Review#2

Summary:

The authors evaluate the skill of FEWS NET S28 terrestrial water storage (TWS) hindcasts over
Africa. This study is relevant for improving forecasts and the management of extreme conditions
across the continent, contributing to enhanced climate resilience. The focus lies on the differing
performance of two land surface models—CLSM and Noah-MP—in comparison with GRACE
observations. The analysis also includes the decomposition of TWS into its individual storage
components and an assessment of TWS persistence. Evaluation metrics used are RMSE,
correlation, and ROC.

Overall, the insights presented in the paper are valuable and merit publication. However, three
major points should be addressed:

e Some parts of the manuscript are difficult to follow. This can likely be resolved by
adding a few clarifying explanations; specific suggestions are provided in the detailed
comments.

e The manuscript contains contradictory statements regarding the role of surface water
bodies in Africa. In the data section, they are described as small, yet later results indicate
that they are relevant. Given that surface water bodies can substantially influence TWS
variability in many African regions—and considering the existing literature on this
topic—it may be advisable to remove their contribution from the GRACE data before
performing the analysis.

e The evaluations in Section 3.1 are based on time series averaged over the entire African
continent. In my view, such continental-scale averages offer limited interpretive value
due to the large diversity of climate zones and hydrological regimes. The authors also
appear to have difficulties interpreting the signal they observe. It would be more
informative to present time series for a selection of representative regions.

Thank you for your supportive comments. We agree some of the statements are difficult to
follow and have revised the Results section extensively to better explain the purpose and result
of each analysis.

Regarding surface water, we agree that removing surface water storage from GRACE data can
help improve the diagnosis of model physics issues in areas with large surface water bodies.
However, due to the unique satellite design and data processing processes, signals of surface
water are inevitably spread to a large area surrounding a surface water body and thus, simple
water balance calculation, i.e., subtracting surface water storage from GRACE data, at the grid
cells is insufficient to remove surface water signals from the GRACE record. Properly
separating surface water signals from GRACE observations requires specialized techniques and
expertise (Deggim et al., 2021; Sharifi et al., 2025), which are beyond the scope of this study. In
addition, accurately computing surface water storage changes requires careful determination of
lake shore areas (Boergens et al., 2024), routing algorithms and modeling surface water and
groundwater interaction, all of which are subject to large uncertainties themselves (Bierkens and
Wada 2019). There is also substantial uncertainty in modeling soil moisture and groundwater, as



shown in this study. Therefore, we believe this issue is more appropriately addressed in a
dedicated study to disentangle contributions of individual TWS components. We also do not
expect this issue to substantially affect the outcome of this study given that lake areas only
constitute a small fraction of the continent.

We acknowledge the importance of isolating surface water signals and highlight the need for
future research in the final section as the following,” Separating surface water signals from
GRACE/FO data can improve the diagnosis of modeled TWS processes in regions dominated by
large surface water bodies. However, due to the unique satellite design and data processing of
GRACE/FO, surface water storage changes are spatially spread over broad areas surrounding
surface water bodies. As a result, simple grid-scale mass balance calculations are insufficient,
and specialized modeling approaches and techniques are required to properly isolate surface
water contributions to GRACE/FO TWS observations (Deggim et al., 2021, Sharifi et al., 2025).
Because such techniques and expertise are not widely available, there is a need for surface water
datasets that are harmonized and scaled to GRACE/FO observations to facilitate the separation
of surface water signals. Beyond temporally consistent local observations of surface water
(water elevation and extent), this effort requires explicitly modeling surface water and
groundwater interactions, currently absent in most land surface models, to quantify
contributions of groundwater to surface water storage changes which can be substantial in wet
climates (Bierkens and Wada 2019)”.

Bierkens, M. F. and Wada, Y.: Non-renewable groundwater use and groundwater depletion: a
review, Environ. Res. Lett., 14, 063002, https://doi.org/10.1088/1748-9326/ab1a5f, 2019.
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Please see our response to your third comment below.

Specific comments:

Abstract:

e L 18:°“>0.6 relative operating characteristics” —this measure is not clearly defined.
Do you think that it is obvious what it represents?

We revised this sentence to say, “Results show that CLSM provides more skillful TWS
forecasts than Noah-MP, with relative operating characteristics (ROC) scores exceeding 0.6



(the threshold for predictive skill) for tercile forecast over more than half of the study domain
across the 1-6 months lead times” .

We also revised section 2.6 to provide more background information about ROC like this,
“Additionally, skill in forecasting terciles is assessed using the relative operating
characteristic (ROC) score, a commonly used evaluation metric measuring the ratio of hit
rates to false alarm rates (Met Office). A ROC score of 1 indicates a perfect forecast. ROC
scores below 0.5 suggest no skill, while scores above 0.6 indicate predictive skill (Met
Office). High ROC scores and strong correlation are commonly interpreted as indication of
skillful forecasts (e.g., Yuan and Zhu, 2018)”.

Before discussing ROC results in section 3.2, we also added “While RMSEs and correlation
quantify the magnitude of discrepancies and the temporal consistency between two time
series, they do not directly assess the ability to accurately forecast wetter and drier
conditions. Therefore, we use ROC scores to evaluate the performance of Noah-MP and
CLSM in predicting terciles, corresponding to below-normal, near-normal and above-
normal conditions”.

e L 27: you talk about multi-year variability, but before you said that you do S28S forecasts.
This is confusing... so what is the aim here?

Yes. It was confusing. We have clarified this by adding these sentences, “Accurate
representation of interannual variability is essential for S2S forecasts because TWS, as a
long memory process, can carry wet and dry information over months, and interannual
variability also directly affects climatology used to determine anomalies”.

e L 32: “relative to reanalysis” — which reanalysis are you referring to?

This sentence has been removed from Abstract.

e L.35: Would it make sense to explain the term “persistence”? Maybe make clearer using
the term “temporal persistence”.

Thanks, we revised it to say temporal persistence.
1 Introduction:
e L 56/57: 1 could not understand what you want to say with this sentence.
This sentence has been revised to say, “More importantly, evaluations using simulated TWS
as reference masks the impact of model physics and thus are unable to assess uncertainties in

model physics and even mischaracterize persistence and its role in TWS forecast”.

e L 60: I would say that groundwater being a potential source of predictability for TWS
depends mainly on its variability?



This sentence has been revised to “Groundwater, located in the deeper subsurface, has
longer memory than other near surface processes such as soil moisture and its long-term
temporal variability may contribute to TWS predictability”.

o L 64: the sensitivity to biases in the meteorological forcing depends much on the response
time, which might be much longer than the S2S scale.

We replaced “biases” with “errors” to reflect all aspects of precipitation uncertainties. In
addition, longer scale variabilities can still affect S2S forecasts due to their impact on
initial conditions and climatology as we explained above.

e L 76: you may add the following two studies to your discussion (if you think it is
fitting!). They assimilated GRACE-based forecasts of TWS into hydrological models in
order to improve the forecast skill of the models:

o Li, F., Springer, A., Kusche, J., Gutknecht, B., Ewerdwalbesloh, Y. (2025).
Reanalysis and Forecasting of Total Water Storage and Hydrological States by
Combining Machine Learning With CLM Model Simulations and GRACE Data
Assimilation. Water Resources Research, €2024WR037926,
https://doi.org/10.1029/2024WR 037926

o Li, F., Kusche, J., Sneeuw, N., Siebert, S., Gerdener, H., Wang, Z., ... & Tian, K.
(2024). Forecasting next year's global land water storage using GRACE data.
Geophysical Research Letters, 51(17), e2024GL109101.
https://doi.org/10.1029/2024GL109101

Thanks for bringing our attention to these papers. We added this sentence to the Introduction:

“In recent years, the record has also been leveraged to train machine learning models for
forecasting TWS (e.g., F. Li et al., 2024 & 2025)”.

e L 90: Here you talk about hindcast for the first time. Before you only talk about forecast.
You may introduce this.

Thanks for the suggestion. We revise this paragraph to read as follows: “The primary goal of
this study is to provide an objective evaluation of the skill of S2S TWS forecasts from
FLDAS-Forecast using GRACE/FO observations. To this end, we analyze TWS hindcasts for
the historical period 2003-2020. The hindcasts were generated using the same set of NMME
models employed in the operational FLDAS forecasts (201 1-present), except that two of the
NMME models used a reduced number of ensemble members (Hazra et al., 2023). Initial
conditions for the hindcasts are derived from model simulations forced by reanalysis-based
meteorological datasets. Consequently, TWS hindcast skill reflects the combined influence of
land surface model physics, meteorological hindcasts, and the reanalysis forcing used to
generate initial conditions.

e L 91: multi-model — are there more models involved besides CLSM and Noah?

There are only two models which can still be considered as multi-model. However, we
revised this sentence to:” By leveraging the multi-model framework of FLDAS-Forecast,
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including two land surface models and a full ensemble of NMME meteorological forecast
models, the evaluation aims to improve understanding of how model physics employed by
land surface models influence TWS forecast skill and how they interact with meteorological
forecasts”.

e L. 95/96: please provide references for the past studies

References have been added: “Unlike past studies where S2S forecasts were evaluated by
season when they were issued (e.g., Shukla et al., 2019, Hazra et al., 2023)”,

e L. 97: Itis not clear to me how autocorrelation analysis can be applied to processes. |
would say it can be applied to variables.

“Processes” has been replaced by “simulated TWS processes and GRACE/FO observations”.
2 Data and evaluation metrics

e L101: how do you make sure that CHIRPS based precipitation and the other fields are
consistent? And why do you use different fields for generating the initial conditions than
used afterwards used for the hindcasts.

We now explain that CHIRPS and MERRA-2 are interpolated to a common grid for model
simulation.

CHIRPS and MERRA-2 cannot predict the future and therefore, to properly evaluate
forecast skill, hindcasts must be generated using the same forcing data used for forecasting,
the NMME suite. As noted above, hindcasts and forecasts are nearly identical, differing only
in their time period.

e L. 147: on the long-term I agree that groundwater variability is balanced by P and ET, but
at S28S scale I have doubts. The papers you cite both refer to the US, which has very
different climate regimes and soils. Do you have evidence over Africa that
groundwater is influenced by ET on S2S scale?

We state groundwater temporal variability is controlled by precipitation and ET, not balanced
out by P and ET which implies net-zero groundwater storage changes. In unconfined
aquifers, groundwater temporal variability is a result of combined influences of P and ET
based on the cited publications. We added Li et al., 2019b & Ascott et al., 2020 that employ
in situ groundwater in Africa. In addition, when describing the models in section 2.3, we
added, “In addition, both models do not simulate water storage changes in confined aquifers
which are also detected by GRACE/FO satellites”.

e L. 154: It was shown by Ndehedehe et al (2017) that lake Volta contributes to 40% of
TWS trend in the Volta basin. So I think that in particular over West Africa you cannot
neglect surface water bodies when comparing to GRACE.



o Christopher E. Ndehedehe, Joseph L. Awange, Michael Kuhn, Nathan O. Agutu,
Yoichi Fukuda, Analysis of hydrological variability over the Volta river basin
using in-situ data and satellite observations, Journal of Hydrology: Regional
Studies, Volume 12, 2017,Pages 88-110, ISSN 2214-5818,
https://doi.org/10.1016/j.ejrh.2017.04.005.

We agree and that’s why we say, “surface water contribution to TWS is generally smaller
compared to other TWS components, except in areas with large surface water bodies” in Line
154. We revised this paragraph to “Neither model simulates surface water, which is detected
by GRACE/FO satellites. However, surface water contribution to TWS is generally smaller
compared to other TWS components, except in areas with large surface water bodies (Rodell
& Famiglietti, 2001, Getirana et al., 2017; Deggim et al., 2021). The implications of
neglecting surface water storage for the evaluation metrics are discussed in section 3.

We also revised the beginning paragraph of section 3.2 to read like this: “RMSEs of the
ensemble mean TWS hindcasts of all NMME models, with respect to GRACE/FO data,
exhibit distinct spatial patterns (Fig.3). Large RMSEs are observed in the interior western
Sahel, a large region across Lake Victoria, Lake Tanganyika, and Lake Volta as well as
southern Zambia and Angola, for both models. As the models do not simulate surface water
which is detected by GRACE/FO satellites, unresolved surface water dynamics and water
management activities may have contributed to errors in lake areas. In addition,
uncertainties in precipitation forcing data, from both reanalysis and hindcasts, especially
under a changing climate, may further amplify errors in simulated TWS. As discussed
earlier, the East African Rift, which includes Lake Victoria, has seen increased precipitation
variability (Boergens et al., 2024); similarly, Southern Africa including southern Angola has
been experiencing erratic precipitation patterns and more severe meteorological droughts in
recent years (Trisos et al., 2022, Correia et al., 2025). However, considering that the
reanalysis exhibits similar spatial patterns and magnitudes of RMSEs as the hindcasts
(Figs.3a,e), deficiencies in model physics are likely the dominant contributor to RMSEs in
TWS hindcasts”.

e L 161: Could you clarify: do you evaluate in the following the ensemble mean?

Yes. We added this sentence here (the end of section 2.3),” In section 3, we evaluate both the
ensemble mean TWS hindcasts of individual NMME models and the all-model ensemble
mean hindcasts”.

e L 170: why do you remove only 5 years as temporal mean? What about regions that have
strong interannual variability? I would expect that in particular the percentile maps shown
in Fig. 8 can be significantly affected by the choice of the time span for the temproal
mean.

We didn’t remove the 5 years mean from GRACE data which are provided as anomalies
relative to the 2004-2009 temporal mean. To be consistent with GRACE data, we removed
the 2004-2009 mean from modeled data (hindcasts and reanalysis). We further removed the
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monthly climatology derived from the entire evaluation period (2003-2020) at each grid cell
which should take care of the interannual variability issue.

This is how we explain the data processing procedure in section 2.5: “To ensure consistency
with GRACE/FO data, we first removed the temporal mean of simulated TWS for 2004-2009
at each grid cell to align the model’s mean period with that of GRACE/FO. We then
computed non-seasonal TWS anomalies by subtracting the monthly mean (climatology), one
for each calendar month, from the simulated TWS and GRACE/FO time series for their
overlapping period, 2003-2020. Unless otherwise noticed, all results presented in section 3
are based on the non-seasonal TWS anomalies”.

e L. 178: do you mean that you removed the climatology?
Yes. The sentence has been revised to say monthly climatology.
e L. 180: you could explain at some point the differences between reanalysis and hincasts.

We revised the last paragraph of section 2.3 to clearly define reanalysis and hindcast. The
section title has also been updated to include reanalysis. This is the revised text: “Model
simulations were first performed by driving Noah-MP and CLSM with CHIRPS precipitation
and non-precipitation fields from MERRA-2. Because MERRA-2 is a reanalysis product,
these simulations are collectively referred to as the reanalysis. TWS hindcasts with lead
times of 1 to 6 months were then generated by forcing Noah-MP and CLSM with the NMME
hindcasts described above, using the corresponding reanalysis output as initial conditions
for each hindcast. Since CHIRPS and MERRA-2 are constrained by hydrological and
atmospheric observations, initializing the hindcasts with the reanalysis, rather than modeled
states driven solely by NMME meteorological hindcasts, helps reduce uncertainty in TWS
hindcasts”.

e L. 185: you used white color in the figures to highlight regions that were masked out.
This is not clear, better use gray color.

Thanks for pointing this out. Those regions are now masked using the grey color.

e L. 186: you could make the percentiles clearer by an equation?

An equation has been added in section 2.5 to show how percentiles are calculated.
3 Results

e L 197 ff: The structure is difficult to understand. You introduce the three influencing
factors, and then say how each of them is isolated. However, for the first to factors I
cannot understand how they are connected to what you analyze. Could you make this
more clear? How are initial conditions connected to temporal variability of reanalysis?
How are meteorological forecasts connected to different lead times? And to isolate model
physics shouldn’t you compare to GRACE?



Indeed, this paragraph was confusing. We have revised it extensively to read like this:
“The skill of TWS hindcasts is influenced by several factors, including initial conditions,
meteorological hindcasts, and the underlying land surface model physics which affect
both the reanalysis-based initial conditions and TWS hindcasts. Because these influences
are interrelated, fully isolating their individual contribution to hindcast skill is inherently
challenging. To address this, we conduct a series of complementary evaluations using

both GRACE/FO data and the reanalysis as reference.

We begin by examining the temporal variability of reanalysis soil moisture and
groundwater, which are used as initial conditions for TWS hindcasts, to assess their
relative contribution to temporal variability and accuracy of TWS (section 3.1). We then
evaluate TWS hindcasts and the corresponding reanalysis using GRACE/FO
observations to quantify forecast skill for each land surface model and NMME forcing
model, and accuracy of initial conditions (section 3.2). Since TWS hindcasts differ from
the reanalysis only in their meteorological forcing fields, evaluating TWS hindcasts using
the reanalysis as reference helps isolate uncertainties in NMME hindcasts. In addition,
because model physics are effectively masked when using reanalysis as reference,
differences between the two sets of evaluation metrics, one relative to GRACE/FO and
another relative to the reanalysis, indicate impacts of model physics employed by an
individual land surface model (section 3.3)”.

Comparing to GRACE data does not isolate model physics because simulated TWS is
also influenced by uncertainties in forcing data.

L 203: Are you sure that it makes sense to average over such a huge study area?
Wouldn’t it be more appropriate to look at regions of interest? For instance, you are not
able to interpret the interesting signals that you highlight in L 211, because you do not
know from which part of your region they come.

In response to your comment, we added a new analysis (Fig.2 & Table 2) to show basin-
scale TWS comparisons in section 3.1.
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Fig.2 Average seasonal (left column) and non-seasonal (right column) components of
TWS from the Noah-MP (red lines) and CLSM (blue lines) reanalysis and GRACE/FO
data (black lines) for the six largest river basins in Africa (Basin delineations are shown
in Supplementary Fig.S1a). RMSEs and correlations between the reanalysis and GRACE
data are shown in matching colors of the corresponding time series.

Multiyear variability is now discussed with respect to these basin averaged TWS time
series: “To further evaluate the performance of reanalysis TWS, we analyze temporal
variability of basin-average TWS time series for the six largest river basins in Africa (see
Supplementary Fig.Sla for basin delineations). Seasonal TWS for both models show high
correlations (generally >0.7) with GRACE/FO data in most basins, indicating that the
timing of the seasonal cycle is well captured by the model (Fig.2, left column). Noah-MP
often exhibits slightly higher seasonal correlations with GRACE/FO than CLSM (e.g.,
Congo, Niger, Nile, and Chad),; however, its performance degrades substantially in



Orange, where the correlation is near zero (Fig.2g). This low correlation is attributed to
the misalignment in the timing of annual minimum TWS, with Noah-MP reaching its
seasonal low in February, whereas GRACE/FO observations (and CLSM) reach their
seasonal low in November.

In contrast, the non-seasonal component of reanalysis TWS exhibits notably lower
correlations with GRACE/FO (Fig.2, right column), reflecting greater challenges in
simulating interannual TWS variability. CLSM generally achieves higher correlations
than Noah-MP in the central and northcentral basins (Congo, Nile and Zambezi),
whereas Noah-MP performs better in the northwestern basins (Niger and Chad). RMSEs
are lower for each model in three of the six basins. Consistent with the domain averaged
analysis (Fig.1), CLSM simulates larger seasonal variability and stronger interannual
variability than Noah-MP, both of which are in closer agreement with GRACE/FO data
(Table 2).

Non-seasonal TWS often exhibits strong interannual variability driven by both climate
variability and anthropogenic effects. For instance, TWS reached maxima in the
Zambezi and Orange basins in 2011 in association with the La Niiia event (Figs.2h,j),
which typically brings wetter conditions to southern Africa (Mason and Goddard, 2001;
Scanlon et al., 2022;). Similarly, the strong TWS increases in the Nile basin in 2019,
evident in GRACE/FO data (Fig.2f), is linked to a strong positive phase of the Indian
Ocean Dipole (Scanlon et al., 2022) and enhanced precipitation variability in the Eastern
African Rift (Boergens et al., 2024). In the Niger basin (Fig.2d), GRACE/FO shows a
strong persistent increasing trend (0.048 cm month-1) that has been linked to conversion
of shrubs to crops (Favreau et al., 2009) and corroborated by well data (Scanlon et al.,
2022). Since the models do not represent land cover change, the reanalysis TWS exhibits
smaller trends (0.019 cm month-1 for Noah-MP and 0.016 cm month-1 for CLSM with p
<0.01 for all three trends). Larger discrepancies are also observed in the Congo and
Chad basins (Figs.2b,l), which may be linked to deforestation and are discussed in more
detail in section 3.2.

Overall, the reanalysis TWS captures interannual variability observed by GRACE/FO but
tends to underestimate strong anomalies such as the 2019 elevated TWS in the Nile basin
and the 2016 and 2019 low TWS in the Zambezi basin, reflecting deficiencies in land
surface model physics and uncertainties in the reanalysis forcing data. Because droughts
and floods are relative to the climatological mean, evaluations in the following sections
focus on non-seasonal TWS forecasts, i.e., TWS anomalies relative to monthly means”.



Table 2. Amplitudes of seasonal TWS and temporal standard deviation of non-seasonal
TWS for the six largest river basins in Africa (see Supplementary Fig.S1a for basin

delineations).
Amplitude (cm) Temporal Std (cm)
Noah-MP CLSM GRACE/FO Noah-MP CLSM GRACE/FO

Congo 4.51 6.52 7.21 1.53 5.56 3.23
Niger 14.83 21.64 20.81 1.54 2.29 3.85
Nile 5.05 7.41 7.43 2.13 2.98 4.71
Orange 2.66 3.58 2.44 2.30 1.68 2.16
Zambezi 18.27 24.76 28.87 2.55 3.54 5.37
Chad 11.74 16.97 16.62 1.31 2.70 2.49

e [.224: Why are here 2 numbers. I an skeptical that trends of few micrometers / month
are significant.

One number is for CLSM, and another is for GRACE. This sentence has been revised
to: “The strong correlation between CLSM TWS and GRACE/FO data is also contributed
by the presence of statistically significant secular trends in the two time series (p <0.01
based on the Mann-Kendall test; Yue et al., 2002), 0.014 cm month™ for CLSM and 0.007
cm month™ for GRACE/FO” .

e L 226: But I think you canceled regions with large groundwater withdrawals out. And
their impact cannot be that big averaged over the entire study region.

Good point. The mask by Rodell et al. (2008) includes only those regions exhibiting
sustained TWS declines due to groundwater withdrawals for irrigation. Regions with
intermittent groundwater use are not excluded. Regardless, this sentence has been
removed.

e L.235: You also clearly see Lake Volta here, which shows that you cannot neglect
surface water in general.

Thanks for bringing up Lake Volta. We have added it to the list of lakes and revised this
paragraph extensively for clarity (see our response to your L.154 comment).

e L. 240: you do not show discrepancies among NMME models in S1,2 directly, maybe
compute the ensemble spread?

What we meant was discrepancies in interannual variability across NMME models. We
have revised this section extensively and this statement has been removed.

We present interannual variability of NMME precipitation because its spatial pattern is
similar to that of correlation. In addition, RMSEs and correlations for individual NMME
models exhibit clear dependency on interannual variability of precipitation hindcasts.



TWS responds to cumulated precipitation, and ensemble spreads at a specific lead time
may not explain some of statistical results.

L. 242: what about Lake Volta? It is clearly visible (however, before in the manuscript
you say that surface water can be neglected).

We added Lake Volta. Thanks for pointing this out.

L. 263: on average, - — this is a repition.

This has been revised to “On spatial average”.

L. 283 — 286: this seems to be a central insight of your experiments. Could you highlight
it a bit more?

Discussion of these results has been moved to section 3.3 and expanded considerably:

“Since TWS hindcasts differ from the reanalysis only in the meteorological forcing data
used, evaluating TWS forecasts against the reanalysis helps isolate impacts of NMME
hindcasts from those of model physics. RMSEs relative to the reanalysis exhibit similar
spatial patterns between the two models (Supplementary Fig.S5), with larger errors in
wetter central Africa and smaller errors in drier northern and southern regions,
highlighting uncertainty in NMME precipitation hindcasts, which is proportional to mean
annual precipitation, as a main driver of TWS forecast errors when uncertainty in model
physics is masked. As expected, these RMSEs are substantially lower than using
GRACE/FO as reference, and they increase steadily with increasing lead time, reflecting
growing discrepancies between NMME precipitation hindcasts and CHIRPS
precipitation estimates.

Correlations evaluated relative to the reanalysis reveal contrasting patterns between the
two models (Fig.S6). For Noah-MP, correlations relative to the reanalysis exhibit
spatial patterns similar to those obtained using GRACE/FO as reference, with higher
correlations in the drier northern and southern regions and lower correlations in central
Africa. In contrast, when evaluated against the reanalysis, CLSM yields stronger
correlations in central Africa through the 1—6-month lead times, in sharp contrast to the
low skill inferred when GRACE/FO is used as reference. This region of strong
correlations coincides with that of strong long-term TWS trends in CLSM
(Supplementary Fig.S2) which, as discussed in section 3.4, may induce strong persistence
in simulated TWS and hence strong correlation. For both models, domain-averaged
correlations relative to the reanalysis are more than twice those relative to GRACE/FO
in most cases, underscoring substantial uncertainty in model physics that limit TWS
forecast skill and the need to use independent data for evaluation”.

L. 289-291: I do not understand the relationship between decreased RMSE and
overestimation of TWS interannual variability. Could you please clarify this?



We revised to say, “In contrast, RMSEs of CLSM forecasts decrease with lead time,
except for forecasts driven by GEOSv2. As shown in previous studies (e.g., Li et al.,
2019b), CLSM has the tendency to overestimate TWS dynamic ranges. As interannual
variability of NMME precipitation forecasts generally decreases with increasing lead
time (Supplementary Fig.S3), elevated dynamic ranges are suppressed, leading to
reduced RMSEs at longer lead times. In contrast, GEOSv2 precipitation exhibits
increasing interannual variability with increasing lead time (Supplementary Fig.S3),
eliciting amplified TWS changes and thus larger RMSEs at longer lead times”.

L. 294 — 295: model physics have stronger influences than meteorological forecasts:
didn’t you show that this is different for NOAH and CLSM?

Because the two models are driven by the same forcing dataset, the different behaviors in
RMSEs, one increasing with lead time and another decreasing with lead time, suggest
stronger role of model physics than meteorological forecasts. Regardless, this sentence
has been removed with the revision.

L.305: So would it be better to use the forcings that lead to the best results for forecasts
and not the ensemble mean?

The model performance varies across the continent, making it unlikely that a single
NMME model performs best in all regions. Also, FLDAS-Forecast is used for soil
moisture and streamflow forecasting which may respond differently to NMME
precipitation. Nevertheless, this issue warrants further investigation and can be addressed
in future studies.

L 326: Could you define persistence somewhere in one sentence?

We define persistence in the first sentence of the paragraph as “Persistence refers to the
tendency of a process retaining its past states (wet or dry conditions) and has been
known to help enhance hydrological prediction skill. To examine persistence, we
computed the autocorrelation of TWS time series from the two re-analyses and
GRACE/FO data at three lags”.

L 358: Could you have an introductory sentence to remember the reader which kind of
percentiles you are referring to?

Yes. We added this sentence at the beginning: “To demonstrate the value of TWS

forecasts, we examine TWS percentile maps derived using equation (1) for hindcasts
initialized in December 2015 and GRACE/FO data (Fig.9)”.

L 358ff: would it make sense to involve percentiles from GRACE into the extreme event
discussion?

Yes. GRACE based percentiles have been added. Please see our response to Review#1.



e Fig. 8: Why do you show and discuss percentiles only for CLSM and not for NOAH?
Noah-MP forecast percentiles have been added. Please see our response to Review#1.
4 Summary and discussion
In this section many aspects from the results section are repeated. It would be great if you could
add in each paragraph some more interpretation or insights what this means for future research or

applications.

This section has been revised extensively to provide more insights and synthesis in several key
areas, including:

1) relevance of interannual variability to S2S forecasts
2) performance of CLSM vs that of Noah-MP
3) uncertainties in model physics and the importance of improving groundwater simulation
in land surface models
4) relationship between interannual variability and uncertainties in NMME precipitation
hindcasts
5) limitations of persistence for predictability, and importance of using independent datasets
to evaluate forecasts
We also explicitly call on future research to develop surface water datasets harmonized with
GRACE data to assist separation of surface water from the record and quantify associated
uncertainties.
Minor comments:
Abstract:
e Abbreviation FEWS NET not defined.
Defined.
Data and evaluation metrics:
e Table 1: abbreviations are not defined
Definitions are provided in the table caption.

Results

e L 225: show a statistical'** — add “a”

Done





