussian distributed with a 

Poisson-Gaussian variance following Eq. (8). It can then be shown that the likelihood relating the data to the error model is,  230 

( ) ( )( )
( )

( )( )

2

2

li 0 02

0

1 1
ln | , ln

2 2

−
 = −


  


+
 + 
− +


 

i

i

i i i

ib
t t

M t
p p C

p t
Mθ

d x
b x  . (16) 

The latter term corresponds to a weighted least-squares approach. The first term corresponds to the pre-factor in the probability 

density function for a multivariate normal distribution; it is included because the variance itself is considered unknown. 

Multiple priors are also introduced to inform on model fitting. The device effects are realizations of an unbiased, normal 

random variable, such that  
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( ) ( )l

2

pr l

l

0

1
ln | ln

2

 
= − − + 

 


j

j

k j

l
p l s n s C

s
 , (17) 

where nj = 5 corresponds to the number of devices in this study. Priors on the three variances in θ were each taken as Jeffreys 235 

priors,  

( )prln 2ln = − p  . (18) 

Finally, a Gaussian prior was also applied to the β,  

( )

2

pr 02
ln

ˆ

1

2 

 
− + 

 
 


 =


p C  , (19) 

where σβ̂ = 3.0 pg is approximately double the estimated value of β, only loosely constraining the value. As C0 is a constant 

throughout these expressions, explicit knowledge of C0 is not required to maximize the log-posterior. These log-priors were 

combined additively to form the overall log-prior. This procedure was applied to the data resulting from a 10 s averaging 240 

interval before being validated for other sampling intervals.  

3.3. Result of model fitting 

Figure 4a shows a plot of the residual between the model, Eq. (9), and measurements, standardized by the variances 

inferred during model fitting. The residuals are reasonably consistent and normally distributed over the Δmc domain, indicating 

that the error model sufficiently describes the data. Systematic differences between the devices are not present after model 245 

fitting, indicating that these effects were estimated robustly. After standardization, measurements are roughly Gaussian, which 

is consistent with the treatment in the model (i.e., the use of a Gaussian likelihood) and makes statements about uncertainty 

simpler (e.g., as errors are symmetric and can be robustly summarized with a single standard error). Figure 4b to Figure 4f 

show that the trends seen in Figure 4a remain true even when the data are translated to longer sampling intervals of 20 s up to 

1.5 minutes, using Eq. (8). Table 1 shows the corresponding values of the model fit to the measurements. The mean bias 250 

between the aethalometers and the reference was inferred to be β = 2.50 μg/m3.  
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Figure 4. Residual between the model and aethalometer measurements as a function of CERMS mass concentration, normalized by 

the estimate error for each point (i.e., standardized). Data correspond to the combined set of measurements for an averaging interval 255 
of 10 s, 20 s, 30 s, 1 min, and 1.5 min, with the model fit to the measurements using the 10 s averaging interval. Measurements are 

thinned by a factor of 5 for visualization. (b – f) Binned standardized residuals, stratified by averaging interval, demonstrating model 

adequacy across a range of averaging intervals.  

 

Table 1. Values of the various effects and variances, alongside their uncertainties for the IR channel of the aethalometers. Device 260 
effects (e.g., l1) and the inter-device errors, li, are multiplicative, such that they are stated as percentages of the mass concentration. 

Uncertainties in the variables are determined using a Markov chain Monte Carlo (MCMC) sampling procedure. These values are 

applied in Eq. (20) to estimate uncertainties in future aethalometer measurements. 

Variable Bias Device 1 bias Device 2 bias Device 3 bias Device 4 bias Device 5 bias 

Inter-device 

variance Gaussian term 
Poisson   

term 

Symbol β [μg/m3] l1 [%] l2 [%] l3 [%] l4 [%] l5 [%] sl [%] γ [pg] p [pg] 

Value 2.50 -15.2 +0.9 +17.0 +10.8 -8.1 10.0 24.2 4.91 

Standard error of 

value (k = 1) 

0.03 0.3 0.3 0.3 0.3 0.5 4.2 0.3 0.12 

Expanded CoV 
of value (k = 2) † 

2.4% - - - - - 84% 2.4% 4.9% 

†Expanded CoV are not stated for device effects, as values are distributed about zero, such that a CoV is not a reasonable representation of the 

uncertainties.  265 
 

Figure 5 shows the difference between the CERMS and aethalometer mass concentration for a single device, with the goal 

of showing heteroskedasticity in the repeatability for a single device, without added inter-device contributions. Repeatability 

is derived from the assumed Poisson-Gaussian model, which, upon substitution of the values from Table 1, yields  

2

r 6

29.

6

35125

=   

=   

  +  

  + 

t m t

t m t

s p
 , (20) 

where sr and Δm are in pg, Δt is in min, and the prefactors of 6 result from the use of a 10 s (i.e., 1/6 min) reference sampling 270 

interval. This Poisson-Gaussian model reasonably describes the noise in the measurements, with an expanding interval as the 
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mass concentration increases due to Poisson contributions and a constant (Gaussian) contribution. The errors do not expand 

rapidly enough to be considered multiplicative, further validating model treatment.  

 

   275 

Figure 5. Difference in mass measured by the aethalometer and predicted from the reference (CERMS) for a single device after 

correcting for the device-specific error. Green lines show the model fit (at zero, as this is a residual) and predicted error for a single 

device.   

 

The inter-device variability is  280 

lL 0.1= = m ms s  , (21) 

or an expanded uncertainty of 20 % (k = 2) of the nominal value of mass change. Note, however, that the uncertainty in this 

value was substantial, due in part to the limited number of devices considered in the study. These errors were only visible for 

the highest mass concentrations. Figure 6 shows the residual in the measurements, without accounting for the individual device 

biases, for the highest CERMS mass concentrations (Δmc > 600 pg). Here, clustering is clear, though the repeatability was 

sufficiently large to cause overlap in the measurement ranges for each device. The magnitude of the inter-device variability is 285 

a bit larger than that observed by Cuesta-Mosquera et al. (2020) for AE33 aethalometers measuring laboratory samples, who 

saw differences in slope of around 12 % (k = 2) for the IR channel. The variability is similar to the spread observed by 

Chakraborty et al. (2023) for MA350 micro-aethalometers measuring ambient (traffic and wildfire) pollution. Both of those 

studies used AE33 aethalometers as reference devices, whereas this study used an absolute mass measurement.  
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Figure 6. Normalized device residual, that is the residual after removing offset and normalizing by CERMS mass concentration, 

resolved on a per-device basis for measurements made at CERMS mass concentrations above 600 pg. Inferred magnitude of the 

device effects are shown as horizontal rules.  

 295 

The reproducibility is taken as the sum, in quadrature, of the repeatability and inter-device variance:  

2

R 29.50.01 3512   + =  +   m t m ts   (22) 

where sR and Δm are in pg and Δt is in min. Note that the Gaussian (or attenuation correction) contributions to the uncertainties 

increase as the sampling interval is increased but do not depend on the mass collected in the given sampling interval. The result 

is a Poisson-Gaussian-multiplicative error model (cf., Sipkens et al., 2017). The corresponding expanded (k = 2), 

reproducibility coefficient-of-variation (CoV) or relative standard deviation is  300 

R 2

3 129.5
2

5 2
0.01


=



 

 
+ +U

t t

m m
 . (23) 

where UR is dimensionless, Δm is in pg, and Δt is in min.  

3.3.1. Uncertainty in mass concentration 

The eventual quantity-of-interest for reporting is the mass concentration. Combining Eqs. (3) and (22), the corresponding 

uncertainty in the mass concentration is 

2

R,M 2

a a

2 5 3512
0.01

9. 
= +


+


s

Q Q

M
M

t
 , (24) 

where M and sR,M are in units of μg/m3, Qa is in mL/min, and Δt is in min. Restated as an expanded (k = 2) CoV,  305 
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( )
R,M 2

a a

29.
2

3512
0.01

5

 
= + +


U

M Q M Q t
 . (25) 

where M·Qa always appear together. Again, this expression should still hold as the sampling interval and flow rate are changed. 

Though changes in flow rate were not explicitly validated in this study, our experimental design resulted in very different mass 

concentrations at different times and therefore did include variability in the product M·Qa.  

3.4. Strategies to reduce uncertainty 

The error model in this work describes two fundamentally different types of uncertainties, which require different 310 

approaches to mitigation: (i) inter-device biases and (ii) random errors or noise.  

3.4.1. Calibration of inter-device biases 

The inter-device biases correspond to a fix bias for each device, which cannot be averaged away but can be effectively 

eliminated using regular correction of the device bias. In the limit where any drift in the device is insignificant between 

calibrations, the mass concentration can be given by  315 

( ) 01= − jM l M  , (26) 

where M0 is the mass concentration prior to accounting for the device specific bias. In this scenario, the uncertainties would 

be directly reduced to those as if sl = 0: 

2

R,M 2

a a

66 




= +

p
s

Q Q

M

t
  (27) 

and 

( )

2

R,M 2

a a

2
66 


+

 
=

p
U

M Q M Q t
 . (28) 

In the absence of knowledge of the precise device bias, one should revert to the previous expressions.  

3.4.2. Averaging for noise reduction 320 

The remaining errors are random and can thus be reduced using averaging techniques, under the assumption that the 

underlying mass concentration is relatively constant in each averaging period. Plotting Eq. (25) as a function of sampling time 
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in Figure 7 yields a plot, akin to an Allan-Werle plot, albeit without contributions from device drift (drift could not be assessed 

in this study as the mass concentration was not held constant, making it difficult to distinguish changes in the mass 

concentration from drift in the instrument). At the bottom of this plot is the inter-device limit, corresponding to the uncertainties 325 

between devices that cannot be removed by way of averaging, thus representing a natural lower limit. Increasing the sampling 

interval reduces the uncertainties as expected, but with limitations due to amplification of Poisson noise as the sampling interval 

is increased.  

 

  330 

Figure 7. The reduction in the expanded (k = 2) coefficient of variation (or relative standard deviation) of the mass concentration as 

the sampling interval increases. Curves correspond to different values of M·Qa, labelled with in [pg/min] in bold blue, with the 

corresponding mass concentration [μg/m3] at a flow rate of 75 mL/min, representative of this study, indicated in green italics.  

 

In the upper region of Figure 7, uncertainties expand beyond the value of the mass concentration itself. Generously defining 335 

the limit-of-detection (LoD) as the point at which two times (so, k = 2) the reproducibility standard error is equal to the 

measurement (McNaught et al., 1997), that is when the signal-to-noise ratio is 2, an expression for the LoD can be derived by 

solving the quadratic equation that results by setting a value for sR,M in Eq. (24). Specifically,  

( )

( )

2 2 2
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a l

6 36 24 1 4

1 4
LoD

2

− − − −

−

 


p p s

Q

t

s
 , (29) 

where Qa is in mL/min and Δt is in min. Note that, as the attenuation coefficient contributes significantly to the uncertainties 

in the measurements, one would expect that Figure 7 and the associated expressions to be specific to the dual spot correction 340 

applied in this work. In fact, this noise source is likely an excellent target for reducing the overall uncertainties in the 
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measurements. Despite this fact, the functional form used for the Poisson and inter-device errors are expected to be more 

general and to apply to similar devices.  

Since the attenuation measurement of the aethalometer can be monitored at high frequency, the ideal sampling interval 

could be updated dynamically, to always maintain a reasonable uncertainty. This approach has already been demonstrated by 345 

the aethalometer smoothing algorithm of Hagler et al. (2011). Our work extends the Hagler algorithm in two ways. First, in 

addition to smoothing, our algorithm estimates corresponding uncertainties. Second, our algorithm includes an input parameter 

in the form of a desired uncertainty, based on which the smoothing amount is deduced. Under the assumption of constant 

frequency measurement and constant aerosol flow rate, the accumulated mass can be equally stated as  

0 a 0 a

1=

 =    =   
n

i

i

m t Q M n t Q M  , (30) 

where Mi denotes the ith measurement of mass concentration, Δt0 is the original sampling interval for M prior to averaging, 350 

and n is the number of intervals used for averaging. Now, the uncertainties in the average M are   
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and 
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   

p
U s

n M Q n M Q t
 . (32) 

With knowledge of the bias for a specific device, these expressions would be reduced by setting sl = 0, as before. Code to 

perform this procedure – averaging until a specific error is reached – is provided in the online supporting information. The 

output is compared to the output of the algorithm by Hagler et al. (2011). The two approaches can be made consistent depending 355 

on the value of the change in attenuation parameter (for the Hagler algorithm) and the desired uncertainty (for the current 

averaging algorithm), as shown in Figure 8. The algorithm only requires the attenuation data to automatically determine when 

the filter has changed.  
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 360 

Figure 8. The effect of different averaging of filtering approaches to reduce random errors in the measured eBC, applied for one of 

micro-aethalometers used in this work. Grey points indicate the eBC reported by the device, while solid lines include single processed 

by (a) the algorithm proposed by Hagler et al. (2011), (b) averaging to a specified repeatability is reached (here, UR,M = 10 %), and 

(c) applying a Kalman filter informed by the error model in this work. 

 365 

The uncertainty expressions in this work can also enable the use of Kalman filter approaches for post-processing. These 

approaches step through the signal, using an estimate at a previous point in time to inform on measurements at the current time 

while propagating uncertainties forward through time. Uncertainties are a direct output of the algorithm and vary depending 

on the mass concentration level. Overall, Figure 8 shows that the filtered mass concentrations are similar to those from the 

averaging approaches, albeit with finer temporal resolution. Errors tend to be smaller than the averaging approaches at higher 370 

mass concentrations and vice versa.  

4. Conclusions 

Experiments were performed to compare five different aethalometers with reference mass concentrations generated using 

a CPMA-electrometer reference mass standard (CERMS). Device effects were multiplicative, consistent with other studies in 

the literature, while noise from the attenuation correction manifested as roughly Gaussian noise. While the dual spot correction 375 

algorithm was found to be effective in correcting biases in the measurements, the correction caused an increase in random 

errors in the measurements increased. A reduction in the multiplicative inter-device errors would reduce the overall 

uncertainties and reduce the minimum uncertainties achievable with the system, though the precise reason for the inter-device 
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differences was not determined in this study. The overall standard error in the reproducibility for the micro-aethalometers in 

this work is 380 

2
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2 5 3512
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Q Q

M
M

t
 , (33) 

where M is in μg/m3, Qa in mL/min, and Δt in min. This expression includes inter-device uncertainties and can be used as an 

uncertainty for measurements of black carbon when using the micro-aethalometers considered in this work.  

Two approaches are considered to reduce errors. First, if appropriate action can be taken to calibrate for device-specific 

biases, these uncertainties can be reduced to contributions from only the latter two terms in Eq. (33). Second, under the 

assumption of a slowly changing mass concentration, averaging can reduce the two remaining error terms. If both of these 385 

approaches are undertaken, the uncertainties would be reduced to  
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s

n Q

M

n Q t
 . (34) 

Implementation of noise reduction algorithms using averaging and a Kalman filter for are included in the online supplemental 

information.  

Code availability 

Code for averaging aethalometer data to reach a specified uncertainty and compare the result to the algorithm by Hagler et al. 390 

(2011) has been made available in the supplemental information. The code will also be made available on GitHub at 

https://github.com/tsipkens/aeth-app.  
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