https://doi.org/10.5194/egusphere-2025-4203
Preprint. Discussion started: 16 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

N

34

35
36
37
38
39
40
41
42
43

Global Forecasting of Extreme Weather and
Insurance Losses Using an LSTM-Based, Audit-
Ready Framework

Hongbo Guo?, Shuotian Li?, Guojun Long?®, Qiqi Liang*, Haochi Zhang®
School of Information Engineering, Yulin University, Shaanxi 719000, China
2Faculty of Computer Science & Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia
3School of Accounting, Guangdong Baiyun University, Guangzhou 510550, China
4School of Creative Design, Shenzhen Technology University, Shenzhen 518118, China
5School of Software and Microelectronics, Peking University, Beijing 102600, China
*Corresponding to: Shuotian Li (24051012@siswa.um.edu.my)

Abstract:

The property and casualty insurance industry increasingly relies on deep neural networks to quantify weather-
driven risks. This study develops a forecasting framework based on long short-term memory networks to
estimate the global impact of extreme weather on insurance claims by integrating authoritative meteorological
and financial datasets. Specifically, we leverage globally consistent records of temperature, precipitation, and
snowfall from NOAA’s National Centers for Environmental Information (1995-2025) and insured-loss statistics
from Swiss Re’s global catastrophe reports, rather than focusing on local or regional case studies. The model
captures long-range temporal dependencies without manual feature engineering and employs adaptive moment
estimation to stabilize training and reduce prediction errors. A fully connected layer with rectified linear unit
activation enhances nonlinear fitting, while post-hoc Shapley additive explanations clarify how weather
variables and recent claims shape predicted losses. Benchmarks against classical baselines—random forest,
support vector machine, and autoregressive integrated moving average—demonstrate consistent accuracy gains.
Using three decades of data, including a decade reserved for out-of-sample evaluation, the framework delivers
accurate forecasts with transparent attributions that support pricing, reinsurance planning, and catastrophe
response under climate risk. This integrates extreme-weather signals with insurance losses, based on globally
aggregated datasets, to provide reproducible, regulator-auditable global insights.

Keywords: Deep Neural Network Model, Long Short-Term Memory Network Model, Extreme Weather;
Insurance Claims.

1 INTROUCTION

The increasing impact of extreme weather events in the context of rapid societal development has made them a crucial
research topic in the field of environmental science and risk management. For example, as shown in Fig. 1 below, it is an
extreme weather event of lightning strikes in Bangkok, Thailand. Due to the intensification of global climate change,
extreme weather events not only seriously affect the stability of the global economy, but also pose a major challenge to
social development and public safety. According to the Intergovernmental Panel on Climate Change (IPCC, 2021),
marginalized populations are most affected by climate change. Nearly half of the world’s population lives in highly
vulnerable areas with limited development capacity. This trend is expected to continue in the future. In recent years, as the
pace of global climate change has accelerated, concern about extreme weather events has reached an all-time high.
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56 FIG. 1. Extreme weather event (Lightning strikes Bangkok, Thailand)

58 Statistics show that the global losses caused by extreme weather events have increased significantly, for example, the
59  global natural disaster data in 2023 show that 326 large natural disasters occurred globally, involving a variety of disaster
60  types, affecting 117 countries and regions, resulting in 86,473 deaths due to disasters globally, with an affected population
61  0f 93,052,400 people, and a direct economic loss of 202,652 million U.S. dollars. Regarding the China context, all types of
62 natural disasters in China caused 95,444,000 people to be affected, and direct economic losses amounted to 345.45 billion
63  yuan in 2023. Climate change-driven insurance costs are projected to rise significantly by 2040 (Wang, 2024; Fantini et al.,
64  2023), showing the impacts of natural disasters across the globe, as well as the frequency and economic losses of different
65  types of disasters, emphasizing the wide-ranging impacts of natural hazards and the severity of economic losses globally.
66 Recurrent architectures such as long short-term memory (LSTM) units mitigate—though do not eliminate—the
67  vanishing/exploding-gradient issues of vanilla recurrent networks by introducing gating and a near-additive memory path.
68  This makes it easier to retain long-range temporal dependencies in meteorological and claims series (Shi, 2023). LSTM
69 models are essentially an evolved version of traditional recurrent neural networks(RNN), designed to overcome the gradient
70  vanishing and explosion problems of these networks (Suradhaniwar et al., 2021). Given that traditional RNNs commonly
71 face the gradient vanishing problem when attempting to deal with long term dependencies, this shortcoming leads to a
72 gradual loss of early information as the sequence length increases, which in turn weakens their efficacy in long time series
73 analysis (Karevan and Suykens, 2020). The previous studies mainly focus on the optimization of traditional time series
74 prediction methods and their combination with single-layer neural networks, and although these methods have achieved
75  good results in specific application scenarios, they still show limitations in dealing with complex temporal dependencies.
76 In contrast, the LSTM model overcomes several limitations in traditional methods through its unique memory cell
77  architecture, and is able to handle long time series and complex nonlinear regression problems more effectively.
78  Consequently, in order to further improve the prediction accuracy and adapt to a wider range of application scenarios, many
79  scholars have conducted in-depth research on LSTM to optimize its performance and address specific challenges. Chang et
80 al. (2018) presented two examples to validate the performance of adaptive moment estimation(Adam)-optimized LSTM
81  neural network and used a dataset from New South Wales, Australia to illustrate the excellence of the model. The results
82 showed that the proposed model can significantly improve the prediction accuracy. Adam's algorithm, which is a first-order
83 gradient optimization algorithm based on adaptive estimation of low-order moments, is easy to implement, computationally
84 efficient, and has a small memory footprint. It is capable of optimizing the mean square error loss function, which is
85  particularly well suited to LSTM neural networks.

86 Given the challenges posed by extreme weather, we implement and evaluate a global LSTM-based forecasting framework
87  tailored to insurance-claim time series, prioritizing applied evaluation and transparent interpretation over algorithmic
88  novelty. The main contributions of this paper are as follows:

89 (1) Deployment-oriented LSTM framework. We present a well-structured, robust forecasting framework based on an
90  optimized LSTM to improve forecasts of insured losses associated with extreme weather. The framework integrates deep
91 sequence modeling with climate-risk management and is explicitly aligned with actuarial practice and regulatory
92  requirements.

93 (2) Global, audit-ready data and interpretability. We integrate globally consistent meteorological records from
94 NOAA/NCEI and cross-country insured-loss statistics from Swiss Re to move beyond local case studies and support
95 regulator-auditable analyses. We provide end-to-end interpretability via Shapley Additive Explanations (SHAP), which
96 clarifies the contributions of temperature, precipitation, snowfall, and historical claims to the predictions, enhancing
97  transparency for climate-risk policy decisions.
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98 (3) Systematic baselines under a common split. Trained on 1995-2012 and evaluated out-of-sample on 2013-2022, our
99 LSTM consistently outperforms RF, SVM, and ARIMA on RMSE/MAE/MAPE and on high-loss detection (F1) across
100  multiple forecast horizons.
101 (4) Ablations and sensitivity for deployment. Optimizer, architecture, and regularization ablations—together with
102 hyperparameter-sensitivity analyses—identify which components drive gains and provide practical parameter ranges for
103 robust deployment; the framework delivers high predictive accuracy with manageable computational cost relative to
104 accuracy gains
105 Paper Structure. The remainder is organized as follows: Sect. 2 reviews related work; Sect. 3 presents the proposed
106  methodology, detailing the LSTM architecture and training procedure; Sect. 4 describes the experimental evaluation; Sect.
107 5 reports the results and discussion; and Sect. 6 concludes the paper.

109 2 RELATEDWORK

110 Many academics have contributed valuable insights to the field of research examining the impact of extreme weather events on
111 theinsurance industry. However, effective assessment and management of extreme weather risks remains a challenge. Zhou et al.
112 (2024) provide an in-depth analysis of the significant challenges posed to the insurance industry by the increased frequency and
113 intensity of extreme weather events due to climate change, and propose a set of methodologies for quantifying the impacts of
114 climate change that provide specific guidance to the property insurance industry. Rao and Li (2023) state that China has
115  accumulated a number of successful cases and best practices in the field of climate risk insurance, identifying the existing
116 insurance coverage, and premium pricing mechanisms, with the aim of promoting the further development and improvement of
117  climate risk insurance in China.

118 Deep models can excel on complex, nonlinear signals, but their gains depend on data scale, task design, and evaluation protocol.
119  we therefore benchmark LSTM against classical baselines under a common split to assess practical utility. Cheng (2022)
120  provided an extensive review of LSTM research, tracing how Hochreiter and Schmidhuber originally introduced this special RNN
121 variant to mitigate gradient vanishing and exploding issues during long-sequence training. Thanks to its gating mechanisms,
122 LSTM effectively captures long-term dependencies, overcoming limitations of traditional RNNs. Maheswari and Gomathi (2023)
123 evaluated the performance of diverse deep learning architectures for weather forecasting, demonstrating that LSTM and CNN
124 architectures are particularly adept at modeling nonlinear temporal patterns. In contrast, Tan and Gong (2024) developed an
125 extreme weather risk prediction method that integrates Monte Carlo simulation with the entropy-TOPSIS decision-making
126  framework to assess and rank climate-risk scenarios in China and the United States, showing improved identification of high-risk
127  events. Although these models have significantly advanced forecast accuracy and risk quantification, they still face challenges in
128 incorporating localized geographic features and fine-grained structural information of extreme events, which constrains their
129  predictive precision and practical usability.

130 Nobanee et al. (2022) provide important insights in their study, which emphasizes insurance as an effective tool for dispersing
131  and transferring losses from climate disasters, and summarizes international successes in incorporating factors such as
132 international partnerships, climate change, and other factors into catastrophe models, promoting loss prevention and incentivizing
133 mitigation of climate risks through insurance provisions, to achieve compliance with the international consensus and enhance the
134 resilience of the whole society to cope with climate risks. Essa et al. (2020) proposed a RNN to improve the accuracy of short-
135  term lightning prediction based on an LSTM lightning density prediction model, which utilizes LSTM to capture spatio-temporal
136 data dependencies and learns long-term data patterns. The experimental results show that the average absolute error of the model
137 in one-hour prediction is 2.87 times/hour and the mean square error is 1209, indicating its significant potential in prediction
138  accuracy, which provides an important reference for climate risk assessment and insurance product development.

139 In order to enhance the claims management capability of the insurance industry, Tzougas et al. (2022) evaluated the impact of
140  different weather conditions and environmental factors on insurance claims patterns, so as to improve the management and
141 prediction capability of insurance companies for such risks; Shi et al. (2024) used an innovative feature fusion approach,
142  combined with the prediction of long and short-term factors, and utilized deep learning techniques to enhance the potential loss
143 distribution in the insurance industry's claims management prediction accuracy. In particular, it integrates detailed weather data
144  toimprove the accuracy of predicting potential losses. The methodology significantly improves the ability of insurance companies
145 to process and respond to claims and provides an important reference for future research. In particular, it predicts the entire loss
146  distribution and is suitable for insurance applications requiring uncertainty quantification and risk management.

147 Despite significant progress in analyzing the impact of extreme weather events on the insurance industry and in applying deep
148 learning models, several limitations remain, particularly in model accuracy and interpretability. Recent advances in explainable
149 artificial intelligence (XAl), especially SHAP, have significantly improved the interpretability and transparency of complex neural
150  network predictions by clearly quantifying feature contributions, thereby enhancing stakeholder trust and supporting decision-

151 making in risk-sensitive industries such as insurance. Many recent studies have successfully combined SHAP with LSTM or other
3
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152  time-series forecasting models to improve model transparency and feature importance analysis. For example, Sunu Fathima and
153 Kovoor (2024) used SHAP to interpret stacked LSTM weather prediction models, demonstrating SHAP’s growing value in time-
154  series forecasting.

155 Based on these research foundations, this paper aims to develop an LSTM neural network-based model that not only improves
156  the accuracy and efficiency of predicting extreme weather events and associated insurance claims costs but also enhances model
157  interpretability through SHAP-based explanations.

159 3 PROPOSED METHODOLOGY

160 In this paper, we implement and evaluate a LSTM-based forecasting model aimed at improving the accuracy of predicting
161  extreme weather events and their associated insurance claims costs, enabling insurers to make more effective risk management
162  and strategic decisions.

163 We implement a compact, deployment-oriented LSTM that couples globally harmonized meteorological records (temperature,
164  precipitation, snowfall) with regulator-auditable insured-loss series. Inputs are min-max scaled and arranged into fixed look-back
165  windows; the network (stacked LSTM with a simple dense head) is trained with Adam and early stopping under a fixed train/test
166  split [e.g., 1995-2012 train, 2013-2022 test]. Evaluation follows actuarial practice (RMSE/MAE/MAPE plus an extreme-loss
167 F1), and post-hoc SHAP-style attributions quantify the roles of weather variables and lagged claims. To provide a comprehensive
168 description of the research methodology, this section is divided into three key parts: (3.1) data preparation, (3.2) model
169  construction, and (3.3) model optimization.

170
171 3.1 Data Collection and Preprocessing
172 This study integrates historical meteorological and insurance data, specifically utilizing global temperature, precipitation, and

173  snow depth records covering a 30-year span (1995-2025) obtained from NOAA’s National Centers for Environmental
174  Information (NCEI) and the Federal Emergency Management Agency (FEMA), as well as insurance claims data sourced from
175 the Swiss Re Institute's reports on global natural catastrophe insured losses. The dataset incorporates key indicators such as
176  temperature, precipitation, snowfall, and historical insurance claims to construct a comprehensive property insurance risk
177 assessment model, systematically evaluating the frequency, intensity, and economic impact of extreme weather events on
178 insurance outcomes. FEMA disaster records were restricted to the United States subsample for contextualization and validation,
179  and they were not combined with the global NOAA/NCEI and Swiss Re datasets.

180 In order to construct a model using the LSTM network to analyze the relationship between extreme weather and property
181 insurance guarantees, data standardization is adopted to improve the performance of the model, for the collected data, this paper
182 has standardized the four key indicators of temperature, precipitation, snowfall, and the amount of insurance claims. For the
183  collected data, this paper standardizes the four key indicators of temperature, precipitation, snowfall and insurance claims, using
184 the min-max scaling technique, which maps the value of each characteristic to the interval from 0 to 1. After the standardization
185  process, the values of temperature, precipitation, snowfall, and insurance claims are converted to the standardized form, ensuring
186 that all numerical features are on the same scale. The above standardization steps provide the LSTM model with high quality and
187  consistent data inputs, providing a solid.

188
189 3.2 LSTM-based Prediction and Evaluation Model
190 This study proposes a deep learning architecture based on a LSTM neural network, specifically tailored to quantify the impact

191  of extreme weather events on property insurance claims. The model adopts a multi-layer structure comprising an input layer, two
192 LSTM hidden layers, a fully connected dense layer, and an output layer. The input layer ingests pre-processed time series data—
193 including meteorological variables (temperature, precipitation, and snowfall) and historical insurance claims. The stacked LSTM
194 layers are responsible for capturing long-range temporal dependencies and nonlinear patterns across both climate and financial
195  domains. The final fully connected layer, activated by ReL.U, ensures nonlinear fitting and feeds into the output layer that generates
196  predictive outcomes. To operationalize this design, we adopt stacked LSTM layers (moderate-sized hidden units) followed by a
197  fully connected layer with ReLU activation, which improves nonlinear fitting and stabilizes gradients for claim forecasting.

198 To reflect the dual nature of the task, the model is designed to support multi-output forecasting, enabling simultaneous
199 prediction of both meteorological parameters and associated insurance claim amounts. By integrating weather dynamics with
200 financial outcome variables within a unified modeling framework, the LSTM captures cross-domain dependencies—e.g., how
201  changes in precipitation and snowfall relate to claim surges. This dual-task setup not only enhances predictive performance but
202  also supports more holistic climate risk assessment strategies, allowing insurers to respond proactively to anticipated

203  environmental stressors.
204
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206 FIG. 2. Schematic diagram of LSTM
207 Fig. 2 illustrates the internal schematic of an individual LSTM unit, showcasing its memory cell, input, forget, and output gates.

208 In the broader model architecture, these LSTM units form the core of the recurrent layers, enabling the model to retain long-term
209  contextual information across sequences. This architecture forms the structural backbone of the forecasting system developed in
210 this study, ensuring alignment with the research goal: to construct a robust, interpretable, and application-oriented predictive tool
211  for weather-induced insurance risk. The design is modular and supports future components (e.g., attention or probabilistic layers);
212 the experiments in this study use the baseline variant (stacked LSTM + dense output).

213

214 Based on the theoretical principles of the LSTM model, construct the following pseudocode program.

Algorithm 1 Extreme Weather Forecasting Based on LSTM Model
Input: Time-series X =(X1, X5, X5, X,),

Train-epoch n.

Output: Predict time-series ¥ =(Y; 41, Y42, Vit s, -, Yii 1),

Mean Absolute Error mean MAE, and Mean Squared Error mean MSE.

1fortto 7 do:

2 forito L do:
3 forjto L do:

4 encoder layer calculate encoding vector h; < X;

5 fi=o(W;-[h,1,z,]+by)

6 iw=0(W,-[h,_1,z,]+b,)

7 Ot:U(Wo'[htflamt]+bo)

8 dropout layer

9 Batch Normal layer

10 feature aggregation step calculate C; < h;

11 decoder layer calculate decoding vector vy, <— C;
12 fully connected layer Y= Relu(y;)

13 end
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14 end

15end

16 calculate MSE MAE

17 return MSE MAE
215 LSTM is a gated recurrent architecture that helps preserve long-term dependencies via input, forget, and output gates and a
216  nearly additive cell state. While gradients can still decay in practice, the gating and constant-error path substantially mitigate the
217  vanishing-gradient behavior of vanilla RNNs (Wang et al., 2018). At the heart of the LSTM model is the notion of unit state, a
218  continuous line running through the entire LSTM unit, which plays a key role in its operation. And the cell state of its model

219  facilitates the linear propagation of information over different time steps within a sequence, enabling LSTM to recognize and
220 preserve long-term dependencies when processing sequential data.

221 The core equations that control the operation of the LSTM cell contain several distinct phases, and the basic formulas and
222  program steps inherent to the LSTM cell are shown below:

223 Forget gate formula:

224 ft = U(Wf . [ht—l’ xt] + bf) (1)

225 Where f; denotes the output of the forgetting gate, which determines which information from the cell state should be

226  discarded.W; for the weight matrix associated with the forget gate, b, denotes the deviation term, and .h,_; corresponds to the
227 hidden state of the previous time step, where ¢ is a sigmoid activation function that produces outputs that are constrained to be in
228  therange of 0 to 1 when x, is the input for the current time step.

229 Input gate formula:

230 ir = oW [he_y, x] + by) 2

231 Where W; is the weight matrix of the input gate and b;is the corresponding bias term that reflects the output of the input gate,
232 indicating which new information will be stored in the cell state.

233 0 = Wy - [he—y, %] + bo) (3

234 Where W, denotes the weight matrix of the output gate, and b, is the associated bias term that is the output of the output gate,
235 specifying how the cell state affects the hidden state.

236 The three equations based on the above regarding LSTM cells, together with the updating of the cell state and the computation

237  of new hidden states, form the backbone of the LSTM architecture, enabling it to skillfully capture long-term dependencies and
238 efficiently manage information flow.

239 The key advantage of the LSTM model is its unique unitary state design, which allows the network to efficiently retain and
240  transfer information over long sequences. As a result, the LSTM model utilizes three gate mechanisms, including input gates,
241  forget gates, and output gates, which can interactively regulate the flow of information, utilizing the three mechanism gates as the
242 neural network's memory control valves to determine which information is retained, discarded, or exposed to subsequent layers,
243  thereby endowing the LSTM with significant selective memory capabilities, a characteristic that makes the LSTM particularly
244 suited to time-series forecasting tasks and capable of providing evaluating the impact of extreme weather on property insurance
245 risk by providing accurate and stable prediction results (Dai et al., 2020).

246
247 3.3 Model Training and Optimization
248 The full dataset spans 30 years (1995-2025) of monthly meteorological records and annual insured-loss statistics; all modeling

249 uses annual series aligned by calendar year. To avoid look-ahead bias, we used a chronological split: data from 1995-2012 were
250 used for model development (training and internal validation), while data from 2013-2022 were held out exclusively for out-of-
251  sample testing. This partitioning ensures generalization and prepares for later validation using recent 10-year data (2013-2022)
252 inthe following section.

253 Fig. 3 illustrates the dynamic fluctuation of the learning rate during model training. An adaptive learning rate schedule was
254 employed to enhance convergence. Initially (steps 0-20), the learning rate oscillates around 0.02, reflecting the model's early-
255  stage exploration of the parameter space. Between steps 20-40, a temporary drop is observed, likely due to local overfitting,
256 triggering learning rate adjustments to avoid convergence to suboptimal minima. From steps 40-80, the learning rate increases
257  steadily, indicating improved alignment between parameter updates and data characteristics. After step 80, the fluctuations
258 intensify, suggesting that finer adjustments are necessary near the convergence stage. This fluctuation pattern demonstrates the
259 model's progressive adaptation, facilitating faster convergence and enhanced generalization capability.
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The Learning Rate Fluctuation Trend of LSTM Neural Network Model
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263 Fig. 4 presents the training and validation loss trends of the LSTM model across 100 epochs. The training loss rapidly declines

264  and stabilizes after epoch 10, indicating efficient learning on training data. In contrast, the validation loss initially decreases but
265  subsequently rises and fluctuates around 0.175, potentially reflecting overfitting. Notably, this discrepancy between training and
266  validation loss suggests that while the model fits the training set well, its generalization to unseen data may be limited. To address
267  this, an early stopping strategy was implemented with a patience threshold of 10 epochs. Training was halted if the validation loss
268  failed to improve for 10 consecutive epochs, ensuring optimal generalization performance without excessive training ¢

Fit Training and Validation Loss Trends Before and After LSTM Model Parameter Optimization Adjustment
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272 To systematically identify optimal model parameters and improve model predictive accuracy, we conducted extensive

273 hyperparameter tuning (Cahuantzi et al., 2023). The optimized hyperparameters and associated performance metrics are
274  summarized in Table 1. Notably, while training and test losses (MSE and MAE) remained consistently low, validation loss
3;% (depicted in Fig. 4) fluctuated around 0.175, suggesting potential variations in initialization or insufficient regularization.

277 Table 1
278 MODEL PARAMETER OPTIMIZATION SUMMARY
Parameter Value
Hidden Size 10
Learning Rate 0.01
Epochs 100
Batch Size 88
First LSTM layer neurons 92
Second LSTM layer neurons 82
Loss Size Range (Observed) 0~0.175
Train MSE Loss 0.01021
Train MAE Loss 0.01034
Test MSE Loss 0.01038
Test MAE Loss 0.01042

279
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280 To better illustrate these trends, the Fig. 5 below includes the polynomial fitting curves of the training loss and validation loss,
281  as well as a table describing the parameters of the LSTM model. The fitted training loss initially matches the actual value, but
282  then stabilizes, possibly reflecting the long-term trend of the training loss. In contrast, the fitted validation loss initially matches
283 the actual validation loss, but then tends to increase, further emphasizing the decrease in the generalization ability of the model.
284 Therefore, based on the above observations, it can be concluded that although the model's performance on the validation set is
285 affected by overfitting, its performance on the training set improves as training progresses, indicating that using an LSTM model
286  for deep learning to predict extreme weather has a good fit to the data prediction. Fig. 5 also shows the trend of the loss values of
287  the LSTM model during the training phase, including the mean square error (MSE), and mean absolute error (MAE) losses of the
288 training set and the test sets (Tian et al., 2023). Initially, in the early stages of training, all loss values decreased rapidly, indicating
289  that the model quickly acquired information and significantly improved prediction accuracy. As the number of training rounds
290 increased, the rate of loss reduction gradually slowed and eventually reached a plateau, indicating that the model's learning process
291  was approaching saturation and the benefits of further training were gradually diminishing. The closeness of the training and test
292 loss curves indicates the model's ability to generalize, as it shows that the model's performance on unseen data is comparable to
293 its performance on the training data. This reduces the risk of overfitting. However, the MSE loss is always higher than the MAE
294 loss, indicating that MSE is more sensitive to outliers and penalizes larger errors more severely. Towards the end of training, the
295  test MSE loss shows some fluctuations, which may be due to changes in the model's predictions for some test samples. Therefore,
296 at the end of training, all loss values decreased significantly, demonstrating an improvement in the model's prediction accuracy.
297  The training process shows the typical characteristics of fast learning, followed by a gradual stabilization trend, and maintains
298  consistency between training and test losses, which together indicate an optimally performing model with a good balance of fit to
299  the data.

Training and Test Losses
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301 FIG. 5. The trend changes of Mean Squared Error (MSE) Loss and Mean Absolute Error (MAE) Loss for the training and
%8% testing sets in an LSTM (Long Short-Term Memory) model (Epochs: 0-100)
304 Fig. 6 depicts in detail the dynamic trends of the four key hyperparameters during training of the LSTM model, including the

305 learning rate, batch size, number of LSTM neurons in the first layer, and number of LSTM neurons in the second layer. The
306 learning rate shows a steady upward trend from about 0.005 to nearly 0.010, which may reflect an adaptive learning rate strategy
307  to optimize the model convergence speed at various stages of training and avoid falling into local minima. The batch size starts at
308  about 30 and eventually stabilizes at about 90 after several fluctuations. These fluctuations may be used to balance memory
309  consumption and computational efficiency during training. The graph of the number of neurons in the first LSTM layer shows
310  significant fluctuations starting at about 40 and eventually approaching 90, indicating that the network capacity was adjusted
311  during training to achieve an optimal balance between model complexity and generalization ability.

312 Although the number of LSTM neurons in the second layer also fluctuated, the overall trend was upward, starting at about 20
313 and eventually approaching 80. This may mean that the model gradually increased the number of neurons in the second layer
314  during training to improve its expressive power. Therefore, dynamic adjustment of hyperparameters during training of deep
315 learning models is crucial to improving model performance (Dhake et al., 2023). Careful monitoring and adjustment of these

316  hyperparameters can effectively optimize the training process and thus improve the final performance of the model.
317
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322 Application of the Adam optimizer to model construction Adam is a widely used stochastic optimization algorithm in the field
323 of deep learning that achieves superior results by dynamically adjusting the learning rate, and its empirical studies have shown
324 that Adam outperforms stochastic optimization algorithms in practice due to the model's adaptive ability. In this dissertation study,
325 the Adam optimizer is employed to improve LSTM and decision tree models. As a gradient-driven optimizer, Adam dynamically
326  calibrates the learning rate of each parameter to enhance model optimization and data adaptation. Specifically, Adam utilizes first-
327  order moments (mean) and second-order moments (variance) estimates of the gradient to adjust the learning rate, thereby
328 improving adaptation and robustness to non-stationary objective functions and large-scale parameter variations. Due to its
329  adaptive nature, Adam accelerates convergence by automating the learning rate calibration, which enables fast feature acquisition
330  and reduces the interference of human intervention (Guo et al., 2021). As a result, the application of Adam in this study
331  significantly improves training efficiency and model performance, and its adaptive learning rate tuning mechanism promotes
332 better data adaptation and faster convergence, which is critical for accurate prediction of extreme weather probabilities and
333 insurance cost estimation, a key improvement that enhances our ability to solve complex forecasting problems and improves the
334 accuracy of the modeling algorithm and decision makers' confidence in insurance claims.
335 We employ the Adam optimizer to dynamically adapt per-parameter learning rates, which accelerates convergence and
336  stabilizes training on non-stationary, multivariate claim series. Empirically, Adam yields lower validation MSE/MAE in early
337  stages and reduces sensitivity to initialization, consistent with our optimizer ablation.
338 4 EXPERIMENTAL EVALUATION
339 4.1 Ablation Study and Hyperparameter Sensitivity Analysis
340 To improve model transparency and quantify the contribution of key components, we conducted an ablation study and
341 hyperparameter sensitivity analysis. Specifically, we systematically compared the LSTM model using the Adam optimizer versus
342  the conventional Stochastic Gradient Descent (SGD) optimizer.
343 As shown in Fig. 7, the Adam optimizer leads to faster convergence and lower validation errors compared to SGD. The loss
344 curves demonstrate that Adam achieves both lower mean squared error (MSE) and mean absolute error (MAE) on validation data,
345  especially in the early training stages. This confirms that Adam's adaptive learning rate mechanism is more suitable for complex

346

time-series insurance data.
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Optimizer Comparison: Adam vs SGD
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348 FIG. 7. Optimizer comparison (Adam vs SGD) for LSTM model: training and validation loss (MSE and MAE) curves.

349

350 We also investigated the effect of key hyperparameters, such as the number of hidden units, dropout rate, and training epochs.

351  Through grid and random search, the results show that moderate LSTM unit numbers (80-120), an initial learning rate of 0.01
352  with decay, and dropout rates around 0.3-0.4 yield optimal predictive performance while avoiding overfitting. Excessive hidden
353  units increase model complexity and risk of overfitting, as evidenced by rising validation loss.

354 These ablation and sensitivity experiments demonstrate the importance of component selection and parameter tuning in LSTM-
355 based insurance claim forecasting. The findings guide practitioners in selecting robust configurations, balancing accuracy, and
356  computational efficiency in real-world insurance applications.

357
358 4.2 SHAP-based Model Interpretation
359 To enhance transparency and regulatory compliance of our LSTM-based insurance claim prediction model, we integrated

360  SHAP into our methodology. SHAP provides a systematic approach to interpreting model predictions by quantifying how each
361  feature influences the output.

362 In this study, we applied the SHAP framework to compute SHAP values across the test samples, specifically grouping them by
363  feature and corresponding time lags (t-1, t-2, t-3). These values were visualized in a violin-style summary plot, as shown in Fig.
364 8, displaying the distribution of each feature’s contributions to the predictions across all test periods. The horizontal axis represents
365  SHAP values (indicating the magnitude and direction of feature impact), while the vertical axis lists each feature at distinct time
366  steps. Color gradients (blue for low, red for high) encode the feature's value intensity, clearly highlighting how feature
367  contributions vary over different time periods and scenarios.

Grouped SHAP Violin Plot by Feature and Time Step High
ig
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369 FIG. 8. Grouped SHAP Violin Plot by Feature and Time Step in LSTM Insurance Claim Prediction
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370 From the overall model perspective, temperature features across different time steps—especially Temperature_2 and
371  Temperature_3—show the most substantial impact on model predictions, as shown in Fig. 8, indicating that short-term
372  temperature fluctuations are key drivers of insurance claim outcomes. Historical insurance claims also play an important role,
373 particularly at time step t-2, reflecting the predictive value of recent claim patterns. In contrast, the influence of precipitation and
374 snowfall is relatively moderate but remains non-negligible, suggesting these factors provide supplementary information. This
375 global analysis highlights that the LSTM model primarily relies on recent temperature dynamics and historical claims when
376  forecasting insurance risks, which underscores the importance of timely climate monitoring and claim tracking for accurate risk
377  management.

378 Through these visualizations, stakeholders gain a transparent view of how specific inputs—such as temperature, snowfall,
379 precipitation, and historical insurance claims—systematically drive the LSTM model’s predictions. This SHAP-based approach
380 significantly improves interpretability, providing clear and actionable insights for insurance risk management decisions.

381

382 4.3 Benchmark Comparison with Traditional Models

383 To ensure the validity of our approach, the LSTM model was also benchmarked against classic alternatives including Random
384 Forest, SVM, and ARIMA.. The comparison focuses on three key aspects: prediction accuracy, model stability, and computational
385 efficiency.

386 We benchmarked our LSTM against three classical approaches—Random Forest (RF), Support VVector Machine (SVM), and
387  ARIMA—on the same dataset. Regression accuracy was evaluated by RMSE, MAE, and MAPE on continuous claim amounts;
388 we additionally cast “high-loss events” (claims > 84 MUSD) as a binary classification task and reported Precision, Recall, and F1
389  for event detection.

390 All models were trained on 1995-2012 and evaluated on a held-out test set covering 2013-2022. As shown in Table 2, the
391 LSTM attained the lowest errors (RMSE/MAE/MAPE) and the highest F1 score, demonstrating its superior ability to capture the
392 series’ nonlinear dynamics and to flag extreme-claim years. RF and SVM suffered from substantially larger regression errors (e.g.
393 RF’s RMSE =62 vs. LSTM’s 48.2), and both missed most high-loss cases (RF F1=0.20, SVM F1~0.00). ARIMA performed
394 reasonably on linear trends but lagged on nonlinear patterns (RMSE~85), achieving a middling event-classification F1=0.67.
395  These results confirm that our LSTM framework outperforms traditional methods on both continuous forecasting and rare “high-
396 loss” event detection when evaluated over 2013-2022.

397
398 Table 2
399 PERFORMANCE COMPARISON (TEST SET: 2013-2022). REGRESSION METRICS (RMSE, MAE IN MUSD; MAPE IN %) AND
400 HIGH-LOSS-EVENT CLASSIFICATION (PRECISION, RECALL, F1).
Model RMSE MAE MAPE (%) Precision Recall F1
LSTM 48.2 338 40.7 0.86 0.86 0.86
RF 62.0 59.1 74.4 025 0.17 0.20
SVM 71.7 59.5 55.3 0.00 0.00 0.00
ARIMA 85.0 70.0 80.0 0.67 0.67 0.67

401 Notes: “High-loss event” defined as TruelnsuranceClaim > 84 MUSD.RMSE/MAE in million USD; MAPE is percentage.
402  LSTM's consistently lower errors and higher F1 confirm its stronger predictive power and event-detection capability on this
403  nonlinear, multivariate series.

404 LSTM consistently outperforms RF, SVM and ARIMA in both regression and high-loss event detection (F1 = 0.86),
405 demonstrating its superior ability to capture nonlinear dependencies and extreme events.

406  While ARIMA and SVM performed well on linear or simple patterns, and RF provided robust results with engineered features,
407  the LSTM model consistently achieved the best prediction accuracy and stability for the complex, multivariate insurance claim
408  data studied here. Although LSTM required higher computational costs, its ability to capture non-linear dependencies and long-

409  term temporal patterns makes it the most suitable choice for insurance claim forecasting in this context.
410

411 5 RESULTSAND DISCUSSION

412 Based on the previously defined training and testing split, this section focuses on the prediction and analysis of global extreme
413  weather events and insurance claims over the past decade (2013-2022), using the test dataset as the basis for evaluation. It also
414 includes sample statistics, meteorological trend analysis, insurance claim forecasting, SHAP-based model interpretation, and real-
415  world case validation to comprehensively evaluate the proposed model.

11



https://doi.org/10.5194/egusphere-2025-4203
Preprint. Discussion started: 16 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

416 5.1 Sample Descriptive Statistics

417 The sample data from the period 2013 to 2022 are summarized, as shown in Table 3.
418
419 Table 3
420 SAMPLE DATA SHEET FOR EXAMPLE DATA COLLECTION SECTIONS
Temperature Precipitation Insurance claims
Year ©C) (mm) Snowfall (mm) (Billion USD)
2013 14.66 1103.99 2497.33 50.49
2014 14.74 1118.30 178257 38.66
2015 14.87 1157.95 1854.45 36.83
2016 15.15 1230.27 1476.50 50.29
2017 15.00 121259 1817.62 183.02
2018 14.86 1207.10 1854.96 102.15
2019 14.97 1188.81 1772.92 65.82
2020 15.10 1189.02 1250.95 102.59
2021 14.82 1196.73 1253.24 124.73
2022 14.92 1124.90 1476.25 134.56
421 Notes: Except for this table, all monetary values in the manuscript are expressed in million US dollars (MUSD). Here, values
422 are reported in billion US dollars (USD billion). Conversion: 1 USD billion = 1,000 MUSD.
423
424 As described in data preprocessing stage, this paper provides an exhaustive descriptive statistical analysis of four core indicators

425 related to extreme weather and property insurance: temperature, precipitation, snowfall, and insurance claims, in order to ensure
426  the quality and applicability of the data. The period from 1951 to 1980 was widely used as a benchmark for temperature anomalies,
427  at14degrees Celsius. Our temperature data is sourced from 12 months of data from NOAA's National Environmental Information
428 Center from 1995 to 2025, with annual averages taken. For the above extreme weather data, in terms of extreme average
429  temperature, the median is 14.895, the mean is 14.909, the standard deviation is 0.153, the maximum value is 15.15, and the
430  minimum value is 14.66, with no missing values. Based on the Shapiro Wilk (S-W) normality test, the level of this data is not
431  significant, with a significance p-value of 0.937. The null hypothesis cannot be rejected, as the data follows a normal distribution;
432 In terms of extreme mean precipitation, its median is 1188.915, mean is 1172.966, standard deviation is 43.937, maximum value
433 is 1230.27, minimum value is 1103.99, there are no missing values, based on Shapiro-Wilk (S-W) normality test shows that the
434 level of this data does not present a significant value, its significance P value is 0.691. The significance p-value is 0.293, which
435  does not reject the original hypothesis, and the data shows normal distribution; in terms of extreme mean snowfall, its median is
436  1777.745, mean is 1703.679, standard deviation is 366.772, maximum value is 2497.33, minimum value is 1250.95, and there are
437 no missing values, and the data shows a normal distribution based on the Shapiro-Wilk (S-W) normality test. W) Normal test
438  shows that this level of data does not show significance and its significance p-value is 0.157, the original hypothesis cannot be
439 rejected and the data shows normal distribution; For the global natural catastrophe insured losses data mentioned above, the
440  median is 86.195, the mean is 82.708, the standard deviation is 27.253, the maximum value is 120.51, and the minimum value is
441  43.18. There are no missing values. Based on the Shapiro-Wilk (S-W) normality test, the significance p-value is 0.397, which
442  does not reject the original hypothesis, and the data present a normal distribution.

443 Through the above statistical analysis, this paper has a comprehensive understanding of the distribution characteristics of the
444 data, based on, foundation for subsequent model training and optimization.

445

446

447 5.2 Weather prediction and analysis of the relationship between weather and insurance

448 A thorough examination of global temperature trends in the context of extreme weather conditions from 2013 to 2022 reveals

449 a clear pattern of initial decline followed by a steady increase, as depicted in Fig. 9. In 2013, the global average temperature was
450  approximately 14.66<C. A slight rise occurred in 2014, after which the temperature continued to climb from 2015, reaching a
451 peak in 2016 at around 15.15<C (about 0.6 <T above the baseline). After this peak, the temperature declined in 2017 and hit a local
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452 low of 14.86<C in 2018. Subsequently, the temperature rebounded, reaching levels close to the previous peak in 2020, before
453  experiencing another minor decrease by 2022.

Temperature (°C)

Analysis of Global Temperature Change Trends
Under Extreme Weather Conditions (2013-2022)
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FIG. 9. Analysis of Global Temperature Change Trends Under Extreme Weather Conditions from 2013 to 2022

This upward trend in temperature aligns with the broader context of global warming and the increasing frequency of extreme
heat events. Higher temperatures are often associated with more frequent occurrences of extreme weather such as heatwaves,
droughts, and wildfires—events that typically result in increased insurance claims. Analysis of the corresponding scatter plot
shows that, in general, as temperature rises, insurance claim amounts also tend to increase. Although this relationship is not strictly
linear, it is positively correlated, suggesting that higher temperatures are likely to result in greater insurance losses (e.g., due to
heat-induced fires, droughts, or infrastructure damage).

The model-predicted temperature fluctuation trend is therefore consistent with the actual temperature, though a discrepancy is
evident between the peaks in 2016 and 2020 and the troughs in 2018 and 2021. This discrepancy may be attributable to the
unpredictability and complexity of extreme weather events, thereby underscoring the model's efficacy in predicting changes in
global temperature under such conditions and its capacity to more accurately anticipate the consequences of future extreme
weather on global temperature.

As shown in Fig. 10, the global precipitation trend under extreme weather conditions from 2013 to 2022 exhibited an overall
pattern of increase followed by a decrease (Thackeray et al., 2022). Actual annual precipitation started at approximately 1100 mm
in 2013 and increased year by year, reaching a peak of nearly 1240 mm in 2016. This was followed by a moderate decline, with
precipitation dropping to around 1180 mm during 2018-2019. The years 2020 and 2021 were characterized by relatively stable
precipitation, while 2022 saw a slight decrease.
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Analysis of Global Precipitation Change Trends Under Extreme Weather Conditions(2013-2022)
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474 FIG. 10. Analysis of Global Precipitation Change Trends Under Extreme Weather Conditions from 2013 to 2022
475
476 Generally, the model’s predictions of precipitation are broadly consistent with actual values throughout this period, but the
477 model notably underestimated the sharp surge in precipitation observed in 2016. Such discrepancies highlight the challenges that
478 remain in fully capturing the impacts of extreme weather events within current climate models, emphasizing the need to improve
479  model sensitivity and prediction accuracy for such phenomena.
480 The variation in precipitation significantly affects the incidence of certain disasters: extreme rainfall events can trigger floods,
481 landslides, and other catastrophes, leading to substantial property and vehicle losses, and thereby increasing insurance claim
482  amounts.
483 A comprehensive analysis of global snowfall trends from 2013 to 2022 reveals pronounced fluctuations, as illustrated in Fig.
484 11. In 2013, global snowfall was approximately 2400 mm, followed by a sharp decline to around 1800 mm in 2014. Snowfall
485  continued to decreasg, reaching a low of about 1400 mm in 2016. Subsequently, there was a notable recovery: from 2017 onward,
486  snowfall rebounded, stabilizing in the range of 1800-1900 mm during 2018 and 2019.
Analysis of Global Snowfall Change Trends Under Extreme Weather Conditions(2013-2022)
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488 FIG. 11. Analysis of the trend in world snowfall under extreme weather from 2013 to 2022
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489 Regarding model performance, the LSTM’s predicted values aligned well with actual snowfall in 2013 but failed to capture the
490 abrupt decline in 2014, and slightly underestimated actual snowfall in 2015. From 2016 onward, the model’s predictive accuracy
491 improved significantly, especially between 2017 and 2019, when forecasted and observed values were closely matched. In 2020,
492 the model underestimated actual snowfall, likely due to the unpredictable nature of extreme weather events, but by 2021 and 2022,
493  prediction and reality were again very close. These results indicate that while the model demonstrates reasonable predictability
494 for global snowfall under extreme conditions, further enhancement and calibration are necessary for more precise forecasting.
495 From a risk perspective, extreme snowfall events—such as blizzards—can lead to sharp increases in insurance claims, including
496  those related to property damage (e.g., collapsed roofs) and vehicle accidents. The clustering of points along an upward trend
497  suggests that increased snowfall directly triggers higher claim amounts, likely due to widespread property and infrastructure
498  damage caused by extreme snow events.

499 In summary, the combination of time series modeling and empirical correlation analysis confirms that volatility in global
500  snowfall is closely tied to insurance claims. This underlines the importance of continuously refining prediction models to help
501 insurers better anticipate loss peaks associated with severe winter weather, supporting more robust risk management and pricing
502  strategies.

503 The Fig. 12 comprises three scatter plots showing the relationships between temperature, snowfall, and precipitation and the
504  amounts of insurance claims over 1980-2022. In the “Temperature vs Claim Amounts” panel, claim amounts tend to rise with
505 higher temperatures, although the relationship is not strictly linear and there is variability at similar temperatures. The “Snowfall
506 vs Claim Amounts” panel reveals a more pronounced positive association, suggesting that heavier snowfall is associated with
507 higher claim amounts, possibly through increased property damage or accident risks. The “Precipitation vs Claim Amounts” panel
508 also shows a positive trend, but the points are more dispersed, indicating that increases in precipitation are less consistently related
509 to claim amounts than snowfall, potentially due to regional differences or the nature of events leading to claims (Aswin et al.,
510  2018). Taken together, these plots indicate that extreme weather conditions can have a significant impact on insurance claim
511  amounts, with snowfall showing the most consistent positive relationship.
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513 FIG. 12. Trends in annual losses and insurance claims due to extreme weather, 1980-2022
514
515 However, the dispersion of the points also emphasizes the complexity of linking claim amounts to weather conditions,
516  underscoring the need for predictive modeling to better characterize these interactions..
517 It is important to clarify that, although Sect. 5.2 and earlier parts of the manuscript summarize annual patterns (e.g., 2013—

518  2022), Fig. 12 spans 1980-2022. The models ingest higher-frequency meteorological inputs (monthly indicators with lags/sliding
519 windows), whereas the insured-loss target is annual; therefore, the meteorological inputs are aggregated to the calendar year for
520  model training and reporting.

521 Consequently, the scatter plots in Fig. 12 reflect annual observations (year-level, and where applicable region—year), rather than
522 monthly claim entries. This approach preserves sub-annual weather information through derived features while ensuring
523  consistency with the annual loss series used for evaluation. All model training and evaluation were conducted on datasets aligned
524 to these annual definitions.

525
526 5.3 Insurance claims prediction and model evaluation
527 As described in the last section, the trends observed from 2013 to 2022 clearly demonstrate that fluctuations in global

528  temperature, precipitation, and snowfall under extreme weather conditions are closely linked to insurance claim amounts. We
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529  confirmed, through time-series analysis, the positive correlation between these meteorological factors and peaks in insurance
530  claims.

531 To assess our LSTM’s practical forecasting capability, we compared its predictions with the actual claim amounts (Fig. 13).
532 The LSTM demonstrated an excellent predictive performance (R2= 0.9428, RMSE = 4.28 MUSD, MAE = 3.53 MUSD),
533 successfully capturing the major insurance claim peaks observed around 2017 and 2022. The actual insurance claim data utilized

534 in this analysis is sourced from the Swiss Re Institute's statistics ("Growth in Global Natural Catastrophe Insured Losses").
Analysis of Insurance Claim Trends (2013-2022)
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536 FIG. 13. Analysis of Insurance Claim Trends (2013-2022)

537

538 Based on the validated performance over the past decade (2013-2022), the model demonstrates strong predictive accuracy

539  within this time frame, which aligns with our research focus and ensures consistency across all analyses. The full dataset spans
540 1995 to 2025, but the 2013-2022 window is selected for focused evaluation due to its higher data reliability and relevance to
541  recent insurance claim patterns.

542 Fig. 14 further illustrates annual disaster losses from 2016 to 2020, emphasizing the significant economic impacts of extreme
543  weather events, notably the spike in losses during 2017. Such substantial financial implications underline the importance of
544 accurate insurance claim prediction and the need for improved forecasting models.

545 These results are consistent with recent literature that emphasizes the insurance industry's critical role in addressing climate
546 risks. Xu etal. (2024) provided a comprehensive review of the insurance sector’s current responses to climate change, highlighting
547  evolving strategies to manage growing weather-related risks. Similarly, Wang (2020) analyzed the impacts of climate change on
548  the insurance industry and discussed adaptation and mitigation approaches essential for maintaining financial stability under
549 increasing climate uncertainty. These findings further support the importance of developing predictive models with both high
550  accuracy and strong interpretability, as proposed in this paper, to enable proactive risk management and policy formulation.

551 While the model captures the overall trend, the prediction accuracy for large, sudden fluctuations in annual disaster losses
552 remains limited, particularly when forecasting across broader time spans with high variability.
553
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556 5.4 Temporal Dynamics of Feature Contributions via SHAP

557 To enhance the transparency and regulatory compliance of the LSTM-based insurance claim prediction model, SHAP was
558  applied to interpret model predictions. Using the SHAP framework, SHAP values were computed for each input feature across
559  various time steps (current, t-1, t-2) on the test dataset.

560 Fig. 15 illustrates the distribution of SHAP values for each feature across different time lags. Each feature’s SHAP distribution,
561 presented as a violin plot, reflects its overall contribution to predicted claims. Features such as current snowfall (Snowfall_t) and
562 precipitation (Precipitation_t) exhibit notably wide distributions, suggesting stronger immediate impacts. Historical claims
563  (TruelnsuranceClaim_t) at current and recent times also show significant influences. Conversely, SHAP values for earlier time
564 lags (e.g., temperature and claims at t-2) are comparatively narrower, indicating a reduced but still discernible influence of past
565  data, thus demonstrating that the model adequately accounts for temporal dependencies.
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569 Fig. 16 (bar plot) ranks these features based on the mean absolute SHAP values, providing a concise summary of each feature's
570  average magnitude of impact across time steps. Some observations (highlighted as dots on the extremes of the violin plot in Fig.
571 15), such as extremely high snowfall or large claim anomalies, reflect exceptional conditions that have disproportionately large
572  impacts on predicted claim amounts.
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574 FIG. 16. Mean Absolute SHAP Values by Feature and Time Step
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575 Taken together, these SHAP visualizations reinforce our time-series findings, confirming that the LSTM effectively utilizes
576 recent meteorological conditions (snowfall and precipitation) and historical insurance claims to predict claim peaks. The clear
577  temporal insights from SHAP enhance the transparency and interpretability of the model, providing stakeholders actionable
578  guidance for insurance risk management decisions.

579 To further validate our model’s real-world applicability and predictive accuracy, we examine the catastrophic "7 20" flood
580 event in Henan, China, in July 2021. During this unprecedented extreme rainfall event, over 14.78 million people were affected,
581  and economic losses exceeded 120 billion RMB. Property insurers faced over 510,000 claims, with estimated losses surpassing
582  12.4 billion RMB and nearly 7 billion RMB in claims paid within weeks.

583 This case strongly supports our findings: extreme weather events directly drive spikes in insurance claims and generate
584  substantial financial pressures. Moreover, the case demonstrates how insurance claims play a vital role in post-disaster recovery
585  and regional economic stability. It also highlights the vital role of accurate predictive models—like our LSTM framework
586  combined with SHAP interpretability—in anticipating claims surges, thus enabling insurers and policymakers to develop
587  proactive risk management and recovery strategies.

588
589 5.5 Open Research Questions and Future Directions
590 Building on our LSTM framework and interpreted with SHAP on globally aggregated series, we identify three open

591 uncertainties: (i) Shift robustness: performance varies around abrupt regime shifts and cross-regional extremes, indicating
592  sensitivity to non-stationarity and compound events; (ii) External validity: country-level aggregation without explicit exposure or
593 line-of-business controls may obscure cross-country heterogeneity in insurance penetration, regulation, and reporting,
594  confounding hazard—claim relationships; and (iii) Explainability stability: whether SHAP attributions remain consistent across
595  years, regions, and multi-hazard contexts is unresolved. These gaps align with global evidence of intensifying heavy-precipitation
596  extremes/compound risks and the sustained rise in worldwide insured catastrophe losses, underscoring the need for calibrated,
597  auditable claims forecasting.

598 Future work will: (i) enrich data & design by incorporating subnational hazard footprints where available, explicit
599  exposure/vulnerability covariates, and line-of-business stratification; (ii) handle extremes & shift via shift-aware/hybrid
600 architectures and calibrated probabilistic outputs (e.g., conformal prediction intervals) with drift detection; and (iii) validate
601  externally through cross-region transfer tests and event-time evaluations, with reporting aligned to insurer/regulator risk
602  frameworks. These steps directly address the constraints of country-level aggregation and a finite evaluation horizon and are
603  consistent with international guidance on climate and compound-event risk. While more recent architectures such as Gated
604 Recurrent Unit (GRU)and Transformer-based models have shown promise, we focus here on LSTM due to its balance of
605 interpretability, data efficiency, and regulatory alignment. Comparative analyses with such architectures remain important future
606  work.

607 Future research may explore alternative learning rate scheduling strategies and improved control of learning rate fluctuations
608 to further optimize training performance.
609 Limitations remain, primarily due to the temporal constraints of the ten-year validation window and the geographic bias of

610 insurance datasets. Subsequent research will break through these limitations by expanding historical climate reconstruction data
611  and enhancing risk exposure characterization in the Global South. Moreover, we acknowledge that the present study does not
612  compare the LSTM model with emerging hybrid architectures (such as Transformer-LSTM or physics-informed neural networks),
613  nor does it systematically address the modeling of compound extreme events (e.g., concurrent heatwaves and droughts). Future
614  work will focus on incorporating these advanced architectures and developing methodologies to better capture and predict
615  compound climate risks, thereby further improving the robustness and practical value of the modeling framework.

616

617 6 CONCLUSION

618 In this study, we present a well-structured, robust forecasting study that innovatively integrates deep sequence modeling with
619  climate-risk management in insurance, and we position our work within real-world actuarial needs and regulatory constraints. An
620 improved LSTM prediction model was developed to address the problem of predicting extreme weather events and their
621  associated insurance claims costs. By comprehensively analyzing historical weather data and detailed insurance records,
622 introducing the Adam optimization algorithm, and utilizing the ReLU activation function in the fully connected layer, the model's
623  nonlinear fitting ability was significantly enhanced, ensuring closer alignment between predictions and real-world trends.

624 Additionally, explainable Al techniques, particularly SHAP, were employed to interpret feature contributions in the LSTM
625  model. This not only enhanced transparency but also improved stakeholder trust by revealing the key meteorological and
626  economic variables influencing prediction outcomes. The improved model demonstrates clear advantages in handling complex
627  time series, automatically capturing long-term dependencies, and overcoming the limitations of manual feature engineering.
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628  Overall, the improved LSTM model plays a critical role in promoting sustainable regional development. It not only helps insurers
629  ensure financial resilience under climate uncertainty but also provides decision-makers with data-driven tools to design effective
630 climate risk mitigation strategies. Moreover, our optimized LSTM pipeline integrates hyperparameter tuning, multi-output
631  forecasting, and SHAP-based interpretability.

632 In addition, this research leverages global-scale datasets derived from authoritative meteorological and insurance sources, rather
633 than being limited to local or regional case studies. This broader scope significantly enhances the contribution of our work. While
634  many prior studies focus on small-scale contexts (e.g., a single city, district, or community), our analysis addresses climate and
635 insurance risks at a global level, thereby providing stronger generalizability and societal relevance. The findings can inform not
636  only localized stakeholders but also international insurers, regulators, and policymakers in developing strategies to mitigate the
637  socioeconomic impacts of extreme weather events.
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