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Abstract:  16 

The property and casualty insurance industry increasingly relies on deep neural networks to quantify weather-17 
driven risks. This study develops a forecasting framework based on long short-term memory networks to 18 
estimate the global impact of extreme weather on insurance claims by integrating authoritative meteorological 19 
and financial datasets. Specifically, we leverage globally consistent records of temperature, precipitation, and 20 
snowfall from NOAA’s National Centers for Environmental Information (1995–2025) and insured-loss statistics 21 
from Swiss Re’s global catastrophe reports, rather than focusing on local or regional case studies. The model 22 
captures long-range temporal dependencies without manual feature engineering and employs adaptive moment 23 
estimation to stabilize training and reduce prediction errors. A fully connected layer with rectified linear unit 24 
activation enhances nonlinear fitting, while post-hoc Shapley additive explanations clarify how weather 25 
variables and recent claims shape predicted losses. Benchmarks against classical baselines—random forest, 26 
support vector machine, and autoregressive integrated moving average—demonstrate consistent accuracy gains. 27 
Using three decades of data, including a decade reserved for out-of-sample evaluation, the framework delivers 28 
accurate forecasts with transparent attributions that support pricing, reinsurance planning, and catastrophe 29 
response under climate risk. This integrates extreme-weather signals with insurance losses, based on globally 30 
aggregated datasets, to provide reproducible, regulator-auditable global insights. 31 

Keywords: Deep Neural Network Model, Long Short-Term Memory Network Model, Extreme Weather; 32 
Insurance Claims. 33 

1 INTROUCTION 34 

The increasing impact of extreme weather events in the context of rapid societal development has made them a crucial 35 
research topic in the field of environmental science and risk management. For example, as shown in Fig. 1 below, it is an 36 
extreme weather event of lightning strikes in Bangkok, Thailand. Due to the intensification of global climate change, 37 
extreme weather events not only seriously affect the stability of the global economy, but also pose a major challenge to 38 
social development and public safety. According to the Intergovernmental Panel on Climate Change (IPCC, 2021), 39 
marginalized populations are most affected by climate change. Nearly half of the world’s population lives in highly 40 
vulnerable areas with limited development capacity. This trend is expected to continue in the future . In recent years, as the 41 
pace of global climate change has accelerated, concern about extreme weather events has reached an all -time high. 42 
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FIG. 1. Extreme weather event (Lightning strikes Bangkok, Thailand) 56 
 57 
Statistics show that the global losses caused by extreme weather events have increased significantly, for example, the 58 

global natural disaster data in 2023 show that 326 large natural disasters occurred globally, involving a variety of disaster  59 
types, affecting 117 countries and regions, resulting in 86,473 deaths due to disasters globally, with an affected population  60 
of 93,052,400 people, and a direct economic loss of 202,652 million U.S. dollars. Regarding the China context, all types of 61 
natural disasters in China caused 95,444,000 people to be affected, and direct economic losses amounted to 345.45 billion 62 
yuan in 2023. Climate change-driven insurance costs are projected to rise significantly by 2040 (Wang, 2024; Fantini et al., 63 
2023), showing the impacts of natural disasters across the globe, as well as the frequency and economic losses of different 64 
types of disasters, emphasizing the wide-ranging impacts of natural hazards and the severity of economic losses globally.  65 

Recurrent architectures such as long short-term memory (LSTM) units mitigate—though do not eliminate—the 66 
vanishing/exploding-gradient issues of vanilla recurrent networks by introducing gating and a near-additive memory path. 67 
This makes it easier to retain long-range temporal dependencies in meteorological and claims series (Shi, 2023). LSTM 68 
models are essentially an evolved version of traditional recurrent neural networks(RNN), designed to overcome the gradient 69 
vanishing and explosion problems of these networks (Suradhaniwar et al., 2021). Given that traditional RNNs commonly 70 
face the gradient vanishing problem when attempting to deal with long term dependencies, this shortcoming leads to a 71 
gradual loss of early information as the sequence length increases, which in turn weakens their efficacy in long time series 72 
analysis (Karevan and Suykens, 2020). The previous studies mainly focus on the optimization of traditional time series 73 
prediction methods and their combination with single-layer neural networks, and although these methods have achieved 74 
good results in specific application scenarios, they still show limitations in dealing with complex temporal dependencies. 75 
In contrast, the LSTM model overcomes several limitations in traditional methods through its unique memory cell 76 
architecture, and is able to handle long time series and complex nonlinear regression problems more effectively. 77 
Consequently, in order to further improve the prediction accuracy and adapt to a wider range of application scenarios, many 78 
scholars have conducted in-depth research on LSTM to optimize its performance and address specific challenges. Chang et 79 
al. (2018)  presented two examples to validate the performance of adaptive moment estimation(Adam)-optimized LSTM 80 
neural network and used a dataset from New South Wales, Australia to illustrate the excellence of the model. The results 81 
showed that the proposed model can significantly improve the prediction accuracy. Adam's algorithm, which is a first-order 82 
gradient optimization algorithm based on adaptive estimation of low-order moments, is easy to implement, computationally 83 
efficient, and has a small memory footprint. It is capable of optimizing the mean square error loss function, which is 84 
particularly well suited to LSTM neural networks. 85 

Given the challenges posed by extreme weather, we implement and evaluate a global LSTM-based forecasting framework 86 
tailored to insurance-claim time series, prioritizing applied evaluation and transparent interpretation over algorithmic 87 
novelty. The main contributions of this paper are as follows: 88 

(1) Deployment-oriented LSTM framework. We present a well-structured, robust forecasting framework based on an 89 
optimized LSTM to improve forecasts of insured losses associated with extreme weather. The framework integrates deep 90 
sequence modeling with climate-risk management and is explicitly aligned with actuarial practice and regulatory 91 
requirements. 92 
    (2) Global, audit-ready data and interpretability. We integrate globally consistent meteorological records from 93 
NOAA/NCEI and cross-country insured-loss statistics from Swiss Re to move beyond local case studies and support 94 
regulator-auditable analyses. We provide end-to-end interpretability via Shapley Additive Explanations (SHAP), which 95 
clarifies the contributions of temperature, precipitation, snowfall, and historical claims to the predictions, enhancing 96 
transparency for climate-risk policy decisions. 97 
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    (3) Systematic baselines under a common split. Trained on 1995–2012 and evaluated out-of-sample on 2013–2022, our 98 
LSTM consistently outperforms RF, SVM, and ARIMA on RMSE/MAE/MAPE and on high-loss detection (F1) across 99 
multiple forecast horizons. 100 
    (4) Ablations and sensitivity for deployment. Optimizer, architecture, and regularization ablations—together with 101 
hyperparameter-sensitivity analyses—identify which components drive gains and provide practical parameter ranges for 102 
robust deployment; the framework delivers high predictive accuracy with manageable computational cost relative to 103 
accuracy gains 104 

Paper Structure. The remainder is organized as follows: Sect. 2 reviews related work; Sect. 3 presents the proposed 105 
methodology, detailing the LSTM architecture and training procedure; Sect. 4 describes the experimental evaluation; Sect. 106 
5 reports the results and discussion; and Sect. 6 concludes the paper. 107 
 108 

2 RELATED WORK 109 

Many academics have contributed valuable insights to the field of research examining the impact of extreme weather events on 110 
the insurance industry. However, effective assessment and management of extreme weather risks remains a challenge. Zhou et al. 111 
(2024)  provide an in-depth analysis of the significant challenges posed to the insurance industry by the increased frequency and 112 
intensity of extreme weather   events due to climate change, and propose a set of methodologies for quantifying the impacts of 113 
climate change that provide specific guidance to the property insurance industry. Rao and Li (2023) state that China has 114 
accumulated a number of successful cases and best practices in the field of climate risk insurance, identifying the existing 115 
insurance coverage, and premium pricing mechanisms, with the aim of promoting the further development and improvement of 116 
climate risk insurance in China. 117 

Deep models can excel on complex, nonlinear signals, but their gains depend on data scale, task design, and evaluation protocol. 118 
We therefore benchmark LSTM against classical baselines under a common split to assess practical utility. Cheng (2022)  119 
provided an extensive review of LSTM research, tracing how Hochreiter and Schmidhuber originally introduced this special RNN 120 
variant to mitigate gradient vanishing and exploding issues during long-sequence training. Thanks to its gating mechanisms, 121 
LSTM effectively captures long-term dependencies, overcoming limitations of traditional RNNs. Maheswari and Gomathi (2023)  122 
evaluated the performance of diverse deep learning architectures for weather forecasting, demonstrating that LSTM and CNN 123 
architectures are particularly adept at modeling nonlinear temporal patterns. In contrast, Tan and Gong (2024) developed an 124 
extreme weather risk prediction method that integrates Monte Carlo simulation with the entropy-TOPSIS decision-making 125 
framework to assess and rank climate-risk scenarios in China and the United States, showing improved identification of high-risk 126 
events. Although these models have significantly advanced forecast accuracy and risk quantification, they still face challenges in 127 
incorporating localized geographic features and fine-grained structural information of extreme events, which constrains their 128 
predictive precision and practical usability. 129 

Nobanee et al. (2022) provide important insights in their study, which emphasizes insurance as an effective tool for dispersing 130 
and transferring losses from climate disasters, and summarizes international successes in incorporating factors such as 131 
international partnerships, climate change, and other factors into catastrophe models, promoting loss prevention and incentivizing 132 
mitigation of climate risks through insurance provisions, to achieve compliance with the international consensus and enhance the 133 
resilience of the whole society to cope with climate risks. Essa et al. (2020) proposed a RNN to improve the accuracy of short-134 
term lightning prediction based on an LSTM lightning density prediction model, which utilizes LSTM to capture spatio-temporal 135 
data dependencies and learns long-term data patterns. The experimental results show that the average absolute error of the model 136 
in one-hour prediction is 2.87 times/hour and the mean square error is 1209, indicating its significant potential in prediction 137 
accuracy, which provides an important reference for climate risk assessment and insurance product development. 138 

In order to enhance the claims management capability of the insurance industry, Tzougas et al. (2022)  evaluated the impact of 139 
different weather conditions and environmental factors on insurance claims patterns, so as to improve the management and 140 
prediction capability of insurance companies for such risks; Shi et al. (2024)  used an innovative feature fusion approach, 141 
combined with the prediction of long and short-term factors, and utilized deep learning techniques to enhance the potential loss 142 
distribution in the insurance industry's claims management prediction accuracy. In particular, it integrates detailed weather data 143 
to improve the accuracy of predicting potential losses. The methodology significantly improves the ability of insurance companies 144 
to process and respond to claims and provides an important reference for future research. In particular, it predicts the entire loss 145 
distribution and is suitable for insurance applications requiring uncertainty quantification and risk management.   146 

Despite significant progress in analyzing the impact of extreme weather events on the insurance industry and in applying deep 147 
learning models, several limitations remain, particularly in model accuracy and interpretability. Recent advances in explainable 148 
artificial intelligence (XAI), especially SHAP, have significantly improved the interpretability and transparency of complex neural 149 
network predictions by clearly quantifying feature contributions, thereby enhancing stakeholder trust and supporting decision-150 
making in risk-sensitive industries such as insurance. Many recent studies have successfully combined SHAP with LSTM or other 151 
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time-series forecasting models to improve model transparency and feature importance analysis. For example, Sunu Fathima and 152 
Kovoor (2024) used SHAP to interpret stacked LSTM weather prediction models, demonstrating SHAP’s growing value in time-153 
series forecasting. 154 

Based on these research foundations, this paper aims to develop an LSTM neural network-based model that not only improves 155 
the accuracy and efficiency of predicting extreme weather events and associated insurance claims costs but also enhances model 156 
interpretability through SHAP-based explanations. 157 

 158 

3 PROPOSED METHODOLOGY 159 

In this paper, we implement and evaluate a LSTM–based forecasting model aimed at improving the accuracy of predicting 160 
extreme weather events and their associated insurance claims costs, enabling insurers to make more effective risk management 161 
and strategic decisions.  162 

We implement a compact, deployment-oriented LSTM that couples globally harmonized meteorological records (temperature, 163 
precipitation, snowfall) with regulator-auditable insured-loss series. Inputs are min-max scaled and arranged into fixed look-back 164 
windows; the network (stacked LSTM with a simple dense head) is trained with Adam and early stopping under a fixed train/test 165 
split [e.g., 1995–2012 train, 2013–2022 test]. Evaluation follows actuarial practice (RMSE/MAE/MAPE plus an extreme-loss 166 
F1), and post-hoc SHAP-style attributions quantify the roles of weather variables and lagged claims. To provide a comprehensive 167 
description of the research methodology, this section is divided into three key parts: (3.1) data preparation, (3.2) model 168 
construction, and (3.3) model optimization. 169 
 170 

3.1 Data Collection and Preprocessing  171 

This study integrates historical meteorological and insurance data, specifically utilizing global temperature, precipitation, and 172 
snow depth records covering a 30-year span (1995–2025) obtained from NOAA’s National Centers for Environmental 173 
Information (NCEI) and the Federal Emergency Management Agency (FEMA), as well as insurance claims data sourced from 174 
the Swiss Re Institute's reports on global natural catastrophe insured losses. The dataset incorporates key indicators such as 175 
temperature, precipitation, snowfall, and historical insurance claims to construct a comprehensive property insurance risk 176 
assessment model, systematically evaluating the frequency, intensity, and economic impact of extreme weather events on 177 
insurance outcomes. FEMA disaster records were restricted to the United States subsample for contextualization and validation, 178 
and they were not combined with the global NOAA/NCEI and Swiss Re datasets. 179 

In order to construct a model using the LSTM network to analyze the relationship between extreme weather and property 180 
insurance guarantees, data standardization is adopted to improve the performance of the model, for the collected data, this paper 181 
has standardized the four key indicators of temperature, precipitation, snowfall, and the amount of insurance claims. For the 182 
collected data, this paper standardizes the four key indicators of temperature, precipitation, snowfall and insurance claims, using 183 
the min-max scaling technique, which maps the value of each characteristic to the interval from 0 to 1. After the standardization 184 
process, the values of temperature, precipitation, snowfall, and insurance claims are converted to the standardized form, ensuring 185 
that all numerical features are on the same scale. The above standardization steps provide the LSTM model with high quality and 186 
consistent data inputs, providing a solid. 187 

 188 

3.2 LSTM-based Prediction and Evaluation Model 189 

This study proposes a deep learning architecture based on a LSTM neural network, specifically tailored to quantify the impact 190 
of extreme weather events on property insurance claims. The model adopts a multi-layer structure comprising an input layer, two 191 
LSTM hidden layers, a fully connected dense layer, and an output layer. The input layer ingests pre-processed time series data—192 
including meteorological variables (temperature, precipitation, and snowfall) and historical insurance claims. The stacked LSTM 193 
layers are responsible for capturing long-range temporal dependencies and nonlinear patterns across both climate and financial 194 
domains. The final fully connected layer, activated by ReLU, ensures nonlinear fitting and feeds into the output layer that generates 195 
predictive outcomes. To operationalize this design, we adopt stacked LSTM layers (moderate-sized hidden units) followed by a 196 
fully connected layer with ReLU activation, which improves nonlinear fitting and stabilizes gradients for claim forecasting. 197 

To reflect the dual nature of the task, the model is designed to support multi-output forecasting, enabling simultaneous 198 
prediction of both meteorological parameters and associated insurance claim amounts. By integrating weather dynamics with 199 
financial outcome variables within a unified modeling framework, the LSTM captures cross-domain dependencies—e.g., how 200 
changes in precipitation and snowfall relate to claim surges. This dual-task setup not only enhances predictive performance but 201 
also supports more holistic climate risk assessment strategies, allowing insurers to respond proactively to anticipated 202 
environmental stressors.  203 

 204 
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 205 
FIG. 2. Schematic diagram of LSTM  206 

Fig. 2 illustrates the internal schematic of an individual LSTM unit, showcasing its memory cell, input, forget, and output gates. 207 
In the broader model architecture, these LSTM units form the core of the recurrent layers, enabling the model to retain long-term 208 
contextual information across sequences. This architecture forms the structural backbone of the forecasting system developed in 209 
this study, ensuring alignment with the research goal: to construct a robust, interpretable, and application-oriented predictive tool 210 
for weather-induced insurance risk. The design is modular and supports future components (e.g., attention or probabilistic layers); 211 
the experiments in this study use the baseline variant (stacked LSTM + dense output). 212 

 213 
Based on the theoretical principles of the LSTM model, construct the following pseudocode program. 214 

Algorithm 1 Extreme Weather Forecasting Based on LSTM Model 

Input:  Time-series =( ),  

Train-epoch n. 

Output: Predict time-series =( ), 

Mean Absolute Error mean MAE, and Mean Squared Error mean MSE. 

1 for  to  do: 

2   for  to  do: 

3     for  to  do: 

4       encoder layer calculate encoding vector  

5          

6            

7              

8               dropout layer 

9                 Batch Normal layer 

10                  feature aggregation step calculate  

11                    decoder layer calculate decoding vector        

12                      fully connected layer Y= Relu( ) 

13                    end 
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14 end 

15 end 

16 calculate MSE MAE 

17 return MSE MAE 

LSTM is a gated recurrent architecture that helps preserve long-term dependencies via input, forget, and output gates and a 215 
nearly additive cell state. While gradients can still decay in practice, the gating and constant-error path substantially mitigate the 216 
vanishing-gradient behavior of vanilla RNNs (Wang et al., 2018). At the heart of the LSTM model is the notion of unit state, a 217 
continuous line running through the entire LSTM unit, which plays a key role in its operation. And the cell state of its model 218 
facilitates the linear propagation of information over different time steps within a sequence, enabling LSTM to recognize and 219 
preserve long-term dependencies when processing sequential data. 220 

The core equations that control the operation of the LSTM cell contain several distinct phases, and the basic formulas and 221 
program steps inherent to the LSTM cell are shown below: 222 

Forget gate formula: 223 

             𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 224 

Where ft  denotes the output of the forgetting gate, which determines which information from the cell state should be 225 
discarded.Wf for the weight matrix associated with the forget gate, bf denotes the deviation term, and .ht−1 corresponds to the 226 
hidden state of the previous time step, where σ is a sigmoid activation function that produces outputs that are constrained to be in 227 
the range of 0 to 1 when 𝑥𝑡 is the input for the current time step. 228 

Input gate formula: 229 

             𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 230 

Where Wi is the weight matrix of the input gate and biis the corresponding bias term that reflects the output of the input gate, 231 
indicating which new information will be stored in the cell state. 232 

              𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3) 233 

Where Wo denotes the weight matrix of the output gate, and  bo is the associated bias term that is the output of the output gate, 234 
specifying how the cell state affects the hidden state. 235 

The three equations based on the above regarding LSTM cells, together with the updating of the cell state and the computation 236 
of new hidden states, form the backbone of the LSTM architecture, enabling it to skillfully capture long-term dependencies and 237 
efficiently manage information flow. 238 

The key advantage of the LSTM model is its unique unitary state design, which allows the network to efficiently retain and 239 
transfer information over long sequences. As a result, the LSTM model utilizes three gate mechanisms, including input gates, 240 
forget gates, and output gates, which can interactively regulate the flow of information, utilizing the three mechanism gates as the 241 
neural network's memory control valves to determine which information is retained, discarded, or exposed to subsequent layers, 242 
thereby endowing the LSTM with significant selective memory capabilities, a characteristic that makes the LSTM particularly 243 
suited to time-series forecasting tasks and capable of providing evaluating the impact of extreme weather on property insurance 244 
risk by providing accurate and stable prediction results (Dai et al., 2020). 245 

 246 

3.3 Model Training and Optimization 247 

The full dataset spans 30 years (1995–2025) of monthly meteorological records and annual insured-loss statistics; all modeling 248 
uses annual series aligned by calendar year. To avoid look-ahead bias, we used a chronological split: data from 1995–2012 were 249 
used for model development (training and internal validation), while data from 2013–2022 were held out exclusively for out-of-250 
sample testing. This partitioning ensures generalization and prepares for later validation using recent 10-year data (2013–2022) 251 
in the following section.  252 

Fig. 3 illustrates the dynamic fluctuation of the learning rate during model training. An adaptive learning rate schedule was 253 
employed to enhance convergence. Initially (steps 0–20), the learning rate oscillates around 0.02, reflecting the model's early-254 
stage exploration of the parameter space. Between steps 20–40, a temporary drop is observed, likely due to local overfitting, 255 
triggering learning rate adjustments to avoid convergence to suboptimal minima. From steps 40–80, the learning rate increases 256 
steadily, indicating improved alignment between parameter updates and data characteristics. After step 80, the fluctuations 257 
intensify, suggesting that finer adjustments are necessary near the convergence stage. This fluctuation pattern demonstrates the 258 
model's progressive adaptation, facilitating faster convergence and enhanced generalization capability. 259 
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 260 
FIG. 3. The Learning Rate Fluctuation Trend of LSTM Neural Network Model 261 

 262 
Fig. 4 presents the training and validation loss trends of the LSTM model across 100 epochs. The training loss rapidly declines 263 

and stabilizes after epoch 10, indicating efficient learning on training data. In contrast, the validation loss initially decreases but 264 
subsequently rises and fluctuates around 0.175, potentially reflecting overfitting. Notably, this discrepancy between training and 265 
validation loss suggests that while the model fits the training set well, its generalization to unseen data may be limited. To address 266 
this, an early stopping strategy was implemented with a patience threshold of 10 epochs. Training was halted if the validation loss 267 
failed to improve for 10 consecutive epochs, ensuring optimal generalization performance without excessive training c268 

 269 
FIG. 4. Training and Validation Loss Trends of LSTM Before and After Parameter Optimization (Epochs: 0–100) 270 

 271 
To systematically identify optimal model parameters and improve model predictive accuracy, we conducted extensive 272 

hyperparameter tuning (Cahuantzi et al., 2023). The optimized hyperparameters and associated performance metrics are 273 
summarized in Table 1. Notably, while training and test losses (MSE and MAE) remained consistently low, validation loss 274 
(depicted in Fig. 4) fluctuated around 0.175, suggesting potential variations in initialization or insufficient regularization. 275 
 276 

Table 1 277 
MODEL PARAMETER OPTIMIZATION SUMMARY   278 

Parameter Value 

Hidden Size 10 

Learning Rate 0.01 

Epochs 100 

Batch Size 88 

First LSTM layer neurons 92 

Second LSTM layer neurons 82 

Loss Size Range (Observed) 0～0.175 

Train MSE Loss 0.01021 

Train MAE Loss 0.01034 

Test MSE Loss 0.01038 

Test MAE Loss 0.01042 
 279 
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To better illustrate these trends, the Fig. 5 below includes the polynomial fitting curves of the training loss and validation loss, 280 
as well as a table describing the parameters of the LSTM model. The fitted training loss initially matches the actual value, but 281 
then stabilizes, possibly reflecting the long-term trend of the training loss. In contrast, the fitted validation loss initially matches 282 
the actual validation loss, but then tends to increase, further emphasizing the decrease in the generalization ability of the model. 283 
Therefore, based on the above observations, it can be concluded that although the model's performance on the validation set is 284 
affected by overfitting, its performance on the training set improves as training progresses, indicating that using an LSTM model 285 
for deep learning to predict extreme weather has a good fit to the data prediction. Fig. 5 also shows the trend of the loss values of 286 
the LSTM model during the training phase, including the mean square error (MSE), and mean absolute error (MAE) losses of the 287 
training set and the test sets (Tian et al., 2023). Initially, in the early stages of training, all loss values decreased rapidly, indicating 288 
that the model quickly acquired information and significantly improved prediction accuracy. As the number of training rounds 289 
increased, the rate of loss reduction gradually slowed and eventually reached a plateau, indicating that the model's learning process 290 
was approaching saturation and the benefits of further training were gradually diminishing. The closeness of the training and test 291 
loss curves indicates the model's ability to generalize, as it shows that the model's performance on unseen data is comparable to 292 
its performance on the training data. This reduces the risk of overfitting. However, the MSE loss is always higher than the MAE 293 
loss, indicating that MSE is more sensitive to outliers and penalizes larger errors more severely. Towards the end of training, the 294 
test MSE loss shows some fluctuations, which may be due to changes in the model's predictions for some test samples. Therefore, 295 
at the end of training, all loss values decreased significantly, demonstrating an improvement in the model's prediction accuracy. 296 
The training process shows the typical characteristics of fast learning, followed by a gradual stabilization trend, and maintains 297 
consistency between training and test losses, which together indicate an optimally performing model with a good balance of fit to 298 
the data. 299 

 300 
FIG. 5. The trend changes of Mean Squared Error (MSE) Loss and Mean Absolute Error (MAE) Loss for the training and 301 

testing sets in an LSTM (Long Short-Term Memory) model (Epochs: 0–100) 302 
 303 

Fig. 6 depicts in detail the dynamic trends of the four key hyperparameters during training of the LSTM model, including the 304 
learning rate, batch size, number of LSTM neurons in the first layer, and number of LSTM neurons in the second layer. The 305 
learning rate shows a steady upward trend from about 0.005 to nearly 0.010, which may reflect an adaptive learning rate strategy 306 
to optimize the model convergence speed at various stages of training and avoid falling into local minima. The batch size starts at 307 
about 30 and eventually stabilizes at about 90 after several fluctuations. These fluctuations may be used to balance memory 308 
consumption and computational efficiency during training. The graph of the number of neurons in the first LSTM layer shows 309 
significant fluctuations starting at about 40 and eventually approaching 90, indicating that the network capacity was adjusted 310 
during training to achieve an optimal balance between model complexity and generalization ability.  311 

Although the number of LSTM neurons in the second layer also fluctuated, the overall trend was upward, starting at about 20 312 
and eventually approaching 80. This may mean that the model gradually increased the number of neurons in the second layer 313 
during training to improve its expressive power. Therefore, dynamic adjustment of hyperparameters during training of deep 314 
learning models is crucial to improving model performance (Dhake et al., 2023). Careful monitoring and adjustment of these 315 
hyperparameters can effectively optimize the training process and thus improve the final performance of the model. 316 

 317 
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 318 
 319 

FIG. 6. Trends in the Evolution of LSTM Model Parameters 320 
 321 
Application of the Adam optimizer to model construction Adam is a widely used stochastic optimization algorithm in the field 322 

of deep learning that achieves superior results by dynamically adjusting the learning rate, and its empirical studies have shown 323 
that Adam outperforms stochastic optimization algorithms in practice due to the model's adaptive ability. In this dissertation study, 324 
the Adam optimizer is employed to improve LSTM and decision tree models. As a gradient-driven optimizer, Adam dynamically 325 
calibrates the learning rate of each parameter to enhance model optimization and data adaptation. Specifically, Adam utilizes first-326 
order moments (mean) and second-order moments (variance) estimates of the gradient to adjust the learning rate, thereby 327 
improving adaptation and robustness to non-stationary objective functions and large-scale parameter variations. Due to its 328 
adaptive nature, Adam accelerates convergence by automating the learning rate calibration, which enables fast feature acquisition 329 
and reduces the interference of human intervention (Guo et al., 2021). As a result, the application of Adam in this study 330 
significantly improves training efficiency and model performance, and its adaptive learning rate tuning mechanism promotes 331 
better data adaptation and faster convergence, which is critical for accurate prediction of extreme weather probabilities and 332 
insurance cost estimation, a key improvement that enhances our ability to solve complex forecasting problems and improves the 333 
accuracy of the modeling algorithm and decision makers' confidence in insurance claims. 334 

We employ the Adam optimizer to dynamically adapt per-parameter learning rates, which accelerates convergence and 335 
stabilizes training on non-stationary, multivariate claim series. Empirically, Adam yields lower validation MSE/MAE in early 336 
stages and reduces sensitivity to initialization, consistent with our optimizer ablation. 337 

4 EXPERIMENTAL EVALUATION 338 

4.1 Ablation Study and Hyperparameter Sensitivity Analysis  339 

To improve model transparency and quantify the contribution of key components, we conducted an ablation study and 340 
hyperparameter sensitivity analysis. Specifically, we systematically compared the LSTM model using the Adam optimizer versus 341 
the conventional Stochastic Gradient Descent (SGD) optimizer. 342 

As shown in Fig. 7, the Adam optimizer leads to faster convergence and lower validation errors compared to SGD. The loss 343 
curves demonstrate that Adam achieves both lower mean squared error (MSE) and mean absolute error (MAE) on validation data, 344 
especially in the early training stages. This confirms that Adam's adaptive learning rate mechanism is more suitable for complex 345 
time-series insurance data. 346 
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 347 

FIG. 7. Optimizer comparison (Adam vs SGD) for LSTM model: training and validation loss (MSE and MAE) curves. 348 

 349 
We also investigated the effect of key hyperparameters, such as the number of hidden units, dropout rate, and training epochs. 350 

Through grid and random search, the results show that moderate LSTM unit numbers (80–120), an initial learning rate of 0.01 351 
with decay, and dropout rates around 0.3–0.4 yield optimal predictive performance while avoiding overfitting. Excessive hidden 352 
units increase model complexity and risk of overfitting, as evidenced by rising validation loss. 353 

These ablation and sensitivity experiments demonstrate the importance of component selection and parameter tuning in LSTM-354 
based insurance claim forecasting. The findings guide practitioners in selecting robust configurations, balancing accuracy, and 355 
computational efficiency in real-world insurance applications. 356 

 357 

4.2 SHAP-based Model Interpretation 358 

To enhance transparency and regulatory compliance of our LSTM-based insurance claim prediction model, we integrated 359 
SHAP into our methodology. SHAP provides a systematic approach to interpreting model predictions by quantifying how each 360 
feature influences the output. 361 

In this study, we applied the SHAP framework to compute SHAP values across the test samples, specifically grouping them by 362 
feature and corresponding time lags (t-1, t-2, t-3). These values were visualized in a violin-style summary plot，as shown in Fig. 363 
8, displaying the distribution of each feature’s contributions to the predictions across all test periods. The horizontal axis represents 364 
SHAP values (indicating the magnitude and direction of feature impact), while the vertical axis lists each feature at distinct time 365 
steps. Color gradients (blue for low, red for high) encode the feature's value intensity, clearly highlighting how feature 366 
contributions vary over different time periods and scenarios. 367 

 368 
FIG. 8. Grouped SHAP Violin Plot by Feature and Time Step in LSTM Insurance Claim Prediction 369 
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From the overall model perspective, temperature features across different time steps—especially Temperature_2 and 370 
Temperature_3—show the most substantial impact on model predictions, as shown in Fig. 8, indicating that short-term 371 
temperature fluctuations are key drivers of insurance claim outcomes. Historical insurance claims also play an important role, 372 
particularly at time step t-2, reflecting the predictive value of recent claim patterns. In contrast, the influence of precipitation and 373 
snowfall is relatively moderate but remains non-negligible, suggesting these factors provide supplementary information. This 374 
global analysis highlights that the LSTM model primarily relies on recent temperature dynamics and historical claims when 375 
forecasting insurance risks, which underscores the importance of timely climate monitoring and claim tracking for accurate risk 376 
management. 377 

Through these visualizations, stakeholders gain a transparent view of how specific inputs—such as temperature, snowfall, 378 
precipitation, and historical insurance claims—systematically drive the LSTM model’s predictions. This SHAP-based approach 379 
significantly improves interpretability, providing clear and actionable insights for insurance risk management decisions. 380 

 381 

4.3 Benchmark Comparison with Traditional Models 382 

To ensure the validity of our approach, the LSTM model was also benchmarked against classic alternatives including Random 383 
Forest, SVM, and ARIMA. The comparison focuses on three key aspects: prediction accuracy, model stability, and computational 384 
efficiency.  385 

We benchmarked our LSTM against three classical approaches—Random Forest (RF), Support Vector Machine (SVM), and 386 
ARIMA—on the same dataset. Regression accuracy was evaluated by RMSE, MAE, and MAPE on continuous claim amounts; 387 
we additionally cast “high-loss events” (claims > 84 MUSD) as a binary classification task and reported Precision, Recall, and F1 388 
for event detection. 389 

All models were trained on 1995–2012 and evaluated on a held-out test set covering 2013–2022. As shown in Table 2, the 390 
LSTM attained the lowest errors (RMSE/MAE/MAPE) and the highest F1 score, demonstrating its superior ability to capture the 391 
series’ nonlinear dynamics and to flag extreme-claim years. RF and SVM suffered from substantially larger regression errors (e.g. 392 
RF’s RMSE ≈62 vs. LSTM’s 48.2), and both missed most high-loss cases (RF F1≈0.20, SVM F1≈0.00). ARIMA performed 393 
reasonably on linear trends but lagged on nonlinear patterns (RMSE≈85), achieving a middling event-classification F1≈0.67. 394 
These results confirm that our LSTM framework outperforms traditional methods on both continuous forecasting and rare “high-395 
loss” event detection when evaluated over 2013–2022. 396 

 397 
Table 2 398 

PERFORMANCE COMPARISON (TEST SET: 2013–2022). REGRESSION METRICS (RMSE, MAE IN MUSD; MAPE IN %) AND 399 

HIGH-LOSS-EVENT CLASSIFICATION (PRECISION, RECALL, F1).  400 

Model RMSE MAE MAPE (%) Precision Recall F1 

LSTM 48.2 33.8 40.7 0.86 0.86 0.86 

RF 62.0 59.1 74.4 0.25 0.17 0.20 

SVM 71.7 59.5 55.3 0.00 0.00 0.00 

ARIMA 85.0 70.0 80.0 0.67 0.67 0.67 

Notes:“High-loss event” defined as TrueInsuranceClaim > 84 MUSD.RMSE/MAE in million USD; MAPE is percentage. 401 
LSTM’s consistently lower errors and higher F1 confirm its stronger predictive power and event-detection capability on this 402 
nonlinear, multivariate series. 403 

LSTM consistently outperforms RF, SVM and ARIMA in both regression and high‐loss event detection (F1 = 0.86), 404 
demonstrating its superior ability to capture nonlinear dependencies and extreme events.  405 
While ARIMA and SVM performed well on linear or simple patterns, and RF provided robust results with engineered features, 406 
the LSTM model consistently achieved the best prediction accuracy and stability for the complex, multivariate insurance claim 407 
data studied here. Although LSTM required higher computational costs, its ability to capture non-linear dependencies and long-408 
term temporal patterns makes it the most suitable choice for insurance claim forecasting in this context. 409 
 410 

5 RESULTS AND DISCUSSION 411 

Based on the previously defined training and testing split, this section focuses on the prediction and analysis of global extreme 412 
weather events and insurance claims over the past decade (2013–2022), using the test dataset as the basis for evaluation. It also 413 
includes sample statistics, meteorological trend analysis, insurance claim forecasting, SHAP-based model interpretation, and real-414 
world case validation to comprehensively evaluate the proposed model. 415 
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5.1 Sample Descriptive Statistics 416 

The sample data from the period 2013 to 2022 are summarized, as shown in Table 3. 417 
 418 

Table 3 419 
SAMPLE DATA SHEET FOR EXAMPLE DATA COLLECTION SECTIONS 420 

Year 
Temperature 

(℃) 
Precipitation 

(mm) 
Snowfall (mm) 

Insurance claims 
 (Billion USD) 

2013 14.66 1103.99 2497.33 50.49 

2014 14.74 1118.30 1782.57 38.66 

2015 14.87 1157.95 1854.45 36.83 

2016 15.15 1230.27 1476.50 50.29 

2017 15.00 1212.59 1817.62 183.02 

2018 14.86 1207.10 1854.96 102.15 

2019 14.97 1188.81 1772.92 65.82 

2020 15.10 1189.02 1250.95 102.59 

2021 14.82 1196.73 1253.24 124.73 

2022 14.92 1124.90 1476.25 134.56 

Notes: Except for this table, all monetary values in the manuscript are expressed in million US dollars (MUSD). Here, values 421 
are reported in billion US dollars (USD billion). Conversion: 1 USD billion = 1,000 MUSD.  422 

 423 
As described in data preprocessing stage, this paper provides an exhaustive descriptive statistical analysis of four core indicators 424 

related to extreme weather and property insurance: temperature, precipitation, snowfall, and insurance claims, in order to ensure 425 
the quality and applicability of the data. The period from 1951 to 1980 was widely used as a benchmark for temperature anomalies, 426 
at 14 degrees Celsius. Our temperature data is sourced from 12 months of data from NOAA's National Environmental Information 427 
Center from 1995 to 2025, with annual averages taken. For the above extreme weather data, in terms of extreme average 428 
temperature, the median is 14.895, the mean is 14.909, the standard deviation is 0.153, the maximum value is 15.15, and the 429 
minimum value is 14.66, with no missing values. Based on the Shapiro Wilk (S-W) normality test, the level of this data is not 430 
significant, with a significance p-value of 0.937. The null hypothesis cannot be rejected, as the data follows a normal distribution; 431 
In terms of extreme mean precipitation, its median is 1188.915, mean is 1172.966, standard deviation is 43.937, maximum value 432 
is 1230.27, minimum value is 1103.99, there are no missing values, based on Shapiro-Wilk (S-W) normality test shows that the 433 
level of this data does not present a significant value, its significance P value is 0.691. The significance p-value is 0.293, which 434 
does not reject the original hypothesis, and the data shows normal distribution; in terms of extreme mean snowfall, its median is 435 
1777.745, mean is 1703.679, standard deviation is 366.772, maximum value is 2497.33, minimum value is 1250.95, and there are 436 
no missing values, and the data shows a normal distribution based on the Shapiro-Wilk (S-W) normality test. W) Normal test 437 
shows that this level of data does not show significance and its significance p-value is 0.157, the original hypothesis cannot be 438 
rejected and the data shows normal distribution; For the global natural catastrophe insured losses data mentioned above, the 439 
median is 86.195, the mean is 82.708, the standard deviation is 27.253, the maximum value is 120.51, and the minimum value is 440 
43.18. There are no missing values. Based on the Shapiro-Wilk (S-W) normality test, the significance p-value is 0.397, which 441 
does not reject the original hypothesis, and the data present a normal distribution. 442 

Through the above statistical analysis, this paper has a comprehensive understanding of the distribution characteristics of the 443 
data, based on, foundation for subsequent model training and optimization.  444 

 445 
 446 

5.2 Weather prediction and analysis of the relationship between weather and insurance 447 

A thorough examination of global temperature trends in the context of extreme weather conditions from 2013 to 2022 reveals 448 
a clear pattern of initial decline followed by a steady increase, as depicted in Fig. 9. In 2013, the global average temperature was 449 
approximately 14.66°C. A slight rise occurred in 2014, after which the temperature continued to climb from 2015, reaching a 450 
peak in 2016 at around 15.15°C (about 0.6°C above the baseline). After this peak, the temperature declined in 2017 and hit a local 451 
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low of 14.86°C in 2018. Subsequently, the temperature rebounded, reaching levels close to the previous peak in 2020, before 452 
experiencing another minor decrease by 2022. 453 

 454 
FIG. 9. Analysis of Global Temperature Change Trends Under Extreme Weather Conditions from 2013 to 2022 455 

456 
This upward trend in temperature aligns with the broader context of global warming and the increasing frequency of extreme 457 

heat events. Higher temperatures are often associated with more frequent occurrences of extreme weather such as heatwaves, 458 
droughts, and wildfires—events that typically result in increased insurance claims. Analysis of the corresponding scatter plot 459 
shows that, in general, as temperature rises, insurance claim amounts also tend to increase. Although this relationship is not strictly 460 
linear, it is positively correlated, suggesting that higher temperatures are likely to result in greater insurance losses (e.g., due to 461 
heat-induced fires, droughts, or infrastructure damage). 462 

The model-predicted temperature fluctuation trend is therefore consistent with the actual temperature, though a discrepancy is 463 
evident between the peaks in 2016 and 2020 and the troughs in 2018 and 2021. This discrepancy may be attributable to the 464 
unpredictability and complexity of extreme weather events, thereby underscoring the model's efficacy in predicting changes in 465 
global temperature under such conditions and its capacity to more accurately anticipate the consequences of future extreme 466 
weather on global temperature.  467 

As shown in Fig. 10, the global precipitation trend under extreme weather conditions from 2013 to 2022 exhibited an overall 468 
pattern of increase followed by a decrease (Thackeray et al., 2022). Actual annual precipitation started at approximately 1100 mm 469 
in 2013 and increased year by year, reaching a peak of nearly 1240 mm in 2016. This was followed by a moderate decline, with 470 
precipitation dropping to around 1180 mm during 2018–2019. The years 2020 and 2021 were characterized by relatively stable 471 
precipitation, while 2022 saw a slight decrease. 472 
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 473 
FIG. 10. Analysis of Global Precipitation Change Trends Under Extreme Weather Conditions from 2013 to 2022 474 

 475 
Generally, the model’s predictions of precipitation are broadly consistent with actual values throughout this period, but the 476 

model notably underestimated the sharp surge in precipitation observed in 2016. Such discrepancies highlight the challenges that 477 
remain in fully capturing the impacts of extreme weather events within current climate models, emphasizing the need to improve 478 
model sensitivity and prediction accuracy for such phenomena. 479 

The variation in precipitation significantly affects the incidence of certain disasters: extreme rainfall events can trigger floods, 480 
landslides, and other catastrophes, leading to substantial property and vehicle losses, and thereby increasing insurance claim 481 
amounts. 482 

A comprehensive analysis of global snowfall trends from 2013 to 2022 reveals pronounced fluctuations, as illustrated in Fig. 483 
11. In 2013, global snowfall was approximately 2400 mm, followed by a sharp decline to around 1800 mm in 2014. Snowfall 484 
continued to decrease, reaching a low of about 1400 mm in 2016. Subsequently, there was a notable recovery: from 2017 onward, 485 
snowfall rebounded, stabilizing in the range of 1800–1900 mm during 2018 and 2019. 486 

 487 
FIG. 11. Analysis of the trend in world snowfall under extreme weather from 2013 to 2022 488 

https://doi.org/10.5194/egusphere-2025-4203
Preprint. Discussion started: 16 October 2025
c© Author(s) 2025. CC BY 4.0 License.



                                                                                                                                                                                                                                                                         15 
 

Regarding model performance, the LSTM’s predicted values aligned well with actual snowfall in 2013 but failed to capture the 489 
abrupt decline in 2014, and slightly underestimated actual snowfall in 2015. From 2016 onward, the model’s predictive accuracy 490 
improved significantly, especially between 2017 and 2019, when forecasted and observed values were closely matched. In 2020, 491 
the model underestimated actual snowfall, likely due to the unpredictable nature of extreme weather events, but by 2021 and 2022, 492 
prediction and reality were again very close. These results indicate that while the model demonstrates reasonable predictability 493 
for global snowfall under extreme conditions, further enhancement and calibration are necessary for more precise forecasting. 494 

From a risk perspective, extreme snowfall events—such as blizzards—can lead to sharp increases in insurance claims, including 495 
those related to property damage (e.g., collapsed roofs) and vehicle accidents. The clustering of points along an upward trend 496 
suggests that increased snowfall directly triggers higher claim amounts, likely due to widespread property and infrastructure 497 
damage caused by extreme snow events. 498 

In summary, the combination of time series modeling and empirical correlation analysis confirms that volatility in global 499 
snowfall is closely tied to insurance claims. This underlines the importance of continuously refining prediction models to help 500 
insurers better anticipate loss peaks associated with severe winter weather, supporting more robust risk management and pricing 501 
strategies. 502 

The Fig. 12 comprises three scatter plots showing the relationships between temperature, snowfall, and precipitation and the 503 
amounts of insurance claims over 1980–2022. In the “Temperature vs Claim Amounts” panel, claim amounts tend to rise with 504 
higher temperatures, although the relationship is not strictly linear and there is variability at similar temperatures. The “Snowfall 505 
vs Claim Amounts” panel reveals a more pronounced positive association, suggesting that heavier snowfall is associated with 506 
higher claim amounts, possibly through increased property damage or accident risks. The “Precipitation vs Claim Amounts” panel 507 
also shows a positive trend, but the points are more dispersed, indicating that increases in precipitation are less consistently related 508 
to claim amounts than snowfall, potentially due to regional differences or the nature of events leading to claims (Aswin et al., 509 
2018). Taken together, these plots indicate that extreme weather conditions can have a significant impact on insurance claim 510 
amounts, with snowfall showing the most consistent positive relationship. 511 

 512 
FIG. 12. Trends in annual losses and insurance claims due to extreme weather, 1980-2022 513 

 514 
However, the dispersion of the points also emphasizes the complexity of linking claim amounts to weather conditions, 515 

underscoring the need for predictive modeling to better characterize these interactions.. 516 
It is important to clarify that, although Sect. 5.2 and earlier parts of the manuscript summarize annual patterns (e.g., 2013–517 

2022), Fig. 12 spans 1980–2022. The models ingest higher-frequency meteorological inputs (monthly indicators with lags/sliding 518 
windows), whereas the insured-loss target is annual; therefore, the meteorological inputs are aggregated to the calendar year for 519 
model training and reporting. 520 

Consequently, the scatter plots in Fig. 12 reflect annual observations (year-level, and where applicable region–year), rather than 521 
monthly claim entries. This approach preserves sub-annual weather information through derived features while ensuring 522 
consistency with the annual loss series used for evaluation. All model training and evaluation were conducted on datasets aligned 523 
to these annual definitions. 524 

. 525 

5.3 Insurance claims prediction and model evaluation 526 

As described in the last section, the trends observed from 2013 to 2022 clearly demonstrate that fluctuations in global 527 
temperature, precipitation, and snowfall under extreme weather conditions are closely linked to insurance claim amounts. We 528 
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confirmed, through time-series analysis, the positive correlation between these meteorological factors and peaks in insurance 529 
claims. 530 

To assess our LSTM’s practical forecasting capability, we compared its predictions with the actual claim amounts (Fig. 13). 531 
The LSTM demonstrated an excellent predictive performance (R² = 0.9428, RMSE = 4.28 MUSD, MAE = 3.53 MUSD), 532 
successfully capturing the major insurance claim peaks observed around 2017 and 2022. The actual insurance claim data utilized 533 
in this analysis is sourced from the Swiss Re Institute's statistics ("Growth in Global Natural Catastrophe Insured Losses"). 534 

 535 
FIG. 13. Analysis of Insurance Claim Trends (2013-2022) 536 

 537 
Based on the validated performance over the past decade (2013–2022), the model demonstrates strong predictive accuracy 538 

within this time frame, which aligns with our research focus and ensures consistency across all analyses. The full dataset spans 539 
1995 to 2025, but the 2013–2022 window is selected for focused evaluation due to its higher data reliability and relevance to 540 
recent insurance claim patterns. 541 

Fig. 14 further illustrates annual disaster losses from 2016 to 2020, emphasizing the significant economic impacts of extreme 542 
weather events, notably the spike in losses during 2017. Such substantial financial implications underline the importance of 543 
accurate insurance claim prediction and the need for improved forecasting models.  544 

These results are consistent with recent literature that emphasizes the insurance industry's critical role in addressing climate 545 
risks. Xu et al. (2024) provided a comprehensive review of the insurance sector’s current responses to climate change, highlighting 546 
evolving strategies to manage growing weather-related risks. Similarly, Wang (2020)  analyzed the impacts of climate change on 547 
the insurance industry and discussed adaptation and mitigation approaches essential for maintaining financial stability under 548 
increasing climate uncertainty. These findings further support the importance of developing predictive models with both high 549 
accuracy and strong interpretability, as proposed in this paper, to enable proactive risk management and policy formulation. 550 

While the model captures the overall trend, the prediction accuracy for large, sudden fluctuations in annual disaster losses 551 
remains limited, particularly when forecasting across broader time spans with high variability. 552 

553 

 554 
FIG. 14. Analysis of Disaster Losses by Year (2016-2020) 555 
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5.4 Temporal Dynamics of Feature Contributions via SHAP 556 

To enhance the transparency and regulatory compliance of the LSTM-based insurance claim prediction model, SHAP was 557 
applied to interpret model predictions. Using the SHAP framework, SHAP values were computed for each input feature across 558 
various time steps (current, t-1, t-2) on the test dataset. 559 

Fig. 15 illustrates the distribution of SHAP values for each feature across different time lags. Each feature’s SHAP distribution, 560 
presented as a violin plot, reflects its overall contribution to predicted claims. Features such as current snowfall (Snowfall_t) and 561 
precipitation (Precipitation_t) exhibit notably wide distributions, suggesting stronger immediate impacts. Historical claims 562 
(TrueInsuranceClaim_t) at current and recent times also show significant influences. Conversely, SHAP values for earlier time 563 
lags (e.g., temperature and claims at t-2) are comparatively narrower, indicating a reduced but still discernible influence of past 564 
data, thus demonstrating that the model adequately accounts for temporal dependencies. 565 

 566 
FIG. 15. Grouped SHAP Violin Plot by Feature and Time Step 567 

 568 
Fig. 16 (bar plot) ranks these features based on the mean absolute SHAP values, providing a concise summary of each feature's 569 

average magnitude of impact across time steps. Some observations (highlighted as dots on the extremes of the violin plot in Fig. 570 
15), such as extremely high snowfall or large claim anomalies, reflect exceptional conditions that have disproportionately large 571 
impacts on predicted claim amounts. 572 

 573 

FIG. 16. Mean Absolute SHAP Values by Feature and Time Step 574 
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Taken together, these SHAP visualizations reinforce our time-series findings, confirming that the LSTM effectively utilizes 575 
recent meteorological conditions (snowfall and precipitation) and historical insurance claims to predict claim peaks. The clear 576 
temporal insights from SHAP enhance the transparency and interpretability of the model, providing stakeholders actionable 577 
guidance for insurance risk management decisions. 578 

To further validate our model’s real-world applicability and predictive accuracy, we examine the catastrophic "7·20" flood 579 
event in Henan, China, in July 2021. During this unprecedented extreme rainfall event, over 14.78 million people were affected, 580 
and economic losses exceeded 120 billion RMB. Property insurers faced over 510,000 claims, with estimated losses surpassing 581 
12.4 billion RMB and nearly 7 billion RMB in claims paid within weeks. 582 

This case strongly supports our findings: extreme weather events directly drive spikes in insurance claims and generate 583 
substantial financial pressures. Moreover, the case demonstrates how insurance claims play a vital role in post-disaster recovery 584 
and regional economic stability. It also highlights the vital role of accurate predictive models—like our LSTM framework 585 
combined with SHAP interpretability—in anticipating claims surges, thus enabling insurers and policymakers to develop 586 
proactive risk management and recovery strategies. 587 

 588 

5.5 Open Research Questions and Future Directions 589 

Building on our LSTM framework and interpreted with SHAP on globally aggregated series, we identify three open 590 
uncertainties: (i) Shift robustness: performance varies around abrupt regime shifts and cross-regional extremes, indicating 591 
sensitivity to non-stationarity and compound events; (ii) External validity: country-level aggregation without explicit exposure or 592 
line-of-business controls may obscure cross-country heterogeneity in insurance penetration, regulation, and reporting, 593 
confounding hazard–claim relationships; and (iii) Explainability stability: whether SHAP attributions remain consistent across 594 
years, regions, and multi-hazard contexts is unresolved. These gaps align with global evidence of intensifying heavy-precipitation 595 
extremes/compound risks and the sustained rise in worldwide insured catastrophe losses, underscoring the need for calibrated, 596 
auditable claims forecasting.  597 

Future work will: (i) enrich data & design by incorporating subnational hazard footprints where available, explicit 598 
exposure/vulnerability covariates, and line-of-business stratification; (ii) handle extremes & shift via shift-aware/hybrid 599 
architectures and calibrated probabilistic outputs (e.g., conformal prediction intervals) with drift detection; and (iii) validate 600 
externally through cross-region transfer tests and event-time evaluations, with reporting aligned to insurer/regulator risk 601 
frameworks. These steps directly address the constraints of country-level aggregation and a finite evaluation horizon and are 602 
consistent with international guidance on climate and compound-event risk. While more recent architectures such as Gated 603 
Recurrent Unit (GRU)and Transformer-based models have shown promise, we focus here on LSTM due to its balance of 604 
interpretability, data efficiency, and regulatory alignment. Comparative analyses with such architectures remain important future 605 
work. 606 

Future research may explore alternative learning rate scheduling strategies and improved control of learning rate fluctuations 607 
to further optimize training performance. 608 

Limitations remain, primarily due to the temporal constraints of the ten-year validation window and the geographic bias of 609 
insurance datasets. Subsequent research will break through these limitations by expanding historical climate reconstruction data 610 
and enhancing risk exposure characterization in the Global South. Moreover, we acknowledge that the present study does not 611 
compare the LSTM model with emerging hybrid architectures (such as Transformer-LSTM or physics-informed neural networks), 612 
nor does it systematically address the modeling of compound extreme events (e.g., concurrent heatwaves and droughts). Future 613 
work will focus on incorporating these advanced architectures and developing methodologies to better capture and predict 614 
compound climate risks, thereby further improving the robustness and practical value of the modeling framework. 615 

 616 

6 CONCLUSION 617 

In this study, we present a well-structured, robust forecasting study that innovatively integrates deep sequence modeling with 618 
climate-risk management in insurance, and we position our work within real-world actuarial needs and regulatory constraints. An 619 
improved LSTM prediction model was developed to address the problem of predicting extreme weather events and their 620 
associated insurance claims costs. By comprehensively analyzing historical weather data and detailed insurance records, 621 
introducing the Adam optimization algorithm, and utilizing the ReLU activation function in the fully connected layer, the model's 622 
nonlinear fitting ability was significantly enhanced, ensuring closer alignment between predictions and real-world trends. 623 

Additionally, explainable AI techniques, particularly SHAP, were employed to interpret feature contributions in the LSTM 624 
model. This not only enhanced transparency but also improved stakeholder trust by revealing the key meteorological and 625 
economic variables influencing prediction outcomes. The improved model demonstrates clear advantages in handling complex 626 
time series, automatically capturing long-term dependencies, and overcoming the limitations of manual feature engineering. 627 
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Overall, the improved LSTM model plays a critical role in promoting sustainable regional development. It not only helps insurers 628 
ensure financial resilience under climate uncertainty but also provides decision-makers with data-driven tools to design effective 629 
climate risk mitigation strategies. Moreover, our optimized LSTM pipeline integrates hyperparameter tuning, multi-output 630 
forecasting, and SHAP-based interpretability. 631 

In addition, this research leverages global-scale datasets derived from authoritative meteorological and insurance sources, rather 632 
than being limited to local or regional case studies. This broader scope significantly enhances the contribution of our work. While 633 
many prior studies focus on small-scale contexts (e.g., a single city, district, or community), our analysis addresses climate and 634 
insurance risks at a global level, thereby providing stronger generalizability and societal relevance. The findings can inform not 635 
only localized stakeholders but also international insurers, regulators, and policymakers in developing strategies to mitigate the 636 
socioeconomic impacts of extreme weather events. 637 
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