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Abstract. Accurate prediction of terrestrial water storage (TWS), the sum of soil moisture, groundwater, snow/ice, and surface 

water, is critical for informing water resource management and disaster responses.  In this study, we evaluated subseasonal to 

seasonal (S2S) TWS forecasts, produced by the FEWS NET land data assimilation system (FLDAS), over Africa using 

observations from the Gravity Recover and Climate Experiment (GRACE) and its Follow-On (GRACE/FO) mission.  FLDAS 15 

consists of two advanced land surface models, Noah-MP and the NASA Catchment Land Surface Model (CLSM), both of 

which simulate key TWS components including groundwater.  Results show that CLSM is more skillful in forecasting TWS 

anomalies at S2S scales than Noah-MP, with >0.6 relative operating characteristics (ROC) scores over more than half of the 

study domain across the 1-6 months lead times.  CLSM forecasts also maintain stronger correlations with GRACE/FO data 

than Noah-MP, particularly at longer lead times, owing to more skillful reanalysis-based initial conditions and stronger 20 

persistence in simulated TWS.  In contrast, Noah-MP forecasts show weaker skill, especially in central Africa where the skill 

also declines rapidly with lead time.      

 

Evaluation results show that accuracy of TWS forecasts is strongly influenced by precipitation interannual variability: forecasts 

driven by precipitation products with lower precipitation interannual variability are generally more accurate than those driven 25 

by higher precipitation variability.  The performance gap between Noah-MP and CLSM is also more pronounced in regions 

with higher precipitation variability such as central Africa.  This sensitivity arises because TWS often exhibits strong multi-

year variability in responses to interannual precipitation, making realistic simulation of long-term variability critical for skillful 

TWS forecasts. The superior performance of CLSM is attributed to its strong representation of upward groundwater movement, 

especially during prolonged droughts, which enhances TWS interannual variability.  In contrast, the weak representation of 30 

capillary rise in Noah-MP limits its ability to capture effects of long-term precipitation variability on TWS.  Both models 
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exhibit lower correlation and higher RMSEs when evaluated against GRACE/FO data than relative to reanalysis, further 

underscoring substantial uncertainty in model physics.   

 

Autocorrelation analyses show that TWS persistence is closely linked to groundwater persistence. CLSM groundwater exhibits 35 

stronger persistence than that of Noah-MP, owing to its ability to simulate groundwater responses to long-term precipitation 

variability.  While persistence provides an important source of predictability, our results also show that inaccurate persistence, 

such as that associated with anthropogenically induced trends and changes in precipitation that are often inadequately captured 

by land surface models, can degrade forecast skill.  These findings underscore the importance of using independent datasets 

such as GRACE/FO observations to evaluate TWS forecasts.       40 

1 Introduction 

Changes in terrestrial water storage (TWS), the sum of soil moisture, groundwater, snow/ice and surface water, reflects 

cumulated impacts of precipitation and evapotranspiration over weeks to months (Humphrey et al., 2016).  As such, it provides 

unique insight into hydrological extremes (floods and droughts) and their responses to climate variability and climate change 

(Zhao et al., 2017; Rodell & Li, 2023; Li & Rodell, 2023; Li et al., 2025).  Skillful TWS forecasts at subseasonal to seasonal 45 

(S2S) scales are therefore of great value for providing early warnings on water shortage and crop failure, especially in Africa, 

where persistent food and water insecurity faced by many communities are often exacerbated by frequent floods and droughts 

(Scanlon et al., 2020; Ngcamu & Chari, 2020; Cook et al., 2021; WMO, 2025).   

 

Thus far, most studies have focused on evaluating TWS forecasting skills by climate models at decadal scales (e.g., Jensen et 50 

al., 2020; Yuan and Zhu, 2018; Zhu et al., 2019).  These evaluations typically compare initialized forecasts, where initial 

conditions are derived from model simulation driven by observation or reanalysis-based atmospheric forcing data, with 

uninitialized ones to obtain skill scores. Initial conditions have been found to provide more skill than dynamical climate 

forecasts alone in 1-4 years lead time, suggesting persistence of TWS as a key source of predictability (Zhu et al, 2019).  

However, since most climate models do not simulate groundwater, the reported persistence mainly reflects that of soil moisture.  55 

More importantly, in the absence of independent observational datasets, such evaluations may overestimate the role of 

persistence as they fail to account for uncertainties in land surface model physics and meteorological forecasts.     

 

Groundwater, located in the deeper subsurface, has longer memory than other near surface processes such as soil moisture, 

making it a potential source of predictability for TWS forecasting (Eltahir and Yeh, 1999; Li et al., 2015).  However, modeling 60 

groundwater is subject to greater uncertainty due to lack of information on hydrogeological properties and observational data 

to constrain simulation of deep subsurface processes (Xia et al., 2017).  As a result, reanalysis-based groundwater estimates, 

when used as initial conditions, may not deliver correct persistence or memory for enhancing forecast skill.  Furthermore, 
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because of its long memory, groundwater is more sensitive to biases in the meteorological forecasts that drive TWS forecasts.  

Previous studies have shown biases in S2S precipitation forecasts vary depending on climate conditions and terrains (Shukla 65 

et al., 2019; Slater et al., 2019; Zhang et al., 2021; Levey and Sankarasubramanian, 2024; Phakula et la., 2024).  However, 

examining groundwater responses to meteorological forecasts is hindered by the scarcity of in situ groundwater observations 

at the continental to global scales (Jasechko et al., 2024).   

 

TWS observations from the Gravity Recovery and Climate Experiment (GRACE) and its Follow On (hereafter GRACE/FO, 70 

Landerer et al., 2020) mission provide a unique opportunity to evaluate S2S TWS forecasts.  Representing vertically integrated 

water storage changes, GRACE/FO data exhibits strong temporal variabilities from subseasonal to interannual scales 

depending on climate conditions (Humphrey et al., 2016).  While sub-seasonal variability is essential for assessing S2S forecast 

skill, interannual variability is equally important for establishing robust climatology needed for forecasting TWS anomalies.  

GRACE/FO data have been widely used to validate reanalysis estimates and to identify deficiencies in model physics in large-75 

scale hydrological models (e.g., Dӧll et al., 2014; Scanlon et al., 2018; Bonsor et al., 2018; Li et al., 2019a).  However, few 

studies have used GRACE/FO data to evaluate TWS forecasts.  Cook et al. (2021) assessed TWS forecast skill over Africa 

using a reconstructed GRACE product.  With more than two decades of nearly continuous observations, GRACE/FO 

observations are ideal for objectively assessing S2S TWS forecast skill and exploring factors influencing TWS predictability.      

 80 

The hydrological forecasting system, FEWS NET Land Data Assimilation System Forecast (FLDAS-Forecast), was developed 

to provide early warnings on droughts and floods across Africa (Arsenault et al., 2020; Hazra et al., 2023). FLDAS-Forecast 

is a custom instance of the NASA Land Information System (LIS), an advanced computing framework that supports land 

surface modeling and data assimilation (Kumar et al., 2006).  FLDAS-Forecast comprises two advanced land surface models, 

Noah-MP and the NASA Catchment Land Surface Model (CLSM), both of which simulate major TWS components including 85 

groundwater.   FLDAS-Forecast ingests precipitation forecasts from the full North American Multi-Model Ensemble (NMME, 

Kirtman et al., 2014) which has shown to improve soil moisture forecasts in southern Africa, compared to forecasts based on 

a single NMME model (Hazra et al., 2023).    

 

The primary goal of this study is to provide an objective evaluation of the skill of S2S TWS hindcasts from FLDAS-Forecast, 90 

using GRACE/FO observations.  By leveraging the multi-model framework of FLDAS-Forecast and a full ensemble of NMME 

meteorological forecasts, the evaluation aims to improve understanding of how model physics employed by land surface 

models influence TWS forecast skill and how they interact with meteorological forecasts.  To isolate the impact of model 

physics from those of initial conditions and meteorological forecasts, TWS hindcasts were also evaluated using reanalysis 

based TWS estimates, which are used as initial conditions for TWS forecasts.  Unlike past studies where S2S forecasts were 95 

evaluated by seasons, statistics analyses are performed over the entire study period (2003-2020) to better examine the role of 

long-term variability and persistence of TWS processes in TWS forecasts.  Autocorrelation analysis is performed for different 
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TWS processes to examine the role of persistence on forecast skill and to assess the relative contribution of each process to 

overall TWS persistence.   

2 Data and evaluation metrics 100 

2.1 Observational and reanalysis-based meteorological input  

Precipitation from the Climate Hazards Infrared Precipitation with Stations (CHIRPS, Funk et al., 2015) and other 

meteorological fields from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2, 

Gelaro et al., 2017) are used to drive model simulation by Noah-MP and CLSM from 1982 to present.  The output of these 

simulation runs is then used as initial conditions for issuing TWS hindcasts (Hazra et al., 2023).     105 

CHIRPS integrates satellite-based precipitation estimates with station data to produce global precipitation time series at 

0.05° spatial resolution and a 6-hour interval.  MERRA-2, which has 0.5° in latitude by 0.625° in longitude resolution, is an 

atmospheric reanalysis product based on the Goddard Earth Observing System (GEOS) model, featuring assimilation of 

various atmospheric observations such as radiances, surface winds, temperature, and aerosol and improved representation of 

stratosphere and cryosphere processes (Gelaro et al., 2017).   110 

2.2 Meteorological hindcasts                                

FLDAS-Forecast uses precipitation hindcasts from a suite of NMME models (Table 1) and non-precipitation fields from GEOS 

(Borovikov et al., 2019) to generate S2S TWS hindcasts.  Since GEOS has fewer ensemble members than NMME models, 

GEOS ensemble members are randomly selected to pair with the NMME models for generating TWS forecasts (see details in 

Hazra et al., 2023).   115 

 

The NMME hindcasts are provided as monthly data on a 1° resolution global grid and are bias-corrected and spatially 

downscaled to the 0.25° resolution using algorithms implemented in FLDAS-Forecast using higher-resolution precipitation 

data from CHIRPS (Arsenault et al., 2020; Hazra et al., 2023).  Monthly hindcasts are first downscaled to daily values using 

daily GEOS data and further downscaled to 6-hour intervals using MERRA-2 sub-daily climatology (Arsenault et al., 2020). 120 

For simplicity, the combined NMME and GEOS meteorological hindcasts are referred to as NMME models in the following 

sections.  

 

 

 125 

 

https://doi.org/10.5194/egusphere-2025-4198
Preprint. Discussion started: 19 September 2025
c© Author(s) 2025. CC BY 4.0 License.



5 
 

Table 1. NMME model specifics used in FLDAS-Forecast 

Models Centers ensemble members  

CFSv2 NOAA/NCEP 12 

CESM1 NCAR 10 

CanESM5(CSM5) Environmental Canada 10 

GEOSv2 NASA/GMAO 4 

GFDL NOAA/GFDL 15 

GEM5.2-NEMO(GNEMO5.2) Environmental Canada 10 

 

2.3 Land surface models and TWS hindcasts  

Both Noah-MP and CLSM simulate key components of TWS, soil moisture, groundwater storage and snow water equivalent 130 

(SWE), based on water and energy balance equations.  However, they differ considerably in model physics, particularly in 

subsurface water flows (see Table 1 of Xia et al., 2017 for model configuration and descriptions).  

Noah-MP simulates soil moisture dynamics in four unsaturated soil layers based on Richards’ equation (Niu et al., 2011).  

Groundwater storage in FLDAS-Forecast/Noah-MP is represented by a linear reservoir scheme that computes groundwater 

storage changes based on net water exchanges between the lowest soil layer and the aquifer (Niu et al., 2011).  Although the 135 

scheme simulates capillary rise, the upward water movement from the aquifer to the upper unsaturated soil, is minimal, 

resulting in small seasonal variations in simulated groundwater in some regions (Xia et al., 2017; Li et al., 2021).     

In contrast, CLMS simulates water storage changes at three water storage layers: a 2 cm surface layer, a 1 m root zone and the 

total profile (Koster et al., 2000).  The depth of the soil profile is determined by a spatially varying bedrock depth parameter 

(see Fig.10 of Li et al., 2019b for the spatial map).  Water flows among these layers are governed by empirically derived time 140 

constants that actively redistribute water, transferring water downward during precipitation events, and upward during the dry 

months to sustain ET.  This strong coupling between surface and deep layers results in pronounced seasonal variations in 

CLSM simulated groundwater and TWS, even in dry climates (Xia et al., 2017; Li et al., 2019b).  While it does not explicitly 

model groundwater, CLSM groundwater storage can be obtained by subtracting water storage in the root zone from that of the 

soil profile.   145 

The two models also employ different physics for ET estimates which, along with precipitation, are major controls on temporal 

variability of groundwater (Eltahir and Yeh, 1999; Li et al., 2015).  Previous studies have shown that CLSM tends to simulate 

higher ET than other land surface models, primarily due to its strong coupling among soil layers and the specific ET algorithms 

it employs (Xu et al., 2019).  For instance, bare soil evaporation is computed as a nonlinear function of soil moisture in Noah-

MP, but a linear function in CLSM (Niu et al., 2011; Koster and Suarez, 1996).  Although both models employ the TOPMODEL 150 
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concept to simulate surface and subsurface (baseflow) runoff, discrepancies in simulating ET and profile moisture lead to 

different runoff estimates by the two models (Xia et al., 2017).   

Neither model simulates surface water, which is detected by GRACE/FO satellites.  However, surface water contribution to 

TWS is generally smaller compared to other TWS components, except in areas with large surface water bodies such as African 

Great Lakes, the Kariba reservoir and other reservoirs along the Nile (Rodell et al., 2002; Getirana et al., 2017).  Additionally, 155 

because snow is negligible in Africa, simulated TWS in this study is thus represented as the sum of soil moisture in the 

unsaturated zone, 2 m for Noah-MP and 1m for CLSM, and groundwater storage.   

TWS hindcasts with lead times of 1 to 6 months were generated by forcing Noah-MP and CLSM with the NMME hindcasts 

described above.  As discussed above, initial conditions for each hindcast at any month are obtained from the corresponding 

model simulation driven by CHIRPS precipitation and non-precipitation fields from MERRA-2.  Since MERRA-2 is a 160 

reanalysis product, these simulations are referred to as reanalysis in the following sections.   

 

2.4 GRACE/FO TWS observations 

GRACE/FO data used in this study were developed by the Center for Space Research (CSR) at the University of Texas based 

on the mass concentration (mascon) approach (Save et al., 2016).  The mascon approach utilizes time-variable constraints to 165 

constrain the inversion of satellite ranging data to gravity fields at each mascon block.  The mascon approach eliminates the 

need for postprocessing as with the spherical harmonical approach and thus better preserves signals related to TWS changes 

(Landerer & Swenson, 2012; Save et al., 2016).   

 

CSR GRACE TWS observations are provided as monthly anomalies relative to the 2004-2009 temporal mean, at a 0.25° spatial 170 

resolution.  However, the effective resolution remains relatively coarse, approximately 150,000 km2 at mid-latitudes (Tapley 

et al., 2004).  There are 34 months with missing data, including the 11-month gap between the two missions.  Missing data 

were filled using linear interpolation, except for the 11-month gap.  We found filling the gap had no noticeable impact on the 

statistical results.  

 175 

2.5 Data processing and study domain 

To ensure consistency with GRACE/FO data, the temporal mean of simulated TWS over 2004-2009 was removed at each grid 

cell. Next, the monthly mean, one for each calendar month, was removed to obtain TWS anomalies for both simulated TWS 

and GRACE/FO data.  For evaluation, TWS time series for the overlapping period between TWS hindcasts and GRACE/FO 

data, 2003-2020, were extracted from both the reanalysis and the hindcasts at 2-,4- and 6-month lead times at each grid cell.   180 
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The FLDAS-Forecast domain encompasses the African continent and a large portion of the Middle East (Supplementary 

Fig.S1).  Northern Africa and parts of the Middle East have experienced long-term TWS declines associated with extensive 

groundwater withdrawals for irrigation (Gossel et al. 2004; Rodell et al., 2018; Frappart et al.,2020; Scanlon et al., 2020).  

Since FLDAS-Forecast does not simulate these anthropogenic effects, these regions were excluded from the evaluation using 

the groundwater depletion masks provided by Rodell et al. (2018).   185 

For drought and flood monitoring, percentiles are obtained by ranking forecasts against climatology derived from hindcasts 

for 2003-2020 for each NMME model. Average percentiles across all NMME models are then used to produce percentile maps.  

In addition, probabilities are computed for tercile forecasts, below normal (< 33%), normal (33% - 67%) and above normal 

(>67%), across all ensemble members at each grid cell (see details in Hazra et al, 2023).   

2.6 Evaluation metrics 190 

The root mean square error (RMSE) and Pearson correlation are used to evaluate TWS anomalies, with respect to GRACE/FO 

TWS anomalies.  Additionally, the relative operating characteristic (ROC) score, representing the ratio of hit rates to false 

alarm rates, is used to assess tercile-based TWS hindcasts (Met Office).  A ROC score of 1 indicates a perfect forecast, while 

scores below 0.5 suggest no skill (Met Office). High ROC scores and strong correlation are commonly interpreted as indication 

of skillful forecasts (e.g., Yuan and Zhu, 2018).            195 

3 Results 

The skill of TWS forecasts is influenced by three factors, initial conditions, meteorological forecasts and physics employed by 

the land surface model.  To isolate contribution of each factor, we first examine temporal variability of reanalysis of TWS 

processes.  We then evaluate hindcasts at different lead times using GRACE/FO data to explore different controls on TWS 

accuracy.  To isolate the impact of model physics, we further compare TWS hindcasts with the reanalysis.  Finally, we analyze 200 

TWS persistence and explore its role in influencing TWS forecast skill.    

3.1 Evaluation of reanalysis 

Domain average estimates of reanalysis show large discrepancies between the two models at both seasonal and non-seasonal 

timescales (Fig.1).  Noah-MP, with a 2 m soil depth, simulates greater soil moisture variability than CLSM which has a 1 m 

soil depth.  In contrast, CLSM simulates much stronger groundwater variations than Noah-MP across both seasonal and non-205 

seasonal scales (Figs.1c,d), with the seasonal amplitude and temporal standard deviation of non-seasonal TWS being nearly 

five times larger than those of Noah-MP (Figs.1e,f).   

As a result of the strong groundwater temporal variability, non-seasonal CLSM TWS estimates also show strong temporal 

variation that contributed to stronger correlation (0.72) with GRACE/FO data than those of Noah-MP TWS (0.57; Fig.1f).  

Non-seasonal CLSM TWS also exhibits smaller (1.04 cm) RMSEs than that of Noah-MP (1.16 cm).  In addition to year-to-210 
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year variation, non-seasonal GRACE/FO data exhibit multi-year variability, such as an increasing trend from 2006 to 2010 

and a decreasing trend from 2013 to 2017.  These interannual variations reflect combined influences of large-scale oceanic 

drivers such as the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole, which strongly affect precipitation in 

parts of Africa (Mason & Goddard, 2001; Nicholson, 2017).  Accurately capturing these climate-driven responses remains 

challenging due to deficiencies in land surface model physics as shown here and limitations in seasonal weather forecasts 215 

(Willians et al., 2023).    
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Fig.1 Domain-averaged seasonal and non-seasonal components of soil moisture of the unsaturated soil (a, b), groundwater storage 

(c, d) and TWS (e, f) from Noah-MP (red lines) and CLSM (blue lines) reanalysis and GRACE data (black lines).  Amplitudes of 

mean seasonal cycles, temporal standard deviations of non-seasonal components, RMSEs and correlations between reanalysis and 220 
GRACE data are provided in matching colors of the time series. 

 

The strong correlation between CLSM TWS and GRACE/FO data is also contributed by secular trends in the time series which 

are statistically significant, at 0.014 mm/month, 0.007 mm/month, respectively. In contrast, Noah-MP TWS time series did not 

show statistically significant trend.  Large discrepancies are observed in 2019 when GRACE/FO data show substantially lower 225 

anomalies than either model.  The low anomalies in GRACE/FO data may reflect anthropogenic effects such as groundwater 

withdrawals during droughts which are not simulated by the models.    

CLSM also better captured the seasonal amplitude of TWS changes as observed in GRACE data. Although seasonal variations 

simulated by both models show >0.7 correlations with GRACE/FO data, their seasonal maxima lags that of GRACE/FO data 

by two months, likely due to deficiencies in model physics and errors in the meteorological forcing fields.  Because droughts 230 

and floods are relative to the climatological mean, evaluations in the following sections focus on non-seasonal TWS, i.e., TWS 

anomalies relative to monthly means.                             

3.2 Evaluation of TWS hindcasts 

RMSEs of the ensemble mean TWS hindcasts of all NMME models, with respect to GRACE/FO data, exhibit distinct spatial 

patterns.  Large RMSEs are observed in the interior western Sahel, a large region across Lake Victoria and Lake Tanganyika, 235 

and southern Zambia and Angola (Fig.2).  Several factors likely contributed to these large errors.  First, CHIRPS precipitation 

shows wetting trends in the western Sahel and the Lake Victoria and Lake Tanganyika area (Supplementary Fig.S1) which 

may be difficult for NMME precipitation forecasts to capture accurately, thus resulting in elevated errors.  Second, in southern 

Zambia and Angola, strong precipitation interannual variability and the discrepancies among NMME models (Supplementary 

Figs.S1,2), may have contributed to inaccurate forecasts. Strong interannual variability in precipitation often leads to large 240 

errors in TWS simulation due to the challenge to accurately model long-term memory in TWS (see Fig.2 of Li et al., 2019b).  

Third, since the models do not simulate surface water which is detected by GRACE/FO satellites, unresolved surface water 

dynamics and water management activities in Lake Victoria and Tanganyika, and Lake Kariba in southern Zambia may have 

contributed the large errors. 

CLSM forecasts show larger RMSEs than Noah-MP in Gabon, Central African Republic (CAR) and Democratic Republic of 245 

the Congo (DRC) where mean annual precipitation is among the highest, as indicated by both CHIRPS and NMME models, 

and where NMME models disagree considerably in interannual variability of precipitation (Supplementary Figs. S1,2).  This 

result suggests that CLSM is more sensitive to precipitation uncertainties, due to its simulated long memory in groundwater 

and TWS which allow errors in precipitation and other forcing data to persist and grow over time.   
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For both models, the spatial pattern and magnitudes of RMSEs remain stable between reanalysis and hindcasts of different 250 

lead times, suggesting uncertainty in model physics, which remain the same for reanalysis and hindcast, play a strong role 

affecting accuracy of TWS forecasts.   

 

Fig.2 RMSEs of non-seasonal reanalysis TWS, ensemble mean TWS forecasts of all NMME models with respect to GRACE/FO data 

for Noah-MP (top row) and CLSM (bottom row) at three lead times. 255 

The correlation between the ensemble mean TWS forecasts of all NMME models and GRACE/FO data exhibits similar spatial patterns 

between Noah-MP and CLSM (Fig.3), suggesting precipitation forecasts likely play a strong role on correlation.  However, the strength 

of those correlations differs notably between the two models, especially at long lead times with higher average correlation for CLSM.  

Correlations decrease with lead time for both models, but more rapidly for Noah-MP which, on average, decreased by 48% from the 2- 

to 6-month lead time, compared to the 27% decrease with CLSM.  Most of the deterioration in correlation is observed in central Africa 260 

where mean annual precipitation is the largest (Supplementary Fig.S1).    

Similar with RMSEs, spatial patterns of correlation are consistent between reanalysis and hindcasts, indicating strong control of initial 

conditions on forecast skill.  On average, CLSM reanalysis shows higher correlations with GRACE/FO data than that of Noah-MP, 

contributing to the higher forecast skill of CLSM (Fig.3).   
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 265 

Fig.3 Correlation between non-seasonal reanalysis TWS and ensemble mean TWS forecasts of all NMME models at three lead times, 

and GRACE TWS observations for Noah-MP (top row) and CLSM (bottom row). Domain average correlations are provided in inset 

text. 

In CAR and South Sudan, TWS forecasts from both models show near-zero correlation with GRACE/FO data likely due to 

the opposite trends between reanalysis TWS and GRACE/FO data (Supplementary Fig.S3).  The negative trends in 270 

GRACE/FO data may reflect the impacts of deforestation, which alter the partitioning of precipitation by increasing surface 

runoff and decreasing soil infiltration and TWS.  Although deforestation can also reduce evapotranspiration, this effect on 

TWS is likely minor because of reduced soil infiltration.   According to the Global Forest Watch, CAR and South Sudan lost 

more than 20% of its primary forests during 2000-2024.  Since neither Noah-MP nor CLSM accounts for land cover change, 

they simulated increases in TWS in response to increases in annual precipitation in that region (Supplementary Fig.S1c).  275 

Because reanalysis is used as initial conditions for each forecast issued, inaccuracy in long-term trends inevitably affected 

climatology and the associated anomalies. 

To further explore the role of model physics and meteorological forecasts, we computed RMSEs and correlation of TWS 

hindcasts with respect to reanalysis (Supplementary Figs.S4,5).  As expected, using reanalysis as reference results in 

substantially lower RMSEs and higher correlations.  RMSEs show clear increases with lead time which is not obvious when 280 

evaluated against GRACE/FO data.  In addition, the spatial pattern of RMSEs differs from that with respect to GRACE/FO 
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data.  These results suggest that model physics, which are not evaluated when compared to reanalysis, have a strong impact on 

forecast accuracy.  In contrast to evaluation relative to GRACE/FO data, CLSM forecasts show strong correlation with 

reanalysis in CAR across all leads due to its ability to capture interannual variability in precipitation.  On the other hand, 

correlation for Noah-MP forecasts decreased rapidly in this region, reflecting its inability to simulate long-term TWS variability.  285 

This outcome underscores the importance of using independent data to evaluate TWS forecasts.     

RMSEs of individual NMME model TWS forecasts increase with lead time for Noah-MP, reflecting growing uncertainty in 

meteorological forecasts (Fig.4a).  In contrast, RMSEs of CLSM forecasts decrease with lead time, except those driven by 

GEOSv2 (Fig.4b).  This behavior likely reflects CLSM’s tendency to overestimate TWS interannual variability, compared to 

GRACE/FO data, especially in regions with pronounced precipitation interannual variability including central Africa (see Fig.2 290 

of Li et al., 2019b).  As interannual variability of NMME precipitation forecasts generally decreases with lead time 

(Supplementary Fig.S2), the dynamic ranges of simulated TWS are suppressed, leading to reduced RMSEs.  This explains 

why largest RMSEs are observed in hindcasts by GEOSv2 which also increase with lead time, owing to its largest precipitation 

interannual variability (Supplementary Fig.S2).  These results again suggest that model physics may have stronger influences 

on accuracy of TWS forecasts than meteorological forecasts.   295 
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Fig.4 Average RMSEs (top row) and correlations (bottom row) of ensemble mean TWS forecasts of individual NMME models relative 

to GRACE/FO data for Noah-MP (left column) and CLSM (right column) as a function of lead time. 

 

Correlations between ensemble mean TWS hindcasts of individual NMME models and GRACE/FO data follow the similar 300 

pattern as those of all-model ensemble mean: correlations decrease with lead time (Figs.4c,d).  In addition, CLSM forecasts, 

on average, exhibit higher correlation than those of Noah-MP at all lead times.   

Among all NMME models, GFDL and CSM5 produce the most accurate forecasts, with the lowest RMSEs and the highest 

correlations, whereas GEOSv2 produced the least accurate TWS forecasts, yielding the largest RMSEs and lowest correlations 

for both Noah-MP and CLSM at all lead times. In addition to strong interannual variability of GEOSv2 discussed above, 305 
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previous studies showed that GEOS precipitation forecasts are less consistent among its ensemble members than other NMME 

models (Becker et al., 2014), indicating larger uncertainty in GEOS precipitation forecasts.      

ROC scores for the lower tercile forecast exhibit similar spatial patterns as correlations (Fig.5).  CLSM shows considerable 

skills, achieving >0.6 ROC scores over 50% of the domain across all lead times.  The 0.6 threshold for predictive skill is based 

on the guideline by the Met Office (Met Office).  In contrast, Noah-MP forecasts exhibit lower ROC scores overall and the 310 

scores decrease quickly with increases in lead time, especially in central Africa, with only 35% of areas achieving >0.6 ROC 

scores at the 6-month lead time. Both models perform well in the Sahel (minus the northern edge), the Horn of Africa, and the 

eastern part of southern Africa where trends in reanalysis TWS generally agree with those of GRACE/FO data (Supplementary 

Fig.S3). As expected, both models scored low ROC values in CAR and South Sudan, due to the opposite TWS trends with 

GRACE/FO data as discussed previously.    315 

ROC scores for the upper tercile forecast show similar spatial patterns but with slightly higher values than those of the lower 

tercile (Supplementary Fig.S6).  This difference likely reflects the uneven occurrences of wet and dry anomalies over the 

relatively short study period (2003-2020).   

 

 320 
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Fig.5 ROC scores (Sroc) of lower terciles of ensemble mean TWS forecasts of all NMME models by Noah-MP (top row) and CLSM 

(bottom row) with respect to GRACE/FO data.  The upper left text indicates average Sroc and the fraction of area (in parentheses) 

with Sroc>0.6. 

 

3.3 Persistence of TWS processes  325 

Persistence is known to help enhance hydrological prediction skill.  To properly examine persistence, we computed the 

autocorrelation of TWS time series from the two re-analyses and GRACE/FO data at three lags (Fig.6).  CLSM reanalysis 

TWS exhibits higher autocorrelations than Noah-MP across central Africa at all three lags, while Noah-MP simulates strong 

persistence in the drier northern and southern Africa.  GRACE/FO data reveals a different spatial pattern in persistence, with 

strong persistence in the interior Sahel and a large swath area across Lake Victoria, and Zambia and southern Angola.   330 

Regardless of data sources, strong persistence in TWS is generally associated with strong long-term trends in TWS 

(Supplementary Fig.S3).   The positive trends in the western Sahel shown in GRACE/FO data have been linked to the 

northward shift of the northern African monsoon, which has led to increases in wet extremes in the region (Monerie et al., 

2021; Rodell and Li, 2023).  The increasing trend was better captured by the Noah-MP reanalysis than CLSM.  On the other 

hand, CLSM reanalysis better reflected the wetting trends in the Lake Victoria region observed in GRACE/FO data.  Note that 335 

while surface water is a major TWS component in Lake Victoria, the increasing trend in GRACE/FO data mainly reflected 

precipitation surpluses around 2020, not due to water management activities (Boergens et al., 2024).  As discussed earlier, the 

strong persistence in CAR for CLSM reanalysis is associated with increases in precipitation.   
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 340 

Fig.6 Autocorrelation of TWS time series for Noah-MP (top row) and CLSM (middle row) reanalysis, and GRACE/FO data (bottom 

row) at three lags. Upper right text indicates average autocorrelation and fraction of area with autocorrelation>0.37 (in parentheses). 

 

On average, CLSM reanalysis shows stronger persistence than Noah-MP, with a larger fraction of the domain exhibiting >0.37 

auto-correlation (representing e-folding time) at the 2- and 4-month lags.  Compared to reanalysis, GRACE/FO data shows 345 

https://doi.org/10.5194/egusphere-2025-4198
Preprint. Discussion started: 19 September 2025
c© Author(s) 2025. CC BY 4.0 License.



17 
 

lower persistence at the 2-month lag, but substantially higher autocorrelation at 4- and 6-month lags.  The area with >0.37 

autocorrelation in GRACE/FO data remains high, above 75% even at the 6-month lag.   

To further explore contributing factors to TWS persistence, we examine autocorrelation of soil moisture of the unsaturated soil 

and groundwater storage from the reanalysis (Fig.7).  It is clear that the weak persistence in Noah-MP reanalysis TWS is 

closely linked to the weak persistence in its simulated groundwater.   At the 1- and 2-month lags, persistence in Noah-MP 350 

groundwater is lower than that of its soil moisture.  In contrast, CLSM groundwater shows much stronger persistence than its 

simulated soil moisture, with average persistence in groundwater nearly identical to that of TWS.  Compared to reanalysis, 

GRACE/FO observations exhibit a more rapid decline in persistence at 0–2-month lags, but a slower decline afterwards.      

 

 355 

Fig.7 Domain average autocorrelation for soil moisture of the unsaturated soil, groundwater storage and TWS. 

3.4 TWS forecast percentiles  

To explore the value of TWS forecasts, we examine TWS percentile maps derived from CLSM forecasts initialized in 

December 2015 (Fig.8).  Severe droughts (<10th percentile) affected much of southern Africa throughout the 6-month forecast 

period (Fig.8), in association with the 2015-2016 El Niño event which typically brings dry conditions to southern Africa 360 

(Mason & Goddard, 2001).  Drought conditions were further intensified by record-setting global temperature in 2016.  TWS 

percentiles indicate most severe droughts (<5th percentile) between December 2015 and March 2016.  In particular, the extent 

and severity of drought conditions forecasted for March 2016 are generally consistent with the FEWS NET drought assessment 
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released in March 2016 which is based on cumulative precipitation analysis (FEWS NET, 2016).  Additionally, this drought 

caused up to 66% decline in crop production and affected at least 18 million people (Ainembabazi et al., 2018).  This highlights 365 

the potential and benefit of TWS forecasts for providing early warnings for severe and persistent droughts.  Drought conditions 

are also evident in the southwestern coastal countries including Ghana and Gabon.   

 

Fig.8 TWS percentile maps derived from CLSM TWS forecasts of all NMME ensemble models, initialized in December 2015.              

 370 

Wetter conditions are observed in eastern Africa, especially in Rwanda where relentless rainfalls in May 2016 trigged 

landslides that killed dozens of people and destroyed hundreds of homes (Bishumba, 2016).  Above normal conditions also 

occurred in the northern part of western Africa such as Mauritania, Mali and Senegal from December to May.  These wet 

conditions may have contributed to the devasting floods in Mali and Burkina Faso in July 2016 (FloodList, 2016)     

Probability maps indicate strong agreement among NMME forecasts for these wet and dry anomalies (Supplementary Fig.S7).  375 

In addition, probabilities generally decrease with increases in lead time, reflecting increased uncertainty in both 

meteorological and TWS forecasts.  
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Surface and root zone soil moisture forecasts show similar dry and wet patterns as TWS forecasts (Supplementary Figs.S8,9).  

However, the severity and extent of wet and dry anomalies may differ depending on the indicator.  For instance, surface soil 

moisture identified <5th percentile drought conditions in Gabon in December 2015 which improved to 10-20th percentiles by 380 

May 2016, while TWS anomalies remained in <10th percentiles throughout the 6-month period.  Similarly, the wet anomalies 

in eastern Africa returned to normal more quickly in surface soil moisture than in TWS.  Root zone soil moisture percentiles 

also show faster changes in anomalies with lead time than TWS percentiles, but less so than surface soil moisture 

(Supplementary Fig.S9).  These results reflect lagged responses to changes in precipitation as the soil depth increases.            

4 Summary and discussions 385 

We evaluated terrestrial water storage (TWS) forecasts produced by the FLDAS Hydrological Forecasting System (FLDAS-

Forecast) in Africa using GRACE/FO TWS observations.  Statistical analyses indicate that the Catchment land surface model 

(CLSM) demonstrates considerable skills in forecasting terciles at S2S scales, with >0.6 ROC scores (the threshold indicating 

predictive skill) over more than 50% of the study area across 1- to 6-month lead times.  CLSM forecasts also show stronger 

correlations with GRACE/FO data than those of Noah-MP, especially at long lead times.  A key contributing factor is that 390 

CLSM reanalysis, used as initial conditions, better captured the interannual variability in GRACE/FO observations, with >0.7 

correlation for domain averaged TWS anomalies.  Furthermore, the skill in initial conditions is retained at longer lead times 

through persistence associated with strong interannual variability in its simulated TWS.  As interannual variability determines 

climatology, the combination of more accurate initial conditions and persistence led to more accurate anomaly forecasts. 

 395 

In contrast, Noah-MP forecasts showed low skills, especially in central Africa where ROC scores generally fall below 0.6 at 

the 4- and 6-mth lead times.  This reduced performance is partly attributed to the reanalysis-based initial conditions that exhibit 

smaller interannual variability compared to GRACE/FO data, degrading accuracy of climatology and anomalies.  Weak 

interannual variability also led to a more rapid decline in forecast skill with lead time in Noah-MP.        

 400 

Accuracy of TWS forecasts showed strong dependency on interannual variability of precipitation forecasts.  TWS forecasts 

based on GEOSv2 precipitation, which exhibits the largest interannual variability, showed the lowest correlation and highest 

RMSEs with respect to GRACE/FO observations.  On the other hand, TWS forecasts based on GFDL and CSM5 precipitation, 

which have the lowest interannual variability, yielded the highest correlations and lowest RMSEs.  Predicting precipitation 

interannual variability is challenging due to limited temporal samples (McKinnon and Deser, 2021) and can therefore entail 405 

greater uncertainty.  On the other hand, model physics can exert stronger influences on accuracy of TWS forecasts than 

precipitation forecasts.  This effect is more evident with CLSM which may overestimate TWS responses to precipitation 

interannual variability and thus, can produce more accurate TWS forecasts with precipitation forecasts of reduced interannual 

variability such as for some NMME models at long lead times.   
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Statistical analysis showed that forecast skill is substantially lower when evaluated against GRACE/FO data than when 410 

assessed relative to reanalysis for both models, further underscoring substantial uncertainty in model physics.  These effects 

are most pronounced in central Africa where forecast skill varies considerably between the two models.  As discussed above, 

the ability to simulate multi-year responses to precipitation variability is critical for skillful TWS forecast in regions with strong 

precipitation interannual variability. CLSM performs better in this regard because it realistically represents upward 

groundwater movement during extended dry periods, sustaining ET and creating storage capacity for groundwater recharge 415 

when precipitation returns, thereby resulting in pronounced interannual variability in TWS.  In contrast, Noah-MP’s weak 

representation of capillary rise limits groundwater storage capacity and its ability to capture long-term precipitation variability, 

especially during prolonged droughts.   

Auto-correlation analysis showed that TWS persistence is strongly impacted by persistence in simulated groundwater, 

underscoring the need to improve groundwater representation, especially in capturing long-term precipitation variability.  In 420 

addition, this study shows that while persistence contributes to predictability, inaccurate persistence can lead to erroneous 

forecasts.  This is especially true in regions experiencing secular trends in precipitation and anthropogenic effects such as 

groundwater withdrawals and deforestation that are often poorly simulated by land surface models (Dӧll et al., 2014).   

As discussed above, interannual variability is critical for accurately forecasting TWS anomalies. GRACE/FO data assimilation 

has been shown to be an effective means to constrain the temporal variability of TWS and its components (Li et al., 2019b).  425 

Due to the computational cost and 2-4 months of data latency, GRACE/FO data assimilation is only feasible for reanalysis-

based simulation, not suited for forecast runs.  As a result, while GRACE/FO data assimilation may improve reanalysis-based 

initial conditions, deficiencies in model physics such as inability to properly simulate responses to precipitation variability can 

prevent improvements in initial conditions from translating into enhanced forecast skill at longer lead times.  Therefore, 

improving physical representation of TWS processes, especially their responses to anthropogenic effects and long-term 430 

precipitation variability, should be a key priority for future research aimed at improving TWS forecasts.   
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